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Abstract

Counterparty credit risk (CCR), a key driver of the 2007-08 credit crisis, has become one
of the main focuses of the major global and U.S. regulatory standards. Financial institutions
invest large amounts of resources employing Monte Carlo simulation to measure and price
their counterparty credit risk. We develop efficient Monte Carlo CCR estimation frame-
works by focusing on the most widely used and regulatory-driven CCR measures: expected
positive exposure (EPE), credit value adjustment (CVA), and effective expected positive ex-
posure (EEPE). Our numerical examples illustrate that our proposed efficient Monte Carlo
estimators outperform the existing crude estimators of these CCR measures substantially in
terms of mean square error (MSE). We also demonstrate that the two widely used sampling
methods, the so-called Path Dependent Simulation (PDS) and Direct Jump to Simulation
date (DJS), are not equivalent in that they lead to Monte Carlo CCR estimators which are
drastically different in terms of their MSE.

Keywords: Risk Management, Counterparty Credit Risk, OTC Derivatives Market, Credit
Value Adjustment, Efficient Monte Carlo Simulation, Basel II-III

1 Introduction and a Summary of Important CCR Measures

Counterparty credit risk (CCR) is the risk that a party to a derivative contract may default prior
to the expiration of the contract and fail to make the required contractual payments, (see [5] for
the basic CCR definitions). Counterparty credit risk has been widely considered as one of the
key drivers of the 2007-08 credit crisis, and it has become one of main focuses of the major global
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and U.S. regulatory frameworks (Basel III1and the Dodd-Frank Act of 2009-10; see, for instance,
[3]). It is well known that pricing and measuring counterparty credit risk is computationally
extremely intensive; financial institutions (derivative dealers) invest large amounts of resources
developing and maintaining Monte Carlo simulation “engines” to manage their counterparty
risk, (see [24], [18], and [5]). While various aspects of counterparty credit risk have been subject
of extensive research post 2007-08 financial crisis, statistical efficiency of the CCR estimators
has received no attention in the literature.

In this paper we develop efficient Monte Carlo frameworks for pricing and measuring coun-
terparty risk. More specifically, we focus on efficient Monte Carlo estimation of the most widely
used and regulatory-driven CCR measures, expected positive exposure (EPE), credit value ad-
justment (CVA), and effective EPE (EEPE), as defined below. Efficiency criteria under consid-
eration are variance, bias, and computing time of the Monte Carlo estimators. Our proposed
Monte Carlo estimators of EPE, CVA, and EEPE outperform the existing crude estimators
of these CCR measures substantially in terms of mean square error (MSE). To the best of
our knowledge, this paper is the first to develop efficient Monte Carlo counterparty credit risk
estimators. Currently, CVA is a CCR measure that is only applied to bilateral derivatives trans-
actions. However, EPE and EEPE are CCR measures applicable to both bilateral derivatives
transactions and centrally-cleared derivatives transactions. Specifically, Basel Committee on
Banking Supervision (BCBS) has devised regulatory capital charges on clearing member banks
against their central counterparty credit risk; EPE and EEPE are components of these capital
charges to be estimated via Monte Carlo simulation by large dealer banks.

Counterparty credit exposure [5], denoted by V , of a financial institution against one of its
counterparties, is the larger of zero and the market value of the portfolio of derivatives contracts
the financial institution holds with this counterparty. To effectively introduce our efficient
Monte Carlo procedures, we consider credit exposures in the absence of the commonly used risk
mitigants, collateral and netting agreements. This simple setting facilitates the communication
of our main results.

EPE is a widely used counterparty credit risk measure for regulatory and economic capital
calculations, (see Chapters 2 and 11 of [18]). It is defined as follows,

EPE ≡
∫ T

0
E[Vt]dt, (1)

where E[Vt] is the expected value of the (credit) exposure at time t ≥ 0, and T > 0 denotes the
time to maturity of the longest transaction in the derivatives portfolio.

Effective EPE (EEPE), another widely used regulatory and economic capital-related coun-
terparty risk measure [18] is defined as follows in the CCR literature:

EEPEdst ≡
n∑
i=1

max
1≤j≤i

E[Vj ]∆i. (2)

1Basel III is a global regulatory standard on bank capital adequacy, stress testing and market liquidity risk
agreed upon by the members of the Basel Committee on Banking Supervision in 2010-11, and scheduled to be
introduced from 2013 until 2018.
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This definition is based on a discrete time grid, 0 ≡ t0 < t1 < ... < tn ≡ T with ∆i = ti − ti−1,
i = 1, ..., n. We prefer and propose the following continuous version of EEPE:

EEPE ≡
∫ T

0
max

0≤u≤t
E[Vu]dt, (3)

which is consistent with the definition of EPE and has the advantage of not requiring an a priori
specification of a discrete time grid. Our results in Section 5 apply to EEPE as well as EEPEdst.

EEPE is the “conservative” version of EPE that accounts for roll-over risk. Roll-over risk
refers to the following scenario. Expiration of some of the short-term trades in the derivatives
portfolio before T would decrease some of the E[Vi] and so EPE. However, it is likely that these
short-term trades are replaced by new ones. When these replacements are not captured by the
Monte Carlo CCR “engine”, EPE is underestimated, (see [24]).

CVA, which is the difference between the risk free portfolio value and the true counterparty
default risky portfolio value, (see [23]), has become one of the most important CCR measures for
derivatives dealers and other large financial institutions. CVA is also one of the main components
of the Basel III’s counterparty credit risk capital framework.

Let τ , a positive random variable, denote the default time of the counterparty. It can be
shown that CVA, the price of the counterparty credit risk, is equal to the risk neutral expected
discounted loss, i.e.,

CVA ≡ E[(1−R)DτVτ1{τ ≤ T}], (4)

where 1{A} is the indicator of the event A, Dt = B0/Bt is the stochastic discount factor at time
t, Bt is the value of the money market account at time t, and R is the financial institution’s
recovery rate, (see, for instance, Chapter 7 of [18] for a derivation of this formula). Hereafter we
suppress the dependence of the CVA on the recovery rate, R. When V and τ are assumed to be
independent, we refer to CVA as independent CVA. Let F denote the cumulative distribution
function of τ . Independent CVA can be written as follows,

CVAI ≡ E[DτVτ1{τ ≤ T}] =

∫ T

0
E[DtVt]dFt, (5)

where the last equality follows from conditioning on τ , the independence of V and τ , and the
independence of D and τ . We focus on efficient Monte Carlo estimation of independent CVA in
this paper. 2

EPE, EEPE, and independent CVA are estimated based on the Reimann sum approximation
of the integrals in (1), (3), and (5) and Monte Carlo estimation of expected exposures, E[Vt],
and expected discounted exposures, E[DtVt].

Section 2 summarizes the common features of the Monte Carlo CCR framework widely used
by financial institutions and introduces the notion of Marginal Matching, which enables us to
define and differentiate the two widely used CCR sampling methods, Path Dependent Simulation

2Wrong (right) way risk are referred to as cases where credit exposures are negatively (positively) correlated
with the credit quality of the counterparty, (see [12], [5], and [19]).
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(PDS) and Direct Jump to Simulation date (DJS). These two terms were first introduced by
Pykhtin and Zhu in 2006 [24]. Practitioners do not usually evaluate and compare the statistical
efficiency and computing time associated with the PDS and DJS-based Monte Carlo estimators
of CCR measures. A recurring theme of Sections 3 through 5 of this paper is to illustrate
that PDS and DJS-based CCR estimators have drastically different MSE.3 Section 3 introduces
an efficient Monte Carlo framework for estimating EPE, which also directly applies to efficient
CVAI estimation. Using our results in Section 3, we summarize our proposed Monte Carlo
framework for efficient estimation of CVAI in Section 4. Using our results in Section 3, Section
5 considers efficient Monte Carlo estimation of EEPE. Our numerical examples indicate that
employing our Monte Carlo CCR schemes leads to substantial MSE reduction. We would like
to emphasize that Sections 4 and 5 should not be read independently. The main components
of the proposed efficient CCR framework are developed in Section 3. As will be seen in the
sequel, this is because EPE and CVAI are both weighted sums of expected exposures, and the
ideas developed for efficient EPE and CVAI estimation have implications for efficient EEPE
estimation. Appendix H discusses the scope of our study by considering cases that have not
been explicitly formulated in the main body of the paper.

2 Monte Carlo Counterparty Credit Risk Estimation

Contract level credit exposure at time t > 0 is the maximum of the contract’s market value
and zero, max{Ct, 0}, where Ct denotes the time-t value of the derivative contract. Consider
a financial institution that holds a portfolio of k derivative contracts with its counterparty.
Counterparty level credit exposure is

Vt =
k∑
i=1

max{Cit , 0}, (6)

where Cit denotes the time-t value of the i’th derivative contract in the derivatives portfolio.
When risk mitigants are employed, Vt is defined differently. For instance, in the presence of
netting agreements, credit exposure becomes, (see [23]),

Vt = max{
k∑
i=1

Cit , 0}. (7)

A typical Monte Carlo counterparty risk engine of a derivatives dealer estimates various
types of CCR measures based on sampling from the credit exposure process on a time grid,
0 < t1 < ... < tn = T , where T denotes the maturity of the longest transaction in a portfolio of
derivatives and t1, ..., tn are sometimes referred to as valuation points. Set Vi ≡ Vti .

3The first version of the paper had used the first edition of the excellent book by Gregory [17] as one of its
references as at the time of the completion of our main results the second edition of the book by Gregory [18] had
not been published. While [17] does not discuss statistical efficiency of CCR measure, [18] does. The statistical
efficiency discussions of [18] are summarized at the Section 3.1.3’s footnote.
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Some of the CCR measures are static in the sense that they are defined based on a given fixed
time point. Expected exposure (EE) at time ti, is simply E[Vi]. Also, Value at Risk (VaR) type
of measures for a given valuation point ti is referred to as potential future exposure. Derivatives
dealers use Monte Carlo simulation to estimate EE and PFE for all the given valuation points
t1, ..., tn on a frequent basis, (see [18] and [23] for more details). Note that EPE, CVA, and
EEPE, as defined in Section 1, are dynamic in the sense that they depend on the time evolution
of the credit exposure process. This paper focuses on developing a Monte Carlo CCR framework
that provably improves the efficiency of estimating these three risk measures. PFE and its
corresponding dynamic measure Maximum PFE are other important CCR measures (see [18]),
whose efficient Monte Carlo estimation is not addressed in this paper. Efficient Monte Carlo
quantile estimation is a well-studied topic, (see Chapter 9 of [13] and the references therein).
As will be illustrated in the sequel, the mathematical analysis of this paper has benefited from
some similarities in the functional forms of EPE, CVA, and EEPE. The functional form of
the maximum PFE, i.e., the maximum of the quantiles of the exposure process on a discrete
time grid, and its Monte Carlo estimator has a distinct nature. We leave efficient Monte Carlo
Maximum PFE estimation for future study.

In what follows we first summarize the simulation of the credit exposure process. Then, we
introduce the notion of Marginal Matching in sampling from the time evolution of the credit
exposure process.

2.1 Simulating the Credit Exposure Process

Suppose that credit exposure is a stochastic process {Vt ; t ≥ 0} defined on a given filtered
probability space (Ω,F , (Ft)0≤t≤∞, P ). Given (6) and (7), Vt can be viewed as a function of
the stochastic processes that drive the values of the derivative contracts, C1

t , ..., C
k
t . In risk

management, these underlying stochastic processes are usually referred to as risk factors, e.g.,
interest rates, commodity prices, and equity prices. To generate a Monte Carlo realization of
Vt, for a fixed t > 0, first, the underlying risk factors should be sampled from up to time t > 0.
Next, given the Monte Carlo realization of the risk factors up to time t > 0, the derivative
contracts should be valued. This two-step procedure leads to a single Monte Carlo realization
of Vt. It is a risk management common practice to use the physical probability measure in the
first step and the risk-neutral measure in the second. This applies to Monte Carlo estimation
of EPE and EEPE. However, since CVA is usually viewed as the market price of counterparty
credit risk, risk-neutral measure is usually used in both steps. Depending on the complexity
of the payoff function of the derivative contracts, the valuation step could take straightforward
Black-Scholes-type analytical calculations, or it could demand approximations that depending
on the desired level of accuracy might be computationally intensive. These approximations
could also involve Monte Carlo simulation: Nested Monte Carlo refers to the use of a second
layer of Monte Carlo simulation in the valuation step of the above procedure, (see [16]), and
regression-based Monte Carlo (see [4]) uses ideas from regression-based Monte Carlo American
option pricing, (see Chapter 8 of [13]).
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2.2 Marginal Matching

Let X = (X1, ..., Xn) denote a random vector with distribution function FX . Let ωX ≡
(E[h1(X1)], ..., E[hn(Xn)]) for some functions h1, ..., hn. And let θX ≡ g(ωX) for a function
g that maps ωX from Rn to R. Two simple examples of θX are as follows,

n∑
i=1

E[h(Xi)] and max{E[h(X1)], ..., E[h(Xn)]},

that is θX is defined based on the marginal distribution of (functions of) X1, ..., Xn. Let Y =
(Y1, ..., Yn) denote another random vector with distribution function FY such that,

X 6=d Y , Xi =d Yi for all i = 1, ..., n, (8)

where =d denotes “being equal in distribution”. Simply note that since the marginal distribu-
tions of X and Y match, θX = θY . Now, suppose that θX is to be estimated with Monte Carlo
simulation. Given (8), samples can be drawn from FX or FY . Let θ̂X,m and θ̂Y,m denote Monte
Carlo estimators of θX based on m simulation runs when samples are drawn from FX and FY ,
respectively. Obviously,

θ̂X,m 6=d θ̂Y,m,

and so between θ̂X,m and θ̂Y,m, i.e., when deciding on whether to sample from FX or FY , the
estimator with a lower mean square error (MSE) should be chosen.

