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Abstract

We study a dynamic stochastic general equilibrium model in which agents are concerned
about model uncertainty regarding climate change. An externality from greenhouse gas
emissions damages the economy’s capital stock. We assume that the mapping from climate
change to damages is subject to uncertainty, and we use robust control theory techniques to
study efficiency and optimal policy. We obtain a sharp analytical solution for the implied
environmental externality and characterize dynamic optimal taxation. A small increase in
the concern about model uncertainty can cause a significant drop in optimal fossil fuel use.
The optimal tax that restores the socially optimal allocation is Pigouvian. Under more
general assumptions, we develop a recursive method and solve the model computationally.
We find that the introduction of uncertainty matters qualitatively and quantitatively. We
study optimal output growth in the presence and in the absence of concerns about uncertainty
and find that these concerns can lead to substantially different conclusions.

∗We thank Lars Peter Hansen, participants at the 2013 Midwest Macro Conference and at the Econometric
Society Summer 2013 meetings for comments and suggestions. The opinions expressed do not necessarily
reflect those of the Federal Reserve System.
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1 Introduction

We study optimal taxation in a dynamic stochastic general equilibrium model in which
agents are concerned about model uncertainty. We assume that an externality through
global temperature changes resulting from greenhouse gas emissions (GHG) adversely affects
the economy’s capital stock and, thus, its output. The precise effects of this externality,
however, are subject to uncertainty. Most existing approaches, however, only incorporate
the uncertainty associated with climate change in a limited way (Stern, 2013). To fill the
gap, we focus on the implications of this uncertainty. In order to model the effect of the
emissions created by economic activity on the environment, we employ the framework used
in Golosov, Hassler, Krusell, and Tsyvinski (2013, GHKT hereafter).1 While they assume
that the mapping from climate change to damages is subject to risk, in our model this
mapping is subject to Knightian uncertainty. We study the implications of this assumption
using a robust control approach. We believe that this is an appropriate application of
uncertainty in economic modeling. After all, man-made climate change is unprecedented,
and there is an ongoing heated debate about its potential effects. Although our model does
not include the risks of large-scale human migration or conflict resulting from climate change,
it proposes a robust control approach as an alternative to standard probability distribution-
based modeling. More specifically, concerned about model uncertainty, a social planner in
our model maximizes social welfare under a “worst-case scenario.”

In addition to taking model uncertainty into consideration, there are two additional
differences between our assumptions and those in GHKT. First, we find it convenient to
assume that the environmental externality indirectly affects output through the capital stock.
As a result, the theoretical analysis in our model brings different results, although the two
assumptions lead to identical results if we assume 100 percent capital depreciation (as we
do in the computational part). A second difference is that our estimates of total fossil fuel
supplies are significantly larger than theirs. This is partly due to the addition of the supply
of unconventional oil and gas, but mainly due to our consideration of estimated methane
hydrate resources.2

Under additional assumptions, we obtain a sharp analytical solution for the implied
pollution externality, and we characterize dynamic optimal taxation. A small increase in the
concern about model uncertainty can cause a significant drop in optimal energy extraction.
The optimal tax, which restores the social optimal allocation, is Pigouvian. Under more
general assumptions, we develop a simple recursive method that allows us to solve the model
computationally. We find that the introduction of uncertainty matters in the sense that
our model produces results that are qualitatively different - for example, in terms of oil
consumption - from those of GHKT. At the same time, concerns about uncertainty do not
affect renewable energy adoption. The reason is that, rather than being driven by renewable

1Acemoglu, Aghion, Bursztyn, and Hemous (2012) study related issues. See Nordhaus and Boyer (2000)
and Stern (2007) for earlier work that also points to the importance of uncertainty.

2See Boswell and Collett (2011), Hartley, Medlock, Temzelides, and Zhang (2012), and references therein
for a more detailed discussion on total estimated fossil fuel resources.
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energy use, the margin that determines short-term decisions regarding energy sources is
driven by two factors: the trade-off between higher versus lower total energy consumption,
and the choice of coal versus gas/oil. We find that oil use in our model can be flat for some
parametrizations. We study optimal output growth in the presence and in the absence of
concerns about uncertainty and find that the results can be very different. In the worst-case
scenario, optimality implies that a small sacrifice in yearly output can prevent a large future
welfare loss.

As the green energy sector does not create emissions in our model, we find that the
optimal path for the use of green energy does not directly depend on the level of concern
about model uncertainty. However, since green energy, coal, and oil are substitutes, model
uncertainty does indirectly affect the use of green energy, through its impact on coal and oil.
We also find that an increase in the concern about model uncertainty causes a significant
decline in the use of coal, while the use of oil is slightly delayed. Holding other parameters
fixed, the optimal path of oil consumption is jointly determined by the resource scarcity
effect and the model uncertainty effect. Naturally, we do not find a significant difference in
oil consumption when the scarcity effect dominates. However, when we consider a higher
level of initial resources of fossil fuel, the concern about model uncertainty substantially
discourages the use of oil.

Kolstad (1996) discusses uncertainty in integrated assessment models but does not em-
ploy techniques from robust control. Existing work that employs robust control or related
techniques in order to address issues related to model uncertainty includes Hennlock (2008,
2009), Funke and Paetz (2010), Sterner and Hennlock (2011), and Lemoine and Traeger
(2011). These papers employ a version of Nordhaus’s DICE model and we build our anal-
ysis closely on GHKT (2013), which is consistent with the DICE model. Using GHKT
allows to derive analytical results under a set of additional assumptions. In related recent
work, Weitzman (2014) considers the social costs of carbon when catastrophic climate-related
events follow a fat-tailed distribution.3 In addition to building on GHKT, our paper relies
on existing work in robust control theory from both economics and engineering. In the tradi-
tional stochastic control literature, uncertainties in the system are modeled using probability
distributions. The goal there is to derive a policy that works best “on average.” In contrast,
given a bound on uncertainty, robust control is concerned with optimizing performance un-
der a so-called worst-case scenario.4 Hansen and Sargent (2001) introduce techniques from
robust control theory to dynamic economic decision making problems.5 They point out the
connection between the max-min expected utility theory of Gilboa and Schmeidler (1989)
and the applications of robust control theory proposed by Anderson et al. (2000) and Dupuis
et al. (1998). Hansen, Sargent, Turmuhambetova and Williams (2006) give a thorough in-

3See also Barrage (2013). Other related work includes Hotelling (1931), Dasgupta and Heal (1974),
Nordhaus (2000, 2008), Hoel (1978), Stern (2007), Sinn (2008), Gars, Golosov, and Tsyvinski (2009), Krusell
and Smith (2009), and Ploeg and Withagen (2012, 2012). GHKT (2013) provide an excellent review of this
literature.

4See, for example, Lewis (1986) and Chandrasekharan (1996).
5See Knight (1921), Savage (1954), Ellsberg (1961), Gilboa and Schmeidler (1989), Hansen and Sargent

(2001 and 2010) for related research.
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troduction to the robust control approach. They discuss applications to a wide range of
problems within the linear-quadratic-Gaussian framework.6

As is standard in the robust control literature, our paper postulates the problem of
optimal fossil fuel extraction as a two-person zero-sum dynamic game: in each stage, a social
planner (a representative household in the decentralized version) maximizes social welfare
(lifetime utility) by choosing the level of energy extraction, consumption, labor and capital
investment. Subsequently, a malevolent player chooses alternative distributions in order to
minimize the respective payoff. Our work contributes to the existing literature of applications
of robust control in economics in two ways. First, it explores a class of models under a non-
quadratic objective and non-linear constraints. In that regard, we demonstrate that models
of the type used in GHKT (2013) can be restated in a robust control framework. We then
derive some sharp analytical results, and compute the resulting model numerically. Second,
we employ the exponential distribution as the approximating distribution. While existing
studies usually employ the linear-quadratic model combined with Gaussian distributions in
order to produce analytical solutions, our work shows that the approximating distribution
for models with log-utility and full depreciation of capital can be drawn from either the
normal or the exponential family.

