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Assessing the Effects of the Zero-Interest-Rate Policy

through the Lens of a Regime-Switching DSGE Model

Han Chen∗

Abstract

Standard dynamic stochastic general equilibrium (DSGE) models assume a Taylor

rule and forecast an increase in interest rates immediately after the 2007-2009 economic

recession given the predicted output and inflation, contradictory to the extended pe-

riod of near-zero interest rate policy (ZIRP) conducted by the Federal Reserve. In

this paper, I study two methods of modeling the ZIRP in DSGE models: the perfect

foresight rational expectations model and the Markov regime-switching model, which

I develop in this paper. In this regime-switching model, I assume that, in one regime,

the policy follows a Taylor rule, while, in the other regime, it involves a zero interest

rate. I also construct the optimal filter to estimate this regime-switching DSGE model

with Bayesian methods. I fit these modified DSGE models to the U.S. data from the

third quarter of 1987 to the third quarter of 2010, and then, starting from the fourth

quarter of 2010, I simulate the U.S. economy forward with and without the ZIRP in-

tervention. I compare the predicted paths of the macro variables, and I find that the

ZIRP intervention has a significant effect. The estimated regime-switching model I

develop implies a substantial stimulative effect (on average a 0.12% increase in output

growth rate and a 0.9% increase in inflation accumulatively over 20 quarters if ZIRP is

kept for 6 quarters). The actual path from the fourth quarter of 2010 onward is closer

∗Email: han.chen@frb.gov. Phone: 240-374-2758. I am particularly indebted to my adviser Frank
Schorfheide for his help and guidance, as well as my committee member Harold Cole and Frank Diebold.
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discussions. The views expressed are those of the author and do not reflect those of the Board of Governors
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to the predicted path derived from the regime-switching model than that generated by

the perfect foresight model. The perfect foresight model generates an explosive and

spurious rise in inflation. Therefore, the regime-switching model I propose is more

appropriate to assess the effectiveness of the ZIRP, which, I find, is indeed effective in

stimulating the economy.

JEL codes: E43, E44, E52, E58

Keywords: regime switching, zero interest rate policy, unconventional monetary

policy
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1 Introduction

In responsze to the 2007-2009 economic recession and the weak recovery that followed,

the Federal Reserve has been giving the economy unprecedented support: besides the lending

facilities and the large-scale asset purchases, the Federal Reserve decided to keep the target

range for the federal funds rate at 0 to 1/4 percent.1 Bernanke and Reinhart (2004) refer

to the commitment to keep interests low (forward guidance) as "unconventional monetary

policy," in contrast to conventional monetary policy, which refers to central banks’manip-

ulation of the policy rate (in the United States, the federal funds rate). Standard DSGE

models designed to analyze monetary policy and match the macro data well before the crisis

must address the challenge of evaluating the Federal Reserve’s unconventional policy.

Standard DSGEmodels, which assume a Taylor rule, often predicts a quick rise of interest

rates immediately after a recession.2 When analyzing the effects of the policy of keeping the

interest rates extremely low for an extended period, the standard approach is to estimate

a stochastic model and then conduct a counterfactual analysis using the perfect foresight

rational expectations (hereafter PFRE) solution method (Cúrdia and Woodford, 2011).3

This method assumes that agents have perfect foresight of the path of the future shocks

and the interest rates, and rational expectations equilibrium can be solved backwards. As

a result, the assumption of perfect foresight for policy analysis inherently conflicts with the

assumption of the stochastic model that is used to fit the data. Furthermore, the PFRE

model predicts an unrealistic path of macro variables. For example, this model predicts a

1The forward guidance has always suggested that the federal funds rate would be low for sometime either
date-based or threshold-based. In the January 2014 FOMC meeting, "the Committee also reaffi rmed its
expectation that the current exceptionally low target range for the federal funds rate of 0 to 1/4 percent will
be appropriate at least as long as the unemployment rate remains above 6-1/2 percent, inflation between
one and two years ahead is projected to be no more than a half percentage point above the Committee’s 2
percent longer-run goal, and longer-term inflation expectations continue to be well anchored."

2Reifschneider and Williams (2000), Chung et al. (2011), and Del Negro and Schorfheide (2012).
3A detailed description can be found at the online appendix of Chen, Cúrdia and Ferrero (2012).
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spurious rise in inflation4.

How do we reconcile those conflicted assumptions and better predict the distribution of

macroeconomic variables? In this work, I propose a Markov regime-switching DSGE model

and compare it with the conventional PFRE model. I propose to model the zero interest rate

policy (hereafter ZIRP) by a regime-switching monetary policy rule where, in one regime,

the policy rates follow a typical Taylor rule, and, in the other regime, the policy rate is set

to zero. Also, I solve this regime-switching DSGE model by using the Farmer, Waggoner,

and Zha (2011) minimum state variable solution.5

In addition, I construct the optimal filters in order to estimate this regime-switching

DSGE model with Bayesian methods. I fit the regime-switching and the standard DSGE

models to U.S. data from the third quarter of 1987 to the third quarter of 2010. And

then, starting from the fourth quarter of 2010, I simulate the U.S. economy forward under

two scenarios: the counterfactual scenario with no policy intervention, and under ZIRP for

an extended period using either the regime-switching model or PFRE model. To assess

the policy’s effectiveness, I compare the predicted path of the macro variables (output and

inflation) with and without the policy intervention. I find that the ZIRP has a substantial

effect and the predicted path of macro variables generated by the regime-switching model is

closer to the actual path, while the PFRE model generates an explosive predicted path.

The fundamental difference between these two types of models is how agents’expecta-

tions are formulated. In the regime-switching model, at each period agents attach a non-zero

probability of exiting the ZIRP regime in the next period despite the Federal Reserve’s "ex-

tended period" language, because, for example, the simple announcement would be subject

4Carlstrom, Fuerst, and Paustian (2012) also make this observation.
5One can also use the perturbation method developed by Foerster, A., Rubio-Ramírez, J., Waggoner,

D. and Zha, T. (2013). The solutions of those two methods are the same for the parameters in front of
the lagged state variables and in front of the shocks. I use Liu, Waggoner, and Zha (2011) to get the
regime-switching constant. This approach is different from the regime-switching constant derived from the
perturbation method.
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to the time inconsistency problem, and is thus not credible. And even after the exit, the

agents expect to come back to the ZIRP regime with a non-zero probability in the future.

The PFRE assumes that agents believe the Federal Reserve’s announcement and have perfect

foresight of future interest rates. I argue that the regime-switching model is more appropriate

for policy evaluation.

