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Abstract

In this paper, I propose an econometric technique to estimate a Markov-switching
Taylor rule subject to the zero lower bound of interest rates. I show that incorporating
a Tobit-like specification allows to obtain consistent estimators. More importantly,
I show that linking the switching of the Taylor rule coefficients to the switching of
the coefficients of an auxiliary uncensored Markov-switching regression improves the
identification of an otherwise unidentifiable prevalent monetary regime. To illustrate
the proposed estimation technique, I use U.S. quarterly data spanning 1960:1-2013:4.
The chosen auxiliary Markov-switching regression is a fiscal policy rule where federal
revenues react to debt and the output gap. Results show that there is evidence of
policy co-movements with debt-stabilizing fiscal policy more likely accompanying active
monetary policy, and vice versa.
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1 Introduction

The forward guidance provided by the Federal Open Market Committee in its statements
from December 2012 to June 2014 indicates that a highly accommodative stance of monetary
policy remains appropriate to support continued progress toward maximum employment and
price stability. In particular, the forward guidance in place sets exceptionally low federal
funds rates between 0 and 1/4 percent, defining an effective lower bound.

At least since Clarida et al. (2000), we have known that the monetary-policy regime
can change. One could infer the stance of monetary policy, as measured by the strength
of the reaction of the federal funds rate with respect to inflation deviations from target, by
estimating a Markov-switching coefficients Taylor rule and obtaining the prevalent regime.
Unfortunately, because of the current effective lower bound, the federal funds rate does not
react to fluctuations in the inflation rate and the (CBO-implied) output gap, as shown in
Figure 1. This introduces an important censoring problem in the estimation of monetary-
policy rules and poses identification problems to the estimation of the prevalent regime.

Figure 1: Evolution of the Interest Rate, the GDP Price Deflator Inflation and
the CBO-implied Output Gap
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In this paper, I exploit monetary-fiscal policy interdependence and develop an estimation
method for an interest rate rule with Markov-switching coefficients that is robust to the
effective lower bound. The devised estimation technique provides the probability that, at or
just after exiting the effective lower bound, the central bank adopts a hawkish or a dovish
regime, hence providing an estimate of the current stance of monetary policy.

Since the work of Tobin (1958), it is known that the inadequate estimation of a cen-
sored regression produces inconsistent estimators. In this paper, I show that estimating a
Markov-switching regression using the Hamilton (1989) filter ignoring the censoring prob-
lem produces inconsistent estimators of the Markov-switching regression coefficients and the
transition probabilities. Moreover, I show that, even when a censored regression specification
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is introduced in the estimation, the filtered probabilities fail to identify the prevalent regime
over the censored part of the sample.

There is a way to solve, at least partially, the identification problem of the prevalent
regime over the censored part of the sample. The solution involves the joint estimation of
the censored Markov-switching regression and an uncensored auxiliary Markov-switching re-
gression whose switching is correlated with the switching of the coefficients of the censored
equation. In particular, I show that as the correlation between the states driving the switch-
ing of the coefficients of the two regressions increases, identification of the prevalent regime
of the censored Markov-switching regression is more precise.

The present work fits in the literature of estimating Taylor rules with Markov-switching
coefficients. Bae et al. (2012), for example, estimate a forward-looking Taylor rule for the
period spanning 1956 to 2005 and identify regimes that roughly correspond to the terms of
the Federal Reserve chairs. Murray et al. (2013) estimate a real-time forward-looking two-
state Markov-switching Taylor rule to make inference about the periods when the Taylor
principle was present. They find that the Fed consistently adhered to the Taylor principle
before 1973 and after 1984, but did not follow the Taylor principle from 1980 to 1984.

Markov-switching monetary policy regimes have also been considered within the context
of dynamic stochastic general equilibrium (DSGE) models. Eo (2009) estimates a Markov-
switching DSGEmodel with recurring regime changes in the monetary policy rule coefficients,
the technology coefficients, and the coefficients characterizing nominal price rigidities. In an
application to postwar U.S. data, he finds stronger support for regime switching in monetary
policy than in technology or nominal rigidities. Davig and Doh (2008) estimate a Markov-
switching New Keynesian model that allows shifts in the monetary policy reaction coefficients
and shock volatilities. Using U.S. data, they find that a more-aggressive monetary policy
regime was in place after the Volcker disinflation and before 1970 than during the Great
Inflation of the 1970s. Bianchi (2013) estimates a two-state model and finds that monetary
policy has fluctuations between a Hawk and a Dove regime, with the latter prevalent in the
1970s and during the recent crisis.

Another strand of the literature estimates the monetary policy rule along with a fiscal pol-
icy rule. For example, Davig and Leeper (2006, 2011) estimate two-state Markov-switching
monetary and fiscal policy rules to evaluate the presence of regimes of monetary or fiscal
dominance. In their specification of the Markov-switching processes, two independent states
drive the evolution of the monetary and fiscal policy rule coefficients. They find that mone-
tary and fiscal policies fluctuate between active and passive behavior. In a Markov-switching
DSGE framework, Bianchi (2012) specifies and estimates a model with monetary and fiscal
policy rules whose coefficients’ switching is driven by a single state. His estimates show that
the monetary/fiscal policy mix has evolved over time and identifies three distinct regimes.

I apply the proposed estimation technique to a two-state Markov-switching forward-
looking Taylor rule using quarterly data spanning 1960:1-2013:4. Interest rates at or below
0.25 percent are classified as censored, and the lower bound is set to that value. For the
Markov-switching uncensored auxiliary regression, I take a fiscal policy rule where federal
revenues respond to debt deviations from target and to the output gap.

Results imply that the estimated correlation between the switching states of the two
policy rules is 0.82. Moreover, the null hypothesis of independent switching between the
coefficients of the monetary and fiscal policy rules is rejected at conventional significance
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levels. The estimated coefficients allow us to classify the monetary/fiscal policy mix into four
regimes according to the response of the interest rate to inflation and the reaction of revenues
to debt: (i) a regime of weak interest rate response to inflation and weak tax response to
debt, that I denominate regime F, for fiscal; (ii) a regime of weak interest rate response to
inflation and strong tax response to debt, that I denominate regime I, for indeterminate;
(iii) a regime of strong interest rate response to inflation and weak tax response to debt,
that I denominate regime E, for explosive; (iv) a regime of strong interest rate response to
inflation and strong tax response to debt, that I denominate regime M, for monetary. The
estimated ergodic regime probabilities are: 43% for regime F, 7% for regime I, 2% for regime
E, and 48% for regime M. The transition probabilities for the policy rule coefficients imply
that regime M is expected to last about 11 quarters, regime F, about 20 quarters, regime I,
1.6 quarters, and E, 1 quarter.

The model’s smoothed probabilities imply that in the fourth quarter of 2013 the economy
was more likely in regime F, where the stance of monetary policy was accommodative and
fiscal policy was paying more attention to output stabilization rather than to debt stabiliza-
tion.

This document is structured as follows: in Section 2, I present the specification of a
Markov-switching Taylor Rule at the zero lower bound. Section 3 develops the estimation
procedure and the Monte Carlo exercise that justifies it. Results of the estimation appear
in Section 4. Section 5 puts the results in context with the historical narrative on monetary
and fiscal policy. Finally, Section 6 concludes.