The paper proceeds as follows. Section 2 presents the basic model. Section 3 studies the
model analytically, while Section 4 presents our numerical and quantitative findings. A brief
conclusion follows. Technical material appears in the appendices.

2 The Model
In order to characterize the optimal policy for the case where there is a concern about
climate change and model uncertainty, we first formulate a general framework for the "robust
planner’s problem," a benchmark that we will subsequently compare to decentralized market
solutions.

Time, t, is discrete and the horizon is infinite. The world economy is populated by a
[0, 1]-continuum of infinite-lived representative agents with utility

E0

∞∑
t=0

βtu(Ct). (1)

The function u is a standard concave period utility function, Ct represents final-good con-
sumption in period t, and β ∈ (0, 1) is the discount factor. The final goods sector uses energy,
E, capital, K, and labor, N , to produce output. Labor supply is inelastic. The economy’s
capital stock depreciates at rate δ ∈ (0, 1). Henceforth, K̃ represents the end-of-period cap-
ital (before interacting with the climate factor through the process described below). The
feasibility constraint in the final goods sector is given by

6Related work includes Hansen, Sargent and Tallarini (1999), Hansen and Sargent (2003), Colgey, Colac-
ito, and Hansen and Sargent (2008). See Williams (2008) for a review. In a recent paper, Bidder and Smith
(2012) use robust control theory to study the implications of model uncertainty for business cycles generated
through “animal spirits.”
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Ct + K̃t+1 = Yt + (1− δ)Kt. (2)

There are four production sectors. The final-goods sector, indexed by i = 0, produces the
consumption good. The corresponding production function is given by Y = F (K,N0, E).
Thus, in addition to capital and labor, production of the final good requires the use of energy,
E. The three energy-producing sectors for oil, coal, and green energy (labelled by i = 1, 2, 3,
respectively) produce energy amounts E1, E2 and E3 (measured in carbon equivalents). The
oil sector is assumed to produce oil at zero cost. We denote by R the total oil energy stock,
and we impose the resource constraint, Rt ≥ 0, for all t. Both the coal and the green energy
sectors use linear technologies

Ei = AiNi, i = 2, 3. (3)

We follow GHKT in modeling a simplified carbon cycle as follows. The variable S (measured
in units of carbon content) represents the GHG concentration in the atmosphere in excess of
the pre-industrial level. We denote by P and T the permanent and temporary components
of S, respectively. These evolve according to the following equations.

P ′ = P + φL(E1 + E2), (4)
T ′ = (1− φ)T + (1− φL)φ0(E1 + E2), (5)
S ′ = P ′ + T ′. (6)

We introduce model uncertainty regarding climate change through a stochastic variable, γ,
which reduces the end-of-period capital stock K̃ ′ by a factor of h(S ′, γ) to K ′. That is,
K ′ = h(S ′, γ)K̃ ′. While γ directly affects output in GHKT, we find it convenient to assume
that γ adversely affects the economy’s capital stock. The two assumptions are identical
under a Cobb-Douglas production function and an exponential damage function (which we
assume throughout this paper).7 We use π(γ) to denote the approximating distribution of
γ, while π̂(γ) denotes the welfare-minimizing distribution and m(γ) = π̂(γ)

π(γ)
is the likelihood

ratio. The distance, ρ, between π̂(γ) and π(γ) is measured by relative entropy:

ρ(π̂(γ), π(γ)) ≡ E[m(γ) logm(γ)] ≡ Ê[logm(γ)] ≡
ˆ

[m(γ) logm(γ)]π(γ)dγ. (7)

As is standard in robust control, the concern about model uncertainty is represented by a
two-person zero-sum dynamic game in which, after observing the choice of a social planner,
a malevolent player chooses the worst specification of the model in each period. This game

7Our specification allows us to assume that, in each period, the social planner moves before nature.
The resulting max-min game is easier to analyze. To see the equivalence with GHKT, assume that the
economy enters the current period with capital k and carbon concentration S. In GHKT, the final good
production is given by A0e

−γSKθN1−θ−ν
0 Eν , while in our model the final good production is given by

A0(e−γSK)θN1−θ−ν
0 Eν = A0e

−θγSKθN1−θ−ν
0 Eν . The two production technologies are identical if the

damage parameter, γ, in our model is scaled up by a factor of 1
θ .
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proceeds as follows. Our attention will be restricted to a particular type of equilibrium,
the so-called Markov perfect (or feedback) equilibrium. This equilibrium is strongly time-
consistent. At the beginning of a period, the state value of (K,N, P, T,R) is revealed.
Then, the planner chooses (C,Ei, Ni, K̃

′, P ′, T ′, S ′, R′) in order to maximize social welfare.
After observing the planner’s choice, nature (the “malevolent player”) chooses an alternative
distribution π̂(γ) or, equivalently, m(γ), to minimize welfare. Note that any deviation from
the approximating distribution will be penalized by adding αρ(π̂(γ), π(γ)) to the objective
function. Here, α represents the magnitude of the “punishment.” A greater α means a
greater penalty associated with the deviation of γ from its approximating distribution and
thus a lower concern about robustness.

This leads to the following social planner’s problem:

V (K,N, P, T,R) = max
{C,Ei,Ni,K̃′,P ′,T ′,S′,R′}

min
m(γ){

u(C) + β

ˆ
[m(γ)V (K ′, N ′, P ′, T ′, R′) + αm(γ) logm(γ)] π(γ)dγ

}
s.t.

Ei = AiNi; i = 2, 3

E = (κ1E
ρ
1 + κ2E

ρ
2 + κ3E

ρ
3)1/ρ

N = N0 +N2 +N3

K̃ ′ = F (K,N0, E) + (1− δ)K − C
K ′ = h(S ′, γ)K̃ ′

R′ = R− E1 ≥ 0

N ′ = ANN

P ′ = P + φL(E1 + E2)

T ′ = (1− φ)T + (1− φL)φ0(E1 + E2)

S ′ = P ′ + T ′

1 =

ˆ
m(γ)π(γ)dγ

The social planner’s problem can be solved analytically under a set of additional assumptions,
and we will focus on the analytical solution first. We will discuss the decentralized problem
and show that the socially optimal allocation can be restored by imposing appropriate fossil
fuel taxes on the energy-producing sector.

3 The Analytical Solution
In this section, we will make the following additional assumptions. While these assumptions
are admittedly strong, they allow us to fully solve the model analytically. As we shall see,
certain aspects of the solution remain instructive in the next section, when the restrictive
assumptions are dropped and the model is solved numerically.
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(A1) The period utility function is given by u(C) = log(C).
(A2) Capital depreciates fully; i.e., δ = 1.
(A3) The production function is given by F (K,N0, E) = A0K

θN1−θ−ν
0 Eν .

(A4) The damage function is given by h(S ′, γ) = e−S
′γ.8

(A5) The approximating distribution for γ is exponential with mean λ−1 and variance
λ−2; i.e., π(γ) = λe−λγ.9

(A6.1) φL = 0.10

(A6.2) φ = 0.
(A7) There is a single fossil energy sector producing oil at zero cost. Production is

subject to a resource feasibility constraint: R′ ≥ 0. As a result, N1 = 0 and N0 = N .
(A8) There is no population growth, and the aggregate labor supply is normalized to 1.

That is, AN = 1 and N = 1 in all periods.
(A9) There is no technology improvement. That is, A0 is constant over time. We

normalize A0 = 1.
(A10) The resource feasibility constraint is not binding.

We will first solve the social planner’s problem. We will then discuss the decentralized
problem and show that the socially optimal allocation can be restored by implementing fossil
fuel taxes on the energy-producing sector.