Here, I am looking at this extended period of zero interest rates as a policy choice

because the central bank could raise interest rates when output starts growing and the

economy improving, as predicted by the Taylor rule.6 Carlstrom, Fuerst, and Paustian

(2012); Cúrdia and Woodford (2010); and Chen, Cúrdia, and Ferrero (2012) also study

the effects of a transient interest rate peg. Under the assumption of either a deterministic

exit or a stochastic exit of the interest rate peg in the previous studies, the policy rate

will follow a Taylor rule after the exit and the interest rate peg will never occur again. In

the regime-switching model developed in this paper, however, the zero interest rate policy

regime is a recurring event. Even at the normal interest rate regime, agents expect to enter

a zero interest rate regime in the future with a non-zero probability. Expectations play an

important role in the regime-switching model.

An alternative way to look at this persistent period of low interest rates is the zero

lower bound (ZLB) problem. A persistent shock drives interest rates below zero for an

extended period if we keep following a Taylor rule.7 A rapidly growing literature on ZLB

considers the zero interest rates as a modeling constraint that has to be considered. Global

methods include Judd, Maliar, and Maliar (2011); Fernández-Villaverde, Gordon, Guerrón-

Quintana, and Rubio-Ramírez (2012); and Aruoba and Schorfheide (2012). There are also a

few short cuts for modeling ZLB, such as Braun and Körber (2011); Adam and Billi (2007);

Eggertsson and Woodford (2003); and Christiano, Eichenbaum, and Rebelo (2011). Del

6Here the regime-switching is exogenous while ideally it should be endogenous and depend on the macro-
economic condition.

7For example a preference shock or a technology shock.
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Negro and Schorfheide (2012) describe how to impose zero interest rates via unanticipated

or anticipated monetary policy shocks in a DSGE model. Those models focus on modeling

how the economy enters an extended period of zero interest rates, while the regime-switching

model developed here is more of a model of exiting the zero interest rates.

The rest of the paper proceeds as follows. Section 2 presents a standard DSGE model.

Section 3 discusses how to model ZIRP with a regime-switching monetary policy and with the

PFRE. Section 4 describes the estimation of the regime-switching model, some basic analysis

of parameter estimates, an evaluation of the effects of the ZIRP, and the comparison between

the regime-switching model and the PFRE model. Finally, section 5 summarizes the main

findings.

2 Models

Except for the monetary policy rule, the model used here is a standard medium-scale

DSGE model (Christiano et al., 2005; Smets and Wouters, 2007): Households maximize

utility; monopolistic competitive firms hire the labor to produce intermediate goods; and

competitive final-goods-producing firms package intermediate goods into a homogeneous

consumption good. Finally, the government sets monetary and fiscal policy. To simplify the

analysis, I abstract from capital.

2.1 Households

The representative household’s objective function is

Et
∞∑
s=0

βsbt+s


(
Ct+s
Zt+s

)1−σ
1− σ − L1+νt+s

1 + ν

 ,

6



where β is the discount factor, bt is a preference shock, Ct is consumption (relative to

productivity Zt, as in An and Schorfheide (2007) to ensure the existence of a balanced

growth path with constant relative risk aversion preferences σ), Lt is labor supply, and ν is

the inverse of the Frisch elasticity of labor supply.

The time t budget constraint for a household is

PtCt +Bt ≤ Rt−1Bt−1 +WtLt + Pt − Tt, (2.1)

where, Bt, are one-period securities purchased at time t that pay a nominal return, Rt, at

time t+ 1, Pt is the price of the final consumption good, Wt is the competitive wage, Pt are

the profits distributed by the intermediate goods producers, and Tt are lump-sum taxes.

Let ΞP
t represent the Lagrange multiplier for (2.1). The Euler equation for the short-term

bonds is

Ξp
t = βEt[Ξp

t+1Rt].

2.2 Final Goods Producers

The final good, Yt, is a composite made of a continuum of intermediate goods indexed

by i ∈ (0, 1)

Yt =

[∫ 1

0

Yt(i)
1

1+λf di

]1+λf
. (2.2)

The final goods producers buy the intermediate goods on the market, package to Yt, and

sell it to consumers. These firms maximize profits in a perfectly competitive environment.

Their problem is:

maxYt(i) PtYt −
∫ 1
0
Pt(i)Yt(i)di,

s.t. Yt =
[∫ 1
0
Yt(i)

1
1+λf di

]1+λf
.

(2.3)
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From the first order conditions:

Yt(i) =

(
Pt(i)

Pt

)− 1+λf
λf

Yt.

Combining this condition with the zero profit condition, I obtain the expression for the price

of the composite final good:

Pt =

[∫ 1

0

Pt(i)
− 1
λf di

]−λf
. (2.4)

2.3 Intermediate goods producers

Intermediate goods producer i uses the following technology:

Yt(i) = ZtLt, (2.5)

where Zt is the technology, and Lt is labor input.

Prices are sticky à la Calvo (1983). Specifically, each firm can readjust prices with a

probability 1 − ζp in each period. For those firms that cannot adjust prices, Pt(i) will

increase at the steady state rate of inflation π. For those firms that can adjust prices, the

problem is to choose a price level, P̃t(i), that maximizes the sum of the expected discounted

profits in all states of the future where the firm cannot adjust the price:

max
P̃t(i)

Et
∞∑
s=0

(
βζp
)s

Ξt+s

((
P̃t(i)Π

s

Pt+s

)
− wz,t+s

)(
P̃t(i)Π

s

Pt+s

)− 1+λf
λf

Yz,t+s,

where Ξt+s = Ξp
t+sPt+sZt+s, wz,t+s = wt+s

Pt+sZt+s
, and Yz,t+s = Yt+s

Zt+s
.

The first order condition for the firm is
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0 = P̃t(i)Et
∞∑
s=0

(
βζp
)s

Ξt+s
1

λf

(
Πs

Pt+s

)− 1
λf

Yz,t+s (2.6)

−Et
∞∑
s=0

(
βζp
)s

Ξt+s
1 + λf
λf

wz,t+s

(
Πs

Pt+s

)− 1+λf
λf

Yz,t+s.

Note that all firms that can readjust prices face this identical problem. I will only consider

the symmetric equilibrium in which all firms that can readjust prices will choose the same

price, so I can drop the i index. From 2.4 it follows that:

Pt =

[
(1− ζp)P̃

− 1
λf

t + ζp [ΠPt−1]
− 1
λf

]−λf
. (2.7)

So

1 = (1− ζp)
(
P̃t
Pt

)− 1
λf

+ ζp

[
Π

Πt

]− 1
λf

.