2 A Markov-switching Taylor Rule at the Zero Lower

Bound

I am interested in estimating the following two-state Markov-switching regression model
of a monetary policy rule with a smoothing component:1

R∗
t = ρSm,t

Rt−1 +
(

1− ρSm,t

)

(

RSm,t
+ απ

Sm,t
πt + α

y
Sm,t

yt

)

+ σSσR,t
ut (1)

Rt = max (R,R∗
t ) (2)

Sm,t = 1, 2; SσR,t = 1, 2,

where R∗
t is the underlying policy rate in period t, Rt is the observed policy rate in period t,

πt is a measure of the inflation rate in period t, yt is a measure of the output gap in period t,
and ut ∼ N (0, 1) is a monetary policy shock to the policy rate. The observed interest rate
is bounded from below by R ≥ 0.

Sm,t and SσR,t are 2-state, possibly correlated, first-order Markov switching processes.

1More regimes could be allowed in the specification of the monetary policy rule for both the switching
policy rule coefficients and the standard deviation of the shocks. However, to keep the exposition simple and
to maintain a closer connection with the simulation exercise and the empirical part, I focus on a two-regime
specification.
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Their transition probabilities are

P (Sm,t = jm|Sm,t−1 = j′m) = pjmj′m (3)

P
(

SσR,t = jσR
|SσR,t−1 = j′σR

)

= pjσRj′σR
. (4)

Bae et al. (2012) show that Equation (1) is the empirical counterpart of a forward-looking
monetary policy rule with a smoothing component subject to regime changes. A result of
this specification is that the inflation rate and the output gap are correlated with the error
term.

I show that, to estimate consistently this Markov-switching regression model, it is not
enough to incorporate in the estimation the censored part of the process. In particular, in-
ference about the prevalent regime over the censored period is inaccurate. The next section
specifies a system of equations with interdependent Markov-switching coefficients. Interde-
pendent switching is the key to identification of the prevalent regime of the economy over
the censored part of the sample.

3 Estimation Procedure

This section sets up a system of equations with interdependent Markov-switching coeffi-
cients where one of the equations is censored, and develops the proposed estimation technique
to identify the prevalent regime of the censored equation.

3.1 Setup

Consider the following Markov-switching regression model with a censored dependent
variable:2

y∗1t = x′
1tβ1,S1t + σ1,S1tu1t, S1t = 1, 2, (5)

y1t = max(y1L, y
∗
1t), (6)

y2t = x′
2tβ2,S2t + σ2,S2tu2t, S2t = 1, 2, (7)

[

u1t

u2t

]

∼ iid N(02×1, I2) (8)

β1,S1t =

2
∑

j1=1

β1,j1S̃1,j1,t; σ1,S1t =

2
∑

j1=1

σ1,j1S̃1,j1,t (9)

β2,S2t =

2
∑

j2=1

β2,j2S̃2,j2,t; σ2,S2t =

2
∑

j2=1

σ2,j2S̃2,j2,t, (10)

2For simplicity of exposition, I assume that the state that drives the switching in the conditional mean
parameters also drives the switching in the standard deviation of the shocks. I will relax this assumption to
conduct the estimation of the Markov-switching model of the federal funds rate given in specification (1)-(4).
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where

S̃i,ji,t =

{

1, if Sit = ji; ji = 1, 2; i = 1, 2

0, otherwise,
(11)

and where y1t and y2t are 1 × 1; x1t and x2t are k1 × 1 and k2 × 1, respectively, vectors of
explanatory variables. I assume that y1t conditional on S1t, and x1t are covariance stationary.
The same holds for y2t conditional on S2t, and for x2t. Following Kim (2009), to allow for non-
zero correlation between S1t and S2t, I introduce the following four-state Markov-switching
process St:

St = (S2t − 1) 2 + S1t, Sit = 1, 2, i = 1, 2, (12)

where the transition probabilities are given by

P (St = j|St−1 = j′) = P (S1t = j1, S2t = j2|S1,t−1 = j′1, S2,t−1 = j′2)

= pjj′, (13)

and

j = (j2 − 1)J1 + j1,

j′ = (j′2 − 1)J1 + j′1,

with
∑J

j=1 pjj′ = 1. The marginalized transition probabilities for S1t and S2t are given by

p1,j1j′1 = P (S1t = j1|S1,t−1 = j′1) , (14)

p2,j2j′2 = P (S2t = j2|S2,t−1 = j′2) , (15)

which can be obtained using the derivation in Kim (2009).
I assume that the explanatory variables x1t and x2t are uncorrelated with the error terms

of their respective equations, u1t and u2t. In case of correlation with the error terms, the
approaches in Kim (2004) or Kim (2009) can be added to the system above.

Notice that the errors of Equations (5) and (7) are independent. The dependence between
y1t and y2t occurs only through the dependent switching of the coefficients of both equations.

3.2 Maximum Likelihood Estimation

Let yt = [y1t y2t]
′, xt = [x′

1t x′
2t]

′. Let Fi,t−1 = σ (xi1, xi2, . . . , xit, yi0, yi1, . . . , yi,t−1)
for i = 1, 2 be the sigma-algebras generated by the vectors of exogenous random variables
of Equations (5)-(7), and let Ft−1 = σ (x1, x2, . . . , xt, y0, y1, . . . , yt−1) be the sigma-algebra
generated by the vectors of all exogenous random variables. Let θ = [θ′1 θ′2 vec(p̃)′]′ be
the vector of parameters of the model, where

θ1 =
[

β ′
1,1 β ′

1,2 σ1,1 σ1,2

]′
,

θ2 =
[

β ′
2,1 β ′

2,2 σ2,1 σ2,2

]′
,

and p̃ is a 4×4 matrix of transition probabilities given in (13). For consistent and efficient esti-
mation of the model (5)-(13), I maximize the log-likelihood function, Lθ(θ; YT ) = ln fY (YT ; θ),
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with respect to θ by applying the conventional Hamilton (1989) filter, where Yt = {ys}
t
s=1.

The filter allows obtaining fY (YT ; θ) as follows:

fY (YT ; θ) =

T
∏

t=1

fy(yt|Ft−1; θ)

=
T
∏

t=1

4
∑

j=1

fy|S(yt|St = j,Ft−1; θ)P(St = j|Ft−1; θ),

where

fy|S(yt|St = j,Ft−1; θ) = fy1|S1(y1t|S1t = j1,F1,t−1; θ1)fy2|S2(y2t|S2t = j2,F2,t−1; θ2),

with

fy1|S1(y1t|S1t = j1,F1,t−1; θ1) =

[

Φ

(

y1L − x′
1tβ1,j1

σ1,j1

)]1[y1t=y1L]

×

×

[

1

σ1,j1

φ

(

y1t − x′
1tβ1,j1

σ1,j1

)]1[y1t>y1L]

,

fy2|S2(y2t|S2t = j2,F2,t−1; θ2) =
1

σ2,j2

φ

(

y2t − x′
2tβ2,j2

σ2,j2

)

,

where Φ(·) and φ(·) denote the distribution and density functions, respectively, of the stan-
dard normal distribution, and

P(St = j|Ft−1; θ) =

4
∑

j′=1

pjj′P(St−1 = j′|Ft−1; θ). (16)

Once yt is realized at the end of time t, the filtered probability of St in (16) is updated as

P(St = j|Ft; θ) =
fy|S(yt|St = j,Ft−1; θ)P(St = j|Ft−1; θ)

fy(yt|Ft−1; θ)
. (17)

3.3 Why Is Interdependent Switching Necessary?

In this section, I discuss the need to introduce the auxiliary Equation (7) and correlated
states S1t and S2t. I show that if censoring is ignored, the estimates of β1,S1t , σ1,S1t , pj1,j′1 are
biased, and that inference about the prevalent regime S1t is not accurate. When censoring
is introduced in the specification, the biases in β1,S1t , σ1,S1t , and pj1,j′1 are corrected, but
inference about the prevalent regime remains inaccurate. I finally show that when the
system (5)-(13) is estimated jointly, discrimination of the prevalent regime is possible.

