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1 Introduction

Both across countries and within countries regulators face the challenging task of find-

ing the appropriate response to the actions of other regulators. This task has informed

active research on the gains from monetary policy coordination across countries, as de-

scribed in detail by Canzoneri and Henderson (1991). Strategic interactions also arise

within a country when different regulators are assigned or pursue distinct objectives.

For instance, the expansion and reorganization of regulatory responsibilities spurred by

the Financial Crisis has been approached differently across countries. In the United

States the Dodd-Frank Act substantially increased the macroprudential responsibilities

of the Federal Reserve. In the United Kingdom, the Financial Services Act 2012 es-

tablished an independent Financial Policy Committee as a subsidiary of the Bank of

England, with some policymakers participating in both the Monetary and the Finan-

cial Policy Committee. By contrast, in the euro area monetary policy tasks are strictly

separated from macroprudential and supervisory tasks, although both functions involve

the European Central Bank. Other examples include the interaction between fiscal and

monetary authorities or games between countries about improving global competitive-

ness by setting tariffs and taxes across countries.

To facilitate the study of strategic interactions between regulators, we develop a tool-

box that characterizes the welfare-maximizing cooperative Ramsey policies under full

commitment and open-loop Nash games. The toolbox is designed to extend Dynare, a

convenient and popular modeling environment.1 Our work augments the single regula-

tor framework of Lopez-Salido and Levin (2004).2 The general framework for the policy

games that we consider distinguishes between two groups of actors: the first group of

private agents acts optimally given the (expected) path of the policy instruments; the

second group consists of the policymakers, who determine policies taking into account

the private sector’s response to the implemented policies. Taking as input a set of

equilibrium conditions given arbitrary rules for the reactions of the policy instruments,

1 See Adjemian, Bastani, Karam, Juillard, Maih, Mihoubi, Perendia, Pfeifer, Ratto, and Villemot (2011).
2 Given a characterization of the actions of private agents, the framework in Lopez-Salido and Levin (2004)

facilitates the computation of the welfare-maximizing Ramsey policies for a single regulator that has one or several
policy instruments.
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our toolbox replaces those rules with either the welfare-maximizing Ramsey policies or

with the policies for the open-loop Nash game.

To showcase the wide applicability of our toolbox, we consider two examples that

provide some new results regarding the gains from cooperative policies. The first ex-

ample is a two-country monetary model that closely follows Clarida, Gali, and Gertler

(2002), Benigno and Benigno (2006), and Corsetti, Dedola, and Leduc (2010). These

authors characterize the optimal monetary policies under cooperation and open-Loop

Nash games between two monetary policy authorities in a dynamic general equilibrium

model with sticky prices. If we take a linear approximation to the policymakers’ first-

order conditions around the optimal deterministic steady state of the model, we confirm

that our toolbox produces the same results as the linear-quadratic approach in Benigno

and Benigno (2006) and Corsetti, Dedola, and Leduc (2010). A key advantage of our

toolbox is the automation of the analytical derivation of the cooperative and open-loop

Nash policies, once the actions of the private agents are characterized. We replicate

key insights from Benigno and Benigno (2006) and Corsetti, Dedola, and Leduc (2010)

and extend their results by considering alternative policy instruments. Beyond the

replication of existing results, we show that the choice of inflation measure that is used

as an instrument for monetary policy can imply quantitatively important differences

for the gains from cooperation. Experimentation with alternative policy instruments is

seldom attempted with a linear-quadratic approach as it entails tedious and error-prone

analytical manipulations, but comes at no cost with our toolbox.

The second example considers the workhorse New Keynesian model with financial

frictions of Gertler and Karadi (2011). An agency problem on financial intermedi-

aries has two important effects. First, the problem inefficiently limits the provision of

credit. Second, the agency problem also magnifies the reaction of the economy to shocks

through familiar financial accelerator mechanisms. We extend the model of Gertler and

Karadi (2011) to include a transfer tax between households and firms. Within that

model, we consider a game between a financial regulator and a monetary policy author-

ity. The policy instrument of the central bank is the inflation rate; the policy instrument

of the financial regulator is the transfer tax. The objectives of the two regulators re-

flect the preferences of households, but in both cases include an extra term. The central
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bank has an objective biased towards stabilizing inflation. The financial regulator has

an objective biased towards stabilizing the provision of credit. We characterize optimal

cooperative Ramsey and open-loop Nash policies. We constrain the choice of biases so

that the cooperative policies with the skewed objectives come close to replicating the

allocations under policies that maximize the welfare of the representative household.

Nonetheless, the strategic interaction between regulators lead to large and persistent

deviations from cooperative outcomes and imply substantial welfare losses.

The usefulness of our toolbox is not limited to solving the particular examples above.

Following the approach in Dixit and Lambertini (2003), differences in objectives are fer-

tile ground to explore the strategic interactions between policymakers. For instance,

the solution under coordinated optimal monetary and fiscal policies explored in Schmit-

t-Grohe and Uribe (2004) could be readily extended for strategic interactions after al-

lowing for small differences in the objectives of the monetary and fiscal authorities.

More recent examples of stylized models that set the stage for strategic interactions

between policymakers include Costinot, Lorenzoni, and Werning (2014), who illustrate

the use of capital controls to manipulate the terms of trade and Brunnermeier and

Sannikov (2014), who show how capital controls may improve welfare in a model with

financial frictions (but who do not consider a non-cooperative solution). Furthermore,

our toolbox greatly facilitates the analysis of more fully articulated models. Exam-

ples include Bergin and Corsetti (2013), who introduce firm entry into a two-country

model to study how the resulting production relocation externality influences monetary

policy, and Fujiwara and Teranishi (2013), who allow for nominal rigidities in loan con-

tracts. Finally, the optimal policy implications for models with numerous empirically

relevant features (such as consumption habits, capital accumulation, investment adjust-

ment costs, incomplete financial markets, sticky wages) as in the two-country model of

Coenen, Lombardo, Smets, and Straub (2007) can also be analyzed and extended with

the help of our toolbox.

The rest of the paper is organized as follows. Section 2 outlines the algorithm for

calculating cooperative optimal policy and extends the algorithm to the calculation

of optimal policies in open-loop Nash games. Section 3 applies the algorithm to an

open-economy model where each country wishes to maximize welfare through control-
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ling inflation, and Section 4 considers the application of our algorithm to a model

with a monetary authority and a macroprudential regulator. Section 5 concludes. An

Appendix with details on the toolbox is provided.

2 Equilibrium Definitions and Solution Algorithms

This section covers three topics: 1) it defines an equilibrium under cooperative Ramsey

policies; 2) it defines an equilibrium under an open-loop Nash game; and 3) it spells

out the relationship between our solution approach and the linear-quadratic approach.

In maximizing the policy objectives subject to the structural equations of the private

sector our toolbox employs a Lagrangian approach. The exact nonlinear first-order

conditions that characterize the optimal policies under cooperation and the open-loop

Nash game, respectively, are obtained by symbolic differentiation. Each system of

equations is then approximated around its deterministic steady state using higher order

perturbation methods. An alternative approach to characterizing optimal policies uses

linear-quadratic (LQ) techniques. The LQ approach involves finding a purely quadratic

approximation of each policymakers’ objective function which is then optimized subject

to a linear approximation of the structural equations of the model. Following Benigno

and Woodford (2012), Levine, Pearlman, and Pierse (2008) and Debortoli and Nunes

(2006) we show how the LQ approach relates to the approach underlying our numerical

procedure and that the LQ approach delivers the same solution if the nonlinear output

of our toolbox is approximated to the first order.

2.1 General Framework

Policy games distinguish between two groups of actors. We label the first group “pri-

vate agents.” Private agents act optimally given the (expected) path of the policy

instruments. The second group consists of the policymakers who determine policies

taking into account the private sector’s response to the implemented policies. With

more than one policymaker, strategic interaction between the policymakers can cause

the outcomes of the dynamic game to deviate from the welfare-maximizing cooperative

policy. For simplicity, we restrict the exposition to the case of two policymakers (or
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players). Furthermore, each policymaker is assumed to have only one instrument.

Let the N × 1 vector of endogenous variables be denoted by xt, which is partitioned

as xt = (x̃′t, i1,t, i2,t)
′. The variable ij,t is the policy instrument of player j = [1, 2],

respectively. The exogenous variables are captured by the vector ζt. For given sequences

of the policy instruments {i1,t, i2,t}
∞
t=0, the remaining N − 2 endogenous variables need

to satisfy the N − 2 structural conditions that characterize an equilibrium

Etg(x̃t−1, x̃t, x̃t+1, i1,t, i2,t, ζt) = 0. (1)

We assume that the system of equations in g is differentiable up to the desired order of

approximation. Without loss of generality and to facilitate changes in the set of policy

instruments for our toolbox, the block of structural equations (1) contains two defini-

tions relating the generic instrument variables i1,t and i2,t to the desired instruments in

the model. For example, if player 1 uses the (core) inflation rate π1,t as instrument as

in Woodford (2003), then one of the equations in (1) simply reads i1,t − π1,t = 0.

To complete our framework, we need to describe how policies are determined. The

intertemporal preferences of player j are given by Uj = E0

∑∞
t=0 β

tUj(x̃t−1, x̃t, ζt) with

the generic utility function Uj(x̃t−1, x̃t, ζt) required to be concave. Under cooperation,

the two players maximise the joint welfare function ω1U1 + ω2U2 for given weights ω1

and ω2. We normalise the welfare weights to satisfy ω1 + ω2=1. Absent cooperation,

each policymaker considers his own preferences only.

2.2 Definition of Equilibrium under Cooperation

The welfare-maximizing Ramsey policy with full commitment is derived from the max-

imization program

max
{x̃t,i1,t,i2,t}∞t=0

E0

∞∑

t=0

βt [ω1U1(x̃t−1, x̃t, ζt) + ω2U2(x̃t−1, x̃t, ζt)]

s.t.

Etg(xt−1, xt, xt+1, ζt) = 0. (2)

The first-order conditions for this problem can be obtained by differentiating the
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Lagrangian problem of the form

L0 = E0

∞∑

t=0

βt [ω1U1(x̃t−1, x̃t, ζt) + ω2U2(x̃t−1, x̃t, ζt) + λ′tg(xt−1, xt, xt+1, ζt)] . (3)

The (N − 2) × 1 Lagrange multipliers associated with the private sector equilibrium

conditions in (1) are denoted by λt for any t ≥ 0.