Under A1-A10, the social planner’s problem can be rewritten as:

V (K,S) = max
{C,E,K̃′,S′}

min
m(γ)
{u(C) + β

ˆ
[m(γ)V (K ′, S ′) + αm(γ) logm(γ)]π(γ)dγ} (8)

s.t.

K̃ ′ = F (K,E)− C
K ′ = h(S ′, γ)K̃ ′

S ′ = S + φ0E

1 =

ˆ
m(γ)π(γ)dγ (9)

where h(S ′, γ) = e−S
′γ and F (K,E) = KθEν . To solve this problem, we first guess that V (·)

8There exists a constant, ∆, such that if the GHG concentration, S, is greater than 1
∆ , the system cannot

be “robustified,” in the sense that the value of the game goes to negative infinity. However, if the economy
starts with an initial S0 <

1
∆ , then St will converge to 1

∆ as t→ +∞.
9The exponential distribution with mean λ−1 is the maximum-entropy distribution among all continuous

distributions supported in [0,∞] that have mean λ−1. The worst-case distribution for γ is also exponential
with mean (λ∗)−1 and variance (λ∗)−2, where λ∗ = λ(1 − ∆S′∗) = λ(1 − ∆φ0cE)(1 − ∆S). That is,
π∗(γ) = λ∗e−λ

∗γ . Since λ∗ = λ(1−∆S′∗) < λ, the worst-case mean of γ, (λ∗)−1, is strictly greater than the
approximating mean, λ−1.

10If φL > 0, we need to depict the dynamics of P and T separately before we sum them in order to obtain
the dynamics of S. Assuming that φL = 0 allows us to express the dynamics of S without the need to
consider P and T separately. That is, S′ = (1 − φ)S + φ0E. Moreover, (A6.1) and (A6.2) imply that
S′ = S + φ0E, which is necessary for an analytical solution.
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takes the form

V (K ′, S ′) = f(S ′) + Ā log(K ′) + D̄ = f(S ′) + Ā log(h(S ′, γ)K̃ ′) + D̄ (10)

where Ā and D̄ are undetermined coefficients. The functional form for f(·) will be derived
when we solve the minimizing player’s problem.

First, we define the robustness problem (the inner minimization problem) by

R(V )(K̃ ′, S ′) = min
m(γ)

ˆ
[m(γ)V (K ′, S ′) + αm(γ) logm(γ)] π(γ)dγ

s.t.

K ′ = e−S
′γK̃ ′

1 =

ˆ
m(γ)π(γ)dγ

The first-order condition for m(γ) implies that

m∗(γ) =
exp(−V (K′,S′)

α
)´

exp(−V (K′,S′)
α

)π(γ)dγ
= (1−∆S ′)e∆S′λγ

or, equivalently,

π̂∗(γ) = m∗(γ)π(γ) = λ∗e−λ
∗γ,

where we define ∆ = Ā
αλ

and λ∗ = λ(1 − ∆S ′). The worst-case distribution of γ remains
exponential with a distorted mean (λ∗)−1 and variance (λ∗)−2. Therefore,

R(V )(K̃ ′, S ′) =

ˆ
[m∗(γ)V (K ′, S ′) + αm∗(γ) logm∗(γ)] π(γ)dγ

= −α log[

ˆ
exp(−V (K ′, S ′)

α
)π(γ)dγ]. (11)

Substituting equation(10) into equation(11), we obtain

R(V )(K̃ ′, S ′) = f(S ′) + Ā log(K̃ ′) + D̄ +H(S ′;α, Ā),

where H(S ′;α, Ā), the robust version of the externality from carbon emissions, is given by

H(S ′;α, Ā) = −α log[

ˆ
h−

Ā
α (S ′, γ)π(γ)dγ]

It follows from (A4)-(A5) that

H(S ′;α, Ā) = α log(1−∆S ′).
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Next, we define the optimal choice problem (the outer maximization problem). Using the
analysis above, this problem can be written as

V (K,S) = max
{C,E,K̃′,S′}

{log(C) + βR(V )(K̃ ′, S ′)}

or equivalently,

f(S) + Ā log(K) + D̄ = max
C,E
{log(C) + β[f(S ′) + Ā log(K̃ ′) + D̄ +H(S ′;α, Ā)]}

s.t.

K̃ ′ = F (K,E)− C
S ′ = S + φ0E

H(S ′;α, Ā) = α log(1−∆S ′).

The first-order conditions imply

C =
F (K,E)

1 + βĀ
(12)

−φ0

[
∂f(S ′)

∂S ′
+
∂H(S ′;α, Ā)

∂S ′

]
=

1 + βĀ

β

∂F (K,E)
∂E

F (K,E)
. (13)

Noting that H(S;α, Ā) is a logarithmic function of S, we guess that f(S) = B̄ log(1−∆S),
where B̄ is an undetermined coefficient. As a result, the above F.O.N.C. can be simplified
to

C =
KθEν

1 + βĀ

βφ0∆(α + B̄)

1−∆S ′
=

ν(βĀ+ 1)

E

After some derivations, we obtain

Ā =
θ

1− βθ

B̄ =
1

1− β
[αβ +

ν

1− βθ
]

The expression for D̄ is more complicated and less intuitive. Substituting Ā = θ
1−βθ into the

first-order conditions, we obtain the optimal allocation. We summarize the above discussion
in the following.

Proposition 1. Assume that (A1)-(A10) hold. The two-person zero-sum dynamic game
described by equation (8)-equation (9) admits a feedback (Markov perfect) equilibrium. The
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equilibrium strategies are given by:

C∗ = (1− βθ)KθE∗ν = (1− βθ)Kθ[cE(1−∆S)]ν

E∗ = cE(1−∆S)

S ′∗ = S + φ0cE(1−∆S)

π̂∗(γ) = λ∗e−λ
∗γ

where cE = ν(1−β)
[βα(1−βθ)+ν]φ0∆

and λ∗ = λ(1−∆S ′∗).

A few technical remarks are in order. First, the function V (K,S) is increasing in K,
decreasing in S, and jointly concave in K and S. The value of Ā is the same as in the model
without concern about model uncertainty. Both E∗ and S ′∗ are affine functions of S. In
addition, it can be shown that, given S, both E∗ and S ′∗ are increasing functions of α. This
is intuitive since a greater α implies a larger resulting penalty from a deviation of γ from its
approximating distribution, and thus a lower concern about model-uncertainty. Note that
C∗ is affected by S only through E∗. This is due to logarithmic utility. As a result, a greater
concern about model-uncertainty will lower both E∗ and C∗. The value of the externality
from one unit of emissions evaluated at E∗ is given by

λs = −β∂V (K ′, S ′)

∂E
|K′∗,S′∗ =

βφ0∆(B̄ + α)

1−∆S ′∗
=

ν

cE(1− βθ)(1−∆S)
=

ν

(1− βθ)E∗

Our model so far is similar to the oil regime in GHKT, except that we assume that the
resource constraint is not binding. Since St+1 = St + φ0Et, we arrive at the following
expression for the aggregate oil extraction

+∞∑
t=0

Et = lim
t→+∞

φ−1
0 (St − S0) = φ−1

0 (
1

∆
− S0)

Thus, the resource constraint is not binding if and only if the aggregate oil reserves are
greater than φ−1

0 ( 1
∆
−S0). Figures 1, 2, and 3 below illustrate how E∗ responds to a concern

about model uncertainty. Figures 1 and 2 show how E∗ reacts to a change in the penalty
parameter, α.

