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1 Introduction

Government bond yields with different maturities and macroeconomic variables are both character-

ized by a high degree of comovement, indicating that the bulk of their dynamics is driven by a few

common forces. Three common factors, usually interpreted as the level, slope and curvature of the

yield curve, can explain changes and shifts of the entire cross-section of yields, see Litterman and

Scheinkman (1991). Although there is less consensus on the number and nature of macroeconomic

factors, two factors, one nominal and one real, summarize well the dynamics of a large variety of

macroeconomic indicators for the United States, see Sargent and Sims (1977), Giannone, Reichlin

and Sala (2005) and Watson (2005).

Macroeconomic factors and yield curve factors are also characterized by a strong interaction.

The short end of the yield curve moves closely to the policy instrument under the direct control

of the central bank, which responds to changes in inflation, economic activity, or other economic

conditions, see Taylor (1993). The average level of the yield curve is usually associated with the

inflation rate and the spread between long and short rates with temporary business cycles condi-

tions, see Diebold, Rudebusch and Aruoba (2006). For these reasons, macroeconomic information

have been shown to help forecasting future interest rates and excess bond returns, see Ang and

Piazzesi (2003), Mönch (2008), De Pooter, Ravazzolo and van Dijk (2007), Favero, Niu and Sala

(2012) and Ludvigson and Ng (2009).

In this paper, we aim at identifying the factors summarizing macroeconomic information that is

not spanned by the traditional yield curve factors. The economic literature so far has not addressed

this problem since in existing studies macroeconomic factors are either proxied by preselected

observable variables, see Bianchi, Mumtaz and Surico (2009), Dewachter and Lyrio (2006), Diebold

et al. (2006), Joslin, Priebsch and Singleton (2014) and Wright (2011), or extracted from a large

set of macroeconomic indicators and treated separately from the yield curve factors, see Ang and

Piazzesi (2003), Favero et al. (2012), Ludvigson and Ng (2009), Mönch (2008) and Mönch (2012).

We estimate a macro-yield model that treats macroeconomic factors as unobservable com-
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ponents that we extract simultaneously with the traditional yield curve factors. The latter are

identified by constraining the loadings to follow the smooth pattern proposed by Nelson and Siegel

(1987). More specifically, our empirical model is a Dynamic Factor Model (DFM) for Treasury

zero-coupon yields and a representative set of macroeconomic variables with restrictions on the

factor loadings. Estimation is performed using a Quasi-Maximum Likelihood approach, as pro-

posed by Doz, Giannone and Reichlin (2012). This procedure is easily implementable using the

Kalman smoother and the Expectation Maximization algorithm. The estimator has been shown

to be feasible when the number of variables is large, and robust to non Gaussianity and to the

presence of weak cross-sectional correlation among the idiosyncratic terms. We validate the model

by assessing the forecasting ability for yields and excess returns of US government bonds.

Using monthly U.S. data from January 1970 to December 2008, we find that a significant

component of macroeconomic information is not captured by the yield curve factors and, at the

same time, is unspanned by the yield curve, in the sense that it does not affect contemporaneously

the cross-section of yields. The unspanned macroeconomic information is driven by two factors

that are well proxied by economic growth and real interest rates. These factors have substantial

predictive information for bond yields and excess bond returns, in spite of the fact that they do

not affect contemporaneously the shape of the yield curve. The macro-yields model explains up

to 55% of the variation in excess bond returns and outperforms all existing models in forecasting

bond yields and excess returns.

The paper is organized as follows. Section 2 presents the macro-yields model. Section 3 describes

the data, the estimation procedure and the information criteria used for model selection. Section

4 describes the empirical results and in-sample validation of the model. Section 5 reports out of

sample results for yields and excess bond returns and Section 6 concludes.
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2 The macro-yields model

The macro-yields model that we propose is a dynamic factor model for the joint behavior of gov-

ernment bond yields and macroeconomic indicators. The cross-section of yields is described by the

traditional level, slope and curvature factors. Macroeconomic variables load on both the yield curve

factors as well as on some additional macro factors, that capture the information in macroeconomic

variables over and above the yield curve factors. In addition, these additional macro factors are

assumed to not provide any information about the contemporaneous shape of the yield curve. In

practice, the level, slope and curvature implied by the Nelson and Siegel (1987) model are assumed

to be spanned by both the bond yields and macroeconomic variables. The additional macro fac-

tors, instead, are contemporaneously loaded only by the macroeconomic variables and, thus, are

unspanned by the cross-section of yield. The joint dynamics of the factors is an unrestricted vector

autoregression and the idiosyncratic components follow independent univariate autoregressions. In

what follows we detail on each of the points.

More specifically, we assume that yields on bonds with different maturities are driven by three

common factors. Denoting by yt the Ny × 1 vector of yields with Ny different maturities at time t,

we have

yt = ay + Γyy F
y
t + vyt , (1)

where F yt is a 3 × 1 vector containing the latent yield-curve factors at time t, Γyy is a Ny × 3

matrix of factor loadings, and vyt is an Ny × 1 vector of idiosyncratic components. The yield curve

factors F yt are identified by constraining the factor loadings to follow the smooth pattern proposed

by Nelson and Siegel (1987) (hereafter NS)

ay = 0; Γ(τ)
yy =

[
1

1− e−λτ

λτ

1− e−λτ

λτ
− e−λτ

]
≡ Γ

(τ)
NS , (2)

where Γ
(τ)
yy is the row of the matrix of factor loadings corresponding to the yield with maturity τ

months and λ is a decay parameter of the factor loadings. Diebold and Li (2006) show that this
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functional form of the factor loadings, implies that the three yield curve factors can be interpreted

as the level, slope and curvature of the yield curve. Indeed, the loading equal to one on the first

factor, for all maturities, implies that an increase in this factor increases all yields equally, shifting

the level of the yield curve. The loadings on the second factor are large for short maturities,

decaying to zero for the long ones. Accordingly, an increase in the second factor increases the slope

of the yield curve. Loadings on the third factor are zero for the shortest and the longest maturities,

reaching the maximum for medium maturities. Therefore, an increase in this factor augments the

curvature of the yield curve. The specific shape of the loadings depends on the decay parameter λ,

which we calibrate to the value that maximizes the loading on the curvature factor for the yields

with maturity 30 months, as in Diebold and Li (2006).

Given these particular functional forms for the loadings on the three yield curve factors, one

can summarize movements in the term structure of interest rates into three factors which have a

clear-cut interpretation. The NS factors are just linear combinations of yields. The level factor can

be proxied by the long term yield, the slope by the spread between the long and short maturity yield

(first derivative) and the curvature by sum of the spreads between a medium and a long term yield,

and between a medium and the short term yield (second derivative), see Diebold and Li (2006).1

Due to its flexibility and parsimony, the NS model accurately fits the yield curve and performs

well in out-of-sample forecasting exercises, as shown by Diebold and Li (2006) and De Pooter et al.

(2007). For these reasons, fixed-income wealth managers in public organizations, investment banks

and central banks rely heavily on NS type of models to fit and forecast yield curves, see BIS (2005),

ECB (2008), Gürkaynak, Sack and Wright (2007) and Coroneo, Nyholm and Vidova-Koleva (2011).

Macroeconomic variables, are assumed to be potentially driven by two sources of co-movement,

the yield curve factors F yt and macro specific factors. Denoting by xt the Nx× 1 vector of macroe-

conomic variables at time t, we have

xt = ax + Γxy F
y
t + Γxx F

x
t + vxt , (3)

1Similar proxies are used by Ang, Piazzesi and Wei (2006) and Duffee (2011a).
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where F xt is an r × 1 vector of macroeconomic latent factors, Γxy is a Nx × 3 matrix of factor

loadings on the yield curve factors, Γxx is a Nx × r matrix of factor loadings on the macro factors,

and vxt is an Nx × 1 vector of idiosyncratic components.

The yield curve and the macroeconomic factors are extracted by estimating (1) and (3) simul-

taneously

yt
xt

 =

 0

ax

+

Γyy Γyx

Γxy Γxx


F yt
F xt

 +

vyt
vxt

 , Γyy = ΓNS , Γyx = 0, (4)

where ΓNS is defined according to (2).

The joint dynamics of the yield curve and the macroeconomic factors follow a VAR(1)

F yt
F xt

 =

µy
µx

+

Ayy Ayx

Axy Axx


F yt−1
F xt−1

 +

uyt
uxt

 ,

uyt
uxt

 ∼ N
0,

Qyy Qyx

Qxy Qxx


 . (5)

The idiosyncratic components collected in vt = [vyt vxt ]′ are modelled to follow independent

autoregressive processes

vt = Bvt−1 + ξt, ξt ∼ N(0, R) (6)

where B and R are diagonal matrices, implying that the common factors fully account for the joint

correlation of the observations. The residuals to the idiosyncratic components of the individual

variables, ξt, and the innovations driving the common factors, ut, are assumed to be normally

distributed and mutually independent. This assumptions implies that the common factors are not

allowed to react to variable specific shocks.

The assumptions of Gaussianity and of independence among idiosyncratic components might

be sources of miss-specification. It is hard to relax these restrictions since they are necessary

to retain parsimony, insure identification of the common and idiosyncratic components and limit

computational complexity. However, Doz et al. (2012) have shown that, if the factor structure is

strong, the Maximum Likelihood estimates are robust not only to non Gaussianity but also to the
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presence of limited correlations among idiosyncratic components.