Taking derivatives of L0 with respect to the N endogenous variables in xt delivers N

first order conditions. Additionally, taking derivatives with respect to λt delivers again

the N − 2 private sector conditions. In total, there are 2N − 2 conditions and 2N − 2

variables. Since the generic instruments i1,t and i2,t are added to the model equations

through definitions of the form ij,t = x̃
j
t where x̃

j
t is player j’s actual policy instrument,

taking derivatives with respect of i1,t and i2,t returns the Lagrange multipliers associated

with these definitions. Here, we assume that λjt is the Lagrange multiplier attached

to the definition of player j’s instrument. In sum, the Ramsey equilibrium process

{x̃t, i1,t, i2,t, λt}
∞
t=0 satisfies

∑

j=1,2

ωj{Dx̃Uj(x̃t−1, x̃t, ζt) + βEtDx̃−Uj(x̃t, x̃t+1, ζt+1)}

+βEt

{
λ′t+1Dx̃−g(xt, xt+1, xt+2, ζt+1)

}
+ Et {λ

′
tDx̃g(xt−1, xt, xt+1, ζt)}

+β−1λ′t−1Dx̃+g(xt−2, xt−1, xt, ζt−1) = 0 (4)

λ1t = 0 (5)

λ2t = 0 (6)

Etg(xt−1, xt, xt+1, ζt) = 0 (7)

at each date t > 0. The notation Dx̃ denotes the vector of partial derivatives of any

functions with respect to the elements of x̃t; likewise do Dx̃− and Dx̃+ for derivatives

with respect to x̃t−1 and x̃t+1, respectively. Following equations (5) and (6), the multi-

pliers λ1t and λ2t need to equal to zero for all t ≥ 0. For t = 0, the set of equations in

(4) is replaced by

∑

j=1,2

ωj{Dx̃Uj(x̃−1, x̃0, ζt) + βE0Dx̃−Uj(x̃0, x̃1, ζ1)}+ βE0 {λ
′
1Dx̃−g(x0, x1, x2, ζ1)}
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+E0 {λ
′
0Dx̃g(x−1, x0, x1, ζt)} = 0.

It is hard to argue that the policymaker can commit to policies that would need to be

implemented before the beginning of time. This problem creates a time-inconsistency

problem at time t = 0. Even without shocks, the endogenous variables are not constant

(or grow at a constant rate). Although this system of equations can in general be solved,

the equilibrium functions will not be time-invariant. The popular and computationally

convenient approach of solving a system of locally approximated equations obtained by

approximating the nonlinear equilibrium conditions around the model’s deterministic

steady state is not applicable. To obtain a recursive structure and to make the problem

suitable for applying standard solution methods, we follow most of the literature in

adopting the concept of optimality from a timeless perspective.3 In short, this concept

requires an initial pre-commitment to suitably chosen values λ−1 at time 0 so that the

first-order conditions (4) to (7) apply to all t ≥ 0. The timeless perspective implies

that the optimal deterministic steady state (x̄, λ̄) needs to satisfy

∑

j=1,2

ωj{Dx̃Uj(¯̃x, ¯̃x, 0) + βDx̃−Uj(¯̃x, ¯̃x, 0)}

+λ̄
′ (
βDx̃−g(x̄, x̄, x̄, 0) +Dx̃g(x̄, x̄, x̄, 0) + β−1Dx̃+g(x̄, x̄, x̄, 0)

)
= 0 (8)

λ̄
1
= 0 (9)

λ̄
2
= 0 (10)

Etg(x̄, x̄, x̄, 0) = 0. (11)

As the problem stated in equations (8) to (11) is linear in the Lagrange multipliers,

the optimal steady state is easily computed. For arbitrary steady-state choices of the

instruments i1, i2, we find the vector x̃ satisfying (11). To find the Lagrange multipliers,

recognise that given a vector x, (8) can be written in the form Y = Xβ+ε with β = λ′.

We then compute the best linear fit by setting β = (X ′X)−1X ′Y and ε = Y − Xβ.

Because there are N conditions and N − 2 variables, ε does not necessarily equal 0 for

arbitrary choices i1, i2. Hence, i1, i2 need to be varied until Y = Xβ, leading to the

3 See Benigno and Woodford (2012) for a discussion. In principle, the output of our toolbox can be used to
compute a solution to the original problem. Yet, to make full use of the algorithms embedded in Dynare adopting
the timeless perspective is key.
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optimal steady-state allocation under cooperation x̄.

Equations (4) and (7) can now be replaced by a local approximation around the

optimal steady state {x̄, λ̄} of desired order. The resulting system of (higher-order)

difference equations can easily be solved by standard algorithms.

2.3 Definition of Open-loop Nash Equilibrium

To define an open-loop Nash equilibrium, let {ij,t,−t∗}
∞
t=0 denote the sequence of policy

choices by player j before and after, but not including period t∗. An open-loop Nash

equilibrium is a sequence
{
i∗j,t
}∞
t=0

with the property that for all t∗, i∗j,t∗ maximises

player j′s objective function subject to the structural equations of the economy for given

sequences
{
i∗j,t,−t∗

}∞
t=0

and
{
i∗−j,t

}∞
t=0

, where
{
i∗−j,t

}∞
t=0

denotes the sequence of policy

moves by all players other than player j. Each player’s action is the best response to

the other players’ best responses.

With policymakers needing to specify a complete contingent plan at time 0 for their

respective instrument variable {ij,t}
∞
t=0 for j = [1, 2], under the open-loop equilibrium

concept, the problem can be reinterpreted as a static game allowing us to recast each

player’s optimization problem as an optimal control problem given the policies of the

remaining players. As under the static Nash equilibrium concept, player j restricts

attention to his own objective function and the maximisation program is given by

max
{x̃t,ij,t}∞t=0

E0

∞∑

t=0

βtUj(x̃t−1, x̃t, ζt)

s.t.

Etg(xt−1, xt, xt+1, ζt) = 0

for given {i−j,t}
∞
t=0. (12)

The first-order conditions for each player are obtained from differentiating the La-

grangian of the form

Lj,0 = E0

∞∑

t=0

βt
[
Uj(x̃t−1, x̃t, ζt) + λ′j,tg(xt−1, xt, xt+1, ζt)

]
(13)

for j = [1, 2]. Taking derivates of the Lj,0 with respect to the N − 1 choice variables

9



(x̃t, ij,t), excluding the instrument of the other player, and the N − 2 Lagrange multi-

pliers λj,t associated with the N − 2 structural relationships 2N − 3 conditions for each

player.

Notice that the full set of 4N − 6 equations includes the N − 2 structural equations

twice. Since in equilibrium all players face the same values of the non-policy variables

x̃t, an interior Nash equilibrium {x̃∗t , i
∗
1,t, i

∗
2,t, λ

∗
1,t, λ

∗
2,t}

∞
t=0 satisfies the following 3N − 4

conditions for t > 0

Dx̃U1(x̃
∗
t−1, x̃

∗
t , ζt) + βEtDx̃−U1(x̃

∗
t , x̃

∗
t+1, ζt+1) + βEt

{
λ∗

′

1,t+1Dx̃−g(x∗t , x
∗
t+1, x

∗
t+2, ζt+1)

}

+Et

{
λ∗

′

1,tDx̃g(x
∗
t−1, x

∗
t , x

∗
t+1, ζt)

}
+ β−1λ∗

′

1,t−1Dx̃+g(x∗t−2, x
∗
t−1, x

∗
t , ζt−1) = 0 (14)

λ1∗
′

1,t = 0 (15)

Dx̃U2(x̃
∗
t−1, x̃

∗
t , ζt) + βEtDx̃−U2(x̃

∗
t , x̃

∗
t+1, ζt+1) + βEt

{
λ∗

′

2,t+1Dx̃−Etg(x
∗
t , x

∗
t+1, x

∗
t+2, ζt+1)

}

+Et

{
λ∗

′

2,tDx̃g(x
∗
t−1, x

∗
t , x

∗
t+1, ζt)

}
+ β−1λ∗

′

2,t−1Dx̃+g(x∗t−2, x
∗
t−1, x

∗
t , ζt−1) = 0 (16)

λ2∗
′

2,t = 0 (17)

Etg(x
∗
t−1, x

∗
t , x

∗
t+1, ζt) = 0. (18)

In a fashion similar to the case of cooperation, the first-order conditions with respect

to i1,t and i2,t imply the restriction that the Lagrange multipliers associated with the

definition of the policy instruments — here λ1∗
′

1,t and λ
2∗′

2,t for players 1 and 2, respectively

— are zero.

Adopting the timeless perspective is again key to obtaining time-invariant decision

rules. The optimal response of each player given the policies of the other player derived

from the optimal control problem at time 0 is not necessarily time consistent. Last,

the deterministic steady state is found as for the cooperative case by exploiting the

linearity of the system (14)-(18) in the 2N − 4 Lagrange multipliers.

2.4 Relationship to Linear-Quadratic Approach

An alternative approach to solve optimal policy problems uses linear-quadratic (LQ)

techniques. In the case of a single decision maker, the LQ approach involves find-

ing a purely quadratic approximation of the policymaker’s objective function which is
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then optimized subject to a linear approximation of the structural equations of the

model.Benigno and Woodford (2012) and Levine, Pearlman, and Pierse (2008) and De-

bortoli and Nunes (2006) discuss necessary and sufficient conditions for a “correct LQ

approximation” to the optimization problem stated in equation (2) to exist. In contrast

to the early literature the approach followed here does not require the steady state of

the model to be efficient.4

To see the connection between the LQ approach and the approach followed in our

toolbox, assume we were interested in the solution to the problem stated in (2) obtained

from the linear approximation of the first order conditions (4) to (7) around the optimal

steady state. Under the timeless perspective, the first order conditions with respect to

the endogenous variables can then be approximated by

∑

j=1,2

ωj

{
D2

xx−Ūj x̂t−1 +
[
D2

xxŪj + βD2
x−x−Ūj

]
x̂t + βD2

x−xŪjEtx̂t+1

}

+
∑

j=1,2

ωj

{
D2

xζŪjζt + βD2
x−ζŪjEtζt+1

}

+βλ̄
{
D2

x−x− ḡx̂t +D2
x−xḡEtx̂t+1 +D2

x−x+ ḡEtx̂t+2 +D2
x−ζ ḡEtζt+1

}

+λ̄
{
D2

xx− ḡx̂t−1 +D2
xxḡx̂t +D2

xx+ ḡEtx̂t+1 +D2
xζ ḡζt

}

+β−1λ̄
{
D2

x+x− ḡx̂t−2 +D2
x+xḡx̂t−1 +D2

x+x+ ḡx̂t +D2
x+ζ ḡζt−1

}

+βEtDx− ḡ′λ̂t+1 +Dxḡ
′λ̂t + β−1Dx+ ḡ′λ̂t−1 = 0. (19)

Note that we have augmented the partial derivatives of the utility functionals to include

derivatives with respect to the instrument variables i1,t and i2,t — which are zero —

to simplify notation. The notation D2
xx− marks the matrix of second derivatives of a

function with respect to x and x−. Ūj and ḡ is used as short-hand to indicate that

a function (or its partial derivatives) is evaluated at the steady-state values {x̄, λ̄}.

‘Hatted’ variables refer to the deviation of the original variable from its steady-state

value. Regrouping terms delivers

λ̄
[
β−1D2

x+x− ḡ
]
x̂t−2 +

{
∑

j=1,2

ωjD
2
xx−Ūj + λ̄

[
D2

xx− ḡ + β−1D2
x+xḡ

]
}
x̂t−1

4 Rotemberg and Woodford (1998) popularized this approach in economics. To gain tractability they assumed
the steady state to satisfy certain efficiency conditions.