Another natural measurement for model uncertainty is the distance between π̂∗(γ) and
π(γ), δ, given by the relative entropy

δ ≡ ρ(π̂∗(γ), π(γ)) = log(1−∆S ′∗) +
∆S ′∗

1−∆S ′∗
,

where ρ(π̂∗(γ), π(γ)) can be viewed as the maximum deviation allowed from the approxi-
mating model, π(γ), given any penalty parameter, α. It is straightforward to verify that
ρ(π̂∗(γ), π(γ)) is decreasing as α increases. Figure 3 shows how E∗ changes as we relax δ,
allowing for more uncertainty about the approximating model. In the appendix we show
that ∂E∗

∂δ
|δ=0 = −∞. That is, even an infinitesimal concern about model uncertainty can

cause a significant drop in the optimal energy extraction.
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Figure 1: The Effect of Penalty Parameter α on Optimal Carbon Emissions, E

Figure 2: The Effect of α−1 on E
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Figure 3: The Effect of Model Deviation as Measured by Entropy, δ, on E

Robust control modeling can be introduced in a variety of ways. So far, we have used a
closed-loop zero-sum dynamic game in which the social planner moves first in each period.
Alternatively, we can construct a game with the same information structure by interchanging
the order of max and min in equation (8). The two games differ only in terms of the timing
protocol. However, both lead to the same (unique) feedback saddle-point equilibrium if
certain conditions are satisfied. More precisely, if (A1)-(A10) hold, then the objective in
(8) is strictly concave in C and E, and strictly convex in m(γ). Consequently, the two
closed-loop zero-sum dynamic games admit the same unique pure strategy saddle-point Nash
equilibrium, which is the one described in Proposition 1.

Let us now turn to the decentralized problem. Suppose a percentage tax, τt, is imposed
on emissions, Et. Since the extraction cost of energy (the cost of creating emissions) is zero,
it must be true that

τt = pt =
∂F (Kt, Et)

∂Et
= νKθ

tE
ν−1
t

The above equation captures the one-to-one relationship between Et and τt. Therefore, to
achieve the optimal emissions level, Et = cE(1 − ∆S) in equation (14), we must impose
τt = νcν−1

E (1 − ∆St)
ν−1Kθ

t . It is straightforward to show that τt = λs

u′(C∗t )
, where C∗t is

the optimal consumption, given by equation (14). That is, the optimal tax on emissions is
equal to the corresponding GHG externality measured in units of the consumption good. It
remains to show that C∗t can be recovered under the optimal tax. This can be shown using
the representative household’s problem as follows. Since we have established a one-to-one
relationship between Et and τt, we may assume without loss of generality that the planner
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chooses Et. Further, assume that Et is chosen as a function of St only. This is without
loss of generality, since our goal is to recover the optimal emissions in equation (14), which
depends only on St. Given E = E(S), k, K, and S, a representative household solves:

V (k,K, S) = max
c,k̃′

min
π̂(γ)

{
u(c) + βÊγ

[
V (k′, K ′, S ′) + α log

(
π̂(γ)

π(γ)

)]}
s.t.

c+ k̃′ = r(K,S)k + τ(K,S)E(S) + πprofit

K̃ ′ = G(K,S)

k′ = e−γS
′
k̃′

K ′ = e−γS
′
K̃ ′

S ′ = S + φ0E(S)

where u(c) = log(c), r(K,S) = θKθ−1[E(S)]ν , τ(K,S) = νKθ[E(S)]ν−1, πprofit is the firm’s
profit, and K̃ ′ = G(K,S) is the equilibrium transition law for the aggregate capital stock.
Here, (k,K, S) stands for the beginning-of-period and (k̃′, K̃ ′, S ′) for the end-of-period state.
Notice that (k̃′, K̃ ′) is not equal to the beginning-of-next-period state, (k′, K ′), due to capital
deterioration by a factor e−γS′ . In addition, Êγ is calculated with respect to the worst-case
distribution for γ, π̂(γ), as chosen by the minimizing player. Since the minimizing player
moves after the maximizing player, the worst distribution is, in general, conditional on the
end-of-period state, (k̃′, K̃ ′, S ′). It can be shown that the optimal consumption sequence
satisfies the following Euler equation:

u′(c∗) = β

´
e−γS

′
r(K ′, S ′)u′(c′∗)e−

V (k′,K′,S′)
α π(γ)dγ´

e−
V (k′,K′,S′)

α π(γ)dγ

This yields the following proposition.

Proposition 2. Assume that (A1) - (A10) hold. The optimal energy consumption is E =
cE(1 − ∆S). The optimal tax is τt = λs

u′(C∗)
, with tax proceeds rebated lump-sum to the

representative consumer. The resulting competitive equilibrium allocation coincides with the
solution to the planner’s problem. That is, c∗ = C∗ = (1− βθ)Kθ[cE(1−∆S)]ν.

4 The Computational Solution and Calibration
In this section we first extend the analytical model by relaxing assumptions (A6.1) and
(A6.2). For our baseline model, we will assume that π(γ), the approximating distribution
of γ, is exponential. As we now allow for φL > 0, we need to introduce two additional state
variables (P and T ), since keeping track of the sum S = P +T will no longer suffice. We will
also relax (A7) by incorporating a "coal" and a "green" sector into the model. Furthermore,
we will relax (A8) and (A9) by allowing A2N2 and A3N3 to grow at a rate of 2 percent per
year. Last, we will drop (A10).
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The social planner’s problem becomes:

V (K,N, P, T,R) = max
{C,E1,E2,E3,E,K̃′,P ′,T ′,S′,R′}

min
m(γ)

{u(C) + β

ˆ
[m(γ)V (K ′, N ′, P ′, T ′, R′) + αm(γ) logm(γ)]π(γ)dγ}

s.t.

E = (κ1E
ρ
1 + κ2E

ρ
2 + κ3E

ρ
3)1/ρ

K̃ ′ = F

(
K,N(1− E2

A2N
− E3

A3N
), E

)
− C

K ′ = h(S ′, γ)K̃ ′

A′2N
′ = (1 + g)A2N

A′3N
′ = (1 + g)A3N

R′ = R− E1 ≥ 0

P ′ = P + φL(E1 + E2)

T ′ = (1− φ)T + (1− φL)φ0(E1 + E2)

S ′ = P ′ + T ′

1 =

ˆ
m(γ)π(γ)dγ

To solve this problem we first argue that most of the analysis conducted in Section 3 carries
over. The only difference is that the function f(·) no longer has a closed form expression. We
will again apply the outer-inner loop method used in Section 3. The inner loop minimization
problem is unchanged, while the outer loop maximization problem will be solved in parts.
In that regard, it is important to note that solving the optimization problem for Ei, P ′, T ′,
and R′ can be carried out separately from solving for C and K̃ ′. Furthermore, the solution
to the second optimization problem remains the same as in Section 3; i.e., C∗ = (1− βθ)Y ∗
and K̃ ′∗ = βθY ∗, where Y ∗ denotes the optimal output level. After substituting for C∗,
the optimization problem for Ei, P ′, T ′, and R′ can be simplified, leading to the dynamic
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programming problem below:

f(N,P, T,R) = max
E1,E2,E3,E,P ′,T ′,S′,R′


1

1−βθ log
[
(1− E2

A2N
− E3

A3N
)1−θ−νEν

]
+β [f(N ′, P ′, T ′, R′) + α log(1−∆S ′)]

 (14)

s.t.

E = (κ1E
ρ
1 + κ2E

ρ
2 + κ3E

ρ
3)1/ρ

N ′ = (1 + g)N

R′ = R− E1 ≥ 0

P ′ = P + φL(E1 + E2)

T ′ = (1− φ)T + (1− φL)φ0(E1 + E2)

S ′ = P ′ + T ′

Next, we characterize the optimality conditions for E3, E2, and E1, respectively. The first-
order condition for E3 implies

νκ3

E1−ρ
3 Eρ

=
1− θ − ν
A3N0

.