Example: Finite-Dimensional Distributions of Brownian Motion Let {Xt ; t ≥ 0}
denote a Brownian motion with drift µ and volatility parameter σ. Consider the random vector
X = (X1, ..., Xn) ≡ (Xt1 , ..., Xtn) on the time grid, 0 < t1 < t2 < ... < tn. That is, following the
basic definition of a Brownian motion, X is a multivariate normal random vector with E[Xti ] =
µti and Var(Xti) = σ2ti, and cov(Xti , Xtj ) = ti > 0 for ti < tj . Now, let Y = (Y1, ..., Yn) denote
a multivariate normal random vector whose marginal distributions match that of X but with
cov(Yi, Yj) = 0, i.e., components of Y are independent normals.

Stochastic Models of the Risk Factors Let {Rt ; t ≥ 0}, representing the dynamics
of a risk factor, denote a stochastic process defined on a given filtered probability space,
(Ω,F , (Ft)0≤t≤∞, P ). In this paper we assume that {Rt ; t ≥ 0} is in the following class:4

a Gauss-Markov process (see Chapter 5 of [20] or Chapter 3 of [13]) specified by

dRt = (gt + htRt)dt+ σtdBt,

with g, h, and σ all deterministic functions of time and B a standard one-dimensional Brownian
motion, a geometric Brownian motion (GBM),

4This assumption is only used in the proof of Proposition 1 and Proposition 2.
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dRt = µRtdt+ σdBt,

with given constants µ and σ, or a square-root diffusion specified as

dRt = α(b−Rt)dt+ σ
√
RtdBt,

in which α and b are positive. Many of the widely used continuous time stochastic processes
in finance and economics are in this class. Consider the finite dimensional distribution of R on
a time grid, t1, ..., tn and set Ri ≡ Rti . Suppose that R = (R1, ..., Rn) can be sampled from
exactly in the sense that the distribution of the simulated R is precisely that of the R process
at times t1, ..., tn; examples are Brownian motion, Ornstein-Uhlenbeck processes, GBM, and the
square-root diffusion specified above whose simulations involve generating positively correlated
normal random variables. Let R̃ = (R̃1, ..., R̃n) denote a random vector for which R̃ 6=d R but
R̃i =d Ri for all i = 1, ..., n and cov(R̃i, R̃j) = 0 for all i 6= j. That is, simulation of R̃1, ..., R̃n
can be done by generating n uncorrelated or simply independent normal random variables.

PDS Sampling versus DJS Sampling In the CCR literature when counterparty risk mea-
sures are estimated based on sampling from the finite-dimensional distributions of the underlying
risk factors, the sampling is referred to as Path Dependent Simulation (PDS sampling). When
the notion of marginal matching is used, the sampling is referred to as Direct Jump to Simula-
tion date (DJS). For instance, in the Brownian motion example above, sampling from X and Y
when estimating θX -type estimands are referred to as PDS and DJS sampling, respectively. In
Monte Carlo estimation of CCR measures, PDS and DJS sampling have been widely considered
equivalent (see [24]). One of the main contributions of this paper is to differentiate DJS and
PDS in terms of the mean square error of the estimators of EPE, CVA, and EEPE.

3 Efficient Monte Carlo Estimation of EPE

In this section we consider efficient Monte Carlo estimation of EPE,

EPE =

∫ T

0
E[Vt]dt,

where V denotes the credit exposure process, and T > 0 represents the expiration time of the
longest maturity derivative contract in an OTC derivatives portfolio. Consider a time grid,
0 ≡ t0 < t1 < ... < tn ≡ T , with a fixed n. Set ∆i ≡ ti − ti−1 and Vi ≡ Vti , i = 1, ..., n. Let
θ̂b,m,n,k denote a class of Monte Carlo estimators of EPE defined as follows,

θ̂b,m,n,k ≡
n∑
i=1

V̄i∆i,
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where V̄i ≡
∑m

j=1 Vij/m and Vi1, ..., Vim represent the m simulation samples at valuation point
ti. The subscript b refers to the biased nature of the estimators, and the subscript k could take
p and d, referring to PDS and DJS based simulation of the credit exposure process, respectively.
As mentioned in Section 2.1, simulating the credit exposure process involves sampling from
the underlying risk factors. Hereafter, PDS and DJS-based simulations of the credit exposure
process refer to the cases where the underlying risk factors are sampled from based on their
finite dimensional distributions (PDS sampling) and based on the notion of marginal matching
(DJS sampling), respectively. Note that,

MSE(θ̂b,m,n,k) = Var(
n∑
i=1

V̄i∆i) +

(
n∑
i=1

E[V̄i]∆i −
∫ T

0
E[Vt]dt

)2

.

We assume that Monte Carlo realizations of Vi are unbiased estimates of E[Vi], i = 1, ..., n. This
implies that the bias part of the MSE of θ̂b,m,n,k is not affected by the choice of the sampling
method (PDS or DJS). In Section 3.1, we assume that n, the number of valuation points, is
fixed, and we compare the efficiency of θ̂b,m,n,p and θ̂b,m,n,d in terms of variance and computing
time both for path independent and path dependent derivatives. Next, we introduce our efficient
biased, yet consistent Monte Carlo estimators of EPE. In Section 3.3 we introduce efficient
unbiased estimators of EPE. Numerical examples in Section 6.1 indicate that our proposed
estimators substantivally outperform the crude estimators of EPE in terms of the mean square
error.

3.1 Comparing PDS and DJS-based Estimation of EPE

Suppose that the credit exposure process, V , is defined on a given filtered probability space
(Ω,F , (Ft)0≤t≤∞, P ), where (Ft)0≤t≤∞ denote the filtration generated by the underlying risk
factors. Consider the setting where V denotes the contract level exposure and a financial insti-
tution takes a position in a maturity-T derivative contract with its counterparty. Let ΠT denote
the payoff function of the derivative contract. It is well known from martingale pricing that

Ct = ntE

[
ΠT

nT
|Ft
]
, (9)

where n is a numeraire. Transactions between the financial institution and its counterparty for
which Vt = max{Ct, 0} = Ct for all 0 < t ≤ T are referred to as unilateral transactions, e.g. the
financial institution takes a long position in a call option with its counterparty. Transactions
for which Vt = max{Ct, 0} 6= Ct for some 0 < t ≤ T are referred to as bilateral transactions, e.g.
an interest rate swap between the financial institution and its counterparty.

The following simple example reviews simulation of the exposure process under PDS and DJS.
Suppose that {St ; t ≥ 0} is a GBM, St = S0e

Xt , and {Xt ; t ≥ 0} is a Brownian motion with drift

µ and volatility σ. Consider a unilateral transaction. Note that Vt = Ct = ntE
[

ΠT
nT
|St
]
≡ f(St).
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That is, credit exposure is considered as a function of the risk factor.5 Consider the time grid,
0 ≡ t0 < t1 < ... < tn ≡ T and let Vi ≡ Vti . Set

θ ≡
n∑
i=1

E[Vi]∆i.

Recall that,

θ̂b,m,n,k =
n∑
i=1

V̄i∆i,

where V̄i is the m-simulation-run average of Vi1, ..., Vim. With Vi = f(Si) and Si = S0e
Xi ,

Monte Carlo estimation of θ requires sampling from the multivariate normal random vector,
X = (X1, ..., Xn). This is the so-called PDS sampling method. An alternative sampling method,
using the notion of marginal matching, is to sample from the multivariate normal random vector,
Y = (Y1, ..., Yn), whose components are uncorrelated but marginal distributions match those of
X. This is the so-called DJS method. To be more specific, in DJS sampling, Si is generated
from time zero. That is, generate Yi, a normal random variable with mean µti and variance σ2ti,
and set Si = S0e

Yi . In PDS sampling, Vi’s are sampled based on generating the sample path
of the GBM sequentially at i = 1, ..., n. That is, to generate a realization of Vi, Si is generated
given the previously generated value of Si−1. More specifically, to sample from Si generate X̃i

and set Si = Si−1e
X̃i , where X̃i is a normal random variable with mean µ∆i and variance σ2∆i.

Note that since for any given t > 0, Vt is a function of St = S0e
Xt , DJS-based simulation of the

exposure process implies that cov(Vi, Vj) = 0 for any i 6= j, i, j = 1, ..., n.

In what follows we compare the efficiency of θ̂b,m,n,p and θ̂b,m,n,d in terms of variance and
computing time for path independent and path dependent derivatives. We consider unilateral
and bilateral transactions in both single risk-factor and multi-risk factor settings. That is, we
consider two cases: a stylized setting where (Ft)0≤t≤∞ is the filtration generated by a single risk
factor; we also consider the more general multi-risk factor settings.

3.1.1 Path Independent Case

The above mentioned example shows that under DJS, cov(Vu, Vt) = 0 for any 0 < u < t < T .
Proposition 1 and Proposition 2, whose proofs are given in the Appendix, consider this covariance
function of the contract level credit exposure process under the PDS method for unilateral and
bilateral transactions, respectively, and identify conditions under which cov(Vu, Vt) > 0 for any
0 < u < t < T . Condition 2 of Proposition 1 below uses the well known changes of numeraire

5Consider, for instance, the payoff function ΠT = (ST −K)+ of a maturity-T GBM-driven vanilla call option
with strike K. Assuming zero short rate, Ct = E[(ST −K)+|St] = E[(StST−t −K)+|St]. Note that the function
f in f(St) ≡ E[(StST−t − K)+|St], which is well-defined for all values of t ≥ 0 given the payoff function ΠT

with a fix maturity T , is in fact a function of t and St. In Section 3, for notational simplicity, we suppress the
dependence of f on t in the definition Ct = ntE[ ΠT

nT
|St] ≡ f(St).
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techniques of Geman-El Karoui-Rochet [10] for option type contracts with at most three distinct
sources of randomness: stochastic short rate and a maximum of two risky assets. Well known
examples of these contracts are options written on stocks or bonds, e.g. European options and
exchange options.

Proposition 1. Consider the credit exposure process, {Vt ; t ≥ 0}, defined on a given filtered
probability space (Ω,F , (Ft)0≤t≤∞, P ), and a T-maturity transaction between the financial insti-
tution and its counterparty that is unilateral, i.e. the credit exposure process is the price process,
Vt = Ct > 0 for all 0 ≤ t ≤ T , where Ct denotes the time-t value of the derivative contract with
payoff ΠT . Then,

cov(Vu, Vt) > 0,

for any 0 < u < t < T under any of the following conditions:

Condition 1: Numeraire is the money market account, B, with deterministic short rate, r,
and ΠT is a function of N ≥ 1 exogenously given risky assets.

Condition 2: Short rate is stochastic and the T -payoff function is a function of at most two
risky assets as follows ΠT = (α1S1(T ) +α2S2(T ))+, where α1 and α2 are any real numbers, and
S1 and/or S2 are risky assets.

In the case of bilateral transactions, e.g. interest rate swaps, for which the exposure process
satisfies Vt = max{Ct, 0} 6= Ct for some 0 < t ≤ T , where Ct denotes the time-t value of the
derivative contract with payoff function ΠT , stronger assumptions are required to analytically
show that cov(Vu, Vt) > 0 for any 0 < u < t < T . This is shown in Proposition 2 below.

Proposition 2. Consider the credit exposure process, {Vt ; t ≥ 0}, defined on a given filtered
probability space (Ω,F , (Ft)0≤t≤∞, P ), and a T-maturity transaction between the financial insti-
tution and its counterparty that is bilateral, i.e. the credit exposure process is the price process,
Vt = max{Ct, 0} 6= Ct for some 0 < t ≤ T , where Ct denotes the time-t value of the derivative
contract with payoff function ΠT . Then,

cov(Vu, Vt) > 0

for any 0 < u < t < T under the following condition:

Numeraire is the money market account, B, with deterministic short rate, r, and ΠT is a
monotone function of a single risky asset whose dynamics is modeled by a GBM, a Gauss-
Markov process or a square-root diffusion.

The monotonicity assumption of the payoff function is satisfied for most of the actively traded
OTC derivative contracts; well-known exceptions are Barrier6 and Lookback options, (see, for
instance, [22]).

6More specifically, the payoff function of up-and-in and down-and-out European barrier call options are mono-
tone functions of the underlying security prices. This monotonicity assumption does not hold for up-and-out and
down-and-in European barrier call options, (see Chapter 6 of [22] and the references there).
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Propositions 1 and 2 identify conditions for unilateral and bilateral transactions under which
the credit exposure process satisfies cov(Vu, Vt) > 0 for any 0 < u < t < T . This, then, implies
that

Var(θ̂b,m,n,d) ≤ Var(θ̂b,m,n,p). (10)

Note that the above inequality holds since

Var(θ̂b,m,n,d) =
n∑
i=1

Var(Vi)∆
2
i

m
≤

n∑
i=1

Var(Vi)∆
2
i

m
+

2

m

∑
i<j

∑
cov(Vi, Vj)∆i∆j = Var(θ̂b,m,n,p).(11)

3.1.2 Path Dependent Case

Suppose that Vt is time t value of a maturity-T contract, where the payoff at the time T is
a function of S1, ...Sn, (for instance, an arithmetic Asian option). That is, Vi = g(S1, ..., Si),
where g is a function from Ri to R. The DJS sampling method is to make Vi = g(S1, ..., Si)
and Vj = g(S1, ..., Sj), i < j, uncorrelated random variables. That is, sample from S1, ..., Si
to generate a single realization of Vi. To generate Vj , start again from time zero, and sample
from S1, ..., Si, ...Sj . Under this DJS-type sampling method, Vi and Vj become uncorrelated,
cov(Vi, Vj) = 0. In the PDS-type sampling, given the Monte Carlo realization of Vi, to generate
Vj , one uses the previously generated S1, ..., Si and only samples from Si+1, ..., Sj . In this case
Vi and Vj are dependent.