11



+

{
∑

j=1,2

ωj

[
D2

xxŪj + βD2
x−x−Ūj

]
+ λ̄

[
D2

xxḡ + βD2
x−x− ḡ + β−1D2

x+x+ ḡ
]
}
x̂t

+

{
∑

j=1,2

ωjβD
2
xx−Ūj + βλ̄

[
D2

xx− ḡ + β−1D2
x+xḡ

]
}′

Etx̂t+1

+β2λ̄
[
β−1D2

x+x− ḡ
]′
Etx̂t+2 +

{
∑

j=1,2

ωjβD
2
x−ζŪj + βλ̄D2

x−ζ ḡ

}
Etζt+1

+

{
∑

j=1,2

ωjD
2
xζŪj + λ̄D2

xζ ḡ

}
ζt + β−1λ̄D2

x+ζ ḡζt−1

+βEtDx− ḡ′λ̂t+1 +Dxḡ
′λ̂t + β−1Dx+ ḡ′λ̂t−1 = 0 (20)

which coincides with the first order conditions of the following LQ problem

max
{x̂t}∞t=0

E0

∞∑

t=0

βt

[
1

2
x̂′tA(L)x̂t + x̂′tB(L)ζ t+1

]

s.t.

EtC(L)x̂t+1 +D(L)ζt = 0

C(L)x̂0 = d0 (21)

where

A2 = λ̄
[
β−1D2

x+x− ḡ
]

A1 =
∑

j=1,2

ωjD
2
xx−Ūj + λ̄

[
D2

xx− ḡ + β−1D2
x+xḡ

]

A0 =
∑

j=1,2

ωj

[
D2

xxŪj + βD2
x−x−Ūj

]
+ λ̄

[
D2

xxḡ + βD2
x−x− ḡ + β−1D2

x+x+ ḡ
]

A(L) = A0 + A1L+ A2L
2

B(L) =

{
∑

j=1,2

ωjβD
2
x−ζŪj + βλ̄D2

x−ζ ḡ

}
+

{
∑

j=1,2

ωjD
2
xζŪj + λ̄D2

xζ ḡ

}
L

+β−1λ̄D2
x+ζL

2

C(L) = Dx− ḡ +DxḡL+Dx+ ḡL2

D(L) = Dζ ḡ.

The constraint C(L)x̂0 = d0 is added to implement the timeless perspective by an

appropriate choice of d0. Benigno and Woodford (2012) refer to the program in equation

12



(21) as the “correct LQ approximation” and they show how to derive the correct LQ

program directly from the original problem stated in (2) rather than going through the

first order conditions associated with (2), which is the approach followed by Levine,

Pearlman, and Pierse (2008). Using the above definitions, it is easy to compute the

matrices for the LQ problem from our toolbox output numerically. Hence, to a first

order approximation the output of our toolbox is equivalent to that of the LQ approach.

3 Monetary Policy in an Open-Economy Model

We first illustrate our toolbox for a two-country monetary model that closely follows

Benigno and Benigno (2006) and Corsetti, Dedola, and Leduc (2010). These authors

characterize the optimal monetary policies both with and without cooperation between

two central banks in dynamic general equilibrium models with sticky prices. To this

end, they derive the true linear quadratic approximation of the model. As discussed

in Section 2.4, for given choice of policy instruments and strategies of the players,

the linear-quadratic approach delivers the same output as our toolbox if we take a

linear approximation of the first-order conditions of the two central banks around the

deterministic steady state.

3.1 Model Environment

The two countries are equal in size and symmetric in their economic structure. We only

describe the economy of country 1 in detail.

3.1.1 Households

Following Benigno and Benigno (2006) and Corsetti, Dedola, and Leduc (2010) each

country is populated by a continuum of households. Each of them engages in the

production of a specific good for which the household uses its own labor as the sole

input. The good produced by household h carries the index f . Before describing the

production and pricing of goods in detail, we first set up the household’s optimization

problem for given labor and production choices, Lt(h) and Yt(f) with financial markets

13



being complete at the domestic and the international level

max
{Ct(h),BD,t+1(h),BF,t+1(h)}

∞

t=0

E0

∞∑

t=0

βt

(
Ct(h)

1−σ

1− σ
− χ0

Lt(h)
1+χ

1 + χ

)

s.t.

PC,tCt(h) +

∫

S

QD,tBD,t+1(h) +

∫

S

etQF,tBF,t+1(h) + Tt(h)

= Pt(f)Yt(f) +BD,t(h) + etBF,t(h) (22)

Household f uses its income on consumption, PC,tCt(h), on the acquisition of domestic

bonds in domestic currency,
∫
S
QD,tBD,t+1(h), and foreign bonds priced in foreign cur-

rency,
∫
S
etQF,tBF,t+1(h), and on lump-sum taxes, Tt(h). The nominal exchange rate

is denoted by et. Income is derived from selling its product, Pt(f)Yt(f), as well as the

payoffs from foreign and domestic bonds, QF,tBF,t(h) +QD,tBD,t(h).

Consumption utility is derived from consuming a domestic good, CD,t(h), and a

foreign good, CM,t(h), according to

Ct(h) =

(
ω

ρc
1+ρc
c CD,t(h)

1
1+ρc + (1− ωc)

ρc
1+ρc CM,t(h)

1
1+ρc

)1+ρc

(23)

with the goods price in domestic currency being denoted by Pt and PM,t, respectively.

Under the assumption of producer currency pricing, the law of one price holds absent

transportation costs and the price of the imported foreign good equals the price of the

foreign good in the foreign country adjusted by the nominal exchange rate, PM,t = etP
∗
t .

The price of the final consumption good, PC,t, is obtained from minimizing the costs of

obtaining final consumption, Ct(h), subject to the constraint (23).

3.1.2 Production of Final Goods

Competitive producers of the domestic good, Yt, aggregate a variety of intermediate

goods, Yt(f), produced by the home country’s households using the production tech-

nology

Yt =

[∫ 1

0

Yt(f)
1

1+νp df

]1+νp

. (24)
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Profit maximization delivers the well-known result for the price of the domestic good,

Pt,

Pt =

[∫ 1

0

Pt(f)
− 1

νp df

]−νp

(25)

and the demand function for each variety Yt(f)

Yt(f) =

[
Pt(f)

Pt

]− 1+νp
νp

Yt. (26)

3.1.3 Production by Households

Each household produces exactly one variety Yt(f) and engages in monopolistic com-

petition with all other households. A household chooses its price so as to maximize its

utility. Following Calvo (1983) the probability of adjusting prices in a given period is

1− ξp.

Assuming household h uses a linear technology to produce good f , it is

Yt(f) = (ezt)
χ

1+χ Lt(h), (27)

where the country-wide technology shock, zt, evolves according to zt = ρzzt−1 + σzεz,t.

The production and pricing problem of household h can be stated as

max
Pt(f),{Yt+i(f)}∞t=0

Et

∞∑

i=0

(
ξpβ
)i
{
(1 + τ p,t)

Ct+i(h)
−σ

PC,t+i

Pt (f) Yt+i (f)− χ0 (e
zt+i)−χ Yt+i(f)

1+χ

1 + χ

}

s.t.

Yt+i(f) =

[
Pt+i(f)

Pt+i

]− 1+νp

νp

Yt. (28)

The variable τ p,t captures an exogenous time-varying subsidy on sales and is isomorphic

to mark-up shocks.

3.1.4 Market Clearing

Aggregating over households, market-clearing for the domestic good requires

Yt = CD,t + C∗
M,t +Gt (29)
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where C∗
M,t denotes the foreign country’s demand for the domestic good and Gt is the

demand for the domestic good due to government spending.

Bonds are in zero net-supply, requiring BD,t+1 = 0 and BF,t+1+B∗
F,t+1 = 0. Finally,

the budget constraint of the government is balanced in every period by adjusting lump-

sum taxes, Tt, to the stochastic government purchases, Gt. The share of government

consumption in output, Gt

Yt
, evolves according to

ωgy,t = ρgyωgy,t−1 + σgyεgy,t (30)

where ωgy,t measures the deviation of Gt

Yt
from its steady-state value.

3.1.5 Equilibrium Conditions and Calibration

Appendix B displays the set of structural equations associated with the model in (22)-

(30) that characterize the private sector equilibrium conditions. Using the notation

introduced in Section 2.1, the endogenous variables are collected in the vector

x̃t =

(
Ct, CD,t, CM,t, Yt, Gt,

PC,t

Pt
, πt, Hp,t, Gp,t,

P
opt
t

Pt
,∆t, R

n
t , qt,

C∗
t , C

∗
D,t, C

∗
M,t, Y

∗
t , G

∗
t ,

P ∗

C,t

P ∗

t
, π∗

t , H
∗
p,t, G

∗
p,t,

P
opt∗
t

P ∗

t
,∆∗

t , R
n∗
t

)′

(31)

where the variables QD,t, QF,t, BD,t+1, BF,t+1, Tt,Πt, et and their foreign counterparts are

omitted from x̃t, since they assume the value of zero in equilibrium or are substituted

out in Appendix B. The vector of endogenous variables includes producer price inflation,

defined as πt =
Pt

Pt−1
, and the nominal interest rate Rn

t . The exogenous variables are

collected in vector

ζt =
(
zt, τ p,t, Gt, z

∗
t , τ

∗
p,t, G

∗
t

)′
. (32)

For illustration, we assume as in Benigno and Benigno (2006) that the policymakers

use producer price inflation rates πt and π∗
t as instruments.5 Augmenting the set of

conditions (67)-(91) in Appendix B by the two definitions

it = πt (33)

5 For this class of models, the open-loop Nash equilibrium is not unique if policymakers opt for the nominal
interest rate as instrument. See for example Coenen, Lombardo, Smets, and Straub (2007) for a discussion of this
issue.
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i∗t = π∗
t (34)

we have cast the structural equations of the model into the form of (1)

Etg(x̃t−1, x̃t, x̃t+1, i1,t, i2,t, ζt) = 0.

The step of adding equations (33) and (34) is automated by our toolbox.

The parameterization of the model is provided in Table 1. The choices are compa-

rable to those in Benigno and Benigno (2006) and Corsetti, Dedola, and Leduc (2010).

Most notably, by setting the coefficient governing the intertemporal elasticity of sub-

stitution σ equal to 2 and fixing the elasticity of substitution between traded goods

at 2, the home and foreign good are substitutes in the utility function the household.

Steady-state imports are about 15% of GDP, which reflects home-biased preferences,

given that the two countries are equal in size and symmetric. Accordingly, the countries

are equally weighted in the global welfare function.

3.2 Optimal Policy with and without Cooperation

The model results are well-known in the literature and provide a benchmark to assess

the output of our toolbox. Below we review key insights from Benigno and Benigno

(2006) and Corsetti, Dedola, and Leduc (2010). All of these insights are matched by

the output of our toolbox.

In the face of technology shocks the welfare-maximising policy under cooperation

replicates the flexible price allocations for the two-country model laid out above. As

in closed economy models, the “divine coincidence” applies for “efficient shocks” – see

Blanchard and Gal (2007): technology shocks move quantities and prices in the same

direction relative to the flexible price economy and the central bank does not face a

trade-off between inflation and output gap stabilisation.

A different picture emerges when the economy experiences a markup or cost-push

shock, i.e., an “inefficient disturbance.” As is the case in a closed economy model,

the cooperating policymakers cannot perfectly stabilise the economy. In response to a

positive cost-push shock, the output gap turns negative, whereas inflation is positive.
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If policymakers do not cooperate across borders, prices and quantities will in gen-

eral differ from those under cooperation. Each country has the ability to influence

the terms of trade through its monetary policy stance. Hence, except for specific pa-

rameter choices, the (open-loop) Nash equilibrium does not replicate the flexible-price

allocations even for efficient shocks.