To show the potential estimation problem and the features of the proposed solution, I
perform a Monte Carlo experiment where the model is specified as in (5)-(13) with J1 =
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J2 = 2, k1 = k2 = 1, T = 200, and

β1,j1 =

{

0.5 if j1 = 1

1.5 if j1 = 2
, σ1,j1 =

{

0.05 if j1 = 1

0.05 if j1 = 2
,

β2,j2 =

{

0 if j2 = 1

0.1 if j2 = 2
, σ2,j2 =

{

0.005 if j2 = 1

0.005 if j2 = 2
,

x1t ∼

{

U(1, 2) if t ≤ 150

U(−1, 0) if 151 ≤ t ≤ 200
, (18)

x2t ∼ U(0, 1),

p̃ =









0.3 0.2 0.2 0.1
0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05
0.6 0.7 0.7 0.8









,

corr (S1t, S2t) = 0.67,

y1L = 0.

In the benchmark specification, censoring of y∗1t occurs over the final 25% of the sample.
I implement this censoring by switching x1t to a different distribution, as shown in (18). I
choose a cluster of periods where censoring occurs to illustrate the severity of the problem
at obtaining the estimates of the prevalent regime.

In the Monte Carlo analysis, I obtain estimates of β1,j1 , σ1,j1 , p1,j1j′1 for j1 = 1, 2, and the
smoothed estimate of P (S1t = j1) for t = 1, 2, . . . , 200 under three scenarios:

(i) Ignoring both censoring of y1t and joint switching between S1t and S2t.

(ii) Allowing for censoring of y1t, but ignoring joint switching between S1t and S2t.

(iii) Allowing for both censoring of y1t and joint switching between S1t and S2t.

Appendices A and B obtain the likelihood functions for cases (i) and (ii), respectively. The
likelihood function for case (iii) was obtained in Section 3.2. I simulate and estimate the
model 10,000 times.

Figure 2 shows the bias in the estimates of the parameters under the three scenarios
listed above. The results show that the estimation under scenario (i) yields biased estimates
as would have been expected. In particular, the estimates of β1,1 is downward biased, while
the estimates of σ1 and p1,11 are upward biased. The downward bias in β1,1 is due to the
estimation attributing to a low slope coefficient the fact that y1t = 0 in the final 25% of the
sample. The persistent censoring implies an upward bias in p1,11, the probability of remaining
in the low-β state. A higher standard deviation of shocks is also needed to reconcile the fact
that y1t = 0 while x1t takes negative values. On the other hand, β1,2 and p1,22 do not seem to
suffer from a bias problem. The information that the estimation obtains from the uncensored
part of the sample seems enough to obtain accurate estimates of these parameters.
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Figure 2: Parameter Bias in the Benchmark Case
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Estimation under scenarios (ii), which incorporates censoring, and (iii), which incorpo-
rates censoring and joint switching, yield unbiased parameter estimates, as expected. Thus,
estimation under scenario (iii) is not necessary for unbiasedness.

I also analyze the effect of increasing the sample size and of changing the length of
censoring at the end of the sample. Figure 3 reports the changes on the biases of β1,1, σ1,
and p1,11 estimated under scenario (i). Increasing the sample size does not reduce the bias
of the estimates, suggesting that there is a problem of consistency. On the other hand, and
as expected, reducing the length of censoring over the final part of the sample reduces the
biases.

3.3.1 Discriminating the Prevalent Regime

I now investigate the ability of the estimation strategies to identify correctly the prevalent
regime. In the Monte Carlo exercise, I have set the standard deviation of the shock to the
censored variable, σ1, so that there is an almost perfect discrimination of the states over the
uncensored part of the sample. Hence, to evaluate the capabilities of the three estimation
scenarios at discriminating correctly the prevalent regimes, I focus on the censored part of
the sample only.

To measure the ability of the estimation techniques to identify the prevalent regimes, I
use the area under the Receiver Operating Characteristic (ROC) curve. The ROC curve is a
plot that assesses the performance of a binary classifier system as its discrimination threshold
is changed. The ROC curve was first developed by electrical engineers and radar engineers
during World War II to evaluate their capabilities to detect enemy objects in battlefields, and
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Figure 3: Parameters Biases in the Benchmark Case Ignoring Censoring and
Joint Switching - Effects of Sample Size and Censoring Length
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was introduced in psychology to account for perceptual detection of signals (see Peterson
et al., 1954; Swets, 1979). The use of ROC curves in medicine to assess diagnostic test
performance has been described by Lusted (1971). In our case, I obtain smoothed estimates
of P (S1t = 1), vary the discrimination threshold between 0 and 1, and evaluate the ability
of the smoothed estimates of P (S1t = 1) to classify correctly the prevalent regime, which is
given by the simulated states.

The ROC curve plots the fraction of true positives out of the total of actual positives,
called true positive rate (TPR), against the fraction of false positives, called false positive
rate (FPR), at various threshold settings. TPR is also known as Sensitivity, and FPR is
known as one minus the Specificity or true negative rate. Given a cut-off value q ∈ [0, 1], a
realization of {S1t}

200
t=1, and smoothed estimates of P (S1t = 1), I can tabulate a contingency

table like Table 1. Varying the cut-off value q ∈ [0, 1] allows obtaining Sensitivity values
that can be plotted against 1-Specificity values, which is the ROC curve.

A perfectly discriminating variable would have Sensitivity and Specificity both equal to 1.
If a cut-off value existed to produce such a test, then Sensitivity would be 1 for any non-zero
values of 1-Specificity. The ROC curve would start at the origin (0,0), go vertically up the
y-axis to (0,1), and then horizontally across to (1,1) (see Bewick et al., 2004). On the other
hand, a completely random guess would give a point along a diagonal line that starts at the
origin (0,0) and go diagonally to (1,1). In that no-discrimination case, the discriminating
variable would produce a TPR equal to its FPR, or Sensitivity = 1-Specificity.