Using conditional covariance formula and arguments similar to the ones used in the path in-
dependent case, it can be shown that cov(Vi, Vj) > 0, i 6= j. More specifically, it can be shown
that cov(Vi, Vj) > 0 for unilateral and bilateral transactions under the first condition of Propo-
sition 1 and Proposition 2’s condition, respectively. That is, for the above mentioned covariance
function to be positive, we need the numeraire money market account with deterministic short
rate in the unilateral case. The bilateral case, additionally, requires monotonicity of the payoff
function and its dependence on a single risk factor.

To compare the efficiency of the DJS and PDS-based estimators of θ in the path dependent
case, computing time is also to be considered in parallel with variance of the estimators.7 More
specifically, the estimator with the lower

variance per replication× expected computing time,

should be selected (see [15] for the formal formulation of this useful criterion in comparing al-
ternative Monte Carlo estimators). Consider, for instance, arithmetic Asian options. Suppose

7In the path independent case computing time of DJS and PDS-based estimators of θ are roughly equal.
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that the computational time to calculate θ̂b,m,n,k is proportional to the number of random vari-

ables that are to be generated. Let ct(θ̂b,m,n,k) denote the computational effort associated with

θ̂b,m,n,k. Note that,

ct(θ̂b,1,n,d)

ct(θ̂b,1,n,p)
≈ n and

Var(θ̂b,1,n,p)

Var(θ̂b,1,n,d)
≈ n. (12)

To see why (12) holds note that to calculate θ̂b,1,n,d,
n(n+1)

2 random variables are to be generated

while θ̂b,1,n,p requires generating n random variables, (assuming that the calculation of E[ΠA|Fi]
does not require generating additional random variables). Also, note that as can be seen from
(11), variance of the PDS-based estimator is of order n2 because of the covariance terms while
the DJS-based estimator has a variance of order n . So, θ̂b,m,n,d and θ̂b,m,n,p have a similar
performance for fixed and sufficiently large n. PDS and DJS-based estimators of other derivatives
whose payoff depends on the path in a different form can be compared similarly.

We emphasize that what we have referred to as the “DJS method” for the path dependent
case can be considered as a generalized version of what the conventional CCR literature often
refers to as “DJS”. While clarifying this point, Appendix G provides a further explanatory dis-
cussion of the DJS method. Appendix H, which discusses settings that have not been formulated
in our study, illustrates the potential applicability of the DJS method for these more general
cases.

3.1.3 Summary of Section 3.1

We summarize the result of Section 3.1 as it is used in the sequel and is directly applied to the
efficient CVAI estimation.8 To compare the DJS and PDS-based estimators of EPE and CVAI

(both being viewed as weighted sums of expected exposures) variance and computing time of
the Monte Carlo estimators are considered. The DJS method induces zero covariance between
any two distinct time points of the simulated credit exposure process. So, it remains to look
at this covariance function for the credit exposure process under the PDS method. When the
dynamics of the risk factors are modeled by the class of continuous time stochastic processes
considered in this paper, the covariance function of the credit exposure process under the PDS
method becomes positive under conditions of Propositions 1 and 2 for unilateral and bilateral
path independent derivatives transactions, respectively. Similar results hold for path dependent
derivatives. That is, under conditions of Propositions 1 and 2, DJS-based estimators of EPE
and CVA outperform the PDS-based estimators in terms of variance. For path independent
derivatives PDS and DJS-based computing times are roughly equal. So, we recommend that

8Section 9.3.2 of Gregory [18] gives an overview of the PDS, referred to as pathwise method, and DJS, referred
to as direct simulation, and broadly concludes that the pathwise method is more suitable for path-dependent
derivatives. Section 12.4.4 of [18] discusses the PDS and DJS methods in Monte Carlo estimation of CVA where
the counterparty’s default is modeled by a structural-copula approach. In this context, [18] gives numerical
results, Figure 12.10 and 12.11 of [18], illustrating superior statistical efficiency of DJS over PDS for Monte Carlo
estimation of CVA when the counterparty’s default is modeled by a structural-copula method.
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the counterparty credit risk modeler uses DJS for path independent derivatives. DJS-based
estimators usually have larger computing times for path dependent derivatives, and so the
computing time should be considered in parallel with the variance. The useful criterion that
does this is ‘variance per replication× expected computing time’ as introduced in the previous
section. There are widely traded path dependent derivatives for which PDS and DJS-based
estimators of EPE and CVA perform approximately equally. For instance, for arithmetic Asian
options the DJS and PDS-based estimators of EPE and CVA perform similarly.

There are contracts whose payoff function does not exactly match the mathematical con-
ditions of Proposition 1 and 2. For those contracts, a small simulation study could compare
the variance of the DJS and PDS-based estimators of EPE and CVA. The Appendix contains
numerical examples for EPE estimation of a single interest rate swap, where we conclude that
DJS outperforms PDS by at least an order of 10 in terms of variance while the computing times
of both Monte Carlo estimators are roughly equal.

Hereafter, we assume that the credit exposure process V satisfies cov(Vu, Vs) = 0 and
cov(Vu, Vs) > 0 when simulated under the DJS and PDS methods, respectively, for any 0 < u < t.

3.2 Efficient Monte Carlo EPE Estimation: Biased Estimators

In this subsection, we suppress the subscript b in θ̂b,m,n,k and instead write θ̂m,n,k for notational
simplicity. We would like to find the number of valuation points, n, and the number of simulation
runs at each valuation point, m, to minimize MSE(θ̂m,n,k),

MSE(θ̂m,n,k) = Var(θ̂m,n,k) + (E[θ̂m,n,k]− EPE)2.

given a fixed computational budget, denoted by s, that is proportional to, mn. Also, k = p
and d refer to PDS and DJS-based simulation of the credit exposure process on a time grid
0 ≡ t0 < t1 < ... < tn ≡ T . That is, as shown in the previous section, under PDS sampling and
DJS sampling, cov(Vi, Vj) > 0 and cov(Vi, Vj) = 0, respectively, for any i 6= j, i, j = 1, ..., n.

To formulate and solve this optimization problem, we specify the order of the variance and
bias of the Monte Carlo estimator of EPE, θ̂m,n,k. Note that from basic results on endpoint
Reimann sum approximation of integrals, time-discretization bias is of order 1/n. We are not
concerned with deriving sharp estimates of the orders of variance. In fact, our numerical exam-
ples indicate that choosing approximately optimal m and n using even very rough approximates
for the orders of variance and bias leads to substantial MSE reduction compared to industry
practice.

Suppose that the time grid is equidistant, i.e., ∆i ≡ ∆ = T
n . We assume that E[V 2

t ] < ∞
for all t ∈ [0, T ]. First, we note that

Var(θ̂m,n,d) = O(
1

mn
). (13)

To see this,9 consider M > 0 such that E[V 2
t ] ≤M for t ∈ (0, T ]. Note that,

9The Landau symbol, O, in f(x, y) = O(g(x, y)) means that f(x, y)/g(x, y) stays bounded in some limit, say
x, y → 0 or x, y →∞.
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Var(θ̂m,n,d) = ∆2
n∑
i=1

Var(Vi)

m
≤ (

T

n
)2

n∑
i=1

E(V 2
i )

m
≤ MT 2

mn
.

Now, consider the variance of the PDS-based estimator, θ̂m,n,p,

Var(θ̂m,n,p) = ∆2
n∑
i=1

Var(Vi)

m
+ ∆2 2

m

∑
i<j

∑
cov(Vi, Vj).

As shown before, the first term above is O( 1
mn). Also, under PDS sampling, the credit exposure

process is simulated according to its finite dimensional distributions for which the covariance
terms are positive. So, the second term is O( 1

m). This gives,

Var(θ̂m,n,p) = O(
1

mn
+

1

m
). (14)

PDS-Based Biased Efficient Estimator of EPE We choose the number of valuation
points, n, and number of simulation runs at each valuation point, m, to minimize the mean
square error of the PDS-based estimator, θ̂m,n,p, under a fixed computational budget propor-

tional to mn. Approximating the variance of θ̂m,n,p using (14) leads to the following optimization
problems,

min
m,n

(cp,1
mn

+
cp,2
m

+
c2

n2

)
subject to s = c3mn, (15)

for some constants, cp,1, cp,2, c2, and c3. MSE of θ̂m,n,p is minimized at,

m = cs
2
3 and n = c̃s

1
3 , (16)

for constants c and c̃.

DJS-Based Biased Efficient Estimator of EPE Let cd denote a constant. Given (13), we
approximate Var(θ̂m,n,d) with cd

mn in the MSE minimization problem for the DJS-based estimator,

min
m,n

( cd
mn

+
c2

n2

)
subject to s = c3mn,

to which the trivial optimal solution is m = 1 and n = ĉs fo some constant ĉ. We note
that estimating the various constant parameters appearing in all the above mentioned MSE
minimization problems is not possible in practice. In our numerical examples we simply set all
these constant parameters equal to 1.
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Remark We do not claim originality in setting up an MSE minimization problem to derive an
optimum balance between variance and bias squared; this can be seen in Chapter 6 of Glasserman
[13] and the references there, particularly the paper by Duffie and Glynn [7]. Our contribution
is that in our proposed efficient Monte Carlo CCR framework, choosing approximately optimal
m and n via solving MSE minimization problems achieve substantial MSE reduction in Monte
Carlo estimation of EPE, CVA, (and as will be seen in Section 5), and EEPE. This has neither
appeared in the CCR literature nor been applied by practitioners. Moreover, our result that
the efficient DJS-based estimator requires all its computational budget allocated to the number
of valuation points is surprising. Consider a well defined continuous time stochastic process S
whose finite dimensional distributions satisfy cov(Su, St) > 0 for any 0 < u < t. Suppose that

Monte Carlo is to be used to estimate θ = E[
∫ T

0 Stdt] for a given T > 0. The porposed efficient
Monte Carlo estimator of θ employs the notion of marginal matching (as opposed to simulating
the process based on the finite dimensional distribution of S) and uses 1 simulation run at each
time point in a discrete time grid given a fixed computational budget all allocated to making
the grid as fine as possible.

3.3 Efficient Monte Carlo EPE Estimation: Unbiased Estimators

In this section we derive unbiased estimators of EPE. Specifically, we eliminate the time discriti-
zation bias at the expense of introducing additional randomness. To control the variance that
would be increased as the result of this new source of randomness, we use stratified sampling.
Let τ denote a [0, T ] Uniform random variable that is independent of the credit exposure, V .
We have,

EPE = TE[Vτ ], (17)

which simply follows from conditioning on τ , i.e., using E[Vτ ] = E[E[Vτ |τ ]], independence of
V and τ , and noting that f(t) = 1

T , t ∈ [0, T ], is the probability density function of τ . Now,
consider the following identity,

EPE = TE[Vτ ] = T
n∑
i=1

E[Vτ |τ ∈ Ai]pi =
n∑
i=1

E[Vτ |τ ∈ Ai]∆i, (18)

where Ai = [0, ti), pi ≡ P (τ ∈ Ai) = ∆i
T , on the time grid, 0 ≡ t0 < t1 < ... < tn ≡ T , and

∆i = ti− ti−1. Assuming ti = iT/n for all i = 1, ..., n, our proposed unbiased estimators of EPE
use the identity (18) by estimating the conditional expectations, E[Vτ |τ ∈ Ai], i.e.,

θ̂u,m,n,k =
n∑
i=1

V̄τi∆i, (19)

where τi ≡ τ |τ ∈ Ai, V̄τi =
∑m

j=1 Vτij/m, and τi1, ..., τim are i.i.d. copies of τi. That is, to
draw a single realization of Vτi , we first sample from τ conditional on τ ∈ Ai. Note that
τi is a [ti−1, ti] Uniform random variable. Next, given this realization of τi, we generate Vτi .
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The subscript k = p and d refer to PDS and DJS sampling, respectively.10That is, PDS-based
simulation in calculating θ̂u,m,n,p implies that cov(Vτi , Vτj ) > 0 for i 6= j, i, j = 1, ..., n, and

DJS-based simulation in calculating θ̂u,m,n,d implies that cov(Vτi , Vτj ) = 0 for i 6= j. This

immediately implies Var(θ̂u,m,n,d) ≤ Var(θ̂u,m,n,p). Consider a more general setting that allows
different numbers of simulation runs for each stratum. That is, let mi denote the number of
runs used to estimate E[Vτ |τ ∈ Ai] and N = m1 + ...+mn denote the total number simulation
runs. Note that our setting with equidistant strata and mi ≡ m, for i = 1, ..., n coincides
with proportional stratified sampling which uses mi = Npi, (see [26] for results on proportional
stratification). This is because τ is a [0, T ] Uniform random variable. In this paper we do not
address further possible improvements of our unbiased stratified sampling-based estimators of
EPE by attempting to find optimal m1, ...,mn and n under fixed computational budgets. Our
numerical examples indicate that using our unbiased stratified sampling-based estimators by
setting mi ≡ m and choosing m and n as specified in subsection 3.2 leads to substantial MSE
reduction when compared to crude biased Monte Carlo estimators of EPE.