The first-order condition for E2 gives

1− θ − ν
A2N0

=
νκ2

E1−ρ
2 Eρ

+ (1− βθ)β
[
φL

(
∂f

∂P ′
− α∆

1−∆S ′

)
+ (1− φL)φ0

(
∂f

∂T ′
− α∆

1−∆S ′

)]
.

Applying the envelope theorem to P and T gives

∂f

∂P
= β

(
∂f

∂P ′
− α∆

1−∆S ′

)
(15)

∂f

∂T
= β(1− φ)

(
∂f

∂T ′
− α∆

1−∆S ′

)
. (16)

Defining Λ̂P = −(1 − βθ) ∂f
∂P

and Λ̂T = −(1 − βθ) ∂f
∂T

to be the marginal values of the
externality caused by P and T , respectively, the first-order condition for E2 becomes

1− θ − ν
A2N0

=
νκ2

E1−ρ
2 Eρ

−
[
φLΛ̂P +

(1− φL)φ0

1− φ
Λ̂T

]
The marginal externality of S, Λ̂S, can be calculated as the consequence of a unitary increase
in E1+E2. Note that increasing E1+E2 by one unit is equivalent to simultaneously increasing
P by φL units and T by (1−φL)φ0

1−φ units. Therefore, Λ̂S is given by

Λ̂S = φLΛ̂P +
(1− φL)φ0

1− φ
Λ̂T .
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Thus, we obtain
νκ2

E1−ρ
2 Eρ

− Λ̂S =
1− θ − ν
A2N0

.

This equation has the same form as the corresponding equation in GHKT, but under a
different interpretation for Λ̂S. To see the difference, it is convenient to restore the time
index, t. From equation (15) and equation (16) we have

Λ̂P
t = (1− βθ)α∆

+∞∑
j=1

βj

1−∆St+j
= θγ̄

+∞∑
j=1

βj

1−∆St+j

Λ̂T
t = (1− βθ)α∆

+∞∑
j=1

[β(1− φ)]j

1−∆St+j
= θγ̄

+∞∑
j=1

[β(1− φ)]j

1−∆St+j
.

The second equality in either equation is obtained by using (1 − βθ)α∆ = (1 − βθ)α Ā
αλ

=
θλ−1 = θγ̄, where λ−1 = γ̄ is the mean of γ under the approximating model. It follows
immediately that Λ̂S

t can be expressed as

Λ̂S
t = θγ̄

+∞∑
j=1

[
φL

βj

1−∆St+j
+

(1− φL)φ0

1− φ
[β(1− φ)]j

1−∆St+j

]
.

It is instructive to consider the case when α → +∞; i.e., when there is no concern about
model uncertainty. Observe that ∆→ 0 as α→ +∞. Therefore,

lim
α→+∞

Λ̂S
t = θγ̄

+∞∑
j=1

[
φLβ

j +
(1− φL)φ0

1− φ
[β(1− φ)]j

]
= θβγ̄

[
φL

1− β
+

(1− φL)φ0

1− (1− φ)β

]
(17)

Contrasting this equation with the corresponding equation (12) in GHKT, Λ̂S
t = γ̄

[
φL

1−β + (1−φL)φ0

1−(1−φ)β

]
,

we identify two differences. First, equation (17) contains an additional term (θ). This is be-
cause GHG directly affect aggregate capital instead of output in our model. Second, the
externality related to P and T is weighted by β in equation (17). This is because GHG, in
our model, affect next period’s capital rather than the capital of the current period.

Finally, the first-order condition for E1 yields

νκ1

E1−ρ
1 Eρ

− Λ̂S = β

[
νκ1

(E ′1)1−ρ(E ′)ρ
− (Λ̂S)′

]
Note that the operator Et does not appear on the right-hand-side, as the planner optimizes
under the worst-case scenario, rather than averaging over all cases. As the planner’s problem
has a similar structure as in the analytical model, it can be shown that analogues of Propo-
sitions 1 and 2 hold in this environment. We numerically solve the above problem for the
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cases where α = 0.01 and α = 100. We use the same parameter values as in GHKT, except
for R0, which is set to 800, as in Rogner (1997). Figures 4 through 6 plot the computed
optimal paths.

Parameter φ φL φ0 θ ν β ρ 1 + g
Value 0.0228 0.2 0.393 0.3 0.04 0.98510 −0.058 1.0210

Parameter P0 T0 R0 κ1 κ2 A2,0 A3,0 λ−1

Value 103 699 800 0.5008 0.08916 7, 693 1, 311 2.379× 10−5

Figure 4: Optimal Use of Energy

Figure 4 describes the optimal paths for the use of green energy, coal, and oil, as well
as the resulting carbon concentration in the atmosphere, conditional on different levels of
concern about model uncertainty. For simplicity, we refer to the optimal path under α = 100
as the "non-robust optimal path," and to the path under α = 0.01 as the "robust optimal
path." Since the green energy sector does not inject carbon into the atmosphere, the optimal
path for the use of green energy does not directly depend on the level of concern about
model uncertainty regarding the externality from carbon emissions. However, since green
energy, coal, and oil are substitutes, through its impact on the “dirty” energy sectors, model
uncertainty considerations do affect the use of green energy indirectly.

We find that an increase in the concern about model uncertainty causes a significant
decline in the use of coal. In contrast, the use of oil is delayed, but only slightly. As the
supply of oil is finite, the decline rate of oil-use depends not only on model uncertainty,
but also on resource scarcity. As we will show in the next section, an initial stock of oil
equaling R0 = 800GtC is low enough so that the resource scarcity effect overwhelms the
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model uncertainty effect in determining the optimal use of oil in the economy. This explains
why we do not observe a sharp decrease in the optimal use of oil when the concern about
model uncertainty increases. Finally, straightforward calculation shows that the difference
in energy use in the two optimal paths leads to a significant difference in the associated
carbon accumulation. Our model predicts that if there is a "small" concern about model
uncertainty (α = 100), or if model uncertainty is not incorporated into the model (α = 0.01),
atmospheric carbon concentrations will reach a level as high as 1350GtC (net of preindustrial
levels) after 180 years. However, this number is reduced by 40 percent to about 800GtC if
concerns about model uncertainty are incorporated and addressed through the corresponding
optimal tax, restoring the optimal energy path under α = 0.01.

Figure 5: Increases in Global Temperature

Figure 5 demonstrates a direct consequence of the above analysis: based on the map-
ping from carbon concentrations to global temperatures used in the RICE model, T (St) =
3 ln(St

S̄
)/ ln 2, the global average temperature will rise by 3.8 degrees Celsius 180 years from
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now if the concern about model uncertainty is addressed, and by 5.3 degrees Celsius other-
wise.

Figure 6: Capital Stock and Output

The graphs in the first (second) column in Figure 6 describe the paths of total damages
as a percentage of the capital stock, as a function of the capital stock and output, assuming
that the approximating model (worst-case model) for γ is the true model.11 In each graph,
the green-dashed line (blue-solid line) represents the outcome when energy is extracted based
on the non-robust (robust) optimal path. The main findings can be summarized as follows.
If the approximating model for γ is the true model, pursuing the robust optimal path for
energy consumption would further reduce total damages by an additional 1 percent 180
years from now. However, due to a more conservative use of oil and coal in the final good
sector, such a policy will also reduce both capital stock and output in the long run. Since
utility depends only on consumption (which is proportional to output), this implies that the

11To obtain smooth paths, γ is set to be the expected mean of the approximating (worst-case) distribu-
tion(s) in each period.
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welfare loss from over estimating the concern about uncertainty would be rather small. In
contrast, if the true distribution of γ evolves according to the worst-case model in each period
(second column of Figure 6), the cost of implementing the non-robust optimal policy is rather
large. In fact, the non-robust policy, which overlooks concerns about model uncertainty, will
dramatically reduce the entire capital stock in 120 years, resulting in a large reduction in
output and welfare.12

4.1 Varying the Approximating Distribution

Here we further explore the implications of assumption (A5). To this end, we now assume
that the approximating distribution of γ is normal with mean γ̄ and variance σ2; i.e., π(γ) =

1√
2πσ2

e−
(γ−γ̄)2

2σ2 . This creates two key differences. First, the normal distribution provides
us with two degrees of freedom: the mean, γ̄, reflecting the planner’s prior expectation
regarding damages, and the variance, σ2, indicating the prior regarding model uncertainty.
In comparison, recall that the exponential distribution only used one parameter, λ, which
determined both the mean and the variance of γ. As we shall see below, assuming that γ is
normally distributed can also eliminate the “breaking point” for S, which is always present
when γ follows an exponential. This is because the exponential distribution has a “fat”tail,
thus allowing more room for nature to create a worst-case-scenario given a level of penalty,
α. We have

H(S ′;α, Ā) = −(γ̄ +
Āσ2

2α
S ′)ĀS ′

π̂∗(γ) ∼ N (γ̄ +
Āσ2

α
S ′2, σ2).