Allowing Γxy to be different from zero is crucial to insure that the macroeconomic factors F xt

capture only those source of co-movement in the macroeconomic variables that are not already

spanned by the yield curve factors. Existing studies, instead, have imposed a block-diagonal struc-

ture of the factor loadings (Γxy = 0 and Γyx = 0), either explicitly, as in Mönch (2012),2 either

implicitly by extracting the macro factors exclusively from macroeconomic variables, as in Ludvig-

son and Ng (2009).

Assuming that macroeconomic factors do not provide any information about the contemporane-

ous shape of the yield curve (Γyx = 0) restricts the macroeconomic factors F xt to be unspanned not

only by the yield factors but also by the entire cross-section of yields. This restriction is expected

to be immaterial since, as stressed above, the yield factors F yt are notoriously effective at fitting

the entire yield curve.

In this remainder of the paper we will maintain the restriction Γyx = 0 and leave Γxy un-

restricted, unless otherwise mentioned. The block-diagonal model (Γxy = 0, Γyx = 0) and the

unrestricted model (Γxy 6= 0) are considered in Appendix D.

3 Estimation and preliminary results

3.1 Data

We use monthly U.S. Treasury zero-coupon yield curve data spanning the period January 1970

to December 2008. The bond yield data are taken from the Fama-Bliss dataset available from

the Center for Research in Securities Prices (CRSP) and contain observations on three months

and one through five-year zero coupon bond yields. The macroeconomic dataset consists of 14

macroeconomic variables, which include five inflation measures, seven real variables, the federal

funds rate and a money indicator. Appendix B contains a complete list of the macroeconomic

2Mönch (2012) estimates his model with Bayesian methods since he claims that “Estimation of the model via
maximum likelihood techniques is infeasible due to the large number of model parameters” (pp. 578) on the contrary
of what is shown in Doz et al. (2012).
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variables along with the transformation applied to ensure stationarity. Following Ang and Piazzesi

(2003), De Pooter et al. (2007), Diebold et al. (2006) and Mönch (2008), we use annual growth

rates for all variables, except for capacity utilization, the federal funds rate, the unemployment rate

and the manufacturing index which we keep in levels.3

3.2 Estimation

Equations (4)–(6) describe a restricted state-space model with autocorrelated idiosyncratic compo-

nents for which maximum likelihood estimators of the parameters are not available in closed form.

Conditionally on the factors, the model reduces in a set of linear regressions. As consequence, the

Maximum Likelihood estimates can be easily computed using the Expectation Maximization (EM)

algorithm, as described in detail in Appendix A.4

We initialize the yield curve factors with the NS factors using the two-steps OLS procedure

introduced by Diebold and Li (2006). We then project the macroeconomic variables on the NS

factors and use the principal components of the residuals of this regression to initialize the un-

spanned macroeconomic factors. Γyy is restricted to be equal to the NS loadings. All the other

parameters are initialized with the OLS estimates obtained using the initial guesses of yield and

macro factors described above. Given the initial parameters, a new set of factors is obtained using

the Kalman smoother. If we stop at this stage, we have the two-step procedure of Doz, Giannone

and Reichlin (2011). Roughly speaking, Maximum Likelihood estimates are obtained by iterating

these two steps until convergence, see Doz et al. (2012).5

For comparison, we also estimate an only-yields model, which uses only the information con-

tained in the yields. This is a restricted version of the macro-yields model in equations (4)–(6) with

3Since the selection of variables has an element of arbitrariness, we have performed robustness checks with an
alternative databases constructed by Banbura, Giannone, Modugno and Reichlin (2012) that includes all the variables
that are constantly monitored by market participants. Results, reported in a separate Appendix, show that the main
findings are confirmed.

4Using the Expectation Conditional Restricted Maximization (ECRM) algorithm is also possible to estimate λ,
but, despite the increase in the computation burden, the empirical results remain qualitatively similar to those
obtained by setting λ to the value that maximizes the loading of the the yields with maturity 30 months on the
curvature factor.

5In Appendix E, we compare the initial estimates and find that the Maximum Likelihood provide significant
improvements.
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Qyx = Ayx = Γxy = 0 and can hence be estimated using the same procedure.

3.3 Model selection

The macro-yields model decomposes variations in yields and macroeconomic variables into yield

curve factors, unspanned macroeconomic factors and idiosyncratic noises. The yield curve factors

are identified as the NS factors which have a clear interpretation as level, slope and curvature.

However, the true number of unspanned macroeconomic factors is unknown. We select the optimal

number of factors using an information criteria approach. The idea is to choose the number of

factors that maximizes the general fit of the model using a penalty function to account for the loss

in parsimony.

Bai and Ng (2002) derive information criteria to determine the number of factors in approximate

factor models when the factors are estimated by principal components. They also show that their

IC3 information criterion can be applied to any consistent estimator of the factors provided that the

penalty function is derived from the correct convergence rate. For the quasi-maximum likelihood

estimator, Doz et al. (2012) show that it converges to the true value at a rate equal to

C∗2NT = min

{√
T ,

N

logN

}
(7)

where N and T denote the cross-section and the time dimension, respectively. Thus, a modified

Bai and Ng (2002) information criterion that can be used to select the optimal number of factors

when estimation is performed by quasi-maximum likelihood is as follows

IC∗(s) = log(V (s, F̂ ∗(s))) + s g(N,T ), g(N,T ) =
logC∗2NT
C∗2NT

(8)

where s denotes the number of factors, F̂(s) are the estimated factors and V (s, F̂ ∗(s)) is the sum

of squared idiosyncratic components (divided by NT) when s factors are estimated. The penalty

function g(N,T ) is a function of both N and T and depends on C∗2NT , the convergence rate of the

estimator, in our case given by (7).
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Table 1: Model selection

Number of factors IC∗ V

3 0.02 0.44
4 -0.03 0.31
5 -0.11 0.22
6 0.01 0.18
7 0.23 0.17
8 0.43 0.16

This table reports the information cri-
terion IC∗, as shown in (8) and (7), and
the sum of the variance of the idiosyn-
cratic components (divided by NT ), V ,
when different numbers of factors are
estimated.

To select the number of factors in the macro-yields model, we estimate the macro-yields model

in equations (4)–(6) allowing from three up to a total of eight factors, where the first three are

identified as the yield curve factors and the others are unspanned macro factors. Table 1 reports

the information criterion, as shown in Equation (8), and the sum of the variance of the idiosyncratic

components for these different specifications of the macro-yields model. The information criterion

selects the model with five factors, i.e. three yield curve factors plus two unspanned factors.

This is also confirmed by the fact that the strongest reduction in the sum of the variances of the

idiosyncratic components is obtained passing from the four to the five factors specification. Thus

our macro-yields model is a latent factor model with three factors that explain the cross-section of

yields and two unspanned macroeconomics factors.

4 In sample results

4.1 Model fit

Table 2 reports the share of variance of the macroeconomic variables explained by the macro-yields

factors. Results show that, as expected, the yield curve factors explain most of the variance of

the federal funds rate and the yields at different maturities. They also explain the part of the
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Table 2: Cumulative variance of yields and macro variables explained by the macro-yields factors

Level Slope Curv UM1 UM2

Government bond yield with maturity 3 months 0.59 0.94 1.00 1.00 1.00
Government bond yield with maturity 1 year 0.61 0.83 0.99 0.99 0.99
Government bond yield with maturity 2 years 0.65 0.78 0.99 0.99 0.99
Government bond yield with maturity 3 years 0.70 0.79 1.00 1.00 1.00
Government bond yield with maturity 4 years 0.74 0.80 0.99 0.99 0.99
Government bond yield with maturity 5 years 0.78 0.82 0.99 0.99 0.99
Average Hourly Earnings: Total Private 0.07 0.29 0.33 0.33 0.67
Consumer Price Index: All Items 0.19 0.48 0.48 0.50 0.85
Real Disposable Personal Income 0.00 0.02 0.03 0.34 0.36
Effective Federal Funds Rate 0.53 0.93 0.96 0.96 0.97
House Sales - New One Family Houses 0.00 0.19 0.19 0.23 0.23
Industrial Production Index 0.02 0.02 0.03 0.69 0.69
M1 Money Stock 0.17 0.25 0.25 0.25 0.31
ISM Manufacturing: PMI Composite Index (NAPM) 0.03 0.05 0.05 0.61 0.65
Payments All Employees: Total nonfarm 0.00 0.02 0.10 0.70 0.70
Personal Consumption Expenditures 0.16 0.23 0.33 0.46 0.78
Producer Price Index: Crude Materials 0.03 0.14 0.14 0.20 0.43
Producer Price Index: Finished Goods 0.03 0.32 0.32 0.33 0.80
Capacity Utilization: Total Industry 0.02 0.16 0.21 0.63 0.64
Civilian Unemployment Rate 0.44 0.54 0.55 0.65 0.68

This table reports the cumulative share of variance of yields and macro variables explained by the macro-
yields factors. The first three columns refer to the yield curve factors (level, slope and curvature) and the
last two to the unspanned macroeconomic factors (UM1 and UM2).
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variance of price indices, unemployment, nominal earnings, nominal consumption and money, in

line with previous studies, see Diebold et al. (2006). The first unspanned macro factor captures

the dynamics of industrial production and other real variables, while the second unspanned factor

mainly explains inflation and other nominal variables.6

Figure 1 displays the estimated factors of the macro-yields model. The top three plots report

the yield curve factors, while the bottom two refer to the unspanned factors. The estimated yield

curve factors of the macro-yields model are highly correlated with the NS factors, which we estimate

by ordinary least squares as in Diebold and Li (2006) and report in dashed red lines in the top

plots. The differences between the NS factors and the first three macro-yields factors are due to the

fact that, in the macro-yields model, the yield curve factors are common to both yield curve and

macroeconomic variables. In fact, in the macro-yields model, we extract the yield curve factors from

both yields and macroeconomic variables and impose the NS restrictions on the factors loadings

of the yields to identify them as yield curve factors. The two bottom plots of Figure 1 show the

unspanned macro factors. The bottom left plot reports the first unspanned macro factor along

with the industrial production index, while the bottom right plot reports the second unspanned

macroeconomic factor along with the real interest rate (computed as the difference between the

federal funds rate and the consumer price index). As it is clear from the plots, the first unspanned

macroeconomic factor closely tracks the industrial production index, with a correlation of 90%, and

the second unspanned macroeconomic factor proxies the real interest, with a correlation of 74%.