Comparing DJS-based Biased and Unbiased estimators Proposition 3 below shows
that θ̂u,m,n,d and the biased DJS-based estimator of EPE, θ̂b,m,n,d, are asymptotically equivalent
in terms of MSE. This equivalence is further confirmed by our numerical experiments (see the
next subsection) in practical settings with fixed and finite computational budgets proportional
to mn.

Proposition 3. Consider the credit exposure process, {Vt ; t ≥ 0}, defined on a given filtered
probability space (Ω,F , (Ft)0≤t≤∞, P ). Suppose that biased and unbiased Monte Carlo estimators
of EPE calculated under DJS-sampling,

θ̂b,m,n,d =

n∑
i=1

V̄i∆i, and θ̂u,m,n,d =

n∑
i=1

V̄τi∆i. (20)

are defined on an equi-distant time grid, 0 ≡ t0 < t1 < ... < tn ≡ T , where ∆i ≡ ti − ti−1 =
T/n ≡ ∆, τi ≡ τ |τ ∈ Ai and Ai = [ti−1, ti). Let V̄i and V̄τi denote the averages of m Monte
Carlo realizations of Vi, and Vτi, respectively. That is, the total number of simulation runs is
N = mn. We assume that E[V 2

i ] < ∞, for all i = 1, ..., n. Asymptotic performance of θ̂b,m,n,d
and θ̂u,m,n,d is equivalent in the following sense,

lim
n→∞

nMSE(θ̂b,m,n,d) = nVar(θ̂u,m,n,d) = c

∫ T

0
Var(Vt)dt, (21)

where c is a constant.

10Recall that the biased estimators of EPE, θ̂m,n,k, k = p, d, are based on Right Reiman sum approximation of
the integral of the expected exposures in the EPE formula. Our proposed unbiased estimators θ̂u,m,n,k, k = p, d,
can simply be viewed as a Reiman sum approximation of the EPE where each expected exposure is evaluated at
a randomly selected point within each subinterval.
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Comparing PDS-based Biased and Unbiased estimators Analytically comparing the
MSE(θ̂b,m,n,p) and Var(θ̂u,m,n,p) is quite difficult due to the presence of the covariance terms.
Our numerical examples presented in the next subsection show that the unbiased PDS-based
estimator of EPE, θ̂u,m,n,p, outperforms the efficient biased PDS-estimator, θ̂b,m,n,p, introduced
in the previous section.

4 Efficient Monte Carlo Estimation of Independent CVA

Independent CVA can be viewed as the weighted sum of expected exposures with the weights
being default probabilities. Therefore, our results from Section 3 on efficient estimation of EPE
immediately apply here (note that for EPE, the weights are subinterval lengths). To summarize
our results on efficient Monte Carlo CVAI estimation, we suppress the dependence of CVA on
the stochastic discount factor by assuming zero short rate,

CVAI = E [E[Vτ1{τ ≤ T}|τ ]] =

∫ T

0
E[Vt]dFt, (22)

where F denotes the cumulative distribution function of τ , which is assumed to be known (market
observable) from, for instance, credit default swap spreads of the counterparty, (see, e.g., [19]).
The Remark at the end of this section discusses Monte Carlo CVA estimation with stochastic
discounting. Appendix I discusses PDS and DJS-based estimation of CVA sensitivities with
respect to the initial values of underlying risk factors using finite-difference approximations.

Efficient Biased Estimators of CVAI We can employ our MSE minimization formulation
to first specify the approximately optimal n and m under a fixed computational budget, and
then estimate CVAI with

ξb,k =
n∑
i=1

V̄i∆Fi, (23)

where k = p, d denotes PDS and DJS sampling, respectively, V̄i =
∑m

j=1 Vij/m as defined in
Section 3, and ∆Fi ≡ F (ti)−F (ti−1). (We have suppressed the dependence of ξb,k on m and n,
i.e., ξb,k ≡ ξb,m,n,k.)

Efficient Unbiased Estimators of CVAI Note that

E[Vτ1{τ ≤ T}] =

n∑
i=1

E[Vτ |τ ∈ Ai]P (τ ∈ Ai), (24)

where stratum i is Ai = [ti−1, ti). Let mi, i = 1, 2, ..., n denote the number of simulation runs
used to estimate E[Vi], where Vi ≡ Vti , t0 ≡ 0, and tn = T . Also, N =

∑n
i=1mi denotes the

total number of simulation runs used in estimating CVAI . Using τ as the stratification variable
and the identity (24), the stratified sampling estimator of CVAI is
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ξu,k =
n∑
i=1

V̄τipi, (25)

where k = p, d denotes PDS and DJS sampling, respectively. Also, pi ≡ P (τ ∈ Ai) = ∆Fi,
τi ≡ τ |τ ∈ Ai, and V̄τi =

∑mi
j=1 Vτij/mi. That is, to draw a single realization of Vτi , we first

sample from τ conditional on τ ∈ Ai; next, given this realization of τi, we generate Vτi . In terms
of computing time, ξb,k requires generating N realizations of Vi and ξu,k requires N additional
samples from the truncated τ based on the strata defined above. Note that since generating
Vi is computationally much more intensive than the truncated τ , ξb,k outperforms ξu,k merely
marginally in terms of the computational time.

As mentioned before, proportional stratified sampling sets mi = NP (τ ∈ Ai). For CVAI

estimation, even if we assume Ai’s to be equidistant strata, P (τ ∈ Ai)’s are not equal in general.
Therefore, proportional stratified sampling does not lead to an equal number of simulation runs
at all the valuation points, as is the case for EPE estimation (see Section 3.3).

We have empirically observed that ξu,p outperforms ξb,p in terms of mean square error.11

Proposition 4 below shows an asymptotic equivalence between ξb,d and ξu,d. The proof of Propo-
sition 4 is similar to Proposition 3, and so it is omitted. Also, similar to our numerical examples
to be shown in Section 6.1, we have observed that DJS-based biased and unbiased estimators
of CVAI are equivalent in terms of MSE for large n, which confirms the result of Proposition 4
below.

Proposition 4. Consider the proposed estimators of CVAI , ξb,d and ξu,d as defined in (23)
and (25), respectively. Suppose that proportional sampling is used for both estimators, i.e.,
mi = Npi, and

∑n
i=1mi = N , i = 1, ..., n. We assume that E[V 2

i ] < ∞, i = 1, ..., n. Note that
DJS sampling gives cov(Vi, Vj) = 0 for all i 6= j and i, j = 1, ..., n. Then the following holds,

lim
n→∞

nVar(ξu,d) = nMSE(ξb,d) = c

∫ T

0
Var(Vt)dF (t) (26)

where c is a constant and F is the cumulative distribution function of τ . That is, ξb,d and ξu,d
perform similarly in terms of asymptotic MSE.

Similar to our proposed efficient EPE estimation framework, when the DJS method is chosen
for sampling from the credit exposure process, we recommend using efficient biased CVA esti-
mation where the approximately optimal m and n are derived via solving the MSE minimization
problem discussed in Section 3.2. Note that the surprising approximately optimal solution sets
m = 1 and allocates the total computational budget to the number of valuation points. When
the PDS method simulates the credit exposure process, we suggest our unbiased stratified sam-
pling based estimator of CVAI , where the number of strata and simulation runs at each stratum
are specified based on the solution to the MSE minimization problem as in Section 3.2.

11Assuming that τ is an exponential random variable, the results of our numerical examples for ξu,p and ξb,p
are similar to those to be shown in Section 6.1, and so are omitted.
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Remark This remark clarifies and discusses the potential application of the DJS method in
Monte Carlo estimation of

CVAI =

∫ T

0
E[DtVt]dFt,

in the presence of stochastic discounting.12 Let Dt = e−
∫ t
0 rudu, 0 < t ≤ T , and assume the

risk neutral dynamics of the short rate is specified by a widely used short rate model, (see, e.g.,
Chapter 21 of [2]). Also, suppose that the valuation points of the Monte Carlo CCR “engine”
are specified by the equidistant time grid 0 ≡ t0 < t1 < ... < tn ≡ T ; ti − ti−1 = ∆ and that the
time integral of the short rate in D is time-discretized on a finer grid 0 ≡ t̃0 < t̃1 < ... < t̃ñ ≡ T ;
t̃j − t̃j−1 = ∆̃ < ∆. Assume that ∆ = c∆̃; c being a positive integer. The DJS-based esti-
mator of CVAI seeks to make DiVi’s independent at any two distinct time points on the gird.
Suppose that the Vi ≡ Vti is a function of S1, ..., Si, which are dependent random variables,
i = 1, ..., n. Note that {ri ≡ rt̃j ; j = 1, .., ñ} represents the finite dimensional distribution of r
on the finer grid. In the DJS-based single-simulation-run estimator of CVAI , we are to have
cov(DiVi, DjVj) = 0 for any i 6= j, i, j = 1, .., n. Achieving this zero correlation requires ad-
ditional computational time due to the generation of additional random variables. To see this,
consider two distinct valuation points on the grid, tk < tl. A single Monte Carlo realization of
DkVk requires generating (r1, r2, ..., rck) and (S1, ..., Sk). To sample from DlVl, the DJS method,
instead of using the Monte Carlo realizations of the risk factor in the simulation of DkVk, starts
anew and generates (r1, r2, ..., rck, ..., rcl) and (S1, ..., Sk, ..., Sl), and so, cov(DkVk, DlVl) = 0.
One should contrast this with the PDS method. In sampling from DlVl, the PDS method gener-
ates only (rck+1, ..., rcl) and (Sk+1, ..., Sl) along with the random variables generated previously
in the simulation of DkVk. So, the DJS method is applicable in the context of Monte Carlo CVA
estimation with stochastic discounting at an additional computational cost. Suppose the CCR
modeler analytically, using Proposition 1 and 2 or their equivalents, or numerically, via a small
simulation study, concludes that the PDS-based estimator has a higher variance, due to some
positive covariance terms, cov(DiVi, DjVj) > 0 for i 6= j, i, j = 1, .., n, compared to that of the
DJS-based estimator. Then, the DJS-based method is chosen only when the computing time
has also been taken in to account. That is, the modeler chooses the DJS-based estimator of
CVAI only if it outperforms the PDS-based estimator in term of the following useful criterion,

variance per replication× expected computing time,
as we discussed in Section 3.1.2.

5 Efficient Monte Carlo Estimation of EEPE

In this section we discuss efficient Monte Carlo estimation of effective expected positive exposure,
EEPE,

EEPE =

∫ T

0
max

0≤u≤t
E[Vu]dt,

12We continue to assume that the recovery rate is constant, and to simplify the notation, we suppress the
dependence of CVA to it.
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where {Vt ; t ≥ 0} denotes the credit exposure process, and T denotes the expiration time of
the transaction with the longest maturity in a portfolio of OTC derivatives held by a financial
institution with its counterparty. Consider the time grid, 0 ≡ t0 < t1 < ... < tn ≡ T . Set
∆i ≡ ti − ti−1, i = 1, ..., n. Monte Carlo estimators of EEPE are,

θ̂m,n,k =
n∑
i=1

max
1≤j≤i

{V̄j}∆i, (27)

where V̄j denotes the m-simulation run average of the i.i.d. random variables, Vj1, ..., Vjm. The
subscript k = p and d denote PDS and DJS sampling, respectively. That is, under k = p (k = d),
Vj ’s are positively correlated (uncorrelated). Consider the mean square error of θ̂m,n,k,

MSE(θ̂m,n,k) = Var

(
n∑
i=1

max
1≤j≤i

{V̄j}∆i

)
+

(
n∑
i=1

E[ max
1≤j≤i

{V̄j}]∆i − EEPE

)2

. (28)

Bias Decomposition It is useful to differentiate the following two sources of bias,(
n∑
i=1

E[ max
1≤j≤i

{V̄j}]∆i −
n∑
i=1

max
1≤j≤i

E[V̄j ]∆i

)
−

(
EEPE−

n∑
i=1

max
1≤j≤i

E[V̄j ]∆i

)
. (29)

That is, the first part of the bias is due to the presence of the maximum operator and the second
part is time-discretization bias. Note that for a fixed n, variance of θ̂m,n,k converges to zero as
m→∞. Now, consider Proposition 5 below whose proof is in the Appendix.

Proposition 5. Let {Vt; t ≥ 0} denote the credit exposure process. Let,

Mn,m,k ≡ max{V̄1, ..., V̄n},

where Vi ≡ Vti on the time grid 0 ≡ t0 < t1 < ... < tn ≡ T , and V̄i =
∑m

j=1 Vij/m, Vi1, ..., Vim are
i.i.d random variables. Also, k = d and k = p refer to the cases where Vi are uncorrelated and
positively correlated, respectively, resulting from DJS and PDS-based simulation of V . Assume
that E[V 2

i ] <∞ for all i = 1, ..., n. Let Mn ≡ max{E[V1], ..., E[Vn]}. Then, as m→∞,

Mn,m,k →Mn a.s., (30)

where a.s. stands for almost surely.