The performance of a discriminating variable can be quantified by calculating the area
under the ROC curve. An ideal discriminating variable would have an area under the ROC
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Table 1: Contingency Table

Regime

S1t = 1 S1t = 2

P
r
e
d
ic
t
e
d

R
e
g
im

e P (S1t = 1) ≥ q True Positive False Positive

P (S1t = 1) < q False Negative True Negative

Sensitivity =
∑200

t=1 1{P(S1t=1)≥q}
∑200

t=1 1{S1t=1}

Specificity =
∑200

t=1 1{P(S1t=1)<q}
∑200

t=1 1{S1t=2}

curve of 1, whereas a random guess would have an area under the ROC curve of 0.5.
Figure 4 plots the ROC curves and reports the areas under the ROC curves for the

estimation of model (18) under the three scenarios mentioned before: (i) Ignoring both
censoring of y1t and joint switching between S1t and S2t; (ii) Allowing for censoring of y1t
but ignoring joint switching between S1t and S2t; (iii) Allowing for both censoring of y1t and
joint switching between S1t and S2t. The figure shows that, over the censored part of the
sample, the only estimation scenario that allows for some degree of discrimination of the
prevalent regime is the one with censoring of y1t and joint switching between S1t and S2t.
The areas under the ROC curves for the scenarios that do not allow for joint switching are
very close to 0.5, whereas the area under the ROC curve for the joint switching scenario is
about 0.84. This indicates that, to identify the prevalent regime over the censored part of
the sample, an auxiliary uncensored Markov-switching regression whose coefficients switch
in a correlated manner with the coefficients of the variable of interest is needed.3

Figure 5 plots the ROC curves and reports the areas under the ROC curves for the effects
of changing the sample size, T , the frequency of censoring, and the correlation between S1t

and S2t. The results show that the estimation procedure that incorporates censoring and
dependent switching is not affected in its discrimination ability when the sample size increases
to T = 500 or T = 1, 000. Changing the proportion of the sample that is subject to censoring
to 10% or 40% does not change the performance of the estimation technique, either. Finally,
the results show that eliminating the correlation between S1t and S2t annihilates the ability
of the estimation technique to identify the prevalent regime, while a perfect correlation
between the latent states implies a nearly perfect discrimination, as it would have been

3It turns out that if we allow the standard deviation of the shock of censored variable, σ1, to switch,
there is lack of discrimination of the state driving the evolution of this standard deviation. The lack of
discrimination is partially solved if in specification (18) of the Monte Carlo exercise I allow the standard
deviation σ1 to switch between regimes as a function of a latent state that drives the switching of β1. In that
case, the ROC curves show that discrimination of the prevalent regime improves when a joint estimation with
an auxiliary Markov-switching regression is performed. Additional simulations (not shown here) illustrate
that the higher the correlation between the latent state driving the standard deviation, σ1, and the latent
states S1 or S2, the better the discrimination of the prevalent regime of the standard deviation.
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Figure 4: Area under the ROC Curve in the Benchmark Case
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expected. This exercise highlights the importance of an auxiliary regression with Markov-
switching coefficients whose state is correlated with the state of the coefficients of the censored
variable. The higher the correlation between switching states, the better the discrimination
of the prevalent regime of the coefficients of interest over the censoring period.

3.3.2 Why Does Joint Switching Help Identify the Prevalent Regime over the

Censoring Period?

Under case (ii), that is, allowing for censoring but not for joint switching, I use the
Tobit-like specification for the density function fy1|S1(y1t|S1t = j1,F1,t−1; θ1) that appears in
Appendix B. In this case, as shown in the previous section, the Hamilton filter is unable
to identify the prevalent regime S1t over the censoring period. The cause of the lack of
discrimination lies in the fact that

P(S1t = j1|F1t; θ1) =
fy1|S1(y1t|S1t = j1,F1,t−1; θ1)P(S1t = j1|F1,t−1; θ1)

fy1(y1t|F1,t−1; θ1)
(19)

may not vary enough over the censored sample. In particular,

fy1|S1(y1t|S1t = j1,F1,t−1; θ1) = Φ

(

y1L − x′
1tβ1,j1

σ1,j1

)

will show little variation over the censored sample if
y1L−x′

1tβ1,j1

σ1,j1
is too small or too large. If

that is the case, P(S1t = j1|F1t; θ1) will have very little variation.
In contrast, incorporating joint switching in the estimation allows to write the updated
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Figure 5: Area under the ROC Curve in the Benchmark Case with Censor-
ing and Dependent Switching - Effects of Sample Size, Censoring
Frequency and Correlation between States
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probability P(S1t = j1|Ft; θ), using (17), as

P(S1t = j1|Ft; θ) =

2
∑

j2=1

P(S1t = j1, S2t = j2|Ft; θ)

=
2

∑

j2=1

fy|S1,S2
(yt|Ft−1, S1t = j1, S2t = j2; θ)P(S1t = j1, S2t = j2|Ft−1; θ)

fy(yt|Ft−1; θ)

=

2
∑

j2=1

fy1|S1
(·)fy2|S2

(·)P(S1t = j1, S2t = j2|Ft−1; θ)

fy(yt|Ft−1; θ)

=
fy1|S1

(y1t|F1,t−1, S1t = j1; θ1)P(S1t = j1|Ft−1; θ)

fy1 (y1t|Ft−1; θ)
(20)

×

2
∑

j2=1

fy2|S2(y2t|F2,t−1, S2t = j2; θ2)P(S2t = j2|S1t = j1,F2,t−1; θ)

fy2|y1 (y2t|y1t,Ft−1; θ)

=
fy1|S1(y1t|F1,t−1, S1t = j1; θ1)P(S1t = j1|Ft−1; θ)

fy1 (y1t|Ft−1; θ)

×

2
∑

j2=1

P (S2t = j2|F2t; θ2)
P(S2t = j2|S1t = j1,F2,t−1; θ)

P(S2t = j2|F2,t−1; θ2)

fy2(y2t|F2,t−1; θ2)

fy2|y1(y2t|y1t,Ft−1; θ)
,
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where the step from the next-to-last to the last equation uses the definition

P(S2t = j2|F2,t; θ2) =
fy2|S2(y2t|F2,t−1, S2t = j2; θ2)P(S2t = j2|F2,t−1; θ2)

fy2(y2t|F2,t−1; θ2)
.

If S1t and S2t are uncorrelated, the last line of (20) is equal to one. In that case, inference
about S1t obtained from (20) would be the same as inference about S1t obtained from (19).
Hence, discrimination about the prevalent regime would be unfeasible. It is the additional
information given by the degree of interdependence between the latent states what allows a
better inference about the prevalent regime of S1t.

4 Estimating a Markov-Switching Taylor Rule at the

Zero Lower Bound

In this section, I apply the proposed technique to estimate a Taylor rule with Markov-
switching coefficients including the sample period after the financial crisis, where the federal
funds rate has been at the effective lower bound.

4.1 Selecting the Auxiliary Regression

To implement the estimation procedure presented in Section 3, I need an auxiliary
Markov-switching regression that is not subject to censoring and whose switching could
be correlated with the switching of the coefficients of the Taylor rule.

Gonzalez-Astudillo (2013) estimates time-varying monetary and fiscal policy rules whose
coefficients are driven by correlated latent factors and finds a non-negligible degree of interde-
pendence between the coefficients of the policy rules. This finding is related to the literature
on monetary-fiscal policy interactions initiated by Leeper (1991) and followed by Davig and
Leeper (2006) and Chung et al. (2007), among others. Along these lines, I propose a fiscal
policy rule with Markov-switching coefficients to be the auxiliary regression. I will test for
interdependence between the switching of the Taylor rule coefficients and the coefficients of
the proposed fiscal policy rule to confirm that this is an adequate choice.

4.2 Setting up the System to be Estimated

The system to be estimated in order to consistently obtain the estimates the Markov-
switching coefficients of the Taylor rule, as well as to make inference about the prevalent
regime, is given by

R∗
t = ρRSm,t

Rt−1 +
(

1− ρRSm,t

)(

RSm,t
+ απ

Sm,t
πt + α

y
Sm,t

yt

)

+ σR
S
σR,t

uR
t , (I)

Rt = max (R,R∗
t ) (II)

τt = ρτSf,t
τt−1 +

(

1− ρτSf,t

)(

τSf,t
+ γb

Sf,t
bt−1 + γ

y
Sf,t

yt

)

+ στ
Sστ ,t

uτ
t , (III)
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where Rt is the policy rate t, πt is the inflation rate in period t, yt is the output gap in
period t, and uR

t ∼ N (0, 1) is a monetary policy shock to the federal funds rate. The
observed interest rate is bounded from below by R = 0.25. In the auxiliary equation, τt is
a measure of federal government receipts net of transfers in period t, bt−1 is a measure of
federal government debt in period t− 1, and uτ

t ∼ N (0, 1) is a fiscal policy shock to receipts
net of transfers.