This is in line with the fact that, as reported in Table 2, the first unspanned macroeconomic factor

explains mainly measures of real economic activity, while nominal variables are explained partly

by the yield curve factors and partly by the second unspanned factor. We can thus conclude that

the macro-yields models identifies two unspanned macroeconomic factors: real economic activity

and real interest rate. In the next Section we assess the quantitative importance of the unspanned

6The two macroeconomic factors are not identified since any transformation HF xt , with H non-singular, gives an
observationally equivalent model. In order to achieve identification additional restrictions are required. We do not
impose such restrictions and the EM algorithm converges to the Maximum Likelihood solution that is ”close” to the
initialisation. Identification can be achieved by assuming that the second factor is not loaded by one of the indicators
of real economic activity. Once we impose this restriction, results do not change.
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Figure 1: Macro-yields factors
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This figure displays the estimated factors of the macro-yields model. The dashed red lines in the three top graphs

refer to the NS yield curve factors estimated by ordinary least squares as in Diebold and Li (2006). The red dashed

line in the bottom left plot refers to the industrial production index (IP), while the red dashed line in the bottom plot

refers to the real interest rate (FFR-CPI). The grey-shaded areas indicate the recessions as defined by the NBER.
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macroeconomic factors in explaining bond risk premia.

4.2 Bond risk premia

The bond risk premium measures the compensation required by risk averse investors to hold long-

term government bonds for facing capital loss risk, if the bond is sold before maturity.

Long-term yields are determined by market expectations for the short rates over the holding

period of the long-term asset plus a yield risk premium. Assuming a minimum investment horizon

of one year, we have

y
(τ)
t =

( τ
12

)−1 ∑
i=0,12,...,τ−12

Et[y
(12)
t+i ] + yrp

(τ)
t . (9)

An alternative measure for the bond risk premium can be obtained by looking at bond returns.

The one-year holding period bond return for a bond with maturity τ months is the return of buying

a bond with τ months to maturity at time t, selling it one year later, at time t+ 12, as a bond with

τ − 12 months to maturity, i.e.

r
(τ)
t+12 = −(τ − 12)y

(τ−12)
t+12 + τy

(τ)
t . (10)

The expected one-year holding period return on long term bonds equals the expected return on

short term bond plus the return risk premium

Et[r
(τ)
t+12] = y

(12)
t + rrp

(τ)
t , (11)

accordingly the return risk premium is the one-year expected return in excess of the one-year rate

rrp
(τ)
t = Et[r

(τ)
t+12]− y

(12)
t ≡ Et[rx(τ)t+12]. (12)
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The relation between the return risk premium and the yield risk premium is as follows

yrp
(τ)
t =

1

τ
Et

[
rrp

(τ)
t + rrp

(τ−12)
t+12 + . . .+ rrp

(24)
t+τ−24

]
, (13)

which means that the yield risk premium is the average of expected future return risk premia of

declining maturity. This implies that the statements in Equations (9) and (11) are equivalent, if

one equation holds with zero (constant) bond risk premium, the other equation holds with zero

(constant) bond risk premium as well.

The expectations hypothesis of the term structure of interest rates states that the yield risk

premium is constant. This implies that expected excess returns are time invariant and, thus, excess

bond returns should not be predictable with variables in the information set at time t. However, the

expectations hypothesis has been empirically rejected since Fama and Bliss (1987) and Campbell

and Shiller (1991). They find that excess returns can be predicted by forward rate spreads and by

yield spreads, respectively. More recent evidence by Cochrane and Piazzesi (2005) shows that a

linear combination of forward rates (the CP factor) explains between 30% and 35% of the variation

in expected excess bond returns. Moreover, Ludvigson and Ng (2009) find that macroeconomic

factors constructed as linear and non-linear combinations of principal components extracted from

a large data-set of macroeconomic variables (the LN factor) have important forecasting power for

future excess returns on U.S. government bonds, above and beyond the predictive power contained

in forward rates and yield spreads. Cooper and Priestley (2009) also find that the output gap has

in-sample and out-of-sample predictive power for U.S. excess bond returns.

The top panel of Figure 2 shows the 5 years to maturity yield along with the corresponding

components as in Equation (9), where the sum of expectations is the sum of forecasts produced

with our macro-yields model and the risk premium is the difference between the 5 years to maturity

yield and the sum of the forecasts of the 1 year to maturity yields. The expectation component

is larger than the risk premium but the graph shows that there is substantial variation of the

risk premium over time, which is not compatible with the expectations hypothesis. The middle
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Figure 2: Yield risk premium, 5-year bond
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This figure displays the yield risk premium using the 5 years to maturity bond. The top panel shows the 5 years

to maturity yield (red dashed line) along with the corresponding expectation (green dot-dashed line) and the yield

risk premium (blue line) components, computed as in Equation (9) using the macro-yields model. The middle

panel reports the yield risk premium according to the macro-yields model (blue line) and the standardized industrial

production growth (red dashed line). The bottom plot shows the yield risk premium obtained from the macro-yields

model (blue line) and the only-yields model (red dashed line). The grey-shaded areas indicate the recessions as

defined by the NBER.
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graph plots the risk premium against the industrial production index growth and it reveals that the

yield risk premium obtained from the macro-yields model displays a clear counter-cyclical pattern.

Its correlation with the industrial production index growth is -0.33. This is consistent with the

fact that investors want to be compensated for bearing risks related to recessions. Conversely, the

bottom graph in Figure 2, shows the risk premium obtained from the only-yields model. This model

delivers an acyclical risk premium, with a correlation of only -0.07 with the industrial production

index growth. This indicates that using macro variables greatly improves the estimates of the risk

premium.

Given that, as shown in Equation (13), the yield risk premium is the average of expected future

return risk premia of declining maturity, we analyze the predictive ability of the macro-yields model

for excess returns and compare it with the predictions of the only-yields model. We also compare

our results with predictions obtained using the CP factor, the LN factor and the CP and LN factors

combined.

We implement predictive regressions for the CP and LN factors by regressing excess bond

returns on the predictive factors Xt = {CPt, LNt} , as follows

rx
(τ)
t+12 = βXt + ε

(τ)
t+12. (14)

We construct the predictive factors Xt by pooling the predictive regression for the individual ma-

turities

rxt+12 = γxt + εt+12, (15)

where rxt+12 = 1
4

∑
τ=24,36,48,60 rx

(τ)
t+12 and xt contains the predictor variables. To construct the

CP factor we use the following predictor variables xCPt = [1, y
(12)
t , f

(24)
t , . . . , f

(60)
t ], where f

(τ)
t

denotes the τ -month forward rate.7 We estimate equation (15) using xCPt as predictor variables

7The τ -month forward rate for loans between time t+ τ − 12 and t+ τ is defined as

f
(τ)
t = −(τ − 12)y

(τ−12)
t + τy

(τ)
t .
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Table 3: In-sample fit of excess bond returns

Maturity MY OY CP LN LN+CP

2y 0.55 0.12 0.22 0.33 0.41
3y 0.53 0.12 0.24 0.33 0.43
4y 0.50 0.14 0.27 0.32 0.43
5y 0.46 0.15 0.24 0.30 0.40

This table reports the R2 for one-year ahead one year
holding period excess bond returns from different mod-
els. The columns MY and OY refer to the model-
implied expected excess bond returns from the macro-
yields model (MY) and the only-yields model (OY) re-
spectively. The columns CP, LN and CP+LN refer
to the predictive regression using the Cochrane and
Piazzesi (2005) factor (CP), the Ludvigson and Ng
(2009) factor (LN), and both the Cochrane and Pi-
azzesi (2005) and the Ludvigson and Ng (2009) factors
jointly.

and construct the CP factor as CPt = γ̂CPxCPt . To construct the LN factor, we use as predictor

variables xLNt = [1, PC1t, . . . , PC8t, PC13t ], where PC denotes principal components extracted

from a large dataset of 131 macroeconomic data series.8 We then estimate equation (15) using xLNt

as predictor variables and construct the LN factor as LNt = γ̂LNxLNt .

Notice that the LN factors are constructed aggregating principal components extracted from a

set of macroeconomic and financial variables without imposing that they are unspanned by the cross

section of the yields similarly to the factors extracted by assuming a block-diagonal structure on

the factor loadings. As a consequence, those factors duplicate information that is already spanned

by the yield factors.9

Results in Table 3 show that the macro-yields model explains about 46-55% of the variation

of one-year ahead excess returns, while the only-yields model can explain only the 12-15% of

the variation of the one-year ahead excess returns. Table 3 reports also the R-squared from the

predictive regressions of excess bond returns on the CP and the LN factors. Results show that the

CP factor explains 22-27% of the variation in one-year ahead excess returns, slightly lower than

8The 131 macroeconomic data series used to construct the LN factor have been downloaded from Sydney C.
Ludvigson’s website at http://www.econ.nyu.edu/user/ludvigsons/Data&ReplicationFiles.zip.