Note that dominated convergence theorem and Proposition 5 give E[Mn,m,k] → Mn as
m→∞.13 So, the first part of the bias

n∑
i=1

E[ max
1≤j≤i

{V̄j}]∆i −
n∑
i=1

max
1≤j≤i

E[V̄j ]∆i

13Note that Mn,m,k ≤
∑n
i=1 V̄i and Proposition 5 assumes E[V̄i] = E[Vi] <∞.

20



converges to zero as m → ∞. That is, θ̂m,n,d and θ̂m,n,p are consistent estimators of EEPEdst
for a fixed n.

In what follows we first show that for a fixed n and sufficiently large m, θ̂m,n,d outperforms

θ̂m,n,p in terms of variance. Next, after specifying approximates for the order of variance and

bias of θ̂m,n,k, we formulate an MSE minimization problem over m and n given a fixed compu-
tational budget. Our numerical results indicate that our proposed estimators of EEPE, which
use approximately optimal m and n, lead to substantial MSE reduction when compared to the
crude estimators.

5.1 Comparing PDS and DJS-based Monte Carlo Estimators of EEPE

We are to compare the variance of θ̂m,n,p and θ̂m,n,d for a fixed n and sufficiently large m. Set

θ ≡
n∑
i=1

max
1≤j≤i

E[Vj ]∆i , θ̂m,n,k ≡
n∑
i=1

max
1≤j≤i

{V̄j}∆i,

where k = p (k = d) refer to the cases where Vi and Vj for any i 6= j, are positively correlated
(uncorrelated). In what follows we find it useful to append a second subscript m to V̄i to
emphasize that the average is based on m i.i.d random variables and a third subscript k = d or
p to indicate DJS or PDS.

Denote by δi,j ≡ E[Vi] − E[Vj ] and δ ≡ min{|δi,j | : i 6= j, i, j = 1, ..., n}. Without loss of
generality, assume δ > 0. Let σi,j,k denote the standard deviation of Vi − Vj under estima-
tion method type k and σmax ≡ max{σi,j,k : i, j = 1, ..., n, k = d, p}. For i = 1, ..., n, let τi
denote the index for which max{E[V1], ..., E[Vi]} is attained and τi,m,k be the index for which
max{V̄1,m,k, ..., V̄i,m,k} is achieved. It then follows from these definitions that

θ =

n∑
i=1

E[Vτi ]∆i and θ̂m,n,k =

n∑
i=1

V̄τi,m,k,m,k∆i. (31)

For k = d or p and i = 2, ..., n, the probability that simulations do not yield the right τi can be
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bounded from above as follows

P (τi,m,k 6= τi) ≤
∑

j 6=τi,j=1,...,i

P (V̄τi,m,k − V̄j,m,k < 0)

=
∑

j 6=τi,j=1,...,i

P (V̄τi,m,k − V̄j,m,k − δτi,j < −δτi,j)

<
∑

j 6=τi,j=1,...,i

P (V̄τi,m,k − V̄j,m,k − δτi,j < −δ)

<
∑

j 6=τi,j=1,...,i

P (|V̄τi,m,k − V̄j,m,k − δτi,j | > δ)

≤
∑

j 6=τi,j=1,...,i

σ2
τi,j,k

mδ2
(32)

≤ (i− 1) · σ2
max

mδ2
,

where (32) follows from the Chebyshev’s inequality.
Consider the event Bm = {τi = τi,m,d = τi,m,p, for all i = 1, ..., n}. It makes sense to call Bm

the desirable event and Bc
m the undesirable event. Let θ̂m,n,k,Bm denote θ̂m,n,k conditional on

the event Bm. We have that

Var(θ̂m,n,d,Bm) < Var(θ̂m,n,p,Bm). (33)

This order can be established by first noting that

θ̂m,n,k,Bm =
n∑
i=1

V̄τi,m,k∆i. (34)

Then since Vi and Vj , for any i 6= j, are positively correlated (uncorrelated) under PDS (DJS)
sampling, the variance of expression (34) is lower under DJS than under PDS.

Note that:

P (Bc
m) ≤

n∑
i=2

P (τi,m,d 6= τi) +

n∑
i=2

P (τi,m,p 6= τi) (35)

< 2

n∑
i=2

(i− 1) · σ2
max

mδ2
, (36)

The above argument leads to the following result.

Proposition 6. Consider the desirable event Bm as defined above. First, conditional on this
event, (33) holds. Secondly, the desirable event occurs asymptotically almost surely as m→∞.
That is, limm→∞ P (Bm) = 1. More specifically, P (Bc

m) goes to zero at rate 1/m as m→∞.

Proposition 6 suggests that for sufficiently large m, Var(θ̂m,n,d) ≤ Var(θ̂m,n,p). Our numerical

examples in Section 6.2 use m > 400; they all indicate that Var(θ̂m,n,d) ≤ Var(θ̂m,n,p).
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5.2 Efficient Monte Carlo Estimation of EEPE

Similar to our approach in subsection 3.2, we would like to find the number of valuation points,
n, and the number of simulation runs at each valuation point, m, to minimize MSE(θ̂m,n,k)
given a fixed computational budget, s, that is proportional to, mn. To do so, we need to
specify the order of the variance and bias of the Monte Carlo estimator of EEPE, θ̂m,n,k. We
are not concerned with deriving sharp estimates of the orders of variance and bias. In fact,
our numerical examples indicate that choosing approximately optimal m and n using even very
rough approximates for the orders of variance and bias lead to substantial MSE reduction. The
following is used to formulate our MSE minimization problem: for k = p or d,

Var(θ̂m,n,k) ≈
c1,k

mn
+
c2,k

m
and Bias(θ̂m,n,k) ≈

c3,k

m
+
c3

n
, (37)

for some constants c1,k, c2,k, c3. The above approximation of the order of bias uses (29) and
Proposition 5. Note that our rough approximate of the order of variance, applicable to both
θ̂m,n,d and θ̂m,n,p, is similar to (14). This is because of the presence of the maximum operators
that leads to positive covariance terms. To see this, let V̄i denote the m-simulation-run average
of the i.i.d random variables, Vi1, ..., Vim, i = 1, ..., n, and consider an equidistant time grid with
n time points, ∆ = T/n. Note that,

Var(θ̂m,n,k) = ∆2Var
(
V̄1 + max{V̄1, V̄2}+ ...+ max{V̄1, ..., V̄n}

)
,

is equal to ∆2 = T 2

n2 times the sum of n non-zero variance terms and n(n−1)/2 positive covariance
terms both for k = d and k = p. This leads to a result similar to (14).

Given (37), we recommend solving the following MSE minimization problem to specify the
approximately optimal m and n,

min
m,n

( c1

mn
+
c2

m
+ (

c3

m
+
c4

n
)2
)

subject to s = cmn, (38)

for some constants c1, c2, c3, c4, and c.

6 Numerical Examples

6.1 EPE estimation

In this section we use simple numerical examples to illustrate the efficiency of our proposed
Monte Carlo estimators of EPE. We consider contract level exposure in a simple setting where
Vt ≡ St denotes the value of a geometric Brownian motion at time t > 0. That is, St = S0e

Xt

with {Xt; t ≥ 0} being a Brownian motion with drift µ, and volatility σ. This stylized example
enables us to calculate the MSE exactly. We consider six different Monte Carlo estimators of
EPE in our numerical examples.

Let θ̂c,p and θ̂c,d denote the “crude” and biased Monte Carlo estimators of EPE under PDS
and DJS sampling, respectively. That is,
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θ̂c,k =
n∑
i=1

V̄i∆i, (39)

where ∆i = ti − ti−1, 0 ≡ t0 < t1 < ... < tn ≡ T , k = p, d, and V̄i is the m-simulation-run
average of Vi. We shall shortly specify the choice of the valuation points.

Let θ̂e,b,p and θ̂e,b,d denote the efficient and biased Monte Carlo estimators of EPE under PDS
and DJS sampling, respectively. In particular, their statistical efficiency is a result of solving
the MSE minimization problems in Section 3.2 to derive the (approximately) optimal number
of points on the time grid, n, and simulation runs at each of these time points, m, given a fixed
computational budget proportional to mn.

Let θ̂u,p and θ̂u,d denote the unbiased stratified sampling-based Monte Carlo estimators of
EPE under PDS and DJS sampling, respectively. That is,

θ̂u,k =

n∑
i=1

V̄τi∆i, (40)

where V̄τi =
∑mi

j=1 Vτij/mi with τi ≡ τ |τ ∈ Ai, Ai = [ti−1, ti], and k = p, d.
We set T = 1. The crude estimators of EPE are calculated based on 12 valuation points,

n = 12, at 1, 2, 3, 4, 8, 12, 18, 21, 24, 36, 49 weeks and 1 year. We note that one year, T = 1,
with the number of valuation points fixed at 12, is a setting widely used by financial institutions.
There is no mathematical basis for this arrangement of valuation points. It is believed that since
some trades have “short” expiration times, having more valuation points earlier would increase
the accuracy of the estimators of CCR measures. The time grid used to calculate our efficient
estimators of EPE is equidistant, i.e., ∆i ≡ ∆ = T/n . Computational budget, s, is fixed at
12, 000 and 120, 000, respectively. Therefore, the number of simulation runs at each valuation
point m is 1,000 and 10,000, respectively, for the crude estimator subject to these two budget
values.

To calculate θ̂e,b,p under these fixed computational budgets, the solution, (16) with both c
and c̃ set to 1, to the MSE minimization problem of Section 3.2 is used. This gives, n = 23 and
m = 524 for s = 12, 000, and n = 50, and m = 2433 for s = 120, 000. Similarly, to calculate
θ̂e,b,d, we use the solution to the MSE minimization problem, (3.2). That is, we set n = 12, 000
and m = 1 for s = 12, 000, and n = 120, 000 and m = 1 for s = 120, 000. In calculating the
stratified sampling estimators of EPE, θ̂u,p and θ̂u,d, we do not address the problem of deriving

the optimal values of n, and m1, ...,mn. Instead, we simply use the setting of θ̂e,b,p and θ̂e,b,d,

respectively. That is, to calculate θ̂u,p, we set n = 23, m = 524, and n = 50, m = 2433, under

s1 = 12, 000 and s2 = 120, 000, respectively. And to calculate θ̂u,d, we set n = 12, 000, m = 1,
and n = 120, 000, m = 1, under s1 = 12, 000 and s2 = 120, 000, respectively.

Table 1 on page 26 illustrates that our proposed estimators of EPE lead to substantial MSE
reduction when compared to the “crude” Monte Carlo estimators for a variety of parameter
settings. Comparing the MSE of the PDS-based estimators, θ̂c,p, θ̂e,b,p, and θ̂u,p, we find that
our proposed stratified sampling-based estimator of EPE leads to an MSE reduction by a factor
of up to 100; this unbiased estimator also dominates the efficient biased estimator of EPE,
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in some cases quite substantially (see the third and fourth sections of Table 1). Comparing
MSE of the DJS-based Monte Carlo estimators of EPE, θ̂c,d, θ̂e,b,d, and θ̂u,d, we observe that
the stratified sampling-based estimator of EPE and our efficient biased EPE estimator perform
similarly, which suggests that the asymptotic equivalence result in Proposition 3 can hold for
even a moderate number of valuation points. Both efficient DJS estimators lead to substantial
MSE reduction when compared to the corresponding crude estimator of EPE. Finally, we note
that the variance and MSE for the crude estimators do not change much as the computational
budget increases from 12,000 to 120,000, whereas those of efficient estimators reduce by up to
an order of ten. This contrast yields the simple, yet useful insight that the number of valuation
points should vary as the computational budget varies.

6.2 EEPE estimation

Our numerical examples presented below illustrate the efficiency of our proposed estimators of
EEPE.14 As in Section 6.1, we consider the geometric-Brownian-motion stylized example, where
Vt ≡ St = S0e

Xt with X being a Brownian motion with drift µ and volatility σ. Let θ̂c,p and θ̂c,d
denote the “crude” Monte Carlo estimators of EEPE under PDS and DJS sampling, respectively.
That is,

θ̂c,k =
n∑
i=1

max
1≤j≤i

V̄j∆i, (41)

where k = p, d and ∆i = ti − ti−1, and the ti’s are 1, 2, 3, 4, 8, 12, 18, 21, 24, 36, 49 weeks
and 1 year, with t12 = T = 1 year. Also, the number of simulation runs n = 1, 000 and 10, 000
respectively, for s = 12, 000 and 120, 000.

Let θ̂e,p and θ̂e,d denote the efficient Monte Carlo estimators of EEPE under PDS and DJS
sampling, respectively, based on an equidistant time grid, i.e., expression (41) with ∆i ≡ ∆ =
T/n) and resulting from solving the MSE minimization problem (38) (with constants ci, i =
1, 2, 3, and c therein set to 1) in Section 5.2. In particular, under s = 12, 000, the optimal
n = 29 and m = 414, and under s = 120, 000, the optimal n = 62 and m = 1935. Our various
numerical examples result in findings similar to those for the EPE estimation. For example,
Table 2 on page 27, all based on 104 replications, show that the variance of the DJS-based
estimators are much lower than that of the corresponding PDS-based estimators. Also, our
proposed estimators of EEPE substantially outperform the crude Monte Carlo estimators in
terms of MSE; for instance, MSE is reduced by a factor of 100 in the fourth section of Table 2.