It is straightforward to show that H(·) is strictly negative, strictly increasing in α, and
strictly decreasing in both γ̄ and σ2. In addition, the worst-case distribution for γ also
follows a normal distribution, and π̂∗(γ) and π(γ) differ only in their means. That is, when
choosing the worst-case model, nature only alters the mean of γ, rather than its variance.
As a by-product, the relative entropy of π̂∗(γ) with respect to π∗(γ) is given by

ρ(π̂∗(γ), π∗(γ)) =
Ā2σ2S ′2

2α2
.

To complete the model, we need to replace the term α log(1 − ∆S ′) in equation (28) with
−(γ̄ + Āσ2

2α
S ′)ĀS ′. Accordingly, the optimality conditions for E1, E2, and E3 remain intact,

except that the values of the externality associated with P , T , and E2 (or E1), respectively,

12The dramatic effects on capital, output, and social welfare are partly due to the assumption that the
approximating distribution of γ is exponential. As we discuss next, the losses are somewhat reduced, though
still large, if the approximating distribution of γ is assumed to be normal. The exponential distribution is
one way to capture the extreme effects in Stern (2013) in the context of our model.
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are now as follows:

Λ̂P
t =

βθγ̄

1− β
+
θĀσ2

α

+∞∑
j=1

βjSt+j

Λ̂T
t =

β(1− φ)θγ̄

1− β(1− φ)
+
θĀσ2

α

+∞∑
j=1

[β(1− φ)]jSt+j

Λ̂S
t = φLΛ̂P

t +
(1− φL)φ0

1− φ
Λ̂T
t .

Note that Λ̂S
t reduces to the previous expression as α→ +∞, or as σ2 → 0. That is,

Λ̂S
t = θγ̄

[
φLβ

1− β
+

(1− φL)φ0β

1− (1− φ)β

]
, as α→ +∞, or σ2 → 0.

We will consider three cases regarding the initial stock of fossil fuel: R0 = 253.8GtC, R0 =
8000GtC, and R0 = ∞. While the R0 = ∞ case is for expository purposes only, the other
two cases are of interest. Indeed, the total stock of oil and gas is estimated to exceed
8000GtC if methane hydrates are included. Estimated resources of methane hydrates vary,
but they alone can amount to as much as 2.1 × 104GtC.13 For each case, we numerically
solve the above problem for α = 0.01 and for α = +∞. To draw an even closer comparison
with GHKT, we have rescaled γ by a factor of 1/θ, where θ is the share of capital. The
reason is that, given a Cobb-Douglas specification in final goods production, and given 100
percent depreciation of capital, a proportional damage of e−γS′ on capital is equivalent to a
proportional damage of e−θγS′ on output. Accordingly, the mean and variance of γ in the
approximating model are set to γ̄ = 7.93× 10−5 and σ2 = 2.65× 10−8, respectively.

Below we plot the same quantities as those shown in Figure 4 through Figure 6, but
under the assumption that the approximating distribution of γ is normal. Our focus here
is to compare the effects of model uncertainty on optimal oil use under different values of
R0. As we have discussed earlier, holding other parameters fixed, the optimal path of oil
consumption is determined jointly by the resource scarcity effect and the model uncertainty
effect. First, note that we can hardly identify a difference between the robust and the
non-robust optimal paths for oil-consumption when the scarcity effect dominates, that is,
when R0 is sufficiently small. Figure 7 shows that when R0 = 253.8GtC, the non-robust
optimal paths replicate their counterparts in GHKT. In this case, model uncertainty delays
the optimal use of oil only slightly. However, Figure 10 displays an altogether different
pattern. When R0 is set to 8000GtC, although both paths are still decreasing over time,
model uncertainty discourages the use of oil substantively. Finally, as R0 goes to infinity, as
shown in Figure 12, we observe a qualitative difference between the two paths. On the one
hand, the non-robust optimal path allows the use of oil to grow unboundedly, partially due
to the technological progress in the coal and green sectors. On the other hand, the increasing
trend in oil consumption is curbed due to the externality caused by carbon emissions.

13Of course, only a small fraction of these resources is recoverable using today’s technologies. See Boswell
and Collett (2011). See also Hartley, Medlock, Temzelides, and Zhang (2012) and references therein.
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Figure 7: Optimal Use of Energy when R0 = 253.8

Figure 8: Increases in Global Temperature when R0 = 253.8
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Figure 9: Capital Stock and Output when R0 = 253.8

Figure 10: Optimal Use of Energy when R0 = 8000
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Figure 11: Increases in Global Temperature when R0 = 8000

Figure 12: Optimal Use of Energy when R0 =∞

We now turn to a comparative analysis of the damages resulting from fossil fuel consump-
tion. GHKT assume Ro = 253.8GtC and estimate damages of $56.9/ton of carbon using
an annual discount rate of 1.5% and $496/ton under a rate of 0.1%. When β = 0.98510,
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and if there is no concern about model uncertainty (α =∞), the welfare loss implied by our
model equals 0.98510 × 56.4 = $48.5/ton. This number is independent of the approximating
distribution for γ, the initial stock of oil, and the future path of the GHG concentration.
When α = 0.01, however, these factors can matter substantially, as seen below. If the
approximating distribution is normal, the losses are given in the following table.

Ro/α 0.01 0.1 1 100 ∞
253.8 GtC 239.60 70.65 50.85 48.52 48.49
8000 GtC 276.60 90.60 55.08 48.57 48.49
∞ 318.70 103.06 63.42 56.49 48.49

4.2 Varying the Resource Feasibility Constraint

In order to further explore the model’s implications, we now report the results for the limit
case where oil is in infinite supply, while coal is constrained under an initial stock Rcoal =
666GtC. This case demonstrates that the optimal use of oil mimics that of the case in which
both oil and coal are in infinite supply. In addition, the use of coal increases steadily at the
beginning and then starts to drop.

Figure 13: Optimal Use of Energy when Rcoal = 666
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Figure 14: Increases in Global Temperature when Rcoal = 666

Figure 15: Capital Stock and Output when Rcoal = 666
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5 Discussion

We studied optimal taxation in a dynamic stochastic general equilibrium model where agents
are concerned about model uncertainty regarding climate change. We used robust control
theory in order to model the uncertainty associated with climate change. Our work builds
heavily on the model introduced in GHKT. While admittedly restrictive, this framework
allows us to derive an analytical solution. In contrast to the existing literature, we used an
estimate of fossil fuel that includes methane hydrates as part of the supply of unconventional
natural gas. While this huge resource is not readily available with today’s technology, we
believe that it is appropriate to include it given the long-term modeling that we follow
throughout this exercise. Finally, we assumed a fat-tailed distribution of damages as a way
to capture the extreme effects discussed in Stern (2013).