Figures 1 and 2 show the responses to a positive technology shock and a cost-

push shock under the welfare-maximizing cooperative policy and under an open-loop

Nash game. Figure 1 shows that the responses to a technology shock under the two

policies are quite close. However, there are some notable differences. As in Benigno

and Benigno (2006) and Corsetti, Dedola, and Leduc (2010), output price inflation

is perfectly stabilized under the cooperative policy and the output response coincides

with its counterpart in a flexible price model (not shown) for both countries. In the

open-loop Nash game, inflation and output gaps are not perfectly stabilized. Yet the

differences are minor as commonly seen in the literature.

Under the cost-push shock, shown in Figure 2, the two policies differ both quali-

tatively and quantitatively. Neither policy completely stabilizes output price inflation

and the output gaps.6 As shown in Corsetti, Dedola, and Leduc (2010), for our param-

eterization the home country’s real exchange rate appreciates and its terms of trade

improve by more under the open-loop Nash policies than under the cooperative policy.

Furthermore, the spillover effects are larger.

To assess the reliability of the results produced by our toolbox, we confirm that its

output under a first-order approximation coincides with the results produced by the

linear-quadratic approaches in Benigno and Benigno (2006) and Corsetti, Dedola, and

Leduc (2010).7

3.3 Sensitivity to the Choice of Policy Instrument

Exploiting the flexibility of our toolbox, we can easily analyze how the choice of strategy

space impacts the outcomes of the open-loop Nash game. To this end we compare

6 The efficient output level does not move at all in response to a technology shock. Hence, any movements in
actual output are equivalent with movements in the output gap.

7 See Appendix B.3 for a reconciliation of the notation in Corsetti, Dedola, and Leduc (2010) with ours. The
toolbox the accompanies this paper provides the code that lines up our results with those in Benigno and Benigno
(2006) and Corsetti, Dedola, and Leduc (2010).
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the baseline case, in which each country uses producer price inflation as its policy

instrument, to a case in which both policymakers use consumer price inflation as the

instrument. We focus on the open-loop Nash game, as the choice of instrument does

not affect the outcomes under the cooperative policy in this model.

Figure 3 compares the impulse responses to a cost push shock for the open-loop

Nash games under the alternative choice of instruments. Strikingly, the differences

in outcomes implied by the two instruments in the games are even greater than the

differences between the cooperative and open-loop Nash outcomes in Figure 2. This

might not be too surprising. The optimal cooperative policy comes close to stabiliz-

ing domestic price inflation in the face of a domestic mark-up shock, but the use of

consumption price inflation as the instrument implies more dramatic exchange rate

movements and and larger spillover effects. The domestic policymaker does not inter-

nalize the reverberation of his actions onto the objective of the foreign policymaker.

Accordingly, competitive interactions between the domestic and foreign policymakers

become stronger as, in turn, the foreign policymaker reacts to the spillover effects with

a blunt instrument.

As a summary statistic, the gains from cooperation are a modest 0.003% of con-

sumption when domestic price inflation is the instrument, and a much more sizable

0.7% when consumption price inflation is the instrument.

4 Macroprudential Regulation Model

Our toolbox can also be applied to policy games in a closed economy. We lay out

a policy game between a central bank and a financial regulator in a model following

Gertler and Karadi (2011). In addition to nominal rigidities, the economy features

financial frictions. Non-financial firms are prevented from issuing equity to households

directly, but have to go through financial intermediaries, referred to as “banks,” in order

to raise funds. Due to an agency problem, however, banks are limited in their ability

to attract deposits and issue credit to non-financial firms. Accordingly, credit is under-

supplied, and the reactions to shocks are amplified by the familiar financial-accelerator

mechanism.
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4.1 Model Environment

4.1.1 Households

The representative household consists of a continuum of members. A fraction 1− f of

its members supplies labor to firms and returns the wage earned to the household. The

remaining fraction f works as bankers. The household utility function is

E0

∞∑

t=0

βt

[
log(Ct − γCt−1)− χ0

L
1+χ
t

1 + χ

]
. (35)

The importance of internal habits in consumption is governed by the parameter γ. The

budget constraint takes the form

PtCt = PtWtLt + PtΠt − PtTt − PtDt + (1 +Rt)PtDt−1 (36)

Households use their income to consume, Ct, make tax transfers to the government, Tt,

and to save in terms of deposits with banks, Dt. Income is derived from returns on

deposits, wages, and profits of banks, Πt.

Financially constrained bankers have an incentive to retain earnings. To prevent

the financial constraint from becoming irrelevant by the retention of bank earnings, a

banker ceases operations next period with the i.i.d. probability 1 − θ. Upon exiting,

bankers transfer retained earnings to the households and become workers. Each period

(1− θ) f workers are selected to become bankers. These new bankers receive a startup

transfer from the family. By construction, the fraction of household members in each

group is constant over time. Πt is net funds transferred to the household from its banker

members; that is, funds transferred from existing bankers minus the funds transferred

to new bankers (measured by ω̄). See Appendix C for details.

4.1.2 Banks

Bank j takes in deposits, Dt(j), from households and invests into non-financial firms

through an equity contract. Continuing banks do not consume but accumulate all

earnings. Due to taxes/subsidies on equity, the bank operates with the amount (1 −
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BTt)Nt(j), where BTt is the tax rate and Nt(j) is the equity of bank j. Since assets

equal liabilities on the bank balance sheet

QtSt(j) = (1−BTt)Nt(j) +Dt(j). (37)

Let depositsDt(j) pay the non-state-contingent (real) return (1+Rt) and let shares St(j)

pay the stochastic return (1+Rs
t+1) at time t+1. Net worth in t+1 is then determined

as the difference between earnings on assets and interest payments on liabilities

Nt+1(j) = (1 +Rs
t+1)QtSt(j)− (1 +Rt)Dt(j) (38)

or combing (37) and (38)

Nt+1(j) =
(
Rs

t+1 − Rt

)
QtSt(j) + (1 +Rt)(1− BTt)Nt(j). (39)

The expected terminal wealth of a bank is then given by

max
{St+i(j)}

Vt(j) = Et

∞∑

i=0

(1− θ) θiΛt,t+1+iNt+1+i(j) (40)

with the stochastic discount factor Λt,t+j = βj λct+j

λct
.

Absent financial frictions, the bank expands its balance sheet when the expected

discounted excess return on loans, EtΛt,t+1+i

(
Rs

t+1+i − Rt+i

)
, is positive. To limit the

ability of banks to attract deposits, Gertler and Karadi (2011) introduce the following

agency problem. At the beginning of each period, a banker can choose to transfer a

fraction λ of assets to his household. If the banker makes this transfer, depositors will

force the bank into bankruptcy and recover the remaining fraction 1−λ of assets. Thus,

households will deposit funds with bank j only if the expected terminal wealth, Vt(j)

exceeds the fraction of assets that can be diverted, λQtSt(j), in period t

Vt(j) ≥ λQtSt(j). (41)

If equation (41) binds a bank’s ability to raise deposits is limited and expected positive

excess returns can persist in equilibrium.
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As shown in Appendix C a bank’s ability to attract deposits is directly related to

its net worth. At the aggregate level this relationship is shown to obey

QtSt =
ηt

λ− vt
(1−BTt)Nt. (42)

The term ηt
λ−vt

is the ratio of assets to equity. Condition (42) limits the aggregate

leverage ratio to the point where the incentives to cheat are balanced by the costs for

each bank. The marginal values of loans, vt, and of equity, ηt, are defined recursively

as

vt = Et (1− θ) Λt,t+1

(
Rs

t+1 − Rt

)

+θΛt,t+1

ηt+1

(λ−vt+1)
ηt

(λ−vt)

[(
Rs

t+1 − Rt

) ηt
(λ− vt)

+ (1 +Rt)

]
(1− BTt+1)vt+1 (43)

ηt = (1− θ) + θΛt,t+1

[(
Rs

t+1 −Rt

) ηt
(λ− vt)

+ (1 +Rt)

]
(1−BTt+1)ηt+1. (44)

Finally, aggregate net worth evolves according to

Nt = θ

[
(Rs

t − Rt−1)
ηt−1

(λ− vt−1)
+ (1 +Rt−1)

]
(1−BTt−1)Nt−1 + ωQtSt−1. (45)

4.1.3 Production of Goods

The representative firm uses capital and labor to produce its output

Yt = eztKα
t L

1−α
t , (46)

where technology evolves according to zt = ρzzt−1 + σzεz,t. Each firm operates for only

one period, but it must purchase the capital used in period t+1 one period in advance.

To do so, the firm issues one share for each unit of capital purchased in period t to be

used in period t + 1. Absent arbitrage opportunities, the value of capital equals the

value of shares

PtQtKt+1 = PtQtSt. (47)

The firm’s revenues consist of output sales (priced at marginal costs) and the value of

undepreciated capital. Payments for servicing the shares and for labor services enter
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the accounting as expenses. Hence, profits in period t + 1 are given by

Πf
t+1 =MCt+1Yt+1 + Pt+1Qt+1(1− δ)Kt+1 − Pt+1Wt+1Lt+1 − (1 + rst+1)PtQtSt. (48)

With the decision on the capital stock made in period t and labor hired in the t + 1

spot market, the firm’s maximization problem taking prices as given satisfies

max
St,Kt+1

Et

[
Λt,t+1max

Lt+1

Πf
t+1

]

s.t.

Yt = eztKα
t L

1−α
t

QtPtKt+1 = QtPtSt. (49)

The zero profit condition implies that the return on shares is given by

(1 +Rs
t+1) =

1

Qt

αMCt+1Yt+1

Pt+1Kt+1
+

(1− δ)

Qt

Qt+1 (50)

where

(1 +Rs
t ) =

(1 + rst )
Pt

Pt−1

. (51)

The optimal choice of labor satisfies

Lt = (1− α)
Yt

Wt

MCt

Pt

. (52)

To support an environment with nominal price rigidities, we introduce an interme-

diate layer of firms between producing-firms and firms that assemble the final goods.