I introduce dependent switching between Sm,t and Sf,t by specifying the following 4-state
Markov-switching process St:

Smf,t = (Sf,t − 1) 2 + Sm,t, Si,t = 1, 2, for i = f,m,

where the transition probabilities are given by:

P (Smf,t = j|Smf,t−1 = j′) = P
(

Sm,t = jm, Sf,t = jf |Sm,t−1 = j′m, Sf,t−1 = j′f
)

= pjj′,

and

j = (jf − 1) 2 + jm,

j′ =
(

j′f − 1
)

2 + j′m,

with
∑4

j=1 pjj′ = 1. I denote as Pmf the 4× 4 transition probability matrix of Smf,t.
The standard deviations of the monetary and fiscal policy rule shocks change according

to the 2-state Markov-switching regimes SσR,t and Sστ ,t, respectively. Their 2× 2 transition
probability matrices are denoted as PσR

and Pστ
.

With this specification for the number of regimes of the states Sm, Sf , SσR , and Sστ
, the

model yields 16 transition probabilities to be estimated: 12 = (16 − 4) in Pmf , 2 = (4 − 2)
in PσR , and 2 = (4 − 2) in Pστ . Allowing for more regimes in Sm, Sf , SσR , or Sστ would
imply an increasing number of transition probabilities to be estimated that could result in
an unfeasible estimation, in particular if the latent states are correlated.

In this setup, the policy rules have endogenous explanatory variables, namely the inflation
rate and the output gap, so that I implement the two-step maximum likelihood estimation
procedure proposed by Kim (2009).

4.3 Data

I use quarterly data from 1960:1 to 2013:4. The policy rate is the federal funds rate.
Inflation is the percentage change over the last four quarters of the price level given by
the GDP price deflator.4 The output gap is the log difference between real GDP and the
Congressional Budget Office’s measure of potential real GDP. These variables are obtained
from the FRED database. Receipts net of transfers corresponds to the seasonally adjusted
quarterly current receipts of the federal government from which the current transfer payments

4I use the GDP price deflator instead of CPI to make the estimation comparable with that of Davig
and Leeper (2006), and the fact that estimated Markov-switching DSGE models use the price deflator as
observable to estimate policy rules (see for example Bianchi, 2012).
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have been deducted. These variables are obtained from NIPA Table 3.2, lines 1 and 22,
respectively. Debt is the market value of privately held gross federal debt at the end of
the quarter. This variable comes from the Federal Reserve Bank of Dallas. To correct for
endogeneity, I use M2 growth, given by the percentage change over the last four quarters
of seasonally adjusted M2, and commodity price inflation, given by the percentage change
over the last four quarters of the commodity price index. These last two variables are also
obtained from FRED. Appendix C describes the construction of the data series in more
detail.

4.4 Estimation Results

This section analyzes the results of the estimation by performing a set of hypothesis tests
to choose a parsimonious model in terms of switching parameters and the specification of
joint switching between the coefficients of the two policy rules.

To correct for the endogeneity of regressors, I perform a two-stage constant-parameter
estimation where the inflation rate and the output gap are regressed against a set of instru-
ments that include: four lags of the inflation rate, four lags of the output gap, four lags of M2
growth, and four lags of inflation of the commodity price index. The (standardized) residuals
from these regressions appear as additional regressors with Markov-switching coefficients in
the specifications of Equations (I) and (III).

4.4.1 Finding a Parsimonious Specification

To find a parsimonious specification of the model (I)-(III), I estimate an unconstrained
model where all the coefficients are subject to switching and test for independence between
Sm and Sf , the states of the monetary and fiscal policy rule coefficients, respectively.5 To
contrast the hypothesis of independent switching, I use the conventional independence chi-
square test based on 2 × 2 contingency tables. Tavaré and Altham (1983) modify the con-
ventional test of independence based on contingency tables for the case when the data are
generated by first-order Markov sequences.

To implement the independence tests, I obtain the smoothed probabilities P (Sm,t = 1)
and P (Sf,t = 1) from the unconstrained model and write 2 × 2 contingency tables varying
in the range [0.5, 1] the threshold at which it is decided that Sm,t = 1 or Sf,t = 1. With each
of these contingency tables, I calculate the two test statistics for independence between Sm

and Sf obtained by Tavaré and Altham (1983) which, under the null, are distributed as a
chi-square with one degree of freedom.

Figure 6 shows the value of the statistics for testing the null hypothesis of independence
between Sm and Sf for different thresholds of P (Sm,t = 1) and P (Sf,t = 1) on the left hand
side, and the contour of the figure on the left for values of the statistics greater than the
critical value that corresponds to a chi-square with one degree of freedom. Both test statistics
reject the null hypothesis of independence between Sm and Sf at the 5% level of significance
for all the values of the thresholds. Thus, I conclude that Sm and Sf should be specified
with a joint 4× 4 transition probability matrix that needs to be estimated.

5A full description of the results obtained from the estimation of the unconstrained model appears in
Appendix D.
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Figure 6: Independence Test between Sm and Sf
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X2
l =

{

ln

(

n1n4

n3n2

)}2
/

(

1

np1
+

1

np2
+

1

np3
+

1

np4

)

Cn =
n
(

n1n4/n2 − n2n3/n2
)2

n−4 (n1 + n2) (n1 + n3) (n2 + n4) (n3 + n4)
,

where pj = P (S = j), and S=(Sf − 1)2 + Sm and j = (jf − 1)2 + jm. Also, nj =
∑n

t=1 1{St=j}.
Additionally, γ = (1 − µλ)(1 + µλ), where µ and λ are the nonunit eigenvalues of Pm and Pf , the
2× 2 transition probability matrices of Sm and Sf , respectively.

16



With respect to which should be specified as switching coefficients, the test statistic of the
likelihood ratio test does not reject policy rules whose intercepts and persistence coefficients
are invariant between regimes. The value of the log-likelihood function of the model where
all the coefficients are allowed to switch is -53.39, while the model with fixed intercepts and
persistence coefficients yields a log-likelihood function value equal to -56.20. The value of the
statistic is 5.62, lower than the critical value implied by the chi-square distribution with four
degrees of freedom at the 5% level of significance, which is 9.49. To test for switching regimes
on the remaining coefficients, I use the z -statistics of the difference between the coefficients
of the two regimes. The statistics reject the null hypotheses of constant coefficients.

4.4.2 Obtaining Estimates of the Parsimonious Specification

In the final specification, I estimate the system of Markov-switching Equations (I)-(III)
with intercepts and smoothing coefficients fixed between regimes and four switching states:
Sm = 1, 2, Sf = 1, 2, SσR = 1, 2, and Sστ = 1, 2, where Sm and Sf have a joint transition
probability matrix, denoted as Pmf , that corresponds to the four-regime state Smf = (Sf −
1)2 + Sm, with Si = 1, 2 for i = m, f . Results of the estimation under this specification
appear in Table 2.