7 Conclusion

It has become increasingly crucial for financial institutions to actively manage their counterparty
credit risk. Proper counterparty credit risk management is challenging and computationally
intensive. Monte Carlo simulation is often used for CCR pricing and measurement. Poor Monte

14We refer the reader to Section (F) of the Appendix for a discussion on EEPEdst and numerical illustrations
of Propositions 5 and 6.
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EPE Variance MSE CPU Time

Parameters: S0 = 30, µ = .2, σ = .3, s = 12, 000

θ̂c,p 34.6559 0.047219 0.48478 0.00380

θ̂c,d 34.6522 0.005028 0.43768 0.00162

θ̂e,b,p 34.1802 0.077212 0.1117 0.00253

θ̂e,b,d 33.9955 0.004785 0.004786 0.00174

θ̂u,p 33.9964 0.072068 0.072064 0.00518

θ̂u,d 33.9956 0.004865 0.004866 0.00335
Parameters: S0 = 30, µ = .2, σ = .3, s = 120, 000

θ̂c,p 34.652 0.004791 0.4372 0.03887

θ̂c,d 34.6521 0.000501 0.43303 0.01564

θ̂e,b,p 34.0798 0.016741 0.024026 0.02299

θ̂e,b,d 33.9948 0.000483 0.000483 0.02409

θ̂u,p 33.9957 0.015533 0.015533 0.04420

θ̂u,d 33.9945 0.000486 0.000486 0.03426
Parameters: S0 = 30, µ = 1, σ = .3, s = 12, 000

θ̂c,p 57.7556 0.16106 23.5389 0.00389

θ̂c,d 57.7598 0.01628 23.4351 0.00189

θ̂e,b,p 54.1296 0.23369 1.6954 0.00270

θ̂e,b,d 52.9238 0.015853 0.015862 0.00189

θ̂u,p 52.9226 0.217 0.21698 0.00516

θ̂u,d 52.9198 0.015796 0.015796 0.00390
Parameters: S0 = 30, µ = 1, σ = .3, s = 120, 000

θ̂c,p 57.7579 0.016112 23.4159 0.03891

θ̂c,d 57.7591 0.001616 23.4136 0.01661

θ̂e,b,p 53.4783 0.047841 0.35899 0.02412

θ̂e,b,d 52.9212 0.001563 0.001564 0.02627

θ̂u,p 52.9189 0.045783 0.045781 0.04657

θ̂u,d 52.9203 0.001565 0.001565 0.03598

Table 1: Monte Carlo EPE estimates for different parameter settings
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EEPE Variance MSE CPU Time

Parameters: S0 = 30, µ = 1, σ = .25, s = 12, 000

θ̂c,p 57.2278 0.10931 22.4936 0.00259

θ̂c,d 57.2233 0.034659 22.3768 0.00168

θ̂e,p 53.4344 0.19358 1.0731 0.00191

θ̂e,d 53.4379 0.011188 0.89722 0.00211
Parameters: S0 = 30, µ = 1, σ = .25, s = 120, 000

θ̂c,p 57.2277 0.010824 22.3945 0.02866

θ̂c,d 57.2262 0.003591 22.3734 0.01427

θ̂e,p 52.9363 0.03962 0.23301 0.01817

θ̂e,d 52.9354 0.001083 0.19367 0.01545
Parameters: S0 = 30, µ = 1.5, σ = .25, s = 12, 000

θ̂c,p 81.0388 .24286 101.0233 0.00279

θ̂c,d 81.0309 0.0843 100.7055 0.00173

θ̂e,p 72.8899 0.3986 3.9705 0.00221

θ̂e,d 72.8885 0.024652 3.5914 0.00226
Parameters: S0 = 30, µ = 1.5, σ = .25, s = 120, 000

θ̂c,p 81.0332 0.024156 100.692 0.02929

θ̂c,d 81.0302 0.008395 100.6154 0.0144

θ̂e,p 71.8779 0.083579 0.85454 0.01935

θ̂e,d 71.8807 0.002425 0.77819 0.01630

Table 2: Monte Carlo EEPE estimates for different parameter settings

Carlo CCR estimation can lead to overestimation or underestimation of CCR risk. We improve
the existing widely used Monte Carlo CCR frameworks by substantially increasing the efficiency
of Monte Carlo estimators of the key CCR measures: EPE, CVA, and EEPE.

Our proposed efficient framework can be summarized in two steps. The counterparty credit
risk modeler first needs to choose between the two credit exposure sampling methods: PDS or
DJS. Introducing and using the notion of marginal matching, we identify conditions under which
the so-called path dependent simulation (PDS) method, which simulates the credit exposure
process based on the finite dimensional distributions of the underlying risk factors, leads to
CCR estimators whose variance is substantially larger than the variance of the CCR estimators
calculated based on the so-called direct jump to simulation date (DJS) method. Taking into
account the computational time in parallel with the mean square error, we demonstrate that DJS
sampling is preferable to PDS sampling for path independent derivatives. For path dependent
derivatives since the computational time of the DJS-based estimator usually exceeds that of
the PDS-based estimator, the two sampling methods could become approximately equivalent in
some cases.

Next, in the second step, the CCR modeler needs to choose the number of valuation points
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and simulation runs at each valuation point for efficient EPE, CVAI , and EEPE estimations. We
show that the mean square error (MSE) of the crude Monte Carlo estimators of EPE, CVA, and
EEPE can be substantially reduced by solving approximate MSE minimization problems that
specify how to achieve an approximately optimal balance between bias squared and variance.
These MSE minimization problems can be easily solved after approximate orders of variance
and bias for each of the above mentioned CCR measures under the PDS and DJS methods are
derived.

For efficient EPE and CVAI estimation, if the PDS method has been chosen in the first step
above, we recommend employing our unbiased stratified sampling-based estimators of EPE and
CVAI . These unbiased estimators of EPE and CVAI use stratified sampling with the number
of strata and simulation runs (allocated to each stratum) being chosen based on the solution to
the above mentioned MSE minimization problems.

Our numerical examples indicate that unbiased PDS-based estimators of EPE and CVA are
preferable to the efficient biased PDS-based estimators of EPE and CVA. Our analytical results
suggest that unbiased and biased DJS-based estimators of EPE and CVA are asymptotically
equivalent. Our numerical examples confirm this approximate asymptotic equivalence.

Finally, an interesting case arises when the CCR modeler chooses the DJS method for esti-
mating EPE and CVAI . In this case, our proposed efficient EPE and CVAI estimators use 1
simulation run at each valuation point and the total computational budget is allocated to mak-
ing the discrete time grid (the set of valuation points) as fine as possible. Our various numerical
examples illustrate that employing this two-step Monte Carlo CCR framework will substantially
increase the efficiency of the existing Monte Carlo CCR “engines”.

Appendix

A Proof of Proposition 1

We first show that cov(Vu, Vt) > 0 holds under condition 1. That is, Vt = Ct = BtE[B−1
T ΠT |Ft].

For any 0 < u < t we have

cov(Vu, Vt) = E [cov(Vu, Vt|Fu)] + cov (Vu, E[Vt|Fu]) ,

where the last equality follows from the conditional covariance formula (see Chapter 3 of [25]).
It is easy to check that the first term on the right hand side above is zero. Consider the second
term and note that

E[Vt|Fu] = E

[
BtE[

ΠT

BT
|Ft]|Fu

]
= E

[
Bt

ΠT

BT
|Fu
]
,

and so we conclude that for any 0 < u < t,

cov(Vu, Vt) = BuBtB
−2
T Var (E[ΠT |Fu]) > 0.
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The second part of the proof, which is based on condition 2, uses standard results on changes
of numeraire techniques and Chebyshev’s algebraic inequality (see, for instance, Proposition 2.1
in [9]).

Let Ct denote the time-t value of a derivative contract specified in Assumption 2. Recall
Theorem 1 and Theorem 2 of [10], and note that

Vt = Ct = S1(t)EQ1 [(α1 + α2Z(T ))+|Ft]

where Z = S2/S1 and the subscript Q1 refers to expectation under QS1 , i.e. S1 is the numeraire.
Note that

cov(Vu, Vt) = cov (Vu, E[Vt|Fu])

= cov
(
S1(u)EQ1

[
(α1 + α2Z(T ))+|Fu

]
, EQ1

[
S1(t)(α1 + α2Z(T ))+|Fu

])
,

Consider the second term on the right hand side above, and suppose that the transition law of
S1 accepts the following specification

S1(t) =d βS1(u)S1(τ), (42)

where β > 0 is a constant and t− u ≡ τ (see the last part of the proof on transition law of the
numeraire). We, then, have

EQ1

[
S1(t)(α1 + α2Z(T ))+|Fu

]
= βS1(u)EQ1

[
S1(τ)(α1 + α2Z(T ))+|Fu

]
.

This gives

cov(Vu, Vt) = βS2
1(u)cov

(
EQT

[
(α1 + α2Z(T ))+|Fu

]
, EQT

[
S1(τ)(α1 + α2Z(T ))+|Fu

])
.

Note that both expectations above are monotone functions of Z(u) and so using Chebyshev’s
algebraic inequality (see, for instance, Proposition 2.1 in [9]) gives cov(Vu, Vt) > 0.

We now show that (42) holds for the class of stochastic processes considered in this paper
for modeling the dynamics of risk factors. The dynamics of risky asset S1 > 0 selected as the
numeraire in the proof above is assumed to be modeled by a GBM or a square-root diffusion.
In cases where the numeraire is a maturity-T zero-coupon bond, the second part of the proof
above is modified as follows. We assume that the zero-coupon bond is modeled such that
it possesses an affine term structure, i.e. it has the form S1(t) ≡ p(t, T ) = eA−Brt , where
A ≡ A(t, T ) and B ≡ B(t, T ) are deterministic functions and the short rate r is modeled by
a Gauss-Markov process or a square-root diffusion as specified before. It is, then, not difficult
to see that p(t, T ) = eA−Brt =d eβ1rueβ2rτ , where β1 and β2 are constants and 0 < u < t < T ,
t − u ≡ τ . Using a similar approach shown in the second part of the proof above, we arrive at
cov(Vu, Vt) > 0.
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B Proof of Proposition 2

Conditioning on FSu ≡ Fu and using conditional covariance formula gives

cov(Vu, Vt) = cov (Vu, E[Vt|Fu]) = cov (max{f(Su), 0}, E[max{f(St), 0}|Fu]) ,

for a well-defined function f . First consider the first term max{f(Su), 0} inside the covariance
function on the right hand side above. Note that since f is a monotone function, max{f(Su), 0} ≡
f̃(Su) is also a monotone function of Su. Next, consider the second term E[max{f(St), 0}|Fu].

Note that when S is a Gauss-Markov process, the transition law of S implies that for any
0 < u < t, St =d β1Su + β2St−u, where Su and St−u are independent random variables. Also,
when S is a GBM, for any 0 < u < t we have log(St) =d log(Su) + log(St−u), where Su and
St−u are independent random variables. This follows from the independent and stationary in-
crements properties of Gauss-Markov processes15 and that their finite dimensional distributions
are multivariate normal. When S is a square-root diffusion, dSt = α(b− St)dt+ σ

√
StdBt with

B a standard one-dimensional Brownian motion and positive constants α and b, it can be shown
that St given Su is distributed as a positive constant times times a noncentral chi-square ran-
dom variable with degrees of freedom that depends on α, σ, and b, and noncentrality parameter
which is an increasing function of Su, (see Chapter 3 of [13]).

This implies that under the class of risk factor models considered in the paper,
E[max{f(St), 0}|Fu] is a monotone function of Su. To see this, consider the case where f
is an increasing function. Increasing Su will increase St; this increases max{f(St), 0}. So,
E[max{f(St), 0}|Fu] ≡ h̃(Su) also becomes an increasing function of Su. A similar argu-
ment can be used when f is a decreasing function. Consequently, we can write cov(Vu, Vt) =
cov(f̃(Su), h̃(Su)), where f̃ and h̃ are both either increasing or decreasing functions of Su. Using
Chebyshev’s algebraic inequality gives cov(Vu, Vt) = cov(f̃(Su), h̃(Su)) > 0.