Each intermediate firm acquires the product of a producing firm and applies a stamp

to it that differentiates it from those of others. In choosing the optimal resale price

Pt(f) an intermediate firm faces adjustment costs as in Rotemberg (1982)

max
Pt+i((f)

Et

∞∑

i=0

Λt,t+i {(1 + τ p)Pt+i (f)−MCt+i}
(
1− φP,t+i (f)

)
Yt+i

(
Pt+i (f)

Pt+i

)−
1+νp
νp

,

(53)

where Yt+i

(
Pt+i(f)
Pt+i

)− 1+νp
νp

is the demand schedule for good f . The adjustment cost for
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prices follows

φP,t =
φp

2

(
Pt (f)

πPt−1 (f)
− 1

)2

. (54)

4.1.4 Production of Capital

Physical capital accumulates according to

Kt+1 = Int + (1− δ)Kt. (55)

The capital stock is augmented by net investment, Int , and requires gross investment in

the amount, Igt

Int =

[
1−

ψ

2

(
I
g
t

I
g
t−1

− 1

)2
]
I
g
t. (56)

Taking the price of capital, Qt, as given, capital producing firms solve

max
I
g
t+i

Et

∞∑

i=0

Λt,t+i

[
Qt+i

[
1−

ψ

2

(
I
g
t+i

I
g
t+i−1

− 1

)2
]
I
g
t+i − I

g
t+i

]
. (57)

4.1.5 Market Clearing

The aggregate resource constraint requires

Yt = Ct + I
g
t +Gt (58)

where government spending is set to be

Gt = ωgyYt. (59)

4.1.6 Equilibrium Conditions and Calibration

Appendix C displays the set of structural equations associated with the model in (35)-

(57) that characterize the private sector equilibrium conditions. Using the notation

introduced in Section 2.1, the endogenous variables are collected in the vector

x̃t =

(
Yt, Lt, Kt−1,Wt, R

s
t ,

MCt

Pt
, λct , Ct, Rt, St, Nt, vt, ηt,

Int , I
g
t , Gt, πt, φt,

∂φt

∂Pt
Pt,

∂φt

∂Pt−1
Pt, R

n
t ,∆R

s
t ,
[
QS

N

]

t
,
[
N
Y

]

t

)′

(60)
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where the nominal interest rate, Rn
t , the interest rate spread, ∆Rs

t , the loan to net

worth ratio,
[
QS

N

]
t
, and the net worth to output ratio,

[
N
Y

]
t
, are defined in Appendix

C. The exogenous vector ζt contains the technology shock

ζ t = zt. (61)

In the following, the central bank uses inflation, πt, as instrument whereas the finan-

cial regulator uses the tax on bank capital, BTt.
8 By augmenting the set of conditions

(67)-(91) in Appendix C with the two definitions

icbt = πt (62)

i
mpr
t = BTt (63)

we have cast the structural equations of the model into the form of (1)

Etg(x̃t−1, x̃t, x̃t+1, i1,t, i2,t, ζt) = 0.

Table 2 summarises the parameter choices for the subsequent experiments. Most

parameters are set at values commonly found in the literature. The parameter φp

in the adjustment cost function for prices is set at 1281. With this value in place

the (linearized) Phillips curve features the same slope as that of a model with Calvo

contracts and an expected contract duration of one year. Inflation is set to zero in

the steady state and the subsidy to the intermediate goods producers is set to remove

monopolistic distortions in the steady state. The parameters governing the banking

sector mimic those in Gertler and Karadi (2011). The survival probability for banks is

set at 0.95 implying an average horizon of bankers of ten years. The steady-state ratio

of loans to equity is set equal to 4. For ease of exposition, we abstract from steady-state

distortions by setting the interest rate spread between loans and deposits (Rs−R) equal

to zero.9 These choices imply that the resource transfer to new banks as a fraction of

8 Similar to the case of the two-country model, the open-loop Nash equilibrium is indeterminate when the nominal
interest is used as policy instrument.

9 The financial frictions in the model will still imply inefficient allocations away from the state. At the expense of
rendering the steady state inefficient, the steady-state interest rate spread can of course be set at the value of one
hundred basis points as in Gertler and Karadi (2011) (or any other value).
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total loans, ω̄, is 0.0101 and the portion of net worth that the bank management can

divert, λ, is 0.25.

When setting up the policy problem under cooperation, the objectives of the in-

dividual policymakers receive equal weight in the joint objective function, i.e., ωcb =

ωmpr = 0.5. Positive values of the parameters µcb and µmpr introduce biases into the

objective functions of the central bank and the macroprudential regulator as described

below.

4.2 Analyzing the Gains from Cooperation

Figure 4 shows the responses to a contraction in technology under alternative poli-

cies. The shock considered brings down technology by 1 percent in the first quarter.

Subsequently, technology follows its auto-regressive process.

We first consider the cooperative policy between the two regulators that maximize

the utility of the representative household defined in equation (35). The solid lines in

Figure 4 denote the responses for this case. The instruments are so powerful that, for a

technology shock, the policymakers replicate the allocations that obtain in the friction-

less real business cycle model. Due to the financial friction, absent intervention from

the financial regulator, banks are undercapitalized after the contractionary technology

shock. An infusion of cash into the banks (i.e., a negative bank transfer BTt) can prop

up the equity position, Nt, and expand lending next period. At the same time, nominal

rigidities call for a slight increase in the policy interest rate to prevent inflation from

rising inefficiently. Notice that the welfare-maximizing cooperative policy completely

stabilizes the expected spread between the bank return on investment and its cost of

funding (the loan rate EtR
s
t+1 minus the deposit Rt) in the next period and in all future

periods. The same policy also achieves full inflation stabilization.

With identical objectives for the two regulators, the open-loop Nash and coopera-

tive policies coincide. However, in practice, different regulators are assigned or pursue

different objectives. We assume objectives for the two regulators that are biased ver-

sions of the preferences of the representative agent. Moreover, we restrict attention

to a particular formulation of biased objectives that, under cooperative policies, yields
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minor differences relative to the welfare-maximizing policies (as quantified below). Ac-

cordingly, the objective of the monetary policy regulator is biased towards inflation

stabilization

E0

∞∑

t=0

βt

[
log(Ct − γCt−1)− χ0

L
1+χ
t

1 + χ
− µcb(πt − π̄)2

]
, (64)

where the parameter µcb = 1 in our benchmark calibration governs the extent of the

inflation bias, and where π̄ is the steady-state level of inflation. Analogously, the

objective of the macroprudential regulator is given by

E0

∞∑

t=0

βt

[
log(Ct − γCt−1)− χ0

L
1+χ
t

1 + χ
− µmpr

(
(Rs

t − R̄s)− (Rt−1 − R̄)
)2
]
, (65)

where the parameter µmpr = 0.5 in our benchmark calibration governs the extent of the

bias towards stabilizing the interest rate spread for banks.1011

As can be seen from Figure 4 the differences between the cooperative policies with

biased and unbiased objectives are relatively minor. The bias implies that the macro-

prudential regulator is overzealous in stabilizing the interest rate spread for banks when

the shock occurs. Conversely, the monetary policy regulator accepts small deviations

from full stabilization of inflation. Similarly, all other allocations remain close to their

counterparts under the welfare-maximizing cooperative policies with biased objectives.

By contrast, an open-loop Nash game with the same biased objectives yields out-

comes that are drastically different. To understand the extent of these differences,

consider the side effects of a policy that, in reaction to a decline in technology, pushes

up the equity position of banks. Higher equity positions allow banks to expand credit

and push up investment and aggregate demand. In the presence of nominal rigidities,

10 In analysing the strategic interaction between fiscal and monetary policy Dixit and Lambertini (2003) assume
the central bank to be more aggressive about inflation stabilisation than the representative agent (and the fiscal
authority) in order to obtain different objective functions for the fiscal and monetary authorities. Our formulation
is more general, but reduces to the idea captured in Dixit and Lambertini (2003) for µmpr = 0.

11 As an alternative to the approach of biasing the objectives, one could devise distinct objectives for the two
policymakers based on a decomposition of the second-order approximation to the utility function of the representative
household in the spirit of the LQ approximation. For instance, competitive dynamics similar to the ones illustrated
here would also arise by assigning the usual dual mandate objectives of inflation and output gap stabilization solely
to the monetary authority, and any remaining terms connected to the presence of financial frictions to the financial
regulator.
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this expansion in demand leads to higher resource utilization and higher marginal costs

of production, which spill cause inflation to rise. In reaction to the same decline in

technology, monetary policy will want to curb the inflationary effects of the shocks and

increase policy rates. However, higher policy rates bring up the cost of funding for

banks and by reducing profitability ultimately reduce the amount of funds available to

support lending.

Accordingly, as the macroprudential regulator recognizes that the monetary policy

regulator will move to push up rates, he counteracts that action by pushing up the

transfer from households to banks (shown as a negative movement in Figure 4). In

turn, the monetary policy regulator will have an incentive to increase policy interest

rates by more, realizing that the macroprudential regulator will step up the recapital-

ization of banks. Effectively, the different biases in the objectives push each regulator

to discount the reverberations of his own actions onto the objectives of the other regu-

lator. Ultimately, as shown in Figure 4, the strategic interactions lead to an excessive

recapitalization of banks, unnecessarily aggressive tightening in monetary policy, and

stark deviations from the allocations under the welfare-maximizing cooperative policies

and substantial welfare losses.

The top panel of Figure 5 confirms that the welfare losses from adopting biased

objectives are small for cooperative policies for a broad range of the parameters that

govern the biases. By contrast, the bottom panel of the figure shows that the welfare

gains from cooperative policies increase substantially with the bias towards spread sta-

bilization. With biased objectives, the welfare costs of open-loop Nash policies relative

to the welfare maximizing policies can be orders of magnitude higher than the losses

from allowing for biased objectives under cooperative policies relative to the case of un-

biased objectives. Notice also that these welfare costs are orders of magnitudes larger

than the welfare costs of business cycles reported in Lucas (2003).

Our results point to two implications for the design of institutional arrangements.

Firstly, bringing different regulatory functions under the same institution fosters the

recognition of alternative objectives and avoids potentially large welfare losses from

strategic interaction. When this solution is politically not feasible, our results argue for

devising broader objectives for each regulator as way to minimize the welfare-reducing
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impact of strategic behavior.

5 Conclusions

Studying strategic interaction between policymakers has a long tradition in macroe-

conomics. However, obtaining the relevant first order conditions that characterize the

problem under consideration can be complicated. A popular approach is to solve the

problem using linear-quadratic (LQ) techniques. Purely quadratic objective functions

are derived for each policymaker; the first order conditions of the problem are then

obtained by optimizing the quadratic objectives subject to linear approximations of the

structural economic relationships. Unfortunately, this approach becomes laborious and

potentially error-prone for larger models.

A more direct approach is to obtain the first order conditions by using the nonlin-

ear structural equations of the model and the nonlinear objective functions assigned to

the policymakers. Our toolbox fully automates this procedure using symbolic differ-

entiation. The quadratic approximations to the policymakers’ objective functions can

in principle be retrieved from the output of our toolbox. Any changes to an existing

model such as allowing for cooperation between policymakers instead of playing out an

open-loop Nash game or changing the policy instruments assigned to the policymakers

imply a new set of first order conditions that is easily generated by our toolbox.

We apply the toolbox introduced in this paper to the well-known case of monetary

policy coordination in a two-country model and replicate the features highlighted in

the literature. Both the optimal monetary policies with and without coordination are

characterized with the help of impulse response functions and we show how the choice

of policy instruments influences profoundly the outcomes of an open-loop Nash game.