We obtained a sharp analytical solution for the implied externality, and we characterized
the optimal tax. We found that a small increase in the concern about model uncertainty can
cause a significant drop in optimal energy extraction. The optimal tax which restores the
socially optimal allocation was shown to be Pigouvian. Under more general assumptions, we
developed a recursive method that allowed us to solve the model computationally. We showed
that the introduction of uncertainty matters in a number of ways, both qualitatively and
quantitatively. This dependence relies heavily on specific assumptions about the magnitude
of fossil fuel reserves. As our model is based on GHKT, it is worth discussing some of the
main differences in our results.

Several of the variables in the model developed in GHKT can be thought of as being
subject to uncertainty. These include the variables governing the dynamics of CO2 con-
centration, those governing productivity growth and hence future production, the costs of
alternative sources of energy (coal, oil-&-gas, and renewable), and, finally, the damages
caused by the concentration of atmospheric CO2. In this paper we concentrate on the un-
certainty associated with damages from CO2 concentration. As in GHKT, we conclude that
the consumption of coal should be constrained. However, as we considere a higher stock
of hydrocarbons, we derive different results regarding total consumption of fossil fuel. As
a result, we showe that under a less binding resource constraint, hydrocarbon use declines
significantly as the concern about model uncertainty increases.

The core theoretical result in GHKT is that, when expressed as a proportion of GDP,
the optimal tax on CO2 emissions depends only on the discount factor, the measure of the
expected damage, and the depreciation of atmospheric CO2. In particular, the tax rate is
independent of the stochastic value of future output and the stock atmospheric CO2. They
derive this result based on three main assumptions: (i) logarithmic utility (which implies
constant saving rate), (ii) the climate damage is proportional to GDP and has constant
elasticity with respect to the level of atmospheric CO2, and (iii) the stock of CO2 is linear in
past and current emissions. We show that once we consider model uncertainty, the Pigouvian
tax can implement the optimal allocation as in GHKT. However, the expected level of
damage is no longer sufficient for determining the optimal tax. Specifically, the optimal tax
rises as the concern about uncertainty increases, even though the expected damages remain
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unchanged.
Our model can be extended in many ways. For comparison purposes, we tried to stay

close to the parametrization used in GHKT. We could study versions of the model under
different parametrizations. In the current version, the growth rate of renewables is assumed
to be independent from the concern about model uncertainty. It would be interesting to
endogenize growth in renewable energy productivity. A related extension could involve using
a distortionary tax on labor to subsidize R&D in renewables in order to study the effects
on energy composition and growth. Additionally, we could study a benchmark case where
coal supply is constrained, while assuming infinite supply of gas and oil. Finally, at the cost
of significant additional computational complexity, we could consider more involved climate
dynamics.

6 Appendix

6.1 Model Uncertainty and Optimal Energy Extraction

We demonstrate that the optimal level of GHG, E∗, has the following properties: ∂E∗

∂δ
< 0

and ∂E∗

∂δ
|δ=0 = −∞, where δ is the upper bound for entropy allowed in the constraint game.

Proof. Recall that E∗ = cE(1−∆S) and δ = log(1−∆S ′∗)+ ∆S′∗

1−∆S′∗
, where S ′∗ = S+φ0cE(1−

∆S). Define a = α−1 and b = 1−∆S ′∗ = (1−∆φ0cE)(1−∆S). It follows immediately that
E∗ is decreasing in a. In addition, since both ∆ and cE are functions of a, it follows that b
is a function of a:

b(a) = [1−∆(a)φ0cE(a)][1−∆(a)S]

It is easy to see that b is decreasing in a. Thus, it defines a as an implicit function of b, with
a negative slope. Moreover, we can rewrite δ as:

δ = log b+
1− b
b

which defines b as an implicit function of δ. Direct calculation shows that ∂b
∂δ

= − b2

1−b < 0,
as b ∈ (0, 1). Thus,

∂E∗

∂δ
=
∂E∗

∂a

∂a

∂b

∂b

∂δ
< 0

Evaluating this at δ = 0, we obtain

∂E∗

∂δ
|δ=0 =

(
∂E∗

∂a
|a=0

)(
∂a

∂b
|b=1

)(
∂b

∂δ
|δ=0

)
It is straightforward to show that the first two terms on the right hand side in the above
expression are strictly negative and finite, and the last term goes to −∞. Therefore,
∂E∗

∂δ
|δ=0 = −∞.
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6.2 Equivalence Between the Recursive Game and the Date-0 Game

Here we discuss the equivalence between the recursive Stackelberg game and its date-0 coun-
terpart. We concentrate on the one-sector model. In the recursive version of the Stackelberg
game, the worst-case model for γt+1 depends on the endogenous state St and on the choice
variable Et. This feature can be difficult to interpret.14 Alternatively, we can construct a
date-0 Stackelberg game in which the malevolent player, as the leader of the game, chooses
the distorted models of {γt+1}, {π̂(γt+1)}, first. This leads to {π̂(γt+1)} being independent of
the endogenous states. We then show that, on the equilibrium path, the worst-case models
derived from the date-0 Stackelberg game coincide with those derived from the recursive
game. We demonstrate the equivalence by using the "big K little k" result as is in Chapter
7 of Hansen and Sargent (2008).

Consider the date-0 Stackelberg game in which, at date zero, the minimizing player
chooses the distorted probability process {π̂(γt+1)}, followed by the maximizing player choos-
ing the control process {ut = (Ct, Et)}:

inf
m∈M

sup
u∈U

E

[
∞∑
t=0

βtMt (u(Ct) + βαmt+1 logmt+1) |S0, K0

]
(18)

s.t.

Mt+1 = Mtmt+1

St+1 = St + φ0Et (19)
Kt+1 = h(St+1, γt+1)[F (Kt, Et)− Ct] (20)

where U denotes the space of control processes u = {ut : t = 0, 1, ...} and M denotes the
space of likelihood ratio processes m = {mt+1 = π̂(γt+1)

π(γt+1)
: t = 0, 1, ...}.

We introduce an exogenous state vector process {(Ŝt, K̂t)} which evolves as:

Ŝt+1 = Ŝt + φ0Êt(Ŝt),

K̂t+1 = h(Ŝt+1, γt+1)[F (K̂t, Êt(Ŝt))− Ĉt(Ŝt, K̂t)] (21)

where Êt(Ŝt) = cE(1−∆Ŝt) and Ĉt(Ŝt, K̂t) = (1−βθ)K̂θ
t [Êt(Ŝt)]

ν .15 Note that {Ŝt, K̂t, Êt, Ĉt}
are independent of the control variables {Et, Ct}. Moreover, we set (S0, K0) = (Ŝ0, K̂0).

Define the distorted process {γt+1} as

γt+1 ∼ π̂(γt+1) = λ̂(Ŝt)e
−λ̂(Ŝt)γt+1 (22)

where the distorted parameter, λ̂, is given by λ̂(Ŝt) = λ(1−∆Ŝt+1) = λ(1−φ0cE)(1−∆Ŝt).
The last equality results from equation (48) in the main text. Clearly, ut does not affect
Ŝt+1, and thus the distorted distribution π̂(γt+1).

14We thank Lars Hansen for bringing this point to our attention and for suggesting the use of the "big K
little k" result as a way to bypass this difficulty.