C Proof of Proposition 3

In this proof, for notational simplicity, we suppress the dependence of θ̂b,m,n,d and θ̂u,m,n,d on m
and n. Note that,

nMSE(θ̂b,d) =
T

m

n∑
i=1

Var(Vi)∆i + n(
n∑
i=1

E[Vi]∆i −
∫ T

0
E[Vt]dt)

2, (43)

where the first term on the right hand side of the above equality uses Var(V̄i) = Var(Vi)/m. So,

nMSE(θ̂b,d) converges to c
∫ T

0 Var(Vt)dt as n→∞.

Now, consider Var(θ̂u,d), and let In ≡ In(τ) ∈ {1, ..., n} denote the index of the stratum
containing τ . Set pi = P (τ ∈ Ai) = ∆i

T . From standard results on stratified sampling we have,

15Note that when S is a GBM, logarithm of S is a Brownian motion, which is a Gauss-Markov process.
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Var(θ̂u,d) =
T 2

mn

n∑
i=1

Var(Vτ |τ ∈ Ai)pi =
T 2

mn
E[Var(Vτ |In)]. (44)

Since
∫ T

0 Var(Vt)dt = TE[Var(Vτ |τ)], to complete the proof, it suffice to show that, as n→∞,

E[Var(Vτ |In)] −→ E[Var(Vτ |τ)]. (45)

From the formula for the conditional variance, to show the convergence in (45), it suffice to show
that, as n→∞,

E
[
(E[Vτ |In])2

]
−→ E

[
(E[Vτ |τ ])2

]
. (46)

Set X = E[Vτ |τ ] and Xn = E[Vτ |In]. Note that Xn is a martingale because as n increases
In generate increasing family of sigma-algebras. We can use martingale convergence theorem
(see Chapter 4 of [8]) to conclude that Xn converges to X almost surely as n → ∞. Using
continuous mapping theorem and dominated convergence theorem (see Chapter 1 of [8]) we
conclude that, E[X2

n] converges to E[X2] almost surely, and so (46) holds. This completes the
proof of Proposition 3. 16

D Proof of Proposition 5

We first consider M2,m,k. Let us assume that M2 = E[V2] without loss of generality. Note that,

max{V̄1, V̄2} − E[V2] = V̄11{V̄1 > V̄2}+ (V̄2 − E[V2])1{V̄2 > V̄1} − E[V2]1{V̄1 > V̄2}. (47)

First, consider the indicator random variable, 1{V̄1 > V̄2}; the dependence of V̄i on m is sup-
pressed for notational simplicity. Set W k ≡ V1 − V2, where k = d, p refer to the cases where V1

and V2 are uncorrelated and positively correlated, respectively. Note that 1{V̄1 > V̄2} ≤ 1{W̄ k >
E[W k]}; W k

1 , ...,W
k
m are i.i.d random variables and W̄ k is their average. It is well known that

1{V̄1 > V̄2} → 0 a.s. if and only if for all ε > 0,

P (1{V̄1 > V̄2} > ε i.o.) = 0, (48)

where i.o. stands for infinitely often. To see that (48) holds, note that,

P (1{V̄1 > V̄2} > ε) ≤ P (1{W̄ k > E[W k]} > ε) ≤ P (|W̄ k − E[W k]| > ε̃)

ε2
, (49)

for all ε̃ > 0. To derive the last inequality above the Chebyshev’s inequality is used. Then,
(49), almost sure convergence of W̄ k → E[W k] following from the strong law of large numbers
(SLLN), and Kolmogorov’s 0-1 law, (see Theorem 8.1 of [8]), give (48).

16The probabilistic arguments used in second part of the proof are similar to the ones used in the proof of
Lemma 4.1 in [14].
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EPE Variance CPU Time

Parameters: a = 0.01, b = 0.0004, σ = 0.3, r0 = 0.02

θ̂b,m,n,p 36.0561 0.001335 0.00953

θ̂b,m,n,d 36.0553 0.000196 0.01018
Parameters: a = 0.01, b = 0.0002, σ = 0.3, r0 = 0.04

θ̂b,m,n,p 35.9658 0.001416 0.01012

θ̂b,m,n,d 35.9638 0.000206 0.01146
Parameters: a = 0.01, b = 0.0003, σ = 0.4, r0 = 0.03

θ̂b,m,n,p 37.009 0.002546 0.00909

θ̂b,m,n,d 37.012 0.000380 0.01025

Table 3: Monte Carlo EPE estimates for a single interest rate swap with different parameter
settings

Now, consider the first term on the right side of (47). Given that V̄1 and 1{V̄1 > V̄2}, almost
surely converge to E[V1] and zero, respectively, it is not difficult to show that

V̄11{V̄1 > V̄2} → 0 a.s..

To see this, it suffices to write

V̄11{V̄1 > V̄2} = (V̄1 − E[V1])1{V̄1 > V̄2}+ E[V1]1{V̄1 > V̄2},

and use SLLN for the sequence of indicator random variables and V̄1. The last term on the right
side of (47) converges to zero a.s. based on (48). Analogous arguments led to (48) show that
the second term on the right side of (47) converges to zero a.s. This completes the proof for
n = 2. Induction and analogous arguments are employed for the general case.

Suppose that Mn−1,m,k →Mn−1, a.s. as m→∞. Assume that Mn = E[Vn]. Then, we need
to show that a similar almost sure convergence holds for Mn,m,k. To see this, it suffices to note
that, for all ε > 0 and ε̃ > 0,

P (1{V̄1 > max{V̄2, ..., V̄n}} > ε) ≤
P
(
(V̄1 − E[V1])− (max{V̄2, ..., V̄n} − E[Vn]) > ε̃

)
ε2

≤
P
(
|V̄1 − E[V1]| > ε̃

)
ε2

+
P
(
|max{V̄2, ..., V̄n} − E[Vn]| > ε̃

)
ε2

,

which is then used to show that

1{V̄1 > max{V̄2, ..., V̄n}} −→ 0 a.s.

This completes the proof.
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E Numerical Examples for Interest Rate Swaps

Table 3 on the preceding page above compares the variance and computing time of the DJS and
PDS-based Monte Carlo estimators of EPE for a single interest rate swap contract in the Vasicek
short rate framework (see, for instance, [2]). Specifically, the short rate, denoted by r, is modeled
by drt = (b − art)dt + σdBt, where B is a standard Brownian motion and a > 0. Recall that
standard results from affine term structure modeling expresses the time-t value of a T -maturity
zero coupon bond as p(t, T ) = eA(t,T )−B(t,T )rt , where A and B are given deterministic functions
of time, a, b, and σ. The interest rate swap in our examples is a forward swap settled in arrears
(see, for instance, [2]) with quarterly payments, a principal value of 100, and maturity 1 year.
We let m = 104 and n = 12. In particular, the 12 valuation points are equally spaced, i.e.,
monthly, within the one-year interval. Variances of the DJS and PDS-based estimators θ̂b,m,n,d
and θ̂b,m,n,p (column 2 of Table 3 on the previous page) are estimated based on 1000 simulation
runs. Table 3 presents instances of our numerical examples for interest rate swap where the
DJS-based estimator of EPE outperforms the PDS-based estimator in terms of variance (by an
order of at least 10) while the computing times are approximately equal.

F Numerical Examples for EEPEdst estimation

The numerical results presented in this section demonstrate the consistency of PDS and DJS
estimators for EEPEdst and the asymptotic efficiency of DJS over PDS. In particular, they
support our Propositions 5 and 6.

Similar to our numerical examples of Sections 3 and 5, we set V ≡ S with S being a
geometric Brownian motion with initial value S0 = 30, drift µ = 0.01, and volatility σ = 1 here.
We compare the crude PDS and DJS estimators θ̂c,p and θ̂c,d as defined in Section 6.2. Each
estimation procedure is replicated 10, 000 times to produce the estimates.

In Table 4 on the following page, in addition to presenting the estimator value, variance,
MSE (which, unlike that in Section 6.2, is defined with respect to the estimand of EEPEdst),
and CPU time, we also include a column named “WrongOrderProb”, which gives the estimate
for the probability that the indices at which the running maximums are achieved ever go wrong,
i.e., using the notation in Section 5.1 of the main paper, P (τi,m,k 6= τi, for some i), k = p or
d, corresponding to PDS and DJS respectively. The sum of these two probabilities provides
an upper bound for P (Bc

m) in the statement of Proposition 6. As this table shows, this upper
bound converges to zero as m increases, which implies limm→∞ P (Bc

m) = 0. Also, the bias of
both estimators vanishes as m increases; this is consistent with Proposition 5.

G The DJS Method

This section gives an explanatory discussion of what we have referred to as the “DJS method”
throughout our study. The underlying idea of the DJS method is rather simple. Suppose that the
two given random variables Vi and Vj are dependent; Monte Carlo considers the joint distribution
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EEPEdst Variance MSE CPU Time WrongOrderProb

Number of simulation runs m = 50

θ̂c,p 41.0514 20.6228 20.7011 0.000329 0.9613

θ̂c,d 42.4019 7.901 10.5697 0.000431 1
Number of simulation runs m = 500

θ̂c,p 40.7481 2.1847 2.1849 0.00156 0.2789

θ̂c,d 40.8833 0.77441 0.78761 0.00121 0.919
Number of simulation runs m = 5000

θ̂c,p 40.7756 0.21446 0.2146 0.0173 0

θ̂c,d 40.7708 0.07379 0.07379 0.0090 0.1987
Number of simulation runs m = 50000

θ̂c,p 40.7708 0.02156 0.02156 0.1708 0

θ̂c,d 40.7682 0.00711 0.00711 0.0932 0.0001

Table 4: Monte Carlo EEPEdst estimates for based on increasing number of simulation runs

function of these two random variables to generate copies of Vi and Vj . This is what the paper
refers to as the “PDS method”. Since the functional form of the CCR measures considered
in our study depends only on the marginal distributions of Vi and Vj as characterized by the
notion of Marginal Matching, the dependence structure of Vi and Vj , specified by their joint
distribution function, need not be preserved when Monte Carlo is used to estimate these classes
of CCR measures. That is, Vi and Vj can be sampled from independently and so cov(Vi, Vj) = 0.
This is what the paper refers to as the “DJS method”. In the context of CCR, Vi, representing
the exposure process evaluated that the i’th time point on the grid, could be a function of
m dependent random variables, S1, ..., Sm and Vj could be a function of n dependent random
variables S1, ..., Sm, ..., Sn. In generating Vj , while the PDS method uses the same S1, ..., Sm that
have been used in simulating Vi, the DJS method, starting anew, uses new copies of S1, ..., Sm
that are independent from the previous ones. This is an additional computational burden, and
so in cases where the DJS method proves to be statistically more efficient than the PDS method
in terms of the variance of the Monte Carlo CCR estimators, (by using the analytical results of
Proposition 1 and 2 or by conducting a small simulation study), computing time should also be
taken in to account. The useful criterion that does this is,

variance per replication× expected computing time.

This criterion, when used even as a rule of thumb, would specify whether to choose the DJS or
the PDS method.

The DJS method in the CCR literature, to the best of our knowledge, often only refers to
cases where the computing time of the DJS-based estimator is equivalent to that of the PDS-
based estimator. The Path-Independent Case of Section 3.1.1 is the classical situation: Vi, in
the above stylized example, is a function of a single random variable Si, and Vj is a function of
only Sj , where Si and Sj are dependent with a given joint distribution function. What our study
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refers to as the “DJS method”, as illustrated above, would, then, be an extension of the DJS
in its conventional sense. While we have not changed the well established CCR terminologies,
“DJS and PDS”, we invite the reader to be mindful of the distinction between the DJS in its
traditional sense and in the more general sense of this paper which could require additional
computing time.

H Time-Discretized SDEs and Monte Carlo-Based Pricing

This section discusses cases that have not been formulated in the main body of the paper. We
discuss Monte Carlo CCR measurement when the underlying risk factors are modeled by contin-
uous time stochastic differential equations (SDEs) whose simulation requires time-discretization.
We also discuss Monte Carlo CCR when in addition to generating the underlying risk factors
up to each valuation point, Monte Carlo is also used for pricing the portfolio constituents. The
potential applicability of the so called DJS method in this paper’s setting is further clarified
for these more general cases. Time-discretized SDEs and Monte Carlo-based pricing create
additional sources of bias (for the estimators of the CCR measures) that have not been mathe-
matically formulated in our study. This could be the subject of future research. We are to show
and emphasize that the proposed framework does lead to basic Monte Carlo CCR efficiency
improvements in these cases; the proposed framework assumes that the factors influencing these
additional sources of bias are held constant and then specifies how the remaining factors deter-
mining the statistical efficiency and computing time of the CCR estimators should be dealt with.
The simple stylized example below is used throughout this section to facilitate our discussion of
the above-mentioned topics.

Example: Arithmetic Asian Options Let {St; t ≥ 0} denote a geometric Brownian motion
satisfying the following SDE,

dSt = µStdt+ σStdBt, (50)

where {Bt; t ≥ 0} denotes a one-dimensional standard Brownian motion, and the drift µ and
volatility σ parameters are given constants. Consider the equi-distant time grid 0 ≡ t0 < t1 <
... < tn ≡ T , ti − ti−1 ≡ h, i = 1, ..., n. Let Vt denote the time-t ≥ 0 value of an arithmetic
Asian option with time-T payoff (S̄ − K)+ for a given strike K, where S̄ = (S1 + ... + Sn)/n
amd Si ≡ Sti . For simplicity assume that risk-free rate is zero, and so

Vi = E[(S̄ −K)+|Fi],

where Fi = Fti denote the filtration generated by the GBM up to time ti. We are to use Monte

Carlo to generate Vi’s and estimate θ =
∫ T

0 E[Vt]dt.

Time-Discretized SDEs Suppose that we cannot analytically solve the SDE in (50). That
is, suppose that the GBM could not have been simulated exactly (the joint distribution of the
simulated values would not coincide with that of the continuous time model at the simulated
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dates on the time grid), and an Euler time-discretization scheme would have to be used to sample
from the SDE. Let Ŝ denote a time-discretized approximation to S on the above mentioned time
grid,17

Ŝi+1 = Ŝi + µŜih+ σŜi
√
hZi+1, (51)

with Z1, Z2, ... independent standard normal random variables. Consider tj and tl on the time
grid where 0 < tj < tl < T . Generating Ŝj with the Euler scheme using (51) requires j i.i.d
standard normals Z1, ..., Zj . Now, consider the simulation of Ŝl. Consider two cases. If the set
of normals Z1, ..., Zj generated in calculating Ŝj are used again along with “new” i.i.d. standard
normal random variables Zj+1, ...Zl to generate Ŝl, then Ŝj and Ŝl become positively correlated
according to (51). If, however, l new i.i.d. standard normal random variables Z1, ..., Zl are
generated to simulate Ŝl, then, clearly, Ŝj and Ŝl become independent. The price of achieving,
cov(Ŝj , Ŝl) = 0, is the additional computational time to generate j new standard normal random
variable instead of using the old ones that have already been generated when simulating Ŝj .