We also apply the toolbox to address strategic interaction between a macroprudential

regulator and a central bank in the a model with financial friction. The analysis points

to potentially large welfare losses stemming from the lack of coordination between

policymakers even if technology shocks are the only source of fluctuations.
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Table 1: Parameters for the Open Economy Model

Parameter Used to Determine Parameter Used to Determine

β = 1/1.01 discount factor σ = 2 intertemporal consumption elasticity

χ = 0.5 labor supply elasticity L̄ = 1 steady-state labor supply to fix χ0

1+ρc

ρc = 2 trade subst. elasticity ωc = 0.85 home bias in consumption

ξp = 0.75 Calvo price parameter
1+νp

νp

= 10 subst. elasticity of varieties

τ̄ = 1/9 steady-state subsidy to producers π̄ = 1 steady-state inflation

ρz = 0.95 persistence of tech. shock σz = 0.008 std. of tech. shock

ρτ = 0 persistence of cost push shock στ = 0.1 std. of cost push shock

ρgy = 0.99 persistence of gov. spending shock σgy = 0.01 std. of gov. spending shock

ωgy = 0 share of gov. spending κ0 = 1

ω = 0.5 weight on home country in Ramsey ω∗ = 0.5 weight on foreign country in Ramsey

Note:

This table summarizes the parameterization of the open economy model described in Section 3 at quarterly frequency.
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Table 2: Parameters for the Macroprudential Regulation Model

Free Parameters

Parameter Used to Determine Parameter Used to Determine

β = 0.99 discount factor γ = 0.6 consumption habits

χ = 1 labor supply elasticity L̄ = 0.5 steady-state labor supply to fix χ0

α = 0.3 share of capital in production δ = 0.025 capital depreciation rate
1+νp

νp

= 11 subst. elasticity of varieties τp = 0.1 subsidy to producers

φp = 1281 price adjustment cost π̄ = 1 steady-state inflation

ψ = 1 investment adjustment cost ωgy = 0 share of gov. spending

ρa = 0.95 persistence of tech. shock σa = 0.01 std. of tech. shock

ωmpr = 0.5 weight of fin. reg. in Ramsey ωcb = 0.5 weight of non. pol. in Ramsey

µmpr = 0.5 add. term in fin. reg. utility µcb = 1 add. term in mon. pol. utility[
QS
N

]
= 4 steady-state ratio loans to net worth R̄s − R̄ = 0 steady-state interest rate spread

θ = 0.95 probability of bank survival

Implied Parameters

λ = 0.25 diversion parameter ω̄ = 0.0101 resource transfer to new banks

χ0 = 3.6143 shift parameter in utility function

Note:

This table summarizes the parameterization of the macroprudential regulation model described in Section 4 at
quarterly frequency.
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Figure 1: Cooperative and Open-loop Nash Policies in the Open Economy Model: Responses to a
Technology Shock
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Notes: The figure plots the transition dynamics of the two economies after a one-standard deviation increase in
technology in the home country. The two lines show the responses under cooperation with full commitment
(Ramsey) and without cooperation (open-loop Nash) when policymakers use output price inflation in their
respective country as the policy instrument.
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Figure 2: Cooperative and Open-loop Nash Policies in the Open Economy Model: Responses to a
Cost Push Shock
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Notes: The figure plots the transition dynamics of the two economies after a one-standard deviation cost push
shock that raises price markups in the home country. The two lines show the responses under cooperation with
full commitment (Ramsey) and without cooperation (open-loop Nash) when policymakers use output price
inflation in their respective country as the policy instrument.
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Figure 3: Comparison of Instruments under Open-loop Nash policies in the Open Economy Model:
Responses to a Cost Push Shock
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Notes: The figure plots the transition dynamics of the two economies after a one-standard deviation cost push
shock that raises price markups in the home country. The two lines show the responses without cooperation
(open-loop Nash) when policymakers use output price inflation and consumer price inflation as the policy
instrument, respectively.
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Figure 4: Cooperative and Open-loop Nash Policies in the Macroprudential Regulation Model:
Responses to a Technology Shock
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Notes: The figure plots the transition dynamics of the economy after a one-standard deviation decline in
technology. The central bank uses inflation as instrument and the macroprudential regulator uses the tax on bank
capital as instrument. The three lines show the responses for the cases of cooperation with unbiased policy
preferences, cooperation with biased policy preferences, and without cooperation and biased policy preferences,
respectively.
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Figure 5: Cooperative and Open-loop Nash Policies in the Macroprudential Regulation Model:
Responses to a Technology Shock
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Notes: The figure plots the welfare costs as a function of the stabilization bias of the macroprudential regulator,
µmpr. The model is simulated 10000 periods for each parameterization. The welfare gains of going from a given
model to the model without stabilization bias and cooperation is expressed as a consumption equivalent variation.
The top panel shows the welfare costs under cooperation but with stabilization biases for both regulators. The
bottom panel plots the welfare costs, if policymakers have biased preferences and do not cooperate their activities.
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Online Appendix

A Description of Codes

The codes underlying this paper can be downloaded from
https://sites.google.com/site/martinbodenstein/ and from
http://www.lguerrieri.com/games code.zip.
The zipped package includes five folders:

1. nash ramsey toolbox contains the codes for our toolbox,

2. plot support contains plotting routines,

3. BBCDL model contains the codes for the two-country model,

4. GK model contains the codes for the macroprudential regulation model,

5. LQ BBCDL model contains the linear quadratic model by Corsetti, Dedola, and
Leduc (2010) described in Appendix B.3.

A.1 Toolbox

The toolbox extends the functionality of Dynare which needs to be installed separately.
We have verified that our toolbox is compatible with Dynare 4.4.2 and earlier versions
on Mac, Windows, and Linux platforms. Before attempting to run the examples in
BBCDL model, GK model, LQ BBCDL model the paths in setpathdynare4.m need reflect
the local setup. The toolbox also requires access to the Matlab Symbolic Math Tool-
box. The folder nash ramsey toolbox contains the codes of our toolbox. In order
to generate the first-order conditions that characterize the optimal policies with and
without cooperation using our toolbox, the user has to provide a Dynare-formatted
model file. In addition to the structural equations derived from optimal behavior of
households and firms, the file needs to specify the utility functions of the policymakers
and an arbitrary description of the relevant policy rules (e.g., Taylor-style instrument
rules in a two-country monetary model).12 This input file is then used to generate an
output file that contains the symbolic derivatives of the Lagrangian functions described
in equation (3) for the Ramsey case and equation (13) for the open-loop Nash game.
We first describe how to apply the toolbox; then we describe in more detail the key
scripts of the toolbox.

A.1.1 Applying the Toolbox

Using our toolbox requires the user to follow a number of conventions. Through the rest
of this section, we refer to the original Dynare-formatted model code as example.mod.

In example.mod:

1. Define the variables Util1 and Util2 in the var and ddd the objective functions
of the policymakers in the model block. The equations defining Util1 and Util2

should be declared in the ‘model’ block as Util1 = ...; and Util2 = ...;

12 A primer on Dynare syntax can be found http://www.dynare.org/wp-repo/dynarewp001.pdf.
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2. Break the var block into two var blocks so that the first block contains Util1,
Util2, and all endogenous variables and the second block contains all exoge-
nous variables (the shocks). Insert the line // Endogenous variables or //

Exogenous variables before each block, as appropriate.

3. If parameter values are set directly in example.mod, remove them and save them
as a separate script with the name example paramfile.m.

4. In the model block, before the policy rule for each player, insert the line // Policy

Rule, agent 1 or // Policy Rule, agent 2, as appropriate.

5. If the steady-state values for the original N endogenous variables are set in the
initval block delete the initval block and save the steady-state values for en-
dogenous variables as a script in the same folder under the name example ss defs.m.

6. Collect the equations describing the paths of exogenous variables at the end of the
model block, after all the structural equations.

Create a MATLAB function with the name example steadystate.m in the same
folder. Dynare will call this program to compute the steady-state of the model. The
structure of example steadystate.m should follow this template:

function [ys,check] = example steadystate(junk,ys)

global M

check = 0;

%% assign parameter values

example paramfile

%% assign steady-state values

example ss defs

%% send parameters and steady states to dynare

nparams = size(M .param names,1);

for icount = 1:nparams

eval([’M .params(icount) = ’,M .param names(icount,:),’;’])

end

nvars = M .endo nbr;

ys = zeros(nvars,1);

for i indx = 1:nvars

eval([’ys(i indx)=’,M .endo names(i indx,:),’;’])

end

The file example steadystate.m first calls the scripts example paramfile.m to set
the parameter values; calling example ss defs.m assigns the steady-state values of the
endogenous variables in the model. The values are saved in the vectors M .params and
ys, respectively, in order to be passed to Dynare.
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Now the model can be processed to create the desired output files by calling the
script convertmodfiles which is described in the next section.

A.1.2 Description of Toolbox Programs

The first order conditions to the various policy problems associated with the model
file example.mod are created by executing the script convertmodfiles.m. For the
open-loop Nash game, calling

convertmodfiles(‘example’,‘nash’,‘instrument1’,‘instrument2’)

generates the necessary output files example nash.mod, example nash steadystate.m,
example nash ss defs.m, and example nash paramfile.m.13

The inputs into convertmodfiles.m are:

• infilename: a string containing the name of the Dynare file containing the model
we want to analyze. Here, we set infilename = example, although example.mod

also works.

• policy problem: a string that must be ramsey, nash, or one agent ramsey

– If policy problem = ramsey, then convertmodfiles.m will output the model
equations for the cooperative optimal policy (Ramsey).

– If policy problem = nash, then convertmodfiles.m will output the model
equations for the open-loop Nash game.

– If policy problem = one agent ramsey, then one of the two players follows
the optimal policy given that the other player will follow the arbitrary policy
rule that was specified in the original file example.mod.

• instrument1: a string, giving the name of the instrument variable in the model for
the first player. If policy problem = one agent ramsey, this is the instrument
used by the one player choosing the optimal policy for an arbitrary policy function
of the other player.

• instrument2: a string, giving the name of the instrument for the second agent.
If policy problem = one agent ramsey, this should be ‘1’ or ‘2’, representing
the one player choosing the policy optimally.

Executing the file convertmodfiles.m calls the following sequence of scripts:

1. get aux.m

• replaces lagged endogenous variables in the model block with auxiliary vari-
ables, which are also inserted under the var block as endogenous variables.
Given endogenous variables var 1,...,var K entering the structural equa-
tions or the utility functions with their lagged values, get aux.m adds var 1lag,...,var Klag

to the end of the block of endogenous variables in the var block, and adds the
equations
var 1lag = var 1(-1);...var nlag = var n(-1);

in the ‘model’ block.

13 The default names of the output files can be changed in to also reflect the names of the instruments.
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• given policy problem, the script adds appropriate policy variables (instr1
and instr2), parameters (omega welf1, omega welf2, beta), and welfare
definitions to the Dynare model.The new temporary Dynare file is saved as
example aux.mod.

• edits the existing files example paramfile.m, example steadystate.m, and
example ss defs.m to account for the auxiliary and policy variables, parame-
ters, and equations. The new files are example aux paramfile.m, example aux steadystate.m

and example aux ss defs.m, respectively.

2. then, depending on the choice of policy problem.m,

• get nash.m followed by make ss nash if policy problem = nash to generate
the first order conditions of the problem,

• get ramsey.m followed by make ss ramsey if policy problem = ramsey to
generate the first order conditions of the problem,

• or, finally, get one agent ramsey.m followed by make ss one agent ramsey

if policy problem = ramsey to generate the first order conditions of the
problem.

We restrict the detailed description to the case of policy problem = nash. The
program get nash.m, builds on the program get ramsey.m originally provided by
Lopez-Salido and Levin (2004) to find optimal Ramsey policies.14 Taking the input
example aux.mod, get nash.m outputs

1. example nash.mod which contains the first order conditions of the players and
removes the arbitrary policy rules from the model.

2. example nash lmss.m which contains the subset of first order conditions that is
linear in the Lagrange multipliers evaluated in the steady state.