2.4 Government Policies

The monetary policy assumption is taken from Chen et al. (2012). The central bank

follows a conventional feedback interest rate rule similar to Taylor (1993), modified to include

interest rate smoothing (Clarida et al., 2000) and to use the growth rate of output instead

of the output gap (Justiniano et al., 2011):

Rt

R
=

(
Rt−1

R

)ρm [(Πt

Π

)φπ (Yt/Yt−4
e4γ

)φy]1−ρm
eεm,t , (2.8)

where Πt ≡ Pt/Pt−1 is the inflation rate, ρm ∈ (0, 1), φπ > 1, φy ≥ 0, and εm,t is an i.i.d.

innovation.8 In the section (3.1), I will elaborate how to modify the monetary policy rule to

8Chen et al. (2012) use the output growth in the Taylor rule, instead of the output gap, to avoid
the complication of solving and estimating the system by characterizing the flexible price equilibrium. In
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assess ZIRP.

The standard government budget constraint is as follows:

Bt = Rt−1,tBt−1 + PtGt − Tt. (2.9)

The left-hand side of expression (2.9) is the market value, in nominal terms, of the total

amount of bonds issued by the government at time t. The right-hand side is the total deficit

at time t, that is, market value plus interest payment of the bonds maturing in that period

plus spending Gt net of taxes.

2.5 Exogenous Processes

The model is supposed to be fitted to data on output, inflation, and nominal interest

rates. There are four structural shocks in total. The logarithm of the technology follows a

random walk with drift:

lnZt = γ + lnZt−1 + zt,

where the shock zt follows a first order autoregressive process (AR(1)):

zt = ρzzt + εz,t, εz,t ∼ N
(
0, σ2εz

)
.

The shock to the discount factor β (intertemporal preference shifter) is also assumed to

follow an AR(1) process:

ln bt = ρb ln bt−1 + εb,t, εb,t ∼ N
(
0, σ2εb

)
.

practice, real GDP growth relative to trend is often cited as one of the main indicators of real activity for
the conduct of monetary policy.
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The government spending is assumed to be an exogenous process:

ln gt = ρg ln gt−1 + εg,t, εg,t ∼ N
(

0, σ2εg

)
.

The monetary policy shock εm,t is an independent and identically distributed shock.

3 Zero Interest Rate Policy

In this section, I describe two methods of studying the effects of ZIRP in DSGE models:

the regime-switching method and the PFRE method. I am going to consider a regime-

switching model where, in one regime, the policy rate follows a typical Taylor rule, and, in

the other regime, it involves ZIRP. Although the Markov regime switching is imposed to

the monetary policy rule before loglinearizing the system, and thus the method begins from

first principles rather than adding Markov-switching parameters after linearizing the model,

the model is still a linear model. Simplifying assumptions in my model may miss some

nonlinear interactions between the zero interest rates and the policy functions of the agents,

however, I substantially gain tractability. I also construct the optimal filter and likelihood

function so that I can fit this model to the macro data including the recent time where the

interest rates are maintained near zero for an extended period. This regime-switching model

can not only explain the interest rate data, but it also provides a plausible explanation for

exiting the zero interest rate policy. It is more of a model for exiting the ZIRP than a model

for entering the ZIRP. This regime-switching model offers a tool to conduct forecasts and

counterfactual analysis. The other approach to assessing the ZIRP, PFRE, cannot explain

the recent episodes of near-zero interest rates. It only asks the counterfactual questions such

as what are the effects on the macro variables if the interest rates are pegged at zero for an

extended period, and agents have perfect knowledge of this policy experiment? Now I define
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the regime-switching model more precisely .

3.1 Regime-Switching Policy Rule

Consider a regime-switching policy rule where, in one regime, the federal funds rate

follows a Taylor rule while, in the other regime, it sets the interest rates to zero. I will use

the Farmer, Waggoner, and Zha (2011) minimum state variable solution method to solve

this regime-switching model, and the estimation strategy will be described in section 4. The

policy rule is

Rt = (R∗t (Kt))
1−ρR(Kt)

[(
πtr

R∗t (Kt)

)ϕπ(Kt)(Yt/Yt−4
e4γ

)ϕy(Kt)](1−ρR(Kt))
R
ρR(Kt)
t−1 exp (εR,t) ,

(3.1)

where all the parameters denoted by (Kt) are regime-dependent. R∗t (Kt) are the desired

regime-dependent target nominal interest rates. Let Kt = 1 denote the normal regime and

Kt = 2 denote the ZIRP regime. For example, I can set R∗t (Kt = 1) = R∗1 = 1.005, which

corresponds to a target 2% annual interest rate at the normal regime and set R∗t (Kt = 2) =

R∗2 = 1.0005, which corresponds to a target 20 basis points annual interest rate at the second

regime. To study the ZIRP, I set

R∗2 = 1,

ρR (Kt = 2) = 0,

ϕπ (Kt = 2) = 0,

ϕy (Kt = 2) = 0, and

σεR,t (Kt = 2) = 0.

I define the ergodic mean of the logarithm of the steady state interest rates as
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log (R) = λ̄1 log (R∗1) + λ̄2 log (R∗2) ,

where λ̄1 and λ̄2 are the ergodic probabilities.

Divide 3.1 by its ergodic mean, R, and thus:

Rt

R
=

(
R∗t
R

)(1−ρR(Kt))(1−ϕπ(Kt)) [(πt
π

)ϕπ(Kt)(Yt/Yt−4
e4γ

)ϕy(Kt)](1−ρR(Kt))(Rt−1

R

)ρR(Kt)
exp (εR,t) .

(3.2)

Loglinearize 3.2 and thus:

R̂t = ρR (Kt) R̂t−1 + (1− ρR (Kt))

[
ϕπ (Kt) π̂t + ϕy (Kt)

(
ŷz,t

9 − ŷz,t−4 +
i=3∑
i=0

zt−i

)]
+εR,t + (1− ρR (Kt)) (1− ϕπ (Kt)) R̂

∗
t (Kt) , (3.3)

where the last term represents a regime-switching constant. I am going to apply the trick used

by Liu, Waggoner, and Zha (2011). They solve a system where the only regime-switching

coeffi cient is the constant. I can rewrite 3.3 as

R̂t = ρR (Kt) R̂t−1 + (1− ρR (Kt))

[
ϕπ (Kt) π̂t + ϕy (Kt)

(
ŷt − ŷt−4 +

i=3∑
i=0

zt−i

)]
+ εR,t

+ (1− ρR (Kt)) (1− ϕπ (Kt))

[
log

(
R1
R

)
, log

(
R2
R

)]
ês,t,

where ês,t = es,t − ēs, and ēs is the ergodic probability. es,t is defined as:

es,t =

 1St=1

1St=2

 ,
with 1 {st = j} = 1 if st = j, and 0 otherwise. As shown in Hamilton (1994), the random
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vector es,t follows an AR(1) process:

es,t = Pes,t−1 + νt, (3.4)

where P is the transition matrix of the Markov switching process, and the innovation vector

has the property that Et−1νt = 0. In the steady state, νt = 0 so that 3.4 defines the ergodic

probabilities for the Markov process ēs. Schorfheide (2005) also proposes an algorithm to

solve DSGE models with a regime-switching constant in the policy rule. One can prove that

Schorfheide (2005) and Liu, Waggoner, and Zha (2011) give rise to the same solution.10

By adding two extra variables es,t, I can use Farmer, Waggoner, and Zha’s (2011) mini-

mum state variable solution to solve this regime-switching model. The solution of the model

can be represented by

Zt = Gt (Kt)Zt−1 +Rt (Kt) εt Z1,t

Z2,t

 =

 G11 G12

0 P


 Z1,t−1

Z2,t−1

+

 R11 R12

0 1


 ε1,t

ε2,t

 ,
where I can partition the variables Zt and the shocks εt into two parts, respectively. Z2,t

are [êt (1) êt (2)]′, ε2,t are [v1,t v2,t]
′, Z1,t are the rest of the states, and ε1,t are the structural

shocks of the DSGE models. I define

C (Kt) = G12Z2,t +R12ε2,t.