Table 2: Parameter Estimates

Monetary Policy Rule

Parameters jm = 1 jm = 2

απ
jm

0.53
(4.27)

1.67
(4.70)

α
y
jm

1.61
(7.14)

0.38
(−7.48)

Rjm

2.59
(5.65)

ρRjm
0.88
(60.68)

jσR = 1 jσR = 2

σR
j
σR

0.23
(10.64)

1.16
(8.24)

For jm = 1 and j
σR = 1, values in parenthesis

are z-statistics of the null hypothesis that the
coefficient is zero. For jm = 2 and j

σR = 2,
values in parenthesis are z-statistics of the null
hypothesis that the difference between the coef-
ficients of the two regimes is zero.

Fiscal Policy Rule

Parameters jf = 1 jf = 2

γb
jf

0.05
(2.74)

0.13
(4.24)

γ
y
jf

0.29
(4.35)

0.08
(−5.58)

τjf
1.76
(10.20)

ρτjf
0.90
(61.80)

jστ = 1 jστ = 2

στ
jστ

0.09
(14.25)

0.48
(5.93)

For jf = 1 and jστ = 1, values in parenthesis
are z-statistics of the null hypothesis that the
coefficient is zero. For jf = 2 and jστ = 2,
values in parenthesis are z-statistics of the null
hypothesis that the difference between the co-
efficients of the two regimes is zero.

The estimated smoothing coefficient of the monetary policy rule implies that about 12%
of the adjustment of the interest rate with respect to the target occurs every quarter. The
monetary policy rule coefficients on inflation take the values 0.53 and 1.67, depending on the
regime. The monetary policy rule coefficients on the output gap take the values 1.61 and 0.38,
depending on the regime. Notice that when the monetary authority is hawkish on inflation,
less attention is given to the output gap in comparison to the regime when the monetary
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authority is dovish. With respect to volatility, the standard deviation of the interest rate
takes the values 0.23% in the low volatility regime and 1.16% in the high volatility regime.

In regard to the fiscal policy rule, the smoothing coefficient implies that about 10%
of the adjustment with respect to the target occurs every quarter. The fiscal policy rule
coefficients on debt take the values 0.05 and 0.13, depending on the regime. The fiscal policy
rule coefficients on the output gap take the values 0.29 and 0.08, depending on the regime.
Notice that when the fiscal authority pays less attention to debt dynamics, more weight
is given to the output gap.6 With respect to volatility, the standard deviation of the real
per capita quarterly revenues net of transfers takes the values $90 (real 2005 $) in the low
volatility regime and $480 in the high volatility regime.7

Before analyzing the estimates of the transition probabilities and the smoothed proba-
bilities, I make precisions about the labels of the Markov-switching regimes. The labels cor-
respond to the identification conditions imposed in the estimation of the Markov-switching
regressions: απ

2 ≥ απ
1 , γ

b
2 ≥ γb

1, σ
R
2 ≥ σR

1 , and στ
2 ≥ στ

1 .
Leeper (1991) labels the monetary and fiscal policy regimes according to the strength

of the response of the policy instrument to the targets. Roughly speaking, a strong (weak)
response of interest rates to inflation is called an ‘Active’ (‘Passive’) monetary policy regime,
while a strong (weak) response of taxes to debt is called a ‘Passive’ (‘Active’) fiscal policy
regime. Hence, there are four possible combinations of regimes, depending on the strength
of the response of the policy instruments to their targets. I label the four possible regimes
as follows:

• Smf = 1: (απ
1 , γ

b
1) ⇔ F regime,

• Smf = 2: (απ
2 , γ

b
1) ⇔ E regime,

• Smf = 3: (απ
1 , γ

b
2) ⇔ I regime,

• Smf = 4: (απ
2 , γ

b
2) ⇔ M regime,

Here F stands for ‘fiscal’, a regime where the fiscal authority is reacting weakly to debt
deviations from target and the monetary authority is reacting weakly to inflation deviations
from target. M stands for ‘monetary’, a regime where the monetary authority is reacting
strongly to inflation deviations from target and the fiscal authority is reacting strongly to
debt deviations from target. I stands for ‘indeterminate’, a regime where the monetary
authority is reacting weakly to inflation deviations from target and the fiscal authority is
reacting strongly to debt deviations from target. E stands for ‘explosive’, a regime where

6Previous approaches to the estimation of Markov-switching fiscal policy rules as in Davig and Leeper
(2006) have used fiscal variables, namely tax receipts and debt, as a ratio of GDP. I also estimated the model
proposed here with the fiscal variables as ratios of GDP. Results show that there is not evidence of regime
switching in the coefficients linked to debt and output stabilization. The reason behind these results is that,
with data until 2013:Q4, the process for federal receipts over GDP is downward trending, which implies a
very high persistence coefficient of about 0.98, making it difficult for the technique to estimate precisely the
other coefficients that are multiplied by 0.02 in the policy rule.

7Heteroscedastic policy shocks in Markov-switching monetary policy rules have been found by Davig and
Leeper (2006) and Bianchi (2012), and in Markov-switching fiscal policy rules, by Davig and Leeper (2006),
Bianchi (2012) and Fernandez-Villaverde et al. (2011).
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Figure 7: Estimated Transition Probabilities, Ergodic Probabilities and Cor-
relation between States
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the monetary authority is reacting strongly to inflation deviations from target and the fiscal
authority is reacting weakly to debt deviations from target. According to Leeper (1991),
regimes M and F could deliver determinacy of the equilibrium in a local-linear version of a
dynamic stochastic general equilibrium model, depending on the values of the coefficients.
Along the same lines, in regime I there would be indeterminacy of the equilibrium, while in
regime E, except for a particular case, there would be no equilibrium with bounded debt.

To better understand the transitional dynamics between the four regimes described above,
Figure 7 presents the probability tree implied by the estimated transition probability matrix,
along with the ergodic regime probabilities, and the implied correlation between Sm and Sf .

The estimated transition probabilities imply that regime M is expected to last about 11
quarters, regime F, about 20 quarters, regime I, 1.6 quarters, and E, 1 quarter. The ergodic
probability of regime M is about 48%, while the ergodic probability of regime F is about
43%. Taken together, the ergodic probabilities of regimes I and E add to about 9%. The
probability tree shows that if the economy starts in regime M, the only possibilities would be
to stay in regime M with probability 91%, or to move to regime I with probability 9%. If the
economy moves to regime I, the possibilities would be to move to regime E with probability
31%, to stay in regime I with probability 37%, or to move to regime F with probability 32%.
If the economy moves to regime E, the only possibility is to then move to regime M. If the
economy moves to regime F, it can stay in regime F with probability 95%, or it can move
to regime M with probability 5%. Notice that the results rule out the possibility of moving
from regime M to F directly. Finally, the implied correlation between the state driving the
switching of the monetary policy rule coefficients and the state driving the switching of the
fiscal policy rule coefficients is 0.82.

Using the algorithm of Kim (1994), I obtain the smoothed probabilities for each of the four
states. The evolutions of the smoothed probabilities appear in Figure 8. The results show a
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high complementarity between regimes M and F. According to the smoothed probabilities,
regime M was more likely in place during the 1960s, the 1980s, the second half of the 1990s,
and a short period between 2005 and 2007. On the other hand, regime F was more likely in
place during a large portion of the 1970s, the first half of the 1990s, a short period between
2003 and 2005, and a period between 2008 and the end of the sample. With respect to
regimes I and E, there are short periods for both at the beginning of the 1980s. I will
put these results in context with the narrative of monetary-fiscal policymaking in the next
section.