9See Appendix D.2.
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the value reported in Cochrane and Piazzesi (2005). This is due to the fact that our predictive

regressions are estimated on a more updated sample, and the performance of the CP factor has

deteriorated over time, as also shown by Thornton and Valente (2012). The LN factors explain a

third of the variation of future excess bond returns, while the CP and LN factors jointly explain

40-43% of the variation in one-year ahead excess bond returns, lower than what is explained by our

macro-yields model. We can thus conclude that, in-sample, the macro-yields model outperforms

the CP and the LN factors even combined.

Figure 3 shows the predicted and realized average excess bond returns from the macro-yields

and the only-yields model, and also from the predictive regressions using the CP and the LN factors.

The figure shows that the predicted excess bond returns from the only-yields model are quite flat,

indicating that the yield curve factors poorly predict excess bond returns. The CP factor seems

doing a better job than the only-yields model, but does not improve over the macro-yields model.

The macro-yields model is able to better predict the average excess return, also with respect to the

LN factor.

4.3 Unspanning conditions

Results in the previous section show that the unspanned macro factors play an important role in

explaining the term premium, despite being constrained to not affect current yields. In the context

of Equation (9), this can only happen if the unspanned macro factors have offsetting effects on

average expected future short rates and term premia, see Duffee (2011b).

To understand whether our macro factors are truly unspanned by the yield curve, we compute

the risk premium of an unrestricted macro-yields model which does not impose the zero restriction

on the factor loadings of the yields on the macro factors, i.e. Γyx 6= 0 in Equation (4).10 The

estimates of the bond premium delivered by this model are practically indistinguishable from the

estimates obtained using the macro-yields model which instead imposes the restriction Γyx = 0

(the correlation between the estimates is 0.99). The fact that imposing the unspanning restrictions

10In Appendix D we report more extensive results for the unrestricted macro-yields model.
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Figure 3: Average 1-year holding period excess return: realized and predicted
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This figure displays the average excess return rxt+12 (blue continuous line) and the corresponding predicted values

from different models (dashed red line). The dashed red line in the top plots refer to the model-implied predicted

values from the macro-yields MY model (top right) and only-yields OY model (top left). The dashed red line in the

bottom plots refer to the predicted values from the predictive regressions using the CP factors (bottom left) and the

LN factor (bottom right). The grey-shaded areas indicate the recessions as defined by the NBER.
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Table 4: Likelihood ratio test statistic for the unspanning restrictions

H0 Test statistic p-value

Γyx = 0 12.85 0.38
Ayx = 0 79.03 0.00

This table reports the likelihood ratio test statistic
for the unspanning restrictions and the correspond-
ing p-values, computed using a chi-squared distribu-
tion with degrees of freedom equal to the number of
restrictions tested. The first line refers to the null
hypotheses Γyx = 0 in Equation (4) while the second
line refers to the null hypotheses Ayx = 0 in Equa-
tion (5).

has no effect on the yield risk premium indicates that the macro factors are unspanned by the

yield curve. In practice, this means that, in periods of recession, the unspanned macro factors

increase the risk premium and decrease the expected future short rates by the same amount,

without contributing to a steepening of the current yield curve. Conversely, in periods of economic

expansion, the unspanned macro factors decrease the bond premium and increase the expected

future short rates by the same amount, without contributing to a flattening of the current yield

curve. Changes in the current shape of the yield curve can only be determined by changes in the

yield curve factors.

To formally test for the unspanning properties in the context of our state-space macro-yields

model, we define a factor as unspanned by the yield curve if it satisfies the following two conditions.

First, it doesn’t affect the current cross-section of yields, i.e. it is not loaded contemporaneously

by the yields (Γyx = 0 in Equation (4)). Second, it has predictive ability for the yield curve factors

(Ayx 6= 0 in Equation (5)), see also Joslin et al. (2014).

The unspanning conditions can be tested performing likelihood ratio tests, as follows

LR = 2× (Lu − Lr) (16)

where LR has a chi-squared probability distribution with degrees of freedom equal to the number

of restrictions imposed. To compute the likelihood ratio test for for the zero restrictions on the
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factor loadings, Lu denotes the loglikelihood of an unrestricted macro-yield model that does not

impose the restriction Γyx = 0 and Lr is the loglikelihood of our macro-yields model. The test

statistic in Table 4 shows that we cannot reject the null of zero factor loadings of the yields on the

macro factors. This implies that, indeed, the macro factors do not affect the current shape of the

yield curve.11

To test the predictive ability of the macro factors obtained from macro-yields model in Equa-

tions (4)–(6) for the yield factors, and therefore the yield curve of interest rates, we perform the

likelihood ratio test statistics in Equation (16), where, in this case, Lu is the loglikelihood of our

macro-yield model and Lr is the restricted loglikelihood obtained imposing Ayx = 0 in Equation

(5). Results in Table 4 show that we can reject the null hypothesis of no Granger causality from

the macro factors to the yield curve factors.

These testing results show that the macroeconomic factors identified by the macro-yields model

do not explain the cross-section of yields but have predictive ability for the future evolution of the

yield curve. As a consequence, they satisfy both conditions for being truly unspanned macroeco-

nomic factors. Moreover, looking at the coefficients and their relative standard errors, available in

Appendix F, we can infer that the first unspanned factor, proxied by economic growth, Granger

causes the slope and the curvature, while the second unspanned factor, proxied by the real interest

rate, Granger causes the level.

5 Out of sample forecast

To evaluate the predictive ability of the macro-yields model, we generate out-of-sample iterative

forecasts of the factors, as follows

Et(F
∗
t+h) ≡ F̂ ∗t+h|t = (Â∗|t)

hF̂ ∗t|t,

11This result is due to the fact that almost the totality of the fluctuations of bond yields is explained by the Nelson
and Siegel factors. The same result may not hold when the yield factors provide a poorer fit of the yields, as in Joslin,
Le and Singleton (2013).
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where h denotes the forecast horizon and Â∗|t is estimated using the information available till time

t.12 We then compute out-of-sample forecasts of the yields given the projected factors, in this way

Et(zt+h) ≡ ẑt+h|t = Γ̂∗|tF̂
∗
t+h|t.

where Γ̂∗|t is estimated using data up to time t.

Collecting the excess returns for bonds with maturities from two to five years in the vector rxt.

We compute the out-of-sample predictions of excess bond returns as follows

Et(rxt+12) ≡ rxt+12|t = Π1yt+12|t + Π2yt = Π1(Γ̂
∗
|tF
∗
t+12|t) + Π2yt, (17)

where Π1 =

[
D[−1:−K] 0[K×1]

]
, Π2 =

[
−1[K×1] D[2:K+1]

]
, D[−1:−K] denotes a diagonal

matrix with elements −1,−2, . . . ,−K in the diagonal and K + 1 denotes the total number of

maturities. Notice that Equation (17) implies that the forecast errors made in forecasting the

excess returns are proportional to the ones made in forecasting the yields, i.e. rxt+12|t − rxt+12 =

Π1(yt+12|t − yt+12), see Carriero, Kapetanios and Marcellino (2012).

We forecast yields and excess returns recursively using data from January 1970 until the time

that the forecast is made, beginning in January 1990 to December 2008.

5.1 Yields

To evaluate the prediction accuracy of the macro yields model for out of sample forecasts of yields,

we use the Mean Squared Forecast Error (MSFE), i.e. the average squared error in the evaluation

period for the h-months ahead forecast of the yield (or excess return) with maturity τ

MSFEt1t0(τ, h,M) =
1

t1 − t0 + 1

t1∑
t=t0

(
ŷ
(τ)
t+h|t(M)− y(τ)t+h

)2
, (18)

12See Appendix A for the definitions of F ∗
t , Γ∗ and A∗.
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Table 5: Out-of-sample performance for yields

Macro-Yields

Maturity 3m 1y 2y 3y 4y 5y

h=1 1.17 1.05 1.06 1.00 1.05 1.14
h=3 0.79* 0.93 0.99 0.96 0.99 1.02
h=6 0.78** 0.89 0.94 0.93 0.93 0.94
h=12 0.69** 0.74** 0.79** 0.80*** 0.80*** 0.80***
h=24 0.62*** 0.66*** 0.74** 0.82** 0.88* 0.97

Only-Yields

Maturity 3m 1y 2y 3y 4y 5y

h=1 0.93 1.09 1.17 1.11 1.07 1.11
h=3 0.96 1.13 1.20 1.14 1.10 1.13
h=6 0.99 1.18 1.25 1.21 1.15 1.16
h=12 1.04 1.16 1.26 1.27 1.25 1.26
h=24 1.06 1.12 1.27 1.39 1.49 1.62

This table reports the relative MSFE of the macro-yields model and the only-yields
model over the MSFE of the random walk for multi-step predictions of the yields.
The first column reports the forecast horizon h. The sample starts on January 1970
and the evaluation period is January 1990 to December 2008. *, ** and *** denote
significant outperformance at 10%, 5% and 1% level with respect to the random walk
according to the White (2000) reality check test with 1,000 bootstrap replications
using an average block size of 12 observations.

where t0 and t1 denote, respectively, the start and the end of the evaluation period, y
(τ)
t+h is the

realized yield with maturity τ at time t+ h and ŷ
(τ)
t+h|t(M) is the h-step ahead forecast of the yield

with maturity τ from model M using the information available up to t.