Notice that C (Kt) are the regime-dependent constants. Finally I can rewrite the system

as follows with regime-switching coeffi cients:

10See the appendix for proof.
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Zt = C (Kt) +Gt (Kt)Zt−1 +Rt (Kt) εt.

3.2 Model ZIRP by the PFRE

The solution method of the PFRE model can be found in Cúrdia and Woodford (2011).

For a detailed description of the algorithm and an application, please refer to Chen et al.

(2012) and its companion online appendix.11 The basic idea is that agents have perfect

foresight of the path of future interest rates and of all shocks until an arbitrary point in

time. From this point forward all the shocks are zero, and the solution method is standard,

such as in Sims (2002). The system can be solved backwards from this point. The following

is a very simple example to illustrate the solution method. Consider the equilibrium system:

ŷt = Et [ŷt+1]− σ−1 (̂ıt − Et [π̂t+1])

π̂t = βEt [π̂t+1] + κŷt

ı̂t = φππ̂t + νt for t > K νt = 0

= 0 for t = 1, ...K − 1, K.

The solution for t > K is: 
ŷt

π̂t

ı̂t

 =


ψyν

ψπν

ψiν

 νt.
11The appendix can be found at http://onlinelibrary.wiley.com/doi/10.1111/j.1468-

0297.2012.02549.x/suppinfo
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The system can be broken into the forward-looking and the backward-looking parts. The

forward-looking part is:

 1 σ−1

0 β


 Et [ŷt+1]

Et [π̂t+1]

 =

 1 σ−1 0

−κ 0 1



ŷt

ı̂t

π̂t


and the backward-looking part is:

[0 1 − φπ]


ŷt

ı̂t

π̂t

 = νt.

At t = K, plug in the solution to the forward-looking part and thus:

 1 σ−1

0 β


 ψyνEtνt+1

ψπνEtνt+1

 =

 1 σ−1 0

−κ 0 1



ŷt

ı̂t

π̂t

 .
Combine this part with the backward-looking part and thus:


0 1 − φπ
1 σ−1 0

−κ 0 1



ŷt

ı̂t

π̂t

 =


0(

ψyν + σ−1ψπν
)
Etνt+1

βψπνEtνt+1

+


νt

0

0

 .
We can solve this system by inverting a matrix. The solution is:


ŷt

ı̂t

π̂t

 =


0 1 − φπ
1 σ−1 0

−κ 0 1


−1


0(

ψyν + σ−1ψπν
)
Etνt+1

βψπνEtνt+1

+


νt

0

0


 .
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We can iterate backwards until the first period.

4 Empirical Analysis

In this section, I compare two approaches to modeling ZIRP in DSGE models. I estimate

the DSGE model that either incorporates a regime-switching monetary policy as 3.1 or a

typical Taylor rule as 2.8. I extract the filtered states of those estimated DSGE models, and

then, starting from the fourth quarter of 2010, I simulate the U.S. economy forward under

two scenarios: no intervention and ZIRP for an extended period.12 I compare the predicted

path of macro variables generated from the different models. When I evaluate ZIRP in

the DSGE model with the regular Taylor rule, the PFRE method is used to simulate the

economy. I will only explicate the estimation strategy of the regime-switching DSGE model.

The description of the estimation procedure of the other non-regime-switching model was

omitted here. The Bayesian estimation methods for a linearized DSGE model with constant

coeffi cients can be found, for example by An and Schorfheide (2007). Bayesian estimation

combines prior information on the parameters with the likelihood function of the model

to form the posterior distribution. In the regime-switching model, the optimal filter is no

longer the Kalman Filter. I will first illustrate the optimal filter and the likelihood function

for this regime-switching model, and then describe data, show estimation results, and make

comparisons of simulation results.

12Under both scenarios, there are no macro shocks.
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4.1 Optimal Filter and Likelihood Function

The regime-switching model is complicated because we have to keep track of the long

history of the distribution of the states, and the number of the states grows exponentially.13

Fortunately, in my application, when updating the states probability, the distribution of

the states at each time is degenerated because I observe the interest rates and thus deduce

whether or not the economy is at the ZIRP regime in that period. This practice makes

inference more effi cient.

In this New Keynesian economy, the states are denoted by St and the observables are

denoted by yt. LetKt denote the Markov regime-switching states and λt denote the probabil-

ity in the ZIRP regime (Kt = 2) at time t, thus Kt = 1, the normal regime, has probability

1 − λt. Let R̂t denote the log deviation of the regime-switching interest rates from their

ergodic mean. Its density function can be written as:

P
(
R̂t

)
= λ

1{Rt=1}
t

(
(1− λt) ft

(
R̂t

))1{Rt>1}
,

where ft
(
R̂t

)
is the conditional density, conditional on at the normal state.14 That is

P
(
R̂t|Rt > 1

)
= ft

(
R̂t

)
.

Define the Dirac function as

δx̃ (x) =

{
0 if x 6= x̃

∞ if x = x̃
and

∫
δx̃ (x) dx = 1.

Using the Dirac function, I can express the density of the interest rates as

13Even with a two-state Markov regime-switching process, at time t, the number of states is 2t. Tradition-
ally, we can follow the approximation approaches by Kim and Nelson (1999).
14Rt represents gross interest rates.
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P
(
R̂t

)
= λtδ1 (Rt) + (1− λt) ft

(
R̂t

)
.

The transition equations are

St (Kt) = C (Kt) +Gt (Kt) St−1 (Kt−1) +Rt (Kt) εt,

where all the coeffi cients are regime-dependent and the measurement equations are (no mea-

surement error):

yt (Kt) = TSt (Kt) .

Let λ̄ denote the ergodic probability of the Markov chain and Σk denote the state-dependent

variance-covariance matrix of the structural shocks:

Σk = E [εtε
′
t|Kt = k] .