Next, the file make ss nash.m creates four auxiliary files

• example nash steadystate.m,

• guess example nash steadystate.m,

• example nash ss defs.m,

• example nash paramfile.m.

As we have introduced additional endogenous variables, the steady-state values of the
existing endogenous variables may have changed and the steady-state values of the new
endogenous variables are unspecified. example nash steadystate.m uses the values
provided by example nash ss defs.m and example nash lmss.m via guess example nash steadystate.m

to find the new steady-state values. To facilitate computation of the new steady state
example nash steadystate.m allows for the choice of different algorithms. example nash paramfile.m

sets the same parameter values as example paramfile.m. In addition, the policy pa-
rameters are assigned the default values

omega welf1 = 0.5

14 Our version of get ramsey.m extends the version distributed by Lopez-Salido and Levin (2004) by allowing
lagged dependent variables in the objective functions.
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omega welf2 = 0.5

nbeta = 0.99.

The toolbox includes additional programs that may be of use to researchers inter-
ested in comparing the effects of shocks across models:

• add welfare vars.m augments the Dynare model files that have been set up with
period utility defined by Util1 and Util2 to define the variables Welf1 and Welf2

(cumulative welfare variables for each agent) along with Util and Welf (joint util-
ity and welfare variables using welfare weights omega welf1 and omega welf2).

• edit shocks.m takes in a character matrix of shocks (or the strings ‘all’ or
‘none’) and turns on those shocks in all Dynare model files in the current folder.
This is helpful when running a program which compares the effects of different
groups of shocks in a model.

A.2 Replication Codes

The replication codes for Figures 1 to 3 are stored in the folder BBCDL model. The
codes for Figures 4 and 5 are provided in the folder GK model.

A.2.1 Open Economy Model

BBDCLmodelcomp.mod is the Dynare file containing the original model described in equa-
tions (67) to (91) with variables to be log-linearized where appropriate, i.e., the variables
are surrounded by the expression exp(). This model file is ready for being processed
by our toolbox. In particular, notice

• the separation of variables into the two blocks of // Endogenous variables and
// Exogenous variables,

• the definition of the period-utility functions of the two policymakers as Util1 and
Util2,

• the labelling of the policy rules by // Policy Rule,

• the ordering of putting the equations for the exogenous shock processes at the end
of the model block.

Variables for the home country carry the prefix c1; variables for the foreign carry the
prefix c2.

The model file is accompanied by three user-provided Matlab m-files

• BBCDLmodelcomp paramfile sets the parameter values (via calling the parameter
file stored in the folder parameterfiles labeled paramfile BB which is common
across all model files),

• BBCDLmodelcomp ss defs assigns the steady-state values to all variables,

• BBCDLmodelcomp steadystate which, after calling the previous two files, sends
the parameter and steady-state values to Dynare.
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All relevant files for the Ramsey and the open-loop Nash problem are created by
calling convertmodfiles via CREATE RAMSEY AND NASH in the folder BBCDL model. The
first line in this script augments the Matlab path to include our toolbox. Output price
inflation is denoted by c1pid and c2pid for countries 1 and 2, respectively. Consumer
price inflation is labeled c1dcore and c2dcore. The files associated with any specific
model carry the instrument labels in the file name.

For example, the files needed to compute the solution to the Nash problem using
output price inflation as instruments are

• BBCDLmodelcomp nash c1pid c2pid.mod containing the final model,

• BBCDLmodelcomp nash c1pid c2pid paramfile setting parameters by calling paramfile BB

and assigning values to omega welf1, omega welf2, nbeta,

• BBCDLmodelcomp nash c1pid c2pid steadystate generating the new steady state,

• guess BBCDLmodelcomp nash c1pid c2pid steadystate computing the steady state
using the steady state of BBCDLmodelcomp.mod as starting guess,

• BBCDLmodelcomp nash c1pid c2pid ss defs initializing guess for steady-state val-
ues of structural variables and via

• BBCDLmodelcomp nash c1pid c2pid lmss initialising the steady-state guess for
the Lagrange multipliers.

Notice, that our toolbox assigns the default values

omega welf1 = 0.5

omega welf2 = 0.5

nbeta = 0.99

to the policy parameters. The steady state of the new model may need to be computed
numerically. BBCDLmodelcomp nash c1pid c2pid steadystate allows for different al-
gorithms to be employed by choosing the desired element of algo in the options

variable.

The script BBCDLfigure1 generates the impulse responses shown in Figures 1 and
2 and BBCDLfigure2 generates Figure 3. The model names are set under the string
variables stem and modnam1 and modnam2. The variable nperiods fixes the number of
periods for the impulse response functions. titlelist fixes the subplot titles, ylabels
sets the labels for the y-axis. The desired shocks for computing impulse responses are
set in shocknamevector. Finally, the variables to be plotted are picked in line ramsey

and line nash, respectively.
The function makeirfsecondorder computes the impulse responses implementing

pruning. The final argument in this function fixes the order of approximation (first
(= 1) or second (= 2) order).

Finally, the folder LQ BBCDL model contains the model described in Appendix B.3.
The file call LQBBCDL computes the impulse responses to a cost push shock for the
linear quadratic model stored in LQBBCDL.mod and compares them to those derived
from the toolbox output BBCDLmodelcomp ramsey c1pid c2pid.mod.
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A.2.2 Macroprudential Regulation Model

rbcb monprud.mod is the Dynare file containing the original model with biased objec-
tives described in equations (107) to (132).15 This model file is ready for being processed
by our toolbox. In particular, notice

• the separation of variables into the two blocks of // Endogenous variables and
// Exogenous variables,

• the definition of the period-utility functions of the two policymakers as Util1 and
Util2,

• the labelling of the policy rules by // Policy Rule,

• the ordering of putting the equations for the exogenous shock processes at the end
of the model block.

The model file is accompanied by three user-provided Matlab m-files

• rbcb monprud paramfile sets the parameter values (via calling the parameter files
in the folder parameterfiles),

• rbcb monprud ss defs assigns the steady-state values to all variables,

• rbcb monprud steadystate which, after calling the previous two files, sends the
parameter and steady-state values to Dynare.

All relevant files for the Ramsey and the open-loop Nash problem are created by
calling convertmodfiles via CREATE RAMSEY AND NASH located in the folder GK model.
The first line in this script augments the Matlab path to include our toolbox. Inflation
is denoted by infl and the bank transfer by bt. The files associated with any specific
model carry the instrument labels in the file name.

For example, the files needed to compute the solution to the Nash problem using
output price inflation as instruments are

• rbcb monprud nash infl bt.mod containing the final model,

• rbcb monprud nash infl bt paramfile setting parameters by calling the param-
eter files located in the folder parameterfiles and assigning values to omega welf1,
omega welf2, nbeta,

• rbcb monprud nash infl bt steadystate generating the new steady state,

• guess rbcb monprud nash infl bt steadystate recomputing the steady state
using the steady state of rbcb monprud.mod as starting guess,

• rbcb monprud nash infl bt ss defs initializing guess for steady-state values of
structural variables and via

• rbcb monprud nash infl bt lmss initialising the steady-state guess for the La-
grange multipliers.

Notice, that our toolbox assigns the default values

omega welf1 = 0.5

omega welf2 = 0.5

15 An additional model file with unbiased objectives is provided under the name rbcb monprud nobias.mod.
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nbeta = 0.99

to the policy parameters. Furthermore, the steady state of the new model may need to
be computed numerically. rbcb monprud nash infl bt steadystate allows for differ-
ent algorithms to be employed by choosing the desired element of algo in the options
variable.

The script GKfigure1 generates Figure 4. The model names are set under the string
variables stem and modnam1 and modnam2. The variable nperiods fixes the number of
periods for the impulse response functions. titlelist fixes the subplot titles, ylabels
sets the labels for the y-axis. The desired shocks for computing impulse responses are
set in shocknamevector. Finally, the variables to be plotted are picked in line ramsey

and line nash, respectively.
The function makeirfsecondorder computes the impulse responses implementing

pruning. The final argument in this function fixes the order of approximation (first
(= 1) or second (= 2) order).

Figure 5 is generated by calling the script GKfigure2. The welfare gains from
cooperation are expressed as the percent increase in consumption needed under the
open-loop Nash game to make households equally well-off as they are under the Ramsey
outcomes. The means of the welfare variables is computed by simulating each economy
for a large number of periods using the Dynare command stoch simul with order=2,
and invoking pruning.

Changes in the value of the bias parameters µcb and µmpr are communicated through
the global variables overwrite param names and overwrite. Overwriting the param-
eters set in the original parameter files occurs the respective steady-state files.

Finally, some last words are in place when regenerating the model files by passing
rbcb monprud.mod through our toolbox. The default number of simulation periods
in stoch simul is set to zero. Furthermore, the block defining the variance of the
innovations is commented out. To run stochastic simulations using GKfigure2 these
default feature need to be adjusted appropriately.

To preserve the option of passing parameter values through the global variables
overwrite param names and overwrite, the steady-state files created by the toolbox
have to be edited manually following the template in rbcb monprud steadystate.16

16 When creating the steady-state files of the Ramsey and Nash model, our toolbox copies the
content of rbcb monprud steadystate into guess rbcb monprud ramsey infl bt steadystate and
guess rbcb monprud nash infl bt steadystate. The template for creating the steady-state files
rbcb monprud ramsey infl bt steadystate and rbcb monprud nash infl bt steadystate does not auto-
matically create the ability to overwrite parameters.
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B Equilibrium Conditions in the Open Economy

Model

B.1 Baseline Model

Under complete financial markets, the endogenous variables are summarized in the
vector

x̃t =

(
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Pt
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P
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Without detailed derivations, we provide a complete list of the conditions characterising
the private sector equilibrium for given policies in the model described in the main text.

The following equations result from the households’ optimization problems:

1. derivatives with respect to Ct and C∗
t and BD,t+1 and B∗

D,t+1 to define nominal
interest rates

βEt
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Ct+1

Ct

)−σ
PC,t
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=
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2. derivatives with respect to BFt

κ0

(
C∗

t

Ct

)−σ

= qt (69)

with qt denoting the consumption based real exchange rate and κ0 = q0

(
C∗

0

C0

)−σ

3. optimal choice of CD,t, C
∗
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CD,t = ωcCt

(
PC,t

Pt

) 1+ρc
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(70)

C∗
D,t = ω∗
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(
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4. optimal choice of CM,t, C
∗
M,t imply

CM,t = Ct(1− ωc)

(
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1
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(72)
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C∗
M,t = C∗
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5. the definition of the consumption goods Ct, and C
∗
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Profit maximisation by the intermediaries implies the following set of conditions:

1. the optimal (relative) price set by adjusting firms
P
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P
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π̄ is the steady-state (gross) inflation rate

3. with Gp,t and G
∗
p,t following
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4. the evolution of prices
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5. evolution of price dispersion
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The goods market clearing conditions are:

Yt = CDt + C∗
Mt +Gt (86)

Y ∗
t = C∗

Dt + CMt +G∗
t . (87)

Government spending is a fixed stochastic share of output:

Gt = ωgy,tYt (88)
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G∗
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The period utility functions are:
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The policy rules, which will be replaced by the first order conditions of the policymakers,
are
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B.2 Extensions

We briefly describe the additional equations if consumer price inflation is used as in-
struments. Using consumer price inflation, πC,t =

PC,t

PC,t−1
as the policy instrument, we

need to define consumer price inflation by relating the relative price of consumption
PC,t

Pt
to producer price inflation:
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Furthermore, the vector of endogenous variables is modified to include πC,t and π∗
C,t,

i.e.,
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B.3 Relationship with Linear-Quadratic Solution

Corsetti, Dedola, and Leduc (2010) deviate from the setup in Benigno and Benigno
(2006) by allowing for home bias, but by eliminating government spending. In the
following, we allow for home bias, abstract form government spending, and focus on
the case of the efficient steady state in order to restate the model presented in Corsetti,
Dedola, and Leduc (2010) using our notation. Absent home bias (ωc = ω∗

c = 0.5), this
model coincides with the one in Benigno and Benigno (2006) for equally-sized countries.
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The set of relevant structural relationships of the economy can be reduced to the
following set of equations if the model is (log-)linearised around its deterministic steady
state

πt = κ

(
ỹt +

τ

χ+ σ
δ̃t + ut

)
+ βEtπt+1 (97)
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Following Corsetti, Dedola, and Leduc (2010) we assume symmetry, i.e., ωc = ω∗
c .