Forecast results for yields are usually expressed as relative performance with respect to the

random walk, which is a näıve benchmark for yield curve forecasting very difficult to outperform,

given the high persistency of the yields. The random walk h-steps ahead prediction at time t of

the yield with maturity τ is

Et(y
(τ)
t+h) ≡ ŷ(τ)t+h|t = y

(τ)
t ,

where the optimal predictor does not change regardless of the forecast horizon. To measure the

relative performance of the macro-yields model with respect to the random walk, we use the relative
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Figure 4: 12-months ahead smoothed squared forecast errors for yields
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This figure displays the 5-years rolling 12-months ahead squared forecast error for the yields with 3, 36 and 60

months to maturity. The blue continuous line refers to the 5-years rolling squared forecast error of the macro-yields

MY model (left plots) and of the only-yields OY model (right plots). The dashed red line refers to 5-years rolling

squared forecast error of the random walk. The dates on the horizontal axis refer to the end of the rolling window

period. The grey-shaded areas indicate the recessions as defined by the NBER.
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MSFE computed as

rMSFEt1t0(τ, h,M) =
MSFEt1t0(τ, h,M)

MSFEt1t0(τ, h,RW )
.

Table 5 reports the rMSFE with respect to the random walk for the macro-yields model the

only-yields model. Results in Table 5 show that the only-yields model is outperformed by the

macro-yields model for all but the 1-month horizon. Moreover, the macro-yields model outper-

forms the random walk at 3-, 6-, 12- and 24-month ahead for all the maturities, with significant

outperformance according to the White (2000) reality check test for the 12- and 24-month ahead

forecasts.13 This evidence is corroborated by Figure 4, which reports the 12-month ahead smoothed

squared forecast errors of the macro-yields, the only-yields and the random walk models for yields

with 3-, 36- and 60-month to maturity. The figure highlights how the macro-yields model has been

systematically outperforming the random walk, especially in the last part of the evaluation sample

for the short maturity and the first part of the sample for long maturities. The only-yield model,

instead has been performing as the random walk in the first part of the evaluation sample but its

performance deteriorated in the last part of the evaluation sample, significantly underperforming

the random walk. This indicates that the unspanned macroeconomic factors, while not important

for explaining the contemporaneous yields curve, contain useful information to predict the future

yield curve factors and, thus, the future evolution of the yield curve.

5.2 Excess bond returns

Out of sample forecast results for excess bond returns are reported in Table 6, which contains

the relative MSFE of the macro-yields model (MY) with respect to the constant excess return

benchmark, where one-year holding period excess returns are unforecastable at one year horizon, as

in the expectation hypothesis. We use the expectation hypothesis since, because of its simplicity,

represents a benchmark of unpredictability. The macro-yields model outperforms the constant

excess return benchmark for all maturities and the outperformance is significant for all maturities

according to the White (2000) reality check test.

13For more details about the reality check test see Appendix C.
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Figure 5: Smoothed mean squared forecast errors for excess bond returns
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This figure displays the 5-years rolling mean squared forecast error for one-year holding period excess bond returns

from the expectation hypothesis EH (blue continuous line) and the corresponding values from different models (dashed

red line). The dashed red line in the top plots refer to 5-years rolling mean squared forecast error of the macro-yields

MY model (top right) and only-yields OY model (top left). The dashed red line in the bottom plots refer to the

5-years rolling mean squared forecast error from the predictive regressions using the CP factors (bottom left) and

the LN factor (bottom right). The dates on the horizontal axis refer to the end of the rolling window period. The

grey-shaded areas indicate the recessions as defined by the NBER.
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Table 6: Out-of-sample predictive performance for excess returns

Maturity MY OY CP LN LN+CP

2y 0.76** 1.20 1.17 0.80 0.80
3y 0.75** 1.20 1.21 0.79 0.83
4y 0.74** 1.18 1.21 0.78 0.83
5y 0.75** 1.18 1.18 0.81 0.83

This table reports the relative MSFE of the macro-
yields model (MY ), the only-yields model (OY ), the
Cochrane and Piazzesi (2005) factor (CP ), the Ludvig-
son and Ng (2009) (LN) factor, the Cochrane and Pi-
azzesi (2005) and the Ludvigson and Ng (2009) factors
combined (LN+CP ) with respect to the expectation hy-
pothesis for excess returns. The sample starts on January
1970 and the evaluation period is January 1990 to De-
cember 2008. * and ** denote significant outperformance
at 10% and 5% level with respect to the expectation hy-
pothesis according the White (2000) reality check test
with 1,000 bootstrap replications using an average block
size of 12 observations.

Table 6 also reports the out-of-sample relative MSFEs of the excess bond returns forecasts using

the CP factor, the LN factor, and the CP and LN factors combined obtained from the predictive

regressions in (14). The worst performing models are the ones that do not use macroeconomic

variable, i.e. the only-yield model and the CP factors. In line with the predictive regressions

of excess bond returns and with the 12-month ahead out-of-sample forecast performance of the

macro-yields model for the yields, results in Table 6 show that the macro-yields model is the best

performing model for the prediction of the 1-year excess bond returns for all maturities followed by

the combination of the CP and LN factors. However, although the unspanned model significantly

outperforms the näıve benchmark while the CP+LN does not, we cannot reject the hypothesis that

the forecasts of these two models are statistically equally accurate.

To further understand the performance of the macro-yields model to predict 1-year holding

period excess bond returns, Figure 5 plots the 5-year rolling mean squared forecast error of the

macro-yields model, the only-yields model, the CP and LN factors along with the 5-year rolling

mean squared forecast error under the expectation hypothesis (EH). The figure shows that the

performance of the only-yield model and the CP factors are similar: both models outperform the
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expectation hypothesis in the first part of the evaluation sample but display large forecast errors in

the second part. Also the performance of the macro-yields model and the LN factors are similar,

they both provide more accurate predictions than the expectation hypothesis, in particular in

the last part of the evaluation period. However, it is clear from the figure that the macro-yields

model, apart from being the best performing model on average, as shown in Table 6, it is the best

performing model for the whole evaluation period. This is a clear evidence that the unspanned

macroeconomic factors identified by the proposed macro-yields model as related with economic

growth and real interest rates have predictive ability for the yield curve factors and, thus, for

excess bond returns.

6 Conclusions

In this paper we analyze the predictive content of macroeconomic information for the yield curve of

interest rates and excess bond returns in the United States. We find that two macroeconomic factors

characterizing economic growth and real interest are unspanned by the cross-section of government

bond yields and have significant predictive power for the bond yields and excess returns.

In future research, we plan to extend our empirical specification to allow for the zero lower

bound of interest rates, non-synchronicity of macroeconomic data releases and mixed frequencies.

The macro-yields model presented in this paper cannot be estimated on a sample that includes the

great recession, as it does not ensure a zero lower bound on interest rates. Our model model can,

however, be easily extended to deal with this issue by anchoring the shorter end of the yield curve

using market expectation, along the lines of Altavilla, Costantini, Giacomini and Ragusa (2012).

Data revisions and jagged edges due to the non-synchronicity of macroeconomic data releases

are important characteristics to be taken into account when extracting macroeconomic information,

see Giannone, Reichlin and Small (2008). In addition, bond yields are available at higher frequencies

than macroeconomic variables. These features can be easily incorporated into our empirical model

along the line described in Banbura et al. (2012).
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A Estimation procedure

We can rewrite the macro-yields model in equations (4)–(6) in compact form as

zt = a+ ΓFt + vt, (19)

Ft = µ+AFt−1 + ut, ut ∼ N(0, Q) (20)

vt = Bvt−1 + ξt, ξt ∼ N(0, R) (21)

where zt =

yt
xt

, Ft =

F yt
F xt

, a =

 0

ax

, Γ =

Γyy Γyx

Γxy Γxx

, A =

Ayy Ayx

Axy Axx

, Q =

Qyy Qyx

Qxy Qxx

,

µ =

µy
µx

 and Γyy = ΓNS is the matrix whose rows correspond to the smooth patterns proposed

by Nelson and Siegel (1987) and shown in equation (2). In addition Γyx = 0, as the macroeconomic

factors F xt are unspanned by the cross-section of yields Γyx = 0. We also estimate the only-yields

model using the same procedure, as it implies the following restrictions in (19)–(20): zt = yt, Ft =

F yt , a = 0, Γ = ΓNS , µ = µy.

The macro-yields model in (19)–(20) can be put in a state-space form augmenting the states Ft

with the idiosyncratic components vt and a constant ct as follows

zt = Γ∗F ∗t + v∗t , v∗t ∼ N(0, R∗)

F ∗t = A∗F ∗t−1 + u∗t , u∗t ∼ N(0, Q∗)

where Γ∗ =

[
Γ a IN

]
, F ∗t =


Ft

ct

vt

, A∗ =


A µ . . . 0

... . .
.

1
...

0 . . . . . . B

, u∗t =


ut

νt

ξt

, Q∗ =


Q . . . 0

... ε
...

0 . . . R


and R = εIn, with ε a very small fixed coefficient. In this state-space form, ct an additional state

variable restricted to one at every time t.
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The restrictions on the factor loadings Γ∗ and on the transition matrix A∗ can be written as

H1 vec(Γ∗) = q1, H2 vec(A∗) = q2,

where H1 and H2 are selection matrices, and q1 and q2 contain the restrictions.