The algorithm of the optimal filter is as follows:

• Initializing at time t = 1,the mean of the states:

S̄1 = λ̄1 (I −G (Kt = 1))−1C (Kt = 1) +
(
1− λ̄1

)
(I −G (Kt = 2))−1C (Kt = 2) ,

and the variance,

P̄1 = λ̄1X1 +
(
1− λ̄1

)
X2,
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where X1 and X2 solve the discrete Lyapunov matrix equations:

G (Kt = 1)X1G (Kt = 1)′ −X1 +R (Kt = 1) Σ1R (Kt = 1) = 0

and

G (Kt = 2)X2G (Kt = 2)′ −X2 +R (Kt = 2) Σ2R (Kt = 2) = 0,

respectively.

• Forecasting t+ 1 given t

—Transition equation

P
(
St+1, Kt+1|Y t, θ

)
=

∫
P (St+1, Kt+1|St, Kt)P

(
St, Kt|Y t, θ

)
d (St, Kt)

=

∫
P
(
St+1,−R̂t+1 , Kt+1|R̂t+1, St, Kt

)
P
(
R̂t+1, Kt+1|St, Kt

)
P
(
St, Kt|Y t, θ

)
d (St, Kt)

=

∫
P
(
St+1,−R̂t+1|Kt+1, St, Kt

)
P
(
R̂t+1|Kt+1, St, Kt

)
P (Kt+1|St, Kt)P

(
St, Kt|Y t, θ

)
d (St, Kt)

=

∫
P
(
St+1,−R̂t+1|Kt+1 = 2, St, Kt

)
δ0

(
R̂t+1 = 0

)
P (Kt+1 = 2|St, Kt)P

(
St, Kt|Y t, θ

)
d (St, Kt)

+

∫
P (St+1|Kt+1 = 1, St, Kt)P (Kt+1 = 1|St, Kt)P

(
St, Kt|Y t, θ

)
d (St, Kt) ,

where St+1,−R̂t+1 denotes all of the states excluding the interest rates. Since the density

of the regime Kt+1, conditional on the last period states and regime, P (Kt+1|St, Kt), is

discrete, I can break the integral into two parts when it is in a ZIRP regime, and when it is

in the normal regime. Notice that when it is in the ZIRP regime, I do not need to track the

distribution of interest rates because it is degenerate.
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• —Measurement equation =⇒ likelihood function

P
(
yt+1|Y t, θ

)
=

∫
P
(
yt+1|St+1, Kt+1,Y

t, θ
)
P
(
St+1|Kt+1, Y

t, θ
)
P
(
Kt+1|Y t, θ

)
dSt+1dKt+1

= P
(
Kt+1 = 1|Y t, θ

) ∫
P
(
yt+1|St+1, Kt+1,Y

t, θ
)
P
(
St+1|Kt+1,Y

t, θ
)
dSt+1

+P
(
Kt+1 = 2|Y t, θ

) ∫
P
(
yt+1−R̂t+1|St+1, Kt+1,Y

t, θ
)
P
(
St+1|Kt+1,Y

t, θ
)
dSt+1.

• Updating

—Updating states

P
(
St+1, Kt+1|Y t+1, θ

)
∝ P

(
yt+1|St+1, Kt+1,Y

t, θ
)
P
(
St+1, Kt+1|Y t, θ

)
∝ P

(
yt+1|St+1, Kt+1,Y

t, θ
)
P
(
St+1|Kt+1, Y

t, θ
)
P
(
Kt+1|Y t, θ

)
∝ P

(
yt+1|St+1, Kt+1,Y

t, θ
)
P
(
St+1|Kt+1, Y

t, θ
)
P
(
Kt+1 = 1|Y t, θ

)
+P

(
yt+1−R̂t+1 |St+1−R̂t+1 , Kt+1,Y

t, θ
)
P
(
St+1−R̂t+1|Kt+1, Y

t, θ
)
P
(
Kt+1 = 2|Y t, θ

)
.

• —Updating states probability

Since I observe the data yt+1, I observe the interest rate. If Rt+1 = 1, I deduce that

P
(
Kt+1 = 1|Y t+1

)
= 0, and P

(
Kt+1 = 2|Y t+1

)
= 1
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and vice versa. So I do not need to track the long history of the states because when I know

the history of Y t I know for certain the history of the states. The distribution of the states

at each time is degenerated. In practice, any quarterly federal funds rate that is smaller

than 40bp15 is treated as a zero interest rate.

4.2 Data

I use the United States quarterly data from the third quarter of 1987 (1987q3) to the third

quarter of 2010 (2010q3) for the following three series: real GDP per capita, core personal

consumption expenditures (PCE) deflator, and nominal effective federal funds rate.16 All

data are extracted from the Federal Reserve Economic Data (FRED) maintained by the

Federal Reserve Bank of St. Louis. The mapping between these observable variables and

the state variables in the DSGE models is

∆Y obs
t = 100(γ + Ŷz,t − Ŷz,t−1 + ẑt),

πobst = 100(π + π̂t),

robst = 100(r + r̂t),

where all state variables are in deviations from their ergodic steady state values (correspond-

ing to the ergodic steady state R for the policy rate), π ≡ ln(Π) and r ≡ ln(R).

I construct the real GDP per capita series by dividing the nominal GDP series by the

population and the GDP deflator. The observable ∆Y obs
t , the growth rate of real GDP,

corresponds to the first difference in logs of this series, multiplied by 100. The log-difference

of the quarterly personal consumption expenditures (PCE) core price index is the measure

of inflation. I use the effective federal funds rate as the measure of the nominal short-term
15Admittedly, this cut-off choice is arbitrary.
16I use an extended sample, starting in 1975q1, to initialize the filter, but the likelihood function itself is

evaluated only for the period starting in 1987q3, conditional on the previous sample.
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rates.

4.3 Prior Choice

Tables 1 and 2 (columns two to four) summarize the prior distributions of each parameter

in the regime-switching DSGE model. I fix the coeffi cient of relative risk aversion σ at 2. I

use Gamma distributions for the prior distributions of the parameters that economic theory

suggests must be positive. For those parameters that are defined over the interval [0, 1], I

use the Beta distribution. For the standard deviation of the structural shocks, I use the

Inverse-Gamma distribution.

The ergodic mean for inflation is centered at 2%, consistent with the Federal Open Market

Committee’s long-run goal. The steady state annualized growth rate of output is centred at

2.5%. The prior distribution of the discount factor implies the mean of the annualized real

interest rate is 2%.