As before, the remaining parameters governing preferences over types and timing of
consumption and leisure are identical across countries. For the home country πt denotes
the producer price inflation rate in deviation from its steady state, ỹt is the output gap,
and δ̃t stands for the terms of trade gap. The terms of trade are denoted as the price
of imports divided by the price of exports. π∗

t and ỹ∗t are defined analogously.
Relative consumption and the real exchange rate gaps are determined as

q̃t = σ (c̃t − c̃∗t )

q̃t = (1− ωc − ω∗
c)δ̃t.

By taking the true linear-quadratic approximation to the utility function, Corsetti,
Dedola, and Leduc (2010) show that the loss function under symmetry is given by
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2 + λ∗π (π

∗
t )

2 + λδ

(
δ̃t

)2)
(100)

where

λy = χ + σ (101)
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λ∗y = χ + σ (102)
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C Equilibrium Conditions in the Macroprudential

Regulation Model

The endogenous variables are summarized in the vector
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We provide a complete list of the conditions characterising the private sector equi-
librium for given policies for the model described in the main text. At the end of this
appendix we will also provide the derivations for equations (42) to (45).

The following equations result from the households’ optimization problem:

1. choice of optimal consumption

λct =
1

Ct − γCt−1

−Etβ
γ

Ct+1 − γCt

(107)

2. choice of optimal labor supply

χ0L
χ
t = λctWt (108)

3. choice of optimal deposit holdings

Et

λct+1

λct
=

1

β(1 +Rt)
. (109)

The following equations result from the banks:

1. leverage constraint

QtSt =
ηt

(λ− vt)
(1−BTt)Nt (110)
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2. bank capital evolves according to

Nt = θ

[
(Rs

t −Rt−1)
ηt−1

(λ− vt−1)
+ (1 +Rt−1)

]
(1− BTt−1)Nt−1 + ω̄QtSt−1 (111)

3. the marginal value of loans

vt = Et (1− θ) Λt,t+1

(
Rs

t+1 − Rt

)

+θΛt,t+1

ηt+1

(λ−vt+1)
ηt

(λ−vt)

[(
Rs

t+1 − Rt

) ηt
(λ− vt)

+ (1 +Rt)

]
(1− BTt+1)vt+1

(112)

4. the marginal value of equity

ηt = Et (1− θ) + θΛt,t+1

[(
Rs

t+1 − Rt

) ηt
(λ− vt)

+ (1 +Rt)

]
(1− BTt+1)ηt+1.

(113)

The following equations result from the basic producers:

1. equity financing for capital
Kt+1 = St. (114)

2. production function
Yt = eztKt

αL1−α
t . (115)

3. choice of optimal labor input

Lt = (1− α)
Yt

Wt

MCt

Pt

(116)

4. zero profit condition

(1 +Rs
t ) =

αYt

Qt−1Kt

MCt

Pt

+
(1− δ)

Qt−1

Qt. (117)

The following equations result from the variety producers:
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1. first order condition with respect to prices

Et




[
− 1

νp
(1 + τ p) +

1+νp

νp

MCt

Pt

]
(1− φt) Yt

−
{
(1 + τ p)−

MCt

Pt

}
YtPt

∂φt

∂Pt

−Λt,t+1

{
(1 + τ p)−

MCt+1

Pt+1

}
Yt+1Pt+1

∂φt+1

∂Pt


 = 0 (118)

2. with the price adjustment cost and its derivatives satisfying

φt =
φp

2

(πt

π̄
− 1
)2

(119)

∂φt

∂Pt

Pt = φp

(πt

π̄
− 1
) πt

π̄
(120)

∂φt

∂Pt−1

Pt = −φp

(πt

π̄
− 1
) πt

π̄
πt. (121)

The following equations result from the physical capital producers:

1. evolution of physical capital

Kt+1 = Int + (1− δ)Kt (122)

2. investment adjustment costs

Int =

[
1−

ψ

2

(
I
g
t

I
g
t−1

− 1

)2
]
I
g
t . (123)

3. price of capital from optimal investment choice

Qt

[
1−

ψ

2

(
I
g
t

I
g
t−1

− 1

)2

− ψ

(
I
g
t

I
g
t−1

− 1

)
I
g
t

I
g
t−1

]

+Λt,t+1Qt+1ψ

(
I
g
t+1

I
g
t

− 1

)(
I
g
t+1

I
g
t

)2

= 1 (124)

The aggregate resource constraint requires

Yt = Ct + I
g
t +Gt (125)

where government spending is set to be

Gt = ωgyYt. (126)
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In addition, we define:

1. the loan rate spread
∆Rs

t = Rs
t −Rt−1 (127)

2. the ratio of loans to net worth

[
QS

N

]

t

=
ηt

λ− vt
(128)

‘

3. the nominal interest rate

1

(1 +Rn
t )

= β
λct+1

λct

1

πt+1

(129)

4. the net worth to output ratio [
N

Y

]

t

=
Nt

Yt
(130)

The period utility functions are

U cb
t = log(Ct − γCt−1)− χ0

L
1+χ
t

1 + χ
− µcb(πt − π̄)2 (131)

and

U
mpr
t = log(Ct − γCt−1)− χ0

L
1+χ
t

1 + χ
− µmpr

(
(Rs

t − R̄s)− (Rt−1 − R̄)
)2
. (132)

The policy rules followed by the central bank and the macroprudential regulator
that will subsequently be replaced by the first order conditions of the policymakers are:

Rn
t = R̄n + γRn

(
Rn

t−1 −

(
π̄

β
− 1

))
+ (1− γRn)γπ(πt − π̄) (133)

and
BTt = γBTBTt−1 + γS(St − St−1) (134)

C.1 Details on Conditions (42) and (45)

We begin by restating the expected terminal wealth of a bank as

max
{St+i(j)}

Vt(j) = Et

∞∑

i=0

(1− θ) θiΛt,t+1+iNt+1+i(j) (135)
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where
Nt+1(j) =

(
Rs

t+1 − Rt

)
QtSt(j) + (1 +Rt)(1− BTt)Nt(j). (136)

Vt(j) can be split into two parts

Vt(j) = Et

(
∞∑

i=0

(1− θ) θiΛt,t+1+i

(
Rs

t+1+i − Rt+i

)
Qt+iSt+i(j)

)

+Et

(
∞∑

i=0

(1− θ) θiΛt,t+1+i(1 +Rt+i)Nt+i(j)

)
. (137)

Defining vt(j) and ηt(j)

vt(j) = Et

(
∞∑

i=0

(1− θ) θiΛt,t+1+i

(
Rs

t+1+i − Rt+i

) Qt+iSt+i(j)

QtSt(j)

)
(138)

= Et

(
(1− θ) Λt,t+1

(
Rs

t+1 − Rt

)
+ Λt,t+1θ

Qt+iSt+i(j)

QtSt(j)
vt+1(j)

)
(139)

ηt(j) = Et

(
∞∑

i=0

(1− θ) θiΛt,t+1+i(1 +Rt+i)
Nt+i(j)

Nt(j)

)

= Et

(
(1− θ) + Λt,t+1θ

Nt+1(j)

Nt(j)
ηt+1(j)

)
. (140)

we arrive at

Vt(j) = vt(j)QtSt(j) + ηt(j)Nt(j). (141)

In oder to aggregate over banks, we make use of the fact that all banks have access
to the same investment opportunities as we will show now. Qt+1St+1(j)

QtSt(j)
will be equalized

across surviving firms, and similarly for Nt+1(j)
Nt(j)

. Substitute

Vt(j) = vtQtSt(j) + ηtNt(j) (142)

into the incentive-compatibility constraint

Vt(j) ≥ λQtSt(j) (143)

to obtain
vt(j)QtSt(j) + ηt(j)Nt(j) ≥ λQtSt(j). (144)

Assuming this constraint binds with equality and substituting QtSt(j) = ηt
(λ−vt)

Nt(j)

into the evolution of net worth Nt+1(j) =
(
Rs

t+1 −Rt

)
QtSt(j)+(1+Rt)Nt(j) we arrive
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at
Nt+1(j)

Nt(j)
=
(
Rs

t+1 − Rt

) ηt
(λ− vt)

+ (1 +Rt). (145)

In turn, Qt+1St+1(j)
QtSt(j)

is given by

Qt+1St+1(j)

QtSt(j)
=

ηt+1

(λ−vt+1)
ηt

(λ−vt)

Nt+1(j)

Nt(j)

=

ηt+1

(λ−vt+1)
ηt

(λ−vt)

[(
Rs

t+1 −Rt

) ηt
(λ− vt)

+ (1 +Rt)

]
. (146)

Consequently, vt and ηt are identical for each bank and evolve according to

vt = Et (1− θ) Λt,t+1

(
Rs

t+1 − Rt

)

+θΛt,t+1

ηt+1

(λ−vt+1)
ηt

(λ−vt)

[(
Rs

t+1 − Rt

) ηt
(λ− vt)

+ (1 +Rt)

]
vt+1 (147)

ηt = Et (1− θ) + θΛt,t+1

[(
Rs

t+1 − Rt

) ηt
(λ− vt)

+ (1 +Rt)

]
ηt+1. (148)

Finally, aggregate net worth is the sum of the net worth of two groups: old and new
bankers. Bankers that survive from period t − 1 to period t will have aggregate net
worth equal to

θ

[
(Rs

t − Rt−1)
ηt−1

(λ− vt−1)
+ (1 +Rt−1)

]
Nt−1. (149)

Assume that new bankers receive as endowment a fixed fraction of the current value
of the assets intermediated by exiting bankers in the previous period, amounting to
(1− θ)QtSt−1. Furthermore, let households transfers the fraction ω̄

(1− θ)
of that amount

to new bankers. Thus,

Nn
t =

ω̄

(1− θ)
(1− θ)QtSt−1 = ω̄QtSt−1. (150)

Current aggregate net worth is then the sum of net worth carried from the previous
period by surviving firms plus the net worth of new entrants, or

Nt = θ

[
(Rs

t −Rt−1)
ηt−1

(λ− vt−1)
+ (1 +Rt−1)

]
Nt−1 + ω̄QtSt−1 (151)

with vt and ηt as defined in equations (147) and (148).
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