We assume that F ∗1 ∼ N(π1, V1), and define y = [y1, . . . , yT ] and F ∗ = [F ∗1 , . . . , F
∗
T ]. Then

denoting the parameters by θ = {Γ∗, A∗, Q∗, π1, V1}, we can write the joint loglikelihood of zt and

Ft, for t = 1, . . . , T , as

L(z, F ∗; θ) = −
T∑
t=1

(
1

2
[zt − Γ∗F ∗t ]′ (R∗)−1 [zt − Γ∗F ∗t ]

)
+

−T
2

log |R∗| −
T∑
t=2

(
1

2
[F ∗t −A∗F ∗t−1]′(Q∗)−1[F ∗t −A∗F ∗t−1]

)
+

−T − 1

2
log |Q∗|+ 1

2
[F ∗1 − π1]′V −11 [F ∗1 − π1] +

−1

2
log |V1| −

T (p+ k)

2
log 2π + λ′1 (H1 vec(Γ∗)− q1) + λ′2 (H2 vec(A∗)− q2)

where λ1 contains the lagrangian multipliers associate with the constraints on the factor loadings

Γ∗ and λ2 contains the lagrangian multipliers associated with the constraints on the transition

matrix A∗.

The computation of the Maximum Likelihood estimates is performed using the EM algorithm.

Broadly speaking, the algorithm consists in a sequence of simple steps, each of which uses the

Kalman smoother to extract the common factors for a given set of parameters and multivariate

regressions to estimate the parameters given the factors. In practice, we use the restricted version of

the EM algorithm, the Expectation Restricted Maximization, since we need to impose the smooth

pattern on the factor loadings of the yields on the NS factors. The ERM algorithm alternates

Kalman filter extraction of the factors to the restricted maximization of the likelihood. At the j-th

iteration the ERM algorithm performs two steps:

1. In the Expectation-step, we compute the expected log-likelihood conditional on the data and
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the estimates from the previous iteration, i.e.

L(θ) = E[L(z, F ∗; θ(j−1))|z]

which depends on three expectations

F̂ ∗t ≡ E[F ∗t ; θ(j−1)|z]

Pt ≡ E[F ∗t (F ∗t )′; θ(j−1)|z]

Pt,t−1 ≡ E[F ∗t (F ∗t−1)
′; θ(j−1)|z]

These expectations can be computed, for given parameters of the model, using the Kalman

filter.

2. In the Restricted Maximization-step, we update the parameters maximizing the expected

log-likelihood with respect to θ:

θ(j) = arg max
θ
L(θ)

This can be implemented taking the corresponding partial derivative of the expected log

likelihood, setting to zero, and solving.

The procedure outlined above can be extended to estimate also the decay parameter λ controlling

for the shape of the loadings of the yields on the slope and curvature factors. Since the factor

loadings are a non-linear function λ, an additional step consisting in the numerical maximization

of the conditional likelihood with respect to λ is required. The procedure is know as Expectation

Conditional Restricted Maximization (ECRM) algorithm.
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B Data

Table 7: Macroeconomic variables

Series N. Mnemonic Description Transformation

1 AHE Average Hourly Earnings: Total Private 1
2 CPI Consumer Price Index: All Items 1
3 INC Real Disposable Personal Income 1
4 FFR Effective Federal Funds Rate 0
5 HSal House Sales - New One Family Houses 1
6 IP Industrial Production Index 1
7 M1 M1 Money Stock 1
8 Manf ISM Manufacturing: PMI Composite Index (NAPM) 0
9 Paym All Employees: Total nonfarm 1
10 PCE Personal Consumption Expenditures 1
11 PPIc Producer Price Index: Crude Materials 1
12 PPIf Producer Price Index: Finished Goods 1
13 CU Capacity Utilization: Total Industry 0
14 Unem Civilian Unemployment Rate 0

This table lists the 14 macro variables used to estimate the macro-yields. Most series have been transformed
prior to the estimation, as reported in the last column of the table. The transformation codes are: 0 = no
transformation and 1 = annual growth rate.

C Reality check test

To compare the out of sample predictive ability of a model with respect to the benchmark, we use

the reality check test of White (2000), as we compare only non-nested models.

If we denote by et(b) the forecast errors of the benchmark and by et(M) the forecast errors of

the model under consideration. Then we can define the null hypothesis of no predictive superiority

over the benchmark as

H0 : f = E(ft) ≡ E(et(b)
2 − et(M)2) ≤ 0 (22)

The test is then based on the statistic

f =
1

t1 − t0

t1∑
t=t0

f̂t (23)
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where t0 and t1 denote, respectively, the start and the end of the evaluation period, and hats denote

estimated statistics.

To approximate the asymptotic distribution of the test statistic, we use block-bootstrap as

follows:

1. We generate bootstrapped forecast errors ê∗t (b) and ê∗t (M) using the stationary block-bootstrap

of Politis and Romano (1994) with average block size of 12. This procedure is analogous to

the moving blocks bootstrap, but, instead of using blocks of fixed length uses blocks of ran-

dom length, distributed according to the geometric distribution with mean block length 12.

Also to give the same probability of resampling to all observations, we use a circular scheme.

2. Construct the bootstrapped test statistic as

f
∗

=
1

t1 − t0

t1∑
t=t0

(ê∗t (b)
2 − ê∗t (M)2)

3. Repeat steps 1 and 2 for 1,000 times to obtain an estimate of the distribution of the test

statistic f
∗

= [f
∗
(1), . . . , f

∗
(1,000)].

4. Compare V = (t1 − t0)1/2f with the quantiles of V ∗ = (t1 − t0)1/2(f
∗ − f) to obtain the

p-value.
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D Unrestricted vs block-diagonal macro-yields model

In this Appendix we report results for two alternative macro-yields models that use different as-

sumptions about the matrix of factor loadings Γ in Equation (4). The first model that we consider

is an unrestricted macro-yields model, which does not impose the zero restrictions on the factor

loadings of yields on macro factors, i.e. Γyx is allowed to be different from zero. This model al-

lows the macro factors F xt to directly affect the cross-section of yields. The second model imposes

block-diagonality of the matrix of factor loadings Γ, i.e. Γyx = 0 and Γxy = 0. This implies that

the yield curve factors and the macro factors are treated separately, as in Mönch (2012). Notice

that when estimating the block-diagonal macro-yields model, we omit the federal funds rate from

the macro variables used to estimate the model, as in Mönch (2012). The reason is that we cannot

reliably impose a zero restriction on the factor loadings of the federal funds rate on the yield curve

factors.

Results in Tables 8–11, show that the in-sample and out-of-sample performances of the unre-

stricted macro-yields model are equal to the ones of the macro-yields model with unspanned macro

factors in Tables 2–6. This provides evidence that the zero restrictions on the factor loadings are

satisfied by the data, implying that the macro factors F xt are unspanned by the cross-section of

yields.

On the contrary, imposing a block-diagonal structure on the matrix of factor loadings has

substantial implications for the the identification of the factors. Table 8 shows that the information

criterion selects the model with six factors, i.e. three yield curve factors and three macro factors.

This indicates that this model is less parsimonious than our macro-yields model. In addition, as

shown in Table 9, the macro factors in the block-diagonal macro-yield model are highly correlated

with the yield curve factors and are, thus, spanned by the cross-section of yields. This happens

because the macro variables have a factor in common with the yields which the block-diagonal

model treats as an additional macro factor. Table 9 also shows that the correlation of the first

macro factor of the block-diagonal macro-yields model with the industrial production index is
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Table 8: Model selection

Unrestricted Block-diagonal
Number of factors IC* V IC* V

3 0.02 0.44 1.17 1.36
4 -0.02 0.31 1.30 1.16
5 -0.11 0.22 1.50 1.05
6 0.01 0.18 0.89 0.43
7 0.25 0.17 1.06 0.38
8 0.43 0.16 1.42 0.41

This table reports the information criterion IC*, as shown in
Equation (7) and in Equation (8), and the sum of the vari-
ance of the idiosyncratic components (divided by NT), V ,
when different numbers of factors are estimated. The first two
columns refer to the unrestricted macro-yields model. The last
two columns refer to the block-diagonal macro-yields model.

weaker than in our model. More importantly, the second and third macro factors do not have a

clear-cut interpretation.

Despite the issues with the interpretation of the factors, the fit of the block-diagonal macro-

yields model is comparable to the fit of our macro-yields, as shown in Table 10. However, Table 11

reveals that the lack of parsimony of the block-diagonal macro-yields model leads to out-of-sample

underperformances.
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Table 9: Factor identification

Unrestricted
L S C M1 M2

NS L 0.98 0.00 0.32 -0.08 0.01
NS S 0.03 0.97 0.28 0.11 0.08
NS C 0.25 0.37 0.86 0.12 0.06

IP -0.08 0.03 0.16 0.91 -0.09
R 0.47 0.05 0.10 0.20 -0.76

Block-diagonal

L S C M1 M2 M3

NS L 0.99 -0.03 0.21 -0.07 0.46 0.57
NS S -0.03 0.99 0.38 0.51 0.44 -0.38
NS C 0.18 0.36 0.98 0.36 0.22 0.13

IP -0.10 0.04 0.20 0.69 -0.49 0.20
R 0.44 0.08 0.15 -0.05 -0.35 0.20

This table reports the correlation of the estimated fac-
tors with their corresponding empirical proxies–the Nel-
son and Siegel level (NS L), slope (NS S) and curvature
(NS C), the industrial production index (IP) and the real
interest rate (R). The top panel refers to the unrestricted
macro-yields model. The bottom panel refers to the block-
diagonal macro-yields model.
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Table 10: In sample performance