I follow Del Negro and Schorfheide (2008) to choose the priors for the standard parameters

in the DSGE models. Table 1 contains two nonstandard parameters (P11 and P22) specific

to this regime-switching model, which controls the Markov switching probability of staying

in the normal regime at time t+ 1 when it is in the normal regime at time t and the Markov

switching probability of staying in the ZIRP regime at time t + 1 when it is in the ZIRP

regime at time t. P11 is centered at 0.986, which implies an expected duration of staying in

the normal regime is 17.86 years. P22 is centered at 0.825 at prior, which implies an expected

duration of staying in the ZIRP regime is 5.7 quarters, consistent with what is observed in

the data by 2010Q3.

The prior for the price rigidity parameter, ζp, is centred at 0.5 with a standard deviation

of 0.1, as in Smets and Wouters (2007). The interest rate smoothing parameter, ρr, is

centered at 0.7. The interest rate feedback to output growth, φy, is centred at 0.4, and the

feedback to inflation, φπ, is centred at 1.5 at priors.
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All of the structural shocks follow AR(1) processes. Their autocorrelation coeffi cients are

centred at 0.75, with the exception of productivity shocks whose autocorrelation coeffi cient

is centered at 0.4, because this process characterizes the transitory shock to the growth rate

of the technology process.

4.4 Parameter Posterior Distribution

In order to obtain the posterior distribution of the parameters, I first obtain the posterior

mode by maximizing the likelihood function. The last column of tables 1 and 2 report the

posterior mode of each parameter. I then use the random walk Metropolis Hastings algorithm

to draw from the posterior distributions. I store those parameter draws and use them for

simulation exercises discussed later.

The Markov switching probabilities are well identified because, although the priors are

concentrated at their mean, the posterior modes of the transition probabilities are very

distinguishable from the prior means. The posterior distributions indicate that the expected

duration of staying in the normal regime is 25.45 quarters, and the expected duration of

staying in the ZIRP regime is 4.44 quarters. One may argue that data seem to suggest that

we have been in the ZIRP regime for at least 20 quarters (from 2009Q1 to 2013Q4). There

are two reasons why the estimated duration is substantially shorter than what has happened

in actuality. First, the data in my estimation stops at the third quarter of 2010, by which

there were only 6 quarters of zero interest rate policy. Second, I treat the 8 quarters from

2002Q4 to 2004Q3 as a ZIRP regime (quarterly FFR is less than 40 basis points) so that we

have observations of exiting the ZIRP regime. The time of staying in the ZIRP regime is

also short here.
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4.5 The Effi cacy of the ZIRP in DSGE models

Having estimated the DSGE models, I abstract the filtered states, and, starting from

2010Q4, I simulate the U.S. economy forward for 20 quarters under two scenarios. Under

the first scenario, there is no intervention from the central bank, and all of the structural

shocks are zero. So, output should gradually go back to its long-term trend, and inflation

and interest rates should gradually go back to their steady states. Under the second scenario,

the economy is under the intervention of ZIRP by the central bank. One complication of

the simulation in the regime-switching DSGE model is that agents have uncertainty over the

future states. There are 2t possible states at time t. To maintain tractability, I combine the

states with similar history and only keep track of 16 states at each period.17 The predicted

path of the macro variables is thus the probability weighted average of those 16 states.

When I simulate the U.S. economy under the ZIRP for an extended period, I consider

keeping interest rates at zero for four, five, and six quarters at the regime-switching model

and keeping interest rates at the 2010Q3 level for four, five, and six quarters in the model

where the ZIRP is implemented by the PFRE. In the regime-switching model, at each period,

agents ex ante always attach a non-zero probability of exiting the ZIRP regime in the next

period, and the ZIRP regime is realized for four, five, or six quarters ex post. In the PFRE

model, agents know that the ZIRP will be kept for four, five, or six quarters. I choose

four, five, and six quarters because participants of the Blue Chip Survey of Professional

Forecasters (Blue Chip Survey) expected the ZIRP to last four or five quarters at the end of

2010 when LSAP II was implemented. However, since the 2011 October FOMC meeting, the

Blue Chip survey suggests that the expected number of quarters until the lift-up of ZIRP is

seven or more (top-coded).

Figure 1 and figure 2 show the predicted paths of the output growth rate, inflation,

17See Schorfheide (2005) for how this tractability can be achieved.
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and the federal fund rate under the ZIRP generated by the regime-switching model and the

PFRE model. The red lines in those two figures are the predicted paths of those macro

variables without the ZIRP. The blue, green, and magenta lines are the predicted paths

with the ZIRP for four, five, and six quarters, respectively. The black dots are the actual

observations. All variables are percentage measured quarterly except the output growth rate,

which is annualized. Zero interest rate policy is effective in boosting output and inflation.

Both of the models considered suggest substantial effects of the ZIRP. The effects are stronger

if the ZIRP is kept for a longer period.18 Also the effects are not monotonic: Although the

overall effects are positive, the stimulus to output growth rate is most significant in the near

term, and the positive effects gradually revert back.19 In early periods for inflation, the

effects are negative, however, the effects of ZIRP on inflation quickly turn positive and also

are long-lasting. Notice that due to the lack of macro shocks, none of the predicted paths

should be expected to match the actual data, but the predicted paths generated by the

regime-switching model are still close to the actual realizations, which is a desirable feature

of the model because it implies that we only need small structural macro shocks to match

the observed data.

Figure 3 summarizes the effects of the ZIRP in the regime-switching DSGE models. At

each time of the simulated path, I take the difference of the macro variables with and without

the ZIRP intervention, and sum up over 20 quarters. This figure plots the total effects. The

squares stand for the mean effects and the circles, which are the 90 percent credible sets,

reflect the uncertainty of posterior parameter draws. Blue, green, and magenta represent the

macro effects of the policy of keeping interest rates at zero for four, five, and six quarters,

respectively. The regime-switching DSGE model suggests that keeping interest rates at zero

18Notice that in the regime-switching model, the future paths of macro variables are expected, while in
the perfect foresight model, there is no uncertainty.
19See figure 3.
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for four, five, and six quarters on average20 increases the output growth rate by 0.064%,

0.09%, and 0.12%, respectively21 and inflation by 0.544%, 0.72%, and 0.90%, respectively22

over the course of 20 quarters cumulatively. The effects implied by the upper bound of the

90% credible sets can be very significant.

Figure 2 shows that the non-regime-switching model where the ZIRP is implemented by

the PFRE suggests much stronger stimulus on output growth rate at peak and on inflation:

On average, keeping ZIRP for four, five, and six quarters increases output growth rate by

2.62%, 5.00%, and 9.41% at peak, respectively, though the total cumulative effect gradually

reverts back, reaching almost zero after 20 quarters.23 The effect of the ZIRP on inflation

implied by the PFRE model is always large and long-lasting. On average, the cumulative

effect on inflation of keeping ZIRP for four, five, and six quarters24 is 8.53%, 17.92%, and

36.29%, respectively. As mentioned earlier, those two models are fundamentally different in

how agents formulate their expectations about future monetary policy. The central bank’s

"extended period" language is treated as completely credible by the agents in the PFRE

model, while the regime-switching model abstracts from the central bank’s forward guidance.