In regard to the smoothed probabilities for interest rate and tax volatilities, Figure 9
plots the evolution of these probabilities along with the transition probability matrices. The
transition probability matrix for interest rate volatility indicates that the low volatility regime
is expected to last about 17 quarters, while the high volatility regime, about 10 quarters.
On the other hand, the transition probability matrix for net receipts indicates that the
low-volatility regime is expected to last about 14 quarters, while the high-volatility regime,
about 2.6 quarters. The smoothed probability for the high-volatility regime of interest rates
indicates that highly volatile interest rates were in place between around 1965 and 1975, the
first half of and the end of the 1980s, a few years during the first half of the 2000s, and
the 2008-2009 years. On the other hand, the smoothed probability for the high volatility
regime of taxes net of transfers shows a few spikes. The estimates indicate that two short
high volatility regimes were likely present in the 1970s, a couple more in the 1980s, one at
the beginning of the 1990s, at least three in the first half of the 2000s, another during the
year 2009, and a final one at the end of the sample. I will put these results in context with
the narrative of monetary-fiscal policymaking in the next section.

Finally, Figure 10 shows the evolution of realized and predicted interest rates. The model
performs reasonably well to predict the interest rate. In particular, at the end of the sample
the underlying interest rate was below zero and increased gradually.

5 Narrative of the Results

This section puts the results from Figures 8 and 9 of the benchmark estimation of Section
4.4.2 in context with the historical narrative on monetary and fiscal policy.

According to Hetzel (2008), good conduct of monetary policy dominated the policy mix
during the 1960s. He compares Fed Chairman William Martin to Fed Chairmen Paul Volcker
and Alan Greenspan in that Martin believed that raising short-term interest rates in an
expansion was a way to preempt inflation. Despite the Tax Reduction Act of 1964 that cut
income tax rates across the board by approximately 20%, fiscal policy remained supportive of
monetary policy during the 1960s. A fiscal regime starts to emerge during the 1970s, possibly
due to the expansionary tax reforms of 1971, 1975 and 1976. Hetzel (2008) emphasizes
the weak reaction of interest rates to inflation during the 1970s due to the focus of the
central bank on promoting employment and the belief that inflation was a nonmonetary
phenomenon. In Hetzel’s narrative, the 1980s saw the commitment of the Federal Reserve
to money targets, allowing the Federal Open Market Committee to raise interest rates by
whatever extent necessary to lower inflation. In general, a monetary regime was in place
during this decade, except for a couple of very short fiscal regimes due, most likely, to the
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Figure 8: Smoothed Probabilities - Policy Regimes
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Figure 9: Smoothed Probabilities - Volatility Regimes
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Figure 10: Observed and Predicted Interest Rate
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expansionary tax reforms of 1981 and 1986. After tightening monetary policy at the end of
the 1980s to counteract concerns about inflation, the results show the prevalence of a fiscal
regime at the beginning of the 1990s due, possibly, to the combination of policies in reaction
to the early 1990s recession. The “covert inflation targeting” of the 1990s (see Mankiw,
2001) and the deficit reduction act of 1993 make a monetary regime more likely during the
second half of this decade. The rapid decline in interest rates during the first half of the
2000s and the expansionary tax reforms during that period put the economy, most likely, in
a fiscal regime. A monetary regime starts to emerge after 2005 to avoid inflation pressures
and the fact that economic activity was boosting tax revenues. This monetary regime lasts
until the second half of 2007 when the central bank adopts a more dovish regime due to
recessionary concerns. Once the recession hit in 2008, the model finds that a fiscal regime is
much more likely to have been in place until the end of the sample in the fourth quarter of
2013.

With respect to volatility, interest rates experienced, most likely, a long period of high
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interest rate volatility between 1970 and the first half of the 1980s. Then, interest rate
volatility decreases except for the stock market crashes of 1989 (Black Monday) and 2000
(Dot-com Bubble). Finally, volatility increases during the recent financial crisis and has,
eventually, declined. On the other hand, federal receipts net of transfers experience spikes in
volatility that coincide with some of the tax reforms that I listed in the previous paragraph,
and are of very short duration. In particular, there are spikes that coincide with the tax
reforms of the 1970s, the 1980s, the deficit reduction act of 1993, the numerous tax reforms
of the 2000s, and the recovery act of 2009. At the end of the sample, it is likely that a high
volatility regime is in place due to, possibly, the budget sequestration.

6 Concluding Remarks

This paper devised an estimation technique for a Markov-switching Taylor rule at the
effective lower bound. The estimation method allows obtaining consistent estimates of the
switching coefficients and the transition probabilities. Importantly, it also permits identifi-
cation of the prevalent regime of monetary policy. Results show that monetary and fiscal
authorities switch between policy regimes in a correlated manner.

The results of the paper suggest that, in modeling monetary policy at the zero lower
bound, it is useful to endow agents with information about fiscal policymaking so that they
can draw reasonable inferences on the monetary policy regime. Inferring the monetary-fiscal
policy regime after lift off has implications on economic activity well before the lift-off date,
as pointed out by Melosi and Bianchi (2013). The estimation technique proposed in this
paper is a tool that agents can use to infer the monetary-fiscal policy regime under the
effective lower bound of interest rates.
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Appendix

A Estimation Ignoring Censoring and Joint Switching

Here the estimation consists of maximizing the log-likelihood function Lθ1(θ1; Y1T ) =
ln gY1(Y1T ; θ1), with respect to θ1 by applying the Hamilton filter. The filter allows obtaining
gY1(Y1T ; θ1) as follows:

gY1(Y1T ; θ1) =
T
∏

t=1

gy1(y1t|F1,t−1; θ1)

=
T
∏

t=1

J1
∑

j1=1

gy1|S1
(y1t|S1t = j1,F1,t−1; θ1)P(S1t = j1|F1,t−1; θ1),

where

gy1|S1
(y1t|S1t = j1,F1,t−1; θ1) =

1

σ1,j1

φ

(

y1t − x′
1tβ1,j1

σ1,j1

)

, (21)

and

P(S1t = j1|F1,t−1; θ1) =
J

∑

j′1=1

pj1j′1P(S1,t−1 = j′1|F1,t−1; θ1). (22)

Once y1t is realized at the end of time t, the filtered probability of S1t in (22) is updated as

P(S1t = j1|F1t; θ1) =
gy1|S1(y1t|S1t = j1,F1,t−1; θ1)P(S1t = j1|F1,t−1; θ1)

gy1(y1t|F1,t−1; θ1)
.

To obtain the smoothed probabilities P (S1t|FT ; θ1) of the prevalent regime S1t I use the
smoothing algorithm in Kim (1994).

B Estimation Ignoring Joint Switching

Here the estimation consists of maximizing the log-likelihood function Lθ1(θ1; Y1T ) =
ln fY1(Y1T ; θ1), with respect to θ1 by applying the Hamilton filter. The filter allows obtaining
fY1(Y1T ; θ1) as in Appendix A, where I replace gy1|S1(y1t|S1t = j1,F1,t−1; θ1) in (21) with:

fy1|S1(y1t|S1t = j1,F1,t−1; θ1) =

[

Φ

(

y1L − x′
1tβ1,j1

σ1,j1

)]1[y1t=y1L]

×

[

1

σ1,j1

φ

(

y1t − x′
1tβ1,j1

σ1,j1

)]1[y1t>y1L]

.