Time-Discretized SDEs and the DJS Method Continuing to assume the Euler time-
discretization is used to sample from the underlying GBM, we now return to the Asian option
example. View Vi as a function of (S1, ..., Si), i.e., Vi = E[(S̄ −K)+|Fi] = f(S1, ..., Si). Assume
that given Fi, the conditional expectation E[(S̄−K)+|Fi] can be calculated analytically, (later in
this section, we discuss the implications of relaxing this assumption). Consider two Monte Carlo
realizations of Vj and Vl. Similar to our analysis of the Path Dependent case of Section 3.1.2,
Vj = f(S1, ..., Sj) and Vl = f(S1, ..., Sj , ..., Sl) become independent if we start anew in generating
Vl. More specifically, assuming the Euler scheme in (51) is in place, if the set of Z1, Z2, .., Zl
generated in calculating V̂l = f(Ŝ1, ..., Ŝl) are independent from the set of Z1, Z2, ..., Zj generated
in sampling from V̂j = f(Ŝ1, ..., Ŝj), V̂j and V̂l become independent. We emphasize that it is
only in this sense that what we continue to refer to as the DJS method is relevant to our study;
that is, in sampling from the underlying risk factors in a way that V ’s evaluated at any two
distinct time points on the grid become independent.

Recall the notion of Marginal Matching and note that in sampling from Vj = f(S1, ..., Sj),
making Ŝ1, ..., Ŝj independent from each other is neither relevant to our objective - having
cov(V̂j , V̂l) = 0 - nor possible in the sense that, depending on the functional form of f , the
expected value of V̂j under independent Ŝ1, ..., Ŝj may not become equal to the expected value of
V̂j = f(Ŝ1, ..., Ŝj) when Ŝ1, ..., Ŝj are sequentially sampled from based on the finite dimensional
distribution of the GBM time-discretized in (51). That is, our analysis and results are not
affected by the inability to use a DJS type method in sampling from Vj = f(S1, ..., Sj) for a
given fixed j. Again, what the DJS method, whose applicability is specified by the notion of
Marginal Matching, is concerned with in our study is making Monte Carlo realizations of Vj and
Vl independent - whether they have been simulated exactly or via an Euler time-discretization

17To simplify our discussion of time-discretized SDEs, we have assumed that the CCR time grid containing
the valuations points and the time grid based on which the SDEs are time-discretized coincide. Relaxing this
assumption does not change the results of this discussion section.
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scheme.18

Time-Discretized SDEs and the Additional Source of Bias Two types of bias have
been formulated in the MSE minimization problems of our study: the time-discretization bias
associated with the time integral of the exposure process in the definition of EPE, CVA, EEPE
and also the bias induced by the maximum operator in the definition of the EEPE. The Euler-
scheme-based time-discretized SDE, Ŝ, which approximates S, creates an additional source of
bias that has not been mathematically formulated in our study. A typical criterion based on
which the quality of the SDEs’ time discretization methods is measured is the convergence order
of the form |E[g(Ŝi)] − E[g(Si)]| for a given i with a given function g usually satisfying some
smoothness conditions. See Chapter 6 of [13] and the references therein for typical weak and
strong error criteria and for methods to improve the convergence order of Euler schemes based
on these criteria. The simple Euler scheme (51) converges with respect to the above-mentioned
criterion as the time step h decreases to zero. The proposed efficient CCR framework assumes
that an Euler scheme (possibly an improved version of it by using the methods introduced
in Chapter 6 of [13]) is already in place with a fixed time step h, and it then achieves an
approximately optimal balance between the number of simulation runs and valuation points
under the chosen Euler scheme.

Monte Carlo-Based Pricing We now discuss the implications of Monte Carlo-based pricing
in our setting. Suppose that given Fi, the conditional expectation E[(S̄ −K)+|Fi] could not be
calculated analytically. Also, suppose that, motivated by the Longstaff and Schwartz American
option pricing appraoch [21], American (or Least-Squares) Monte Carlo is to be used to estimate
θ. In the m-simulation-run-based commonly-used version of American Monte Carlo for CCR,
one often proceeds as follows (see [6]).19 First generate the m sample paths on the grid 0 ≡
t0 < t1 < ... < tn ≡ T , i.e., {Sk1, Sk2, ...Skn}, k = 1, ...,m, based on the finite dimensional
distribution of the process S. Then, all Monte Carlo estimators of E[V1], ..., E[Vn] are estimated
based on this single set of sample path data.

To generate Monte Carlo realization of Vi = E[(S̄ − K)+|Fi] = f(S1, ..., Si), one first
uses a regression-based method to approximate f with f̃ and uses all the simulated data
{Sk1, Sk2, ...Skn}, k = 1, ...,m to estimate the regression coefficients. Then, using a given sam-
pled path of S1, ..., Si, to generate a single approximate realization of Vi, which we denote by Ṽi,

18Important classes of models whose application requires time-discretization of the underlying SDEs are LIBOR
and Swap Market models, (see, e.g., Chapter 25 of [2], Chapter 3 of [13], and the references therein). For instance,
consider pricing Caplets in the LIBOR model where the LIBOR forward rates are GBM driven, (see Definition
25.5 of [2]), where the simulation of SDEs characterizing the underlying LIBOR forward rates (see Proposition
25.7 of [2]) require Euler time-discretization schemes, (see Section 25.5 of [2] and Section 3.7 of [13]). As illustrated
above, at the cost of additional computing time compared with that of the PDS method, the DJS method can
be applied in the LIBOR market models to make the simulated V ’s, representing the value of Caps or Caplets,
independent at any two distinct time points on the CCR grid. That is, the so called DJS method is potentially
applicable. However, the CCR modeler, considering both the computing time and the variance of the PDS and
DJS-based estimators, may conclude that the PDS method should be chosen.

19We assume that the reader is familiar with American Monte Carlo option pricing and its application in
counterparty credit risk.
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one sets Ṽi = f̃(S1, ..., Si). The two random variables Ṽi = f̃(S1, ..., Si) and Vi = f(S1, ..., Si) are
not equal in distribution; it is in this sense that we refer to Ṽi as an approximate realization of Vi.
Note that this regression-based approximation of f with f̃ makes American Monte Carlo based
estimators of θ biased. This bias has not been mathematically formulated in our framework.

As mentioned above, the commonly-used version of American Monte Carlo in CCR uses the
same single set of simulated sample paths in estimation of E[V1], ..., E[Vn]. To make American
Monte Carlo estimators of E[V1], ..., E[Vn] uncorrelated, using the notion of Marginal Matching,
each American Monte Carlo estimator of E[Vi] should use a ‘new’ independent set of simulated
sample paths. More specifically, fix i, and suppose that E[Vi] has been estimated based on
{Sk1, Sk2, ...Skn}, k = 1, ...,m as we summarized above. Now, using the notion of Marginal
Matching (or what we continue to refer to as the DJS method), to estimate E[Vi+1], instead of
using the same set of sampled paths employed in the estimation of E[Vi], a new independent set
{Sk1, Sk2, ...Skn}, k = 1, ...,m is being generated to simulate Ṽi+1’s. So, under the DJS method,
American Monte Carlo realizations of Ṽi and Ṽi+1 become independent and cov(Ṽi, Ṽi+1) = 0.
That is, at the cost of additional computational time, the DJS method can be used to make
American Monte Carlo-based realizations of Vi’s independent.20

Convergence Results of American Monte Carlo Algorithms It is well known that
formulating and deriving precise convergence results on American option pricing algorithms,
e.g., the Least Squares method of Longstaff and Schwartz, is quite difficult, (see Section 2.3
of [21] and Chapter 8 and Section 8.6 of [13]). Similar challenges exist when American Monte
Carlo is used to estimate CCR measures since we need to consider limits as the number of
valuation points (time points on the grid), the number of regression-based basis functions, and
the number of simulation paths go to infinity. We would like to emphasize that when an American
CCR “engine” is in place, even in the absence of the formulation and optimization of the MSE
of the CCR estimators in the presence of all sources of bias, our framework would lead to
basic efficiency improvements. It characterizes and differentiates the DJS and PDS methods
by considering computational time in parallel with variance and then achieves an approximate
optimal balance between the number of simulation runs (the number of sampled paths) and the
number of valuation points assuming that the functional form and the number of basis functions
used in the regression have been fixed.

I Estimating CVA Sensitivities

We consider Monte Carlo estimation of the sensitivity of independent CVA with respect to the
initial value of an underlying risk factor, (section 3 of [19] discusses this type of CVA sensitivity
estimation with crude Monte Carlo; see Chapter 16 of [18] for a more complete overview of
CVA ‘Greeks’ for hedging counterparty risk). We merely focus on comparing the DJS and PDS
methods for CVA sensitivity estimation with respect to an underlying risk factor’s initial value.

20Similar arguments hold for nested Monte Carlo. That is, the second layer of Monte Carlo used for pricing the
contract at each valuation point makes the estimator of θ biased. And, the DJS method in the above mentioned
sense can still be used to make V ’s independent at any two distinct time points on the grid.
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Let S0 denote an underlying risk factor’s initial value and consider Monte Carlo estimation of
dCVAI
dS0

, where CVAI =
∫ T

0 E[Vt]dFt, using a finite-difference approximation method. The Monte
Carlo estimator of CVAI uses the equidistant discrete time grid, 0 ≡ t0 < t1 < ... < tn ≡ T .

The central-difference estimator of dCVAI
dS0

based on m simulation runs at each valuation point
is,

θ̂k =
n∑
i=1

D̂V i,m∆Fi, (52)

where

D̂V i,m =
V̄i(S0 + h)− V̄i(S0 − h)

2h
, (53)

where V̄i(S0 +h) is the m-simulation-run average of Vi1, ..., Vim with the underlying initial value

at S0 + h for some h > 0. It is well-known that D̂V i,m is a biased estimator of
dE[Vti ]

dS0
. It is

also well-known that using common random numbers in estimating V̄i(S0 + h) and V̄i(S0 − h)
will reduce the order of variance of the finite difference estimator. We assume that common
random numbers are used. That is, suppose that Vi is a function of Si, i.e., Vi ≡ f(Si). Then,
the same set of generated Si1, ..., Sim used in the simulation of V̄i(S0 + h) are also being used
in the simulation V̄i(S0 − h).21 The subscript k in θ̂k takes d and p when the DJS and PDS
methods are used, respectively.

Recall that under DJS and the notion of Marginal Matching, any two distinct pairs of
S1, ..., Sn are uncorrelated, and so the variance of θ̂d is equal to the weighted sum of the variances
of D̂V i,m ≡ D̂V m(Si), i = 1, ..., n, and the covariance terms, cov(D̂V m(Si), D̂V m(Sj)), are zero

for any i 6= j. So, to compare the variance of θ̂d and θ̂p it remains to consider the covariance terms
under the PDS method. If using PDS results in positive covariance terms, then the DJS based

estimator of dCVAI
dS0

outperform the PDS-baed estimator in terms of variance. Propositions 1
and 2 have identified conditions under which the covariance function cov(Vu, Vt) is positive for
contract level exposure for any 0 < u < t < T . The same method of proof can be employed
to show that when using PDS, under certain assumptions cov(D̂V m(Si), D̂V m(Sj)) > 0 for any
i 6= j. We give the proof here only for a simple stylized case.

Using the terminology and notation developed in Section 3, consider the contract level credit
exposure for a unilateral transaction, i.e., Vt = max{Ct, 0} = Ct for all 0 < t ≤ T , where the
time-t risk neutral value of the maturity-T derivatives contract is given by Ct = ntE[ΠT

nT
|Ft]

with n being the numeraire, Ft denoting the time-t filtration generated by the underlying risk
factors, and Π being the payoff function. Consider the setting where the numeraire is the money
market account, B, with deterministic short rate. Also, consider the single-simulation-run case,
i.e., m = 1, where we set D̂V i,1 ≡ D̂V i. We are to show that,

cov(D̂V i, D̂V j) > 0

21See Chapter 7 of [13] and the reference therein for finite-difference approximations. More specifically, see
Section 7.1 on how the MSE of a finite-difference estimator can be approximately optimized.
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for given i < j on the discrete time grid. Using the conditional covariance formula as in the
proofs of Propositions 1 and 2 gives,

cov(D̂V i, D̂V j) = cov(D̂V i, E[D̂V j |Fi]).

Note that Vj(S0 + h) = BjB
−1
n Eh+ [ΠT |Fj ] and Vj(S0 − h) = BjB

−1
n Eh− [ΠT |Fj ], where the

subscript h+ and h− denote the cases where the underlying risk factor’s initial prices are set at
S0 + h and S0 − h, respectively. Then, we have,

E[D̂V j |Fi] = BjB
−1
n

(
Eh+ [ΠT |Fi]− Eh− [ΠT |Fi]

2h

)
,

and so,

cov(D̂V i, D̂V j) = BiBjB
−2
n V ar

(
Eh+ [ΠT |Fi]− Eh− [ΠT |Fi]

2h

)
> 0.

Note that more general cases, e.g., stochastic short rate and bilateral transactions, require the
application of changes of numeraire techniques and the Chebyshev’s algebraic inequality and
constraints on the number of risk factors and monotonicity of the payoff function as in the
proofs of Proposition 1 and 2; we do not address these cases here as the proof methodology has
already been developed in the paper. The mathematical proofs of the positivity of the covariance
function under PDS are at the contract level exposure. For more general cases, comparing the
variance of the PDS and DJS-based CVA sensitivity estimators requires small simulation studies
before the CCR modeler makes a decision on whether to use DJS or PDS.
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