Notice that the PFRE model generates a spurious rise in inflation. The predicted path

generated by the PFRE is explosive while the predicted path generated by the regime-

switching model is closer to the actual path; therefore, I argue that the regime-switching

DSGE model is better suited to analyzing the effects of ZIRP.

4.6 Robustness

20Average over 500 simulations.
21Peak at 0.35%, 0.44%, and 0.54%, respectively.
22Peak at 0.544%, 0.72%, and 0.90%, respectively.
23However, the stimulus on output level is positive and long-lasting. On average, keeping ZIRP for four

quarters increases output level by 25.01% over the course of 20 quarters cumulatively.
24In the regime-switching model, zero interest rates are realized ex post. Ex ante, agents always expect to

exit zero-interest-rate regime with some non-zero probability.
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The advantage of estimating the model using data up to 2010Q3 is that we can compare

the predictive distributions of the macro variables derived from the model with the actual

observables because we have some realizations of the macro variables of interest. Obviously

the Markov transition probability estimated depends on the number of quarters of zero

interest rates. Also the expected quarters until the lift-off of ZIRP have changed. A natural

question to ask is do the implications of ZIRP change if we estimate the model up to the

current data and calibrate the quarters of ZIRP according to current market expectations? I

estimate the same model using the data up to the second quarter of 2013, and then simulate

the economy forward with and without the ZIRP. ZIRP is realized for seven or eight quarters

because since the 2011 October FOMCmeeting, the median response of the Blue Chip survey

suggests that the expected number of quarters until the lift-off of ZIRP is seven or more.

Figure 4 shows the predicted paths of the output growth rate, inflation, and the federal

fund rates with and without the ZIRP generated by the regime-switching model. The red

lines are the predicted paths of those macro variables without the ZIRP. The blue and green

lines are the predicted paths with the ZIRP for seven and eight quarters, respectively. On

average, keeping ZIRP for seven and eight quarters increases output growth rate by 0.105%

and 0.137%, respectively, and inflation by 0.666% and 0.794%, respectively, over 20 quarters

cumulatively. So the regime-switching model suggests that ZIRP is effective in boosting

economic activity.

5 Conclusions

Given the novelty of unconventional monetary policies, it is critical for economists to

construct models capable of assessing their effectiveness and guiding policy. This paper

develops a new approach to modeling the ZIRP that not only fits the macro data featuring

a persistent period of extremely low interest rates, and generates a predicted path closer to
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the actual path, but also provides a plausible mechanism for modeling the exit of the zero

interest rate policy. I find that the Federal Reserve’s decision to maintain a zero interest

rate for a lengthy period is likely to be effective in boosting economic activity.
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Table 1: Parameter Prior and Posterior Distribution: Structural Parameters.

Prior Posterior
Dist Mean Std Mode

400γ G 2.5 0.5 2.2951
400π G 2.0 0.5 1.8648

400(β−1 − 1) G 1.0 0.25 0.9141
ν G 2.0 0.5 1.8318
ζp B 0.5 0.1 0.8962
ρr B 0.7 0.1 0.7368
φπ G 1.5 0.25 1.8036
φy G 0.4 0.2 0.3878
P11 B 0.986 0.05 0.9607
P22 B 0.825 0.10 0.7749
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Table 2: Parameter Prior and Posterior Distribution: Shock Process Parameters.

Prior Posterior
Dist Mean Std Mode

ρz B 0.4 0.2 0.4471
ρb B 0.75 0.1 0.8845
ρg B 0.75 0.1 0.7338

100σz IG1 0.5 4 0.6779
100σb IG1 0.5 4 0.9235
100σm IG1 0.5 4 0.2551
100σg IG1 0.5 4 0.8033
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6 Figures

Fig. 1: Simulation of the U.S. economy forward from 2010Q4 under the ZIRP intervention
in the regime switching DSGE model. The red lines show the mean of predicted paths of the
macro variables without shocks and under no intervention. The blue, green, and magenta
lines are the predicted paths with the ZIRP for four, five, and six quarters, respectively.The
black dots are actual observations.
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Fig. 2: Simulation of the U.S. economy forward from 2010Q4 under the ZIRP intervention
implemented by the PFRE. The red lines show the mean of predicted paths of the macro
variables without shocks and under no intervention generated by the DSGE models. The
blue, green, and magenta lines are the predicted paths with the ZIRP for four, five, and six
quarters, respectively.
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Fig. 3: Summary of macro effects of ZIRP in the regime-switching DSGEmodel. The squares
stand for mean effects and the circles, which are the 90 credible sets, reflect the uncertainty
of posterior parameter draws. Blue, green, and magenta represent the macro effects of the
policy of keeping interest rates at zero for four, five, and six quarters, repectively.
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Fig. 4: Simulation of the U.S. economy forward from 2013Q3 under the ZIRP intervention
in the regime switching DSGE model. The red lines show the mean of predicted paths of the
macro variables without shocks and under no intervention. The blue and green lines are the
predicted paths with the ZIRP for seven and eight quarters, respectively.

Fig. 4: Simulation of the U.S. economy forward from 2013Q3 under the ZIRP intervention
in the regime switching DSGE model. The red lines show the mean of predicted paths of the
macro variables without shocks and under no intervention. The blue, green, and magenta
lines are the predicted paths with the ZIRP for four, five, and six quarters, respectively.
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7 Appendix: Proof that Schorfheide (2005) and Liu et

al. (2011) give rise to the same solution

This section assumes that the only regime-switching parameter is the target steady state

interest rate

Schorfheide (2005):

R̂t = ρRR̂t−1 + (1− ρR)ϕππ̂t + (1− ρR)ϕyŷt + εR,t + (1− ρR) (1− ϕπ) R̂∗t

= ρRR̂t−1 + (1− ρR)ϕππ̂t + (1− ρR)ϕyŷt + ε∗R,t,

where

ε∗R,t = εR,t + (1− ρR) (1− ϕπ)

[
log

(
R1
R

)
, log

(
R2
R

)]
ês,t.

Solution by gensys can be written as below, where I assume the first shock is ε∗R,t :

yt = Θ1yt−1 + Θ0zt + Θy

∞∑
s=1

Θs
fΘzEtzt+s

= Θ1yt−1 + Θ0zt + (1− ρR) (1− ϕπ) Θy

∞∑
s=1

Θs
fΘz

 1

0

0

[log

(
R1
R

)
, log

(
R2
R

)]
P s.

So the constant is

Θc (Kt) = (1− ρR) (1− ϕπ) Θ0·1 ·
[
log

(
R1
R

)
, log

(
R2
R

)]
es,t

= (1− ρR) (1− ϕπ) Θy

∞∑
s=1

Θs
fΘz

 1

0

0

[log

(
R1
R

)
, log

(
R2
R

)]
P ses,t.