C Data Construction

The transformation of the data is as follows:
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• Rt: It is the quarterly federal funds rate (‘FF’ or ‘Effective Federal Funds Rate’ in the
FRED database) until 2008:3. Starting 2008:4, the rate is fixed at 0.25%.

• τt: In the benchmark estimation, it is the real per capita quarterly federal receipts net of
transfers (NIPA Table 3.2, line 1 minus line 22). The GDP deflator (described below)
is used to deflate the series to (thousand) dollars of 2005, and the total population
(‘POP’ or ‘Total Population: All Ages including Armed Forces Overseas’ in the FRED
database) is used to transform the series to per capita terms. In the estimation with
fiscal data over GDP, it is the quarterly federal receipts net of transfers divided by
quarterly nominal GDP (‘GDP’ or ‘Gross Domestic Product’ in the FRED database).

• bt−1: In the benchmark estimation, it is the average over the last four quarters of the
real per capita stock of market value of ‘Privately held gross federal debt’ hosted by the
Federal Reserve Bank of Dallas under Market Value of U.S. Government Debt. The
GDP deflator is used to deflate the series to dollars of 2005, and the total population
is used to transform the series to per capita terms. In the estimation with fiscal data
over GDP, it is the stock of market value of ‘Privately held gross federal debt’ divided
by quarterly GDP.

• πt: It is the annual inflation rate of the GDP deflator (‘GDPDEF’ or ‘Gross Domestic
Product: Implicit Price Deflator’ in the FRED database).

• yt: It is the log difference between quarterly GDP (‘GDPC1’ or ‘Real Gross Domestic
Product’ in the FRED database) and quarterly CBO potential GDP (‘GDPPOT’ or
‘Real Potential Gross Domestic Product’ in the FRED database).

D Unconstrained Specification

The unconstrained specification allows all the coefficients to switch between regimes and
also allows for correlation between the state driving the evolution of the monetary policy
rule coefficients, Sm, and the state driving the evolution of the standard deviation of the
monetary policy shock, SσR

. Table 3 shows the parameter estimates and the smoothed
probabilities appear in Figure 11, as well as the correlation between the monetary and the
fiscal states, and the transition and ergodic probabilities.

Pmf =









0.94 0 0 0.04
0.06 0 0 0
0 0 0.49 0.09
0 1 0.51 0.87









P (F ) = .37

P (E) = .02

P (I) = .09
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Table 3: Parameter Estimates - Unconstrained Specification

Monetary Policy Rule

Parameters jm = 1 jm = 2

απ
jm

0.51
(3.92)

2.42
(5.88)

α
y
jm

1.73
(2.81)

0.56
(−4.77)

Rjm

3.42
(4.45)

1.99
(2.26)

ρRjm
0.87
(36.56)

0.93
(39.02)

jσR = 1 jσR = 2

σR
j
σR

0.25
(11.86)

1.07
(7.88)

For jm = 1 and j
σR = 1, values in parenthesis

are z-statistics of the null hypothesis that the
coefficient is zero. Except for Rjm

and ρjm ,
where the values in parenthesis are z-statistics
of the null hypothesis that the coefficient is zero,
for jm = 2 and j

σR = 2 values in parenthe-
sis are z-statistics of the null hypothesis that
the difference between the coefficients of the two
regimes is zero.

Fiscal Policy Rule

Parameters jf = 1 jf = 2

γb
jf

0.02
(2.15)

0.13
(6.04)

γ
y
jf

0.40
(14.21)

0.13
(−8.08)

τjf
2.80
(24.85)

1.50
(7.36)

ρτjf
0.75
(26.40)

0.91
(40.85)

jστ = 1 jστ = 2

στ
jστ

0.08
(15.07)

0.44
(5.87)

For jf = 1 and jστ = 1, values in parenthe-
sis are z-statistics of the null hypothesis that
the coefficient is zero. Except for τjf

and ρτjf
,

where the values in parenthesis are z-statistics
of the null hypothesis that the coefficient is
zero, for jf = 2 and jστ = 2 values in paren-
thesis are z-statistics of the null hypothesis
that the difference between the coefficients of
the two regimes is zero.

P (M) = .52

corr(Sm, Sf) = 0.78

As can be seen, the parameter estimates of the unconstrained specification are very
similar, in general, to the estimates of the constrained estimation shown in Table 2. The most
significant differences are with respect to the monetary policy rule coefficient on inflation,
απ, in regime 2, which results in a higher value in the unconstrained estimation, and with
respect to the fiscal policy rule on output, γy, in regime 1, which also results in a higher
value in the unconstrained estimation. The evolutions of the regime probabilities are also
similar across the two specifications, with a high degree of complementarity between the M
and F regimes. One notable difference is with respect to the probability of regime I in the
early part of the 1970s, where the unconstrained estimation gives more likelihood to this
regime than does the constrained estimation.

From the 8×8 transition probability matrix associated to a composite state formed by Sm,
Sf , and SσR

, we can obtain the implied 4 × 4 joint transition probability matrix associated
to the composite state formed by Sm and Sf , the implied correlation between these two
states, as well as the ergodic probabilities of regimes M, F, I, and E. The most significant
differences between the constrained and the unconstrained transition probability matrices
are that the probability of going to a monetary regime having started in a fiscal regime is
zero in the latter, while it was positive in the former; and that the probability of going to
a fiscal regime having started in a monetary regime is nonzero in the latter, while it was
zero in the former. The ergodic regime probabilities are similar to the constrained case, and
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Figure 11: Smoothed Probabilities - Policy Regimes in the Unconstrained Estimation
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the implied correlation between states is still high. All told, the unconstrained estimation
does not imply significantly different results. In particular, the model still predicts a fiscal
regime at the end of the sample and a high correlation between the monetary and fiscal
policy states.

Using the unconstrained specification, I test for independence between the state driving
the evolution of the monetary policy rule coefficients, Sm, and the state driving the evolution
of the standard deviation of the monetary policy shock, SσR

. Figure 12 shows the value of the
Tavaré and Altham (1983) statistics for testing the null hypothesis of independence between
Sm and SσR for different thresholds of P (Sm,t = 1) and P

(

SσR,t = 1
)

on the left hand side,
and the contour of the figure on the left for values of the statistics greater than the critical
value that corresponds to a chi-square distribution with one degree of freedom. Both test
statistics fail to reject the null hypothesis of independence between Sm and SσR at the 5%
level of significance for the majority of possible thresholds. I conclude that Sm and SσR can
be specified with separate transition probability matrices that need to be estimated. This
supports the choice of the constrained specification of Section 4.4.2.

Figure 12: Independence Test between Sm and SσR
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X2
l =

{

ln

(

n1n4

n3n2

)}2
/

(

1

np1
+

1

np2
+

1

np3
+

1

np4

)

Cn =
n
(

n1n4/n2 − n2n3/n2
)2

n−4 (n1 + n2) (n1 + n3) (n2 + n4) (n3 + n4)
,

where pj
mσR

= P (SmσR = jmσR ), and SmσR = (SσR − 1)Jm +Sm and jmσR = (jσR − 1)Jm + jm.

Also, nj
mσR

=
∑n

t=1 1{S
mσR,t

=j
mσR}. Additionally, γ = (1− µλ)(1 + µλ), where µ and λ are the

nonunit eigenvalues of Pm and PσR , the transition probability matrices of Sm and SσR , respectively.
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