Unrestricted Model
L S C M1 M2

Average Hourly Earnings:Total Private 0.07 0.29 0.33 0.33 0.67
Consumer Price Index: All Items 0.19 0.48 0.48 0.50 0.86
Real Disposable Personal Income 0.00 0.02 0.03 0.34 0.36
Effective Federal Funds Rate 0.54 0.93 0.96 0.96 0.97
Hose Sales - New One Family Houses 0.00 0.19 0.19 0.22 0.22
Industrial Production Index 0.02 0.02 0.03 0.70 0.70
M1 Money Stock 0.17 0.25 0.25 0.25 0.31
ISM Manufacturing: PMI Composite Index (NAPM) 0.03 0.05 0.05 0.61 0.65
Payments All Employees: Total nonfarm 0.00 0.02 0.10 0.71 0.71
Personal Consumption Expenditures Price Index 0.16 0.23 0.33 0.47 0.79
Producer Price Index: Crude Materials 0.03 0.13 0.13 0.20 0.43
Producer Price Index: Finished Goods 0.03 0.31 0.31 0.32 0.81
Capacity Utilization: Total Industry 0.02 0.16 0.20 0.62 0.63
Civilian Unemployment Rate 0.44 0.53 0.55 0.64 0.67

Block-diagonal Model

L S C M1 M2 M3

Average Hourly Earnings: Total Private 0.00 0.00 0.00 0.09 0.57 0.68
Consumer Price Index: All Items 0.00 0.00 0.00 0.07 0.76 0.76
Real Disposable Personal Income 0.00 0.00 0.00 0.13 0.37 0.42
House Sales - New One Family Houses 0.00 0.00 0.00 0.00 0.07 0.60
Industrial Production Index 0.00 0.00 0.00 0.63 0.80 0.80
M1 Money Stock 0.00 0.00 0.00 0.00 0.05 0.48
ISM Manufacturing: PMI Composite Index (NAPM) 0.00 0.00 0.00 0.59 0.61 0.68
Payments All Employees: Total nonfarm 0.00 0.00 0.00 0.68 0.74 0.74
Personal Consumption Expenditures Price Index 0.00 0.00 0.00 0.32 0.53 0.79
Producer Price Index: Crude Materials 0.00 0.00 0.00 0.42 0.65 0.75
Producer Price Index: Finished Goods 0.00 0.00 0.00 0.15 1.00 1.00
Capacity Utilization: Total Industry 0.00 0.00 0.00 0.64 0.64 0.73
Civilian Unemployment Rate 0.00 0.00 0.00 0.08 0.18 0.42

This table reports the cumulative share of variance of macro variables explained by the yield curve factors
(level, slope and curvature) and the macroeconomic factors. The top panel refers to the unrestricted macro-
yields model. The bottom panel refers to the block-diagonal macro-yields model.
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Table 11: Out-of-sample performance

Unrestricted

Maturity 3m 1y 2y 3y 4y 5y

h=1 1.21 1.04 1.05 1.01 1.05 1.12
h=3 0.81* 0.93 0.99 0.97 0.99 1.02
h=6 0.79** 0.89 0.95 0.93 0.93 0.94
h=12 0.67** 0.73** 0.78** 0.79*** 0.79*** 0.79***
h=24 0.59*** 0.63*** 0.71*** 0.78*** 0.84** 0.92

Block-diagonal

Maturity 3m 1y 2y 3y 4y 5y

h=1 0.84 1.10 1.09 1.04 1.04 1.06
h=3 0.80 1.01 1.07 1.03 1.03 1.04
h=6 0.76 0.97 1.04 1.03 1.02 1.02
h=12 0.68*** 0.82 0.92 0.94 0.95 0.95
h=24 0.77 0.83 0.94 1.00 1.05 1.10

This table reports the relative MSFE of the unrestricted macro-yields model (top
panel) and of the block-diagonal macro-yields model (bottom panel) over the
MSFE of the random walk for multi-step predictions of the yields. The first col-
umn reports the forecast horizon h. The sample starts on January 1970 and the
evaluation period is January 1990 to December 2008. *, ** and *** denote signif-
icant outperformance at 10%, 5% and 1% level with respect to the random walk
according the White (2000) reality check test with 1,000 bootstrap replications
using an average block size of 12 observations.
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D.1 The block-diagonal model and principal components

This Appendix compares the principal components extracted exclusively from the macroeconomic

variables used in this paper with our unspanned macro factors (top panel), and with the factors

extracted from a macro-yield model with block-diagonal structure (bottom panel).

Table 12 reports the pairwise correlations between the macro-yields factors and the first eight

principal components extracted from our dataset of macro variables. The factors extracted from

the block-diagonal model are very similar to the first three principal components. As stressed in the

paper, this is the consequence of the fact that the block-diagonal model treats the macroeconomic

factors separately from the bond yield factors.

Instead, the unspanned macroeconomic factors are significantly correlated with the first four

principal components. This is not surprising since principal components contains also information

that is already spanned by the yield curve.

Table 12: Correlation of principal components with other factors

Unspanned macro-yields factors

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

UM1 0.32 -0.87 0.19 0.04 0.14 0.09 0.04 0.02
UM2 0.63 0.22 0.19 0.44 -0.07 0.17 -0.40 0.16

Block-diagonal macro-yields factors

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

M1 0.96 -0.08 -0.06 -0.03 -0.08 0.02 0.00 0.01
M2 0.04 -0.97 0.07 -0.14 0.04 -0.01 0.05 -0.06
M3 0.07 -0.01 0.93 -0.07 0.07 0.03 -0.19 0.13

This table reports the correlation of principal components extracted from
macro variables with the unspanned macro-yields factors (top panel) and
the block-diagonal macro-yields factors (bottom panel).
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D.2 LN factor and principal components

This Appendix compares our macro-yields factors with the Ludvigson and Ng (2009) factor and

the principal components used to construct it.

Table 13 reports the pairwise correlations between the our macro-yields factors and the first

eight principal components extracted from a large dataset of 131 variables.14 Results in Table 13

show that the principal components are highly correlated with the yield curve factors extracted

from our macro-yields model. This implies that also the LN factor is highly correlated with the yield

curve factors as it just aggregates information from the principal components without separating

the information already spanned by the cross-section of yields.

Table 13: Correlation PC and LN factors with our macro-yield factors

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 LN

L -0.18 0.04 -0.06 -0.26 0.30 -0.12 0.08 0.10 0.05
S -0.20 0.70 -0.23 0.01 0.33 0.08 0.13 0.06 -0.39
C 0.00 0.18 -0.08 0.01 0.08 -0.10 -0.08 0.15 -0.12

UM1 0.71 0.35 -0.06 0.39 0.05 -0.01 -0.09 0.10 -0.58
UM2 0.04 0.18 -0.04 0.04 -0.03 0.07 0.19 -0.10 -0.34

This table reports the correlation of the macro-yields factors with the principal
components extracted from a large dataset of macro variables and used to
construct the Ludvigson and Ng (2009) factor.

14The 131 macroeconomic data series used to construct the LN factor have been downloaded from Sydney C.
Ludvigson’s website at http://www.econ.nyu.edu/user/ludvigsons/Data&ReplicationFiles.zip.
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E Comparison between initial and final estimates

In this Appendix we compare the performance of the initial and the final estimates of the macro-

yields model. The initial estimates of the yield curve factors are computed using the two-steps OLS

procedure introduced by Diebold and Li (2006). We then project the macroeconomic variables on

the NS factors and use the principal components of the residuals of this regression as the initial

estimates of the unspanned macroeconomic factors. These estimated factor are then treated as if

they were the true observed factors. The initial parameters are hence estimated by OLS. The final

estimates are obtained using the EM algorithm where the initial estimates of the factors are used

in order to initialize the algorithm, as described in Section 3 and Appendix A.

Table 14 reports the cumulative variance of yields and macro variables explained by the initial

estimates of the macro-yields factors. Comparing these results with the ones of Table 2, it is clear

that the fit of the initial estimates is at least as good as the fit of the final estimates of the model.

Figure 6 shows the initial estimates of the macro-yields factors are much more volatile than the

final estimates. However, the correlation between the initial estimates and the final estimates of

the macro-yields factors is very high, as shown in Table 15.

The out-of-sample performance of the macro-yields model improves when using the QML esti-

mator compared to the initial estimates obtained by OLS and principal components, see Table 16.

This is due to the fact that the QML estimator take appropriately into account the dynamics of

the common factors and the cross-sectional heteroscedasticity of the idiosyncratic component.
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Table 14: Cumulative variance explained by the initial estimates of the macro-yields factors

Level Slope Curv UM1 UM2

Government bond yield with maturity 3 months 0.63 0.95 1.00 1.00 1.00
Government bond yield with maturity 1 year 0.64 0.83 0.99 0.99 0.99
Government bond yield with maturity 2 years 0.69 0.79 1.00 1.00 1.00
Government bond yield with maturity 3 years 0.74 0.80 1.00 1.00 1.00
Government bond yield with maturity 4 years 0.78 0.82 1.00 1.00 1.00
Government bond yield with maturity 5 years 0.82 0.84 1.00 1.00 1.00
Average Hourly Earnings: Total Private 0.07 0.30 0.35 0.35 0.71
Consumer Price Index: All Items 0.20 0.50 0.50 0.52 0.92
Real Disposable Personal Income 0.00 0.02 0.05 0.42 0.47
Effective Federal Funds Rate 0.57 0.94 0.97 0.97 0.97
House Sales - New One Family Houses 0.00 0.21 0.21 0.28 0.28
Industrial Production Index 0.02 0.02 0.05 0.84 0.86
M1 Money Stock 0.18 0.29 0.31 0.33 0.44
ISM Manufacturing: PMI Composite Index (NAPM) 0.03 0.06 0.06 0.74 0.77
Payments All Employees: Total nonfarm 0.00 0.02 0.15 0.83 0.83
Personal Consumption Expenditures Price Index 0.17 0.23 0.34 0.50 0.83
Producer Price Index: Crude Materials 0.03 0.16 0.16 0.21 0.45
Producer Price Index: Finished Goods 0.03 0.33 0.33 0.36 0.91
Capacity Utilization: Total Industry 0.03 0.19 0.26 0.69 0.69
Civilian Unemployment Rate 0.47 0.61 0.61 0.68 0.76

This table reports the cumulative share of variance of yields and macro variables explained by the initial
estimates of the macro-yields factors. The first three columns refer to the Nelson-Siegel yield curve factors
(level, slope and curvature) estimated by OLS, the last two column refer to the unspanned macroeconomic
factors (UM1 and UM2) estimated by principal components.