Now I will prove that Liu, Waggoner, and Zha (2011) give rise to the same solution.

Assuming the first row of the equilibrium conditions is for the federal funds rate:
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 Γ0,


− (1− ρR) (1− ϕπ)

[
log
(
R1
R

)
, log

(
R2
R

)]
0
...


0 . . . , I2


[

yt

ês,t

]
=

[
Γ1 0

0 P

][
yt−1

ês,t−1

]
+

[
Ψ 0

0 I2

][
zt

νt

]
+

[
Πηt

0

]
.

Perform QZ decomposition on Γ0 and Γ1 and then premultiply both sides by

[
Q 0

0 I2

]
:

[
Qnxn 0

0 I2

] Q′ΛZ ′,


− (1− ρR) (1− ϕπ)

[
log
(
R1
R

)
, log

(
R2
R

)]
0
...


nx2

[0]2xn . . . , I2


[

yt

ês,t

]

=

[
Qnxn 0

0 I2

][
Q′ΩZ ′ 0

0 P

][
yt−1

ês,t−1

]
+

[
Qnxn 0

0 I2

]([
Ψ 0

0 I2

][
zt

νt

]
+

[
Πηt

0

])
,

and thus:

 ΛZ ′ Q


− (1− ρR) (1− ϕπ)

[
log
(
R1
R

)
, log

(
R2
R

)]
0
...


0 I2


[

yt

ês,t

]
(7.1)

=

[
ΩZ ′ 0

0 P

][
yt−1

ês,t−1

]
+

[
QΨ 0

0 I2

][
zt

νt

]
+

[
QΠηt

0

]
.

Let wt = Z ′yt, and wt−1 = Z ′yt−1. 7.1 becomes:

Λwt +Q


− (1− ρR) (1− ϕπ)

[
log
(
R1
R

)
, log

(
R2
R

)]
0
...

 ês,t

= Ωwt−1 +QΨzt +QΠηt,
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and thus:

[
Λ11 Λ12

0 Λ22

][
w1 (t)

w2 (t)

]
−Q




(1− ρR) (1− ϕπ)
[
log
(
R1
R

)
, log

(
R2
R

)]
0
...

 ês,t + Ψzt + Πηt


︸ ︷︷ ︸

xt

(7.2)

=

[
Ω11 Ω12

0 Ω22

][
w1 (t− 1)

w2 (t− 1)

]
.

Let M = Ω−122 Λ22 and solve forward:

w2 (t) = −Et

[ ∞∑
s=1

M s−1Ω−122 x2 (t+ s)

]

= −
[ ∞∑
s=1

M s−1Ω−122 x2 (t+ s)

]
.

Replace xt with their definition and use the fact Etηt+s = 0 :

= −Et

 ∞∑
s=1

M s−1Ω−122 Q2·

ΨZt+s +


(1− ρR) (1− ϕπ)

[
log
(
R1
R

)
, log

(
R2
R

)]
0
...

 ês,t+s




= −

 ∞∑
s=1

M s−1Ω−122 Q2·

ΨZt+s +


(1− ρR) (1− ϕπ)

[
log
(
R1
R

)
, log

(
R2
R

)]
0
...

 ês,t+s + Πηt+s


 ,

and thus:
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Q2·Πηt+1 =

∞∑
s=1

Ω22M
s−1Ω−122 Q2· (Ψ (Et+1zt+s − Etzt+s))

+
∞∑
s=1

Ω22M
s−1Ω−122 Q2·




(1− ρR) (1− ϕπ)
[
log
(
R1
R

)
, log

(
R2
R

)]
0
...

 (Et+1ês,t+s − Etês,t+s)

 .

If the solution is unique:

Q1·Π = ΦQ2·Π.

Premultiplying 7.2 by [I − Φ] :[
Λ11 Λ12 − ΦΛ22

0 I

][
w1 (t)

w2 (t)

]

−
[
Q1· − ΦQ2·

0

]


(1− ρR) (1− ϕπ)
[
log
(
R1
R

)
, log

(
R2
R

)]
0
...

 ês,t


=

[
Ω11 Ω12 − ΦΩ22

0 0

][
w1 (t− 1)

w2 (t− 1)

]
+

[
Q1· − ΦQ2·

0

]
Ψzt

−
[

0

Et
[∑∞

s=1M
s−1Ω−122 x2 (t+ s)

] ] .
Finally,
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yt+Z

[
Λ−111 Λ−111 (Λ12 − ΦΛ22)

0 I

][
Q1· − ΦQ2·

0

]

− (1− ρR) (1− ϕπ)

[
log
(
R1
R

)
, log

(
R2
R

)]
0
...

 ês,t


= Z

[
Λ−111 Λ−111 (Λ12 − ΦΛ22)

0 I

][
Ω11 Ω12 − ΦΩ22

0 0

]
Z ′yt−1

+ Z

[
Λ−111 Λ−111 (Λ12 − ΦΛ22)

0 I

][
Q1· − ΦQ2·

0

]
Ψzt

− Z
[

Λ−111 Λ−111 (Λ12 − ΦΛ22)

0 I

][
0

Et
[∑∞

s=1M
s−1Ω−122 Q2·Ψzt+s

] ]

− Z
[

Λ−111 Λ−111 (Λ12 − ΦΛ22)

0 I

]
·

0

Et

∑∞s=1M s−1Ω−122 Q2·


(1− ρR) (1− ϕπ)

[
log
(
R1
R

)
, log

(
R2
R

)]
0
...

 ês,t+s


 .

By simplifying notation, I can rewrite the above equation as:

yt = Θ1yt−1 + Θ0

Ψzt +


(1− ρR) (1− ϕπ)

[
log
(
R1
R

)
, log

(
R2
R

)]
0
...

 ês,t



+ Θy

∞∑
s=1

Θs−1
f ΘzEt

Ψzt+s +


(1− ρR) (1− ϕπ)

[
log
(
R1
R

)
, log

(
R2
R

)]
0
...

 ês,t+s

 ,

where

Θ1 = Z

[
Λ−111 Λ−111 (Λ12 − ΦΛ22)

0 I

][
Ω11 Ω12 − ΦΩ22

0 0

]
Z ′,
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Θ0 = Z

[
Λ−111 Λ−111 (Λ12 − ΦΛ22)

0 I

][
Q1· − ΦQ2·

0

]
,

Θy = −Z
[

Λ−111 Λ−111 (Λ12 − ΦΛ22)

0 I

]
,

Θf = M,

and

Θz = Ω−122 Q2·.

This expression is exactly the same as treating ês,t+s as a shock as in Schorfheide (2005).
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