15The exogenous processes Êt(Ŝt) and Ĉt(Ŝt, K̂t) are constructed to mimic the optimal control E∗t (St) and
C∗t (St,Kt) in equation (47) and equation (46) by replacing the endogenous state (St,Kt) by the exogenous
state (Ŝt, K̂t).
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Given the above exogenous distorted process, the maximizing player chooses {ut} at date
zero to maximize the social welfare given in equation (18). With the aid of the exogenous
state, this maximization problem can be expressed in a recursive form as:

Ṽ (St,Kt, Ŝt, K̂t) = max
Ct,Et

{
u(Ct) + αβ

ˆ
π̂(γt+1) logmt+1dγt+1 + β

ˆ
Ṽ (St+1,Kt+1, Ŝt+1, K̂t+1)π̂(γt+1)dγt+1

}
,

subject to equation (19), equation (20), equation (21), and equation (21). The relative
entropy

´
π̂(γt+1) logmt+1dγt+1 equals log( λ̂(Ŝt)

λ
)+λ−λ̂(Ŝt)

λ̂(Ŝt)
, as has been shown in the main text.

Since Ṽ (·) depends on (Ŝt, K̂t) only through π̂(γt+1) or, equivalently, λ̂(Ŝt), the exogenous
state K̂t is eliminated from Ṽ (·). Consequently, the above problem can be rewritten as:

Ṽ (St,Kt, Ŝt) = max
Ct,Et

{
u(Ct) + αβ

[
log(

λ̂(Ŝt)

λ
) +

λ− λ̂(Ŝt)

λ̂(Ŝt)

]
+ β

ˆ
Ṽ (St+1,Kt+1, Ŝt+1)π̂(γt+1)dγt+1

}
, (23)

subject to equation (19), equation (20), and equation (21).
We proceed to find the solution to this date-0 problem of the maximizing agent given the

distorted process {γt+1} in equation (22). Then we will argue that this solution is identical
to the Markov perfect equilibrium of the sequential game defined in the main text. We
implement a guess-and-verify method. We first guess that Ṽ (·) takes the form

Ṽ (St, Kt, Ŝt) = f(St, Ŝt) + Ã log(Kt) + D̃

where Ã and D̃ are undetermined coefficients. The functional form for f(·) will be derived
later. Using the analysis above and simplifications in the main text, the problem can be
written as

f(St, Ŝt) + Ã log(Kt) + D̃

= max
Ct,Et

{
log(Ct) + αβ

[
log(

λ̂(Ŝt)

λ
) +

λ− λ̂(Ŝt)

λ̂(Ŝt)

]
+ β

[
f(St+1, Ŝt+1) + Ã log(F (Kt, Et)− Ct) + D̃ − ÃSt+1

λ̂(Ŝt)

]}
,

subject to equation (19) and equation (21).
Furthermore, we guess that f(·) takes the form B̃ log(1−∆Ŝt) + G̃St

1−∆Ŝt
where B̃ and G̃

are undetermined coefficients. After some tedious derivations, we obtain

Ã =
θ

1− βθ
(24)

G̃ =
βθ

(1− βθ)λ(β − 1 + ∆φ0cE)
(25)

and

Eopt
t =

ν(1−∆Ŝt+1)

(1− βθ)βφ0( θ
(1−βθ)λ − G̃)

= cE(1−∆Ŝt) (26)

Copt
t =

F (Kt, Et)

1 + βÃ
= (1− βθ)Kθ

t (Eopt
t )ν . (27)
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When (S0, K0) = (Ŝ0, K̂0), we obtain Eopt
t = Êt(Ŝt) = E∗t (St), C

opt
t = Ĉt(Ŝt, K̂t) =

C∗t (St, Kt), Ŝt+1 = St+1, and K̂t+1 = Kt+1 for t = 0, 1, .... In addition, π̂(γt+1) = λ̂(Ŝt)e
−λ̂(Ŝt)γt+1 ,

where λ̂(Ŝt) = λ(1 − φ0cE)(1 −∆Ŝt) = λ(1 − φ0cE)(1 −∆St). That is, the optimal choices
in the date-0 game coincide with the Markov perfect equilibrium allocation in the recursive
game.

6.3 The Numerical Solution for the Model

Here we provide a brief description of our numerical procedure. Assume (i) 100 percent
capital depreciation, (ii) Cobb-Douglas production function, and (iii) exponential damage
function. Then, it follows from the analysis in Sections 3 and 4 that the value function given
in equation (61) takes the form

V (K,N, P, T,R) = f(N,P, T,R) + Ā log(K) + D̄

where Ā = θ
1−βθ and D̄ is a constant. The inner loop minimization problem for π̂(γ) remains

the same as in the one-sector model in Section 3. Furthermore, the outer loop maximization
problem for Ei, P ′, T ′, and R′ can be carried out separately from the optimization problem
for C and K̃ ′. The solution to the latter also remains the same as in Section 3; i.e., C∗ =
(1− βθ)Y ∗ and K̃ ′∗ = βθY ∗, where Y ∗ denotes the optimal output level. After substituting
for C∗, the optimization problem for Ei, P ′, T ′, and R′ can be simplified, leading to the
standard dynamic programming problem below:

f(N,P, T,R) = max
E1,E2,E3,E,P ′,T ′,S′,R′{

1

1− βθ
log[(1− E2

A2N
− E3

A3N
)1−θ−νEν ] + β[f(N ′, P ′, T ′, R′) + α log(1−∆S ′)]

}
s.t.

E = (κ1E
ρ
1 + κ2E

ρ
2 + κ3E

ρ
3)1/ρ

N ′ = (1 + g)N

R′ = R− E1 ≥ 0

P ′ = P + φL(E1 + E2)

T ′ = (1− φ)T + (1− φL)φ0(E1 + E2)

S ′ = P ′ + T ′

We then solve for f(N,P, T,R) using a 4-dimensional Chebyshev polynomial approxima-
tion method. The above simplification has significantly reduced the computational burden
of solving a dynamic max-min game, allowing us to utilize the parallel toolbox of MATLAB
on a 8-processor computer. Table 1 and Table 2 below report the grid specifications used in
the complete model, as well as its variations for α = 0.01 and α =∞, respectively.
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Table 1: Grid Specifications of Chebyshev Polynomial Approximation (α = 0.01)

Exponetial γ Normal γ Normal γ Normal γ Normal γ
R0 = 800GtC R0 = 253.8GtC R0 = 8000GtC R0 =∞GtC R0 = 666GtC

(Oil&Gas) (Oil&Gas) (Oil&Gas) (Oil&Gas) (Coal)
# of grid points for P 6 6 6 6 6
# of grid points for T 7 7 7 7 7
# of grid points for R 10 10 10 NA 10
# of grid points for N 10 10 10 10 10
[Pmin, Pmax] [−200, 1000] [−200, 1000] [−200, 1000] [−200, 1000] [−200, 1000]

[Tmin, Tmax] [−200, 1000] [−200, 1000] [−200, 1000] [−200, 1000] [−200, 1000]

[Rmin, Rmax] [1, 900] [1, 300] [1, 9000] NA [1, 750]

[Nmin, Nmax] [0.8, 100] [0.8, 100] [0.8, 100] [0.8, 100] [0.8, 100]

Table 2: Grid Specifications of Chebyshev Polynomial Approximation (α =∞)

Exponetial γ Normal γ Normal γ Normal γ Normal γ
R0 = 800GtC R0 = 253.8GtC R0 = 8000GtC R0 =∞GtC R0 = 666GtC

(Oil&Gas) (Oil&Gas) (Oil&Gas) (Oil&Gas) (Coal)
# of grid points for P 6 6 4 6 6
# of grid points for T 7 7 4 7 7
# of grid points for R 10 10 30 NA 10
# of grid points for N 10 10 10 10 10
[Pmin, Pmax] [−200, 2000] [−200, 1000] [−200, 20000] [−200, 20000] [−200, 3000]

[Tmin, Tmax] [−200, 2000] [−200, 1000] [−200, 20000] [−200, 20000] [−200, 3000]

[Rmin, Rmax] [1, 900] [1, 300] [1, 9000] NA [1, 750]

[Nmin, Nmax] [0.8, 100] [0.8, 100] [0.8, 100] [0.8, 100] [0.8, 100]
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