Table 15: Correlation of the final factor estimates with the initial factor estimates

L S C UM1 UM2

Initial 0.97 0.96 0.85 0.94 0.96

This table reports the correlation between the fi-
nal factor estimates with the corresponding initial
factor estimates.
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Figure 6: Comparison between the initial and the final estimates of the macro-yields factors
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This figure displays initial (MY0) and the final (MY) estimates of the macro-yields factors. The top panel refers to

the yield curve factors and the bottom panel to the unspanned macro factors.
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Table 16: Out-of-sample performance of the initial and the final estimates

Initial Estimates

Maturity 3m 1y 2y 3y 4y 5y

h=1 1.00 1.10 1.10 1.04 1.03 1.01
h=3 1.09 1.18 1.14 1.07 1.06 1.04
h=6 1.13 1.22 1.19 1.14 1.12 1.07
h=12 0.86 0.92 0.95 0.95 0.96 0.94
h=24 0.62** 0.65** 0.72** 0.77* 0.81 0.87

Final Estimates

Maturity 3m 1y 2y 3y 4y 5y

h=1 1.17 1.05 1.06 1.00 1.05 1.14
h=3 0.79* 0.93 0.99 0.96 0.99 1.02
h=6 0.78** 0.89 0.94 0.93 0.93 0.94
h=12 0.69** 0.74** 0.79** 0.80*** 0.80*** 0.80***
h=24 0.62*** 0.66*** 0.74** 0.82** 0.88* 0.97

This table reports the relative MSFE of the macro-yields model initial and final
estimates over the MSFE of the random walk for multi-step predictions of the yields.
The first column reports the forecast horizon h. The sample starts on January 1970
and the evaluation period is January 1990 to December 2008. *, ** and *** denote
significant outperformance at 10%, 5% and 1% level with respect to the random walk
according to the White (2000) reality check test with 1,000 bootstrap replications
using an average block size of 12 observations.
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F Estimated parameters

In Tables 17–18 we report the estimated parameters of the macro-yields model described in Equa-

tions (4)–(6). Standard errors are computed using a Monte Carlo procedure, as follows: we estimate

the macro-yields model in Equations (4)–(6) and save the idiosyncratic innovations and the state

innovations. We then bootstrap the state innovations and simulate the state variables. In the same

way, we bootstrap the idiosyncratic innovations and simulate the idiosyncratic components. We

then obtain a sample of artificial yields and macro variables by adding the simulated idiosyncratic

components to the simulated state variables multiplied by the estimated factor loadings. We gen-

erate a 1000 simulated samples of yields and macro variables and for each simulated sample we

estimate the macro-yields model. The standard deviations of parameters reported in Tables 17–18

are the standard deviations of the empirical distribution of each model parameter.

Results in Table 17 show that most macro variables have statistically significant factor loadings

on the level and slope of the yield curve, while only house sales and industrial production have

significant factor loadings on the curvature. The autocorrelation coefficient in the idiosyncratic

components is highly significant for all variables, except for one yield. Results in Table 18 show

that the level is mainly Granger caused by the second unspanned macro factor, i.e. the real interest

rate. The slope and the curvature are mainly Granger caused by the first factor, i.e. industrial

production.
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Table 17: Estimated parameters: measurement equation

Γ B R
Lt St Ct UM1t UM2t ax

Govt bond yield maturity 3 m 1.000 0.914 0.081 0.000 0.000 0.000 0.425 0.050
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.166) (0.018)

Govt bond yield maturity 1 year 1.000 0.709 0.228 0.000 0.000 0.000 0.591 0.021
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.057) (0.003)

Govt bond yield maturity 2 years 1.000 0.526 0.294 0.000 0.000 0.000 0.549 0.007
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.061) (0.001)

Govt bond yield maturity 3 years 1.000 0.405 0.294 0.000 0.000 0.000 -0.194 0.002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.198) (0.001)

Govt bond yield maturity 4 years 1.000 0.324 0.270 0.000 0.000 0.000 0.548 0.008
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.051) (0.001)

Govt bond yield maturity 5 years 1.000 0.267 0.241 0.000 0.000 0.000 0.739 0.009
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.050) (0.001)

Av Hourly Earnings: Tot Private -0.055 -0.031 0.087 0.898 -0.054 0.350 0.941 0.021
(0.096) (0.066) (0.073) (0.369) (0.242) (0.625) (0.032) (0.003)

CPI: All Items -0.080 -0.089 0.073 0.819 0.211 0.437 0.846 0.103
(0.089) (0.064) (0.067) (0.302) (0.208) (0.591) (0.032) (0.010)

Real Disposable Personal Inc -0.016 -0.085 0.087 0.599 -0.287 -0.029 0.778 0.262
(0.082) (0.066) (0.063) (0.375) (0.314) (0.526) (0.034) (0.041)

Effective Federal Funds Rate 0.290 -0.174 0.029 -0.294 0.256 -2.441 0.947 0.017
(0.057) (0.040) (0.035) (0.177) (0.140) (0.382) (0.021) (0.002)

House Sales -0.017 0.073 0.122 0.833 0.035 0.228 0.963 0.011
(0.104) (0.058) (0.066) (0.308) (0.191) (0.728) (0.021) (0.002)

Industrial Production Index 0.174 0.127 0.085 0.363 0.578 -1.092 0.797 0.086
(0.091) (0.060) (0.047) (0.174) (0.171) (0.687) (0.033) (0.008)

M1 Money Stock -0.249 -0.065 -0.036 0.267 -0.158 1.750 0.952 0.054
(0.100) (0.069) (0.049) (0.220) (0.237) (0.663) (0.021) (0.006)

ISM Man. PMI Composite Index 0.069 0.296 -0.023 -0.191 0.732 -0.028 0.907 0.024
(0.084) (0.068) (0.047) (0.340) (0.284) (0.563) (0.041) (0.006)

Paym All Emp: Total nonfarm 0.189 0.292 -0.010 -0.217 0.622 -0.921 0.943 0.009
(0.076) (0.061) (0.041) (0.293) (0.246) (0.530) (0.032) (0.003)

PCE 0.320 0.328 0.017 0.001 0.049 -1.843 0.654 0.014
(0.013) (0.012) (0.010) (0.028) (0.027) (0.094) (0.043) (0.003)

PPI: Crude Materials -0.068 0.199 0.069 0.642 0.117 0.823 0.982 0.011
(0.104) (0.055) (0.059) (0.245) (0.191) (0.714) (0.022) (0.002)

PPI: Finished Goods 0.182 -0.157 -0.041 0.101 0.343 -1.603 0.976 0.044
(0.134) (0.079) (0.056) (0.216) (0.339) (0.914) (0.019) (0.009)

CU: Total Industry 0.113 0.250 0.035 -0.048 0.592 -0.432 0.963 0.022
(0.095) (0.064) (0.043) (0.215) (0.223) (0.665) (0.019) (0.004)

Civilian Unemp Rate -0.077 0.178 -0.043 0.238 0.505 0.871 0.897 0.144
(0.098) (0.083) (0.058) (0.306) (0.310) (0.675) (0.030) (0.021)

This table reports the estimated parameters and corresponding standard errors for the measurement
equation of the macro-yields model in Equations (4) and (6). The standard errors are computed by
1000 Monte Carlo simulations.
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Table 18: Estimated parameters: state equation

A µ Q
Lt−1 St−1 Ct−1 UM1t−1 UM2t−1

Lt 0.998 0.013 -0.004 -0.020 0.051 0.029 0.055 0.050 0.034 0.004 -0.032
(0.010) (0.010) (0.014) (0.024) (0.023) (0.064) (0.019) (0.024) (0.050) (0.016) (0.021)

St -0.016 0.966 0.025 0.144 0.032 0.049 0.050 0.102 -0.054 0.017 -0.040
(0.022) (0.017) (0.022) (0.050) (0.039) (0.159) (0.024) (0.049) (0.076) (0.032) (0.041)

Ct 0.033 0.030 0.889 0.155 0.078 -0.221 0.034 -0.054 0.750 -0.079 -0.007
(0.037) (0.038) (0.048) (0.079) (0.071) (0.248) (0.050) (0.076) (0.241) (0.077) (0.070)

UM1t 0.005 -0.038 0.006 0.996 0.007 -0.106 0.004 0.017 -0.079 0.032 0.000
(0.009) (0.023) (0.019) (0.014) (0.016) (0.074) (0.016) (0.032) (0.077) (0.020) (0.015)

UM2t 0.002 0.009 -0.012 0.009 0.979 -0.004 -0.032 -0.040 -0.007 0.000 0.035
(0.011) (0.024) (0.020) (0.016) (0.021) (0.079) (0.021) (0.041) (0.070) (0.015) (0.034)

This table reports the estimated parameters and corresponding standard errors for the state equation of the macro-yields
model in Equation (5). The standard errors are computed by 1000 Monte Carlo simulations.
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