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Abstract
We estimate a reduced-form model of credit risk that incorporates stochastic volatility in
default intensity via stochastic time-change. Our Bayesian MCMC estimation method
overcomes nonlinearity in the measurement equation and state-dependent volatility in
the state equation. We implement on firm-level time-series of CDS spreads, and find
strong in-sample evidence of stochastic volatility in this market. Relative to the widely-
used CIR model for the default intensity, we find that stochastic time-change offers
modest benefit in fitting the cross-section of CDS spreads at each point in time, but
very large improvements in fitting the time-series, i.e., in bringing agreement between
the moments of the default intensity and the model-implied moments. Finally, we obtain
model-implied out-of-sample density forecasts via auxiliary particle filter, and find that
the time-changed model strongly outperforms the baseline CIR model.
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1 Introduction

Credit spreads widened dramatically during the financial crisis of 2007–09. The CDX index
of five year North American investment grade corporate credit default swaps (CDS) rose
from under 30 basis points (bp) in February 2007 to 280bp in November 2008. Perhaps
less widely appreciated, the financial crisis also witnessed bursts of extreme volatility in
spreads. This can be seen in Figure 1, where we plot daily changes in the log of the par
spread on the on-the-run CDX index. The figure suggests that stochastic volatility is not a
phenomenon peculiar to the financial crisis, as bursts of volatility can be seen, for example,
around March 2005 and September 2011. More formally, Gordy and Willemann (2012) find
that a hypothesis of constant volatility in a Vasicek model of log-spreads is strongly rejected
even in the pre-crisis data, and Alexander and Kaeck (2008) provide evidence of regime-
dependent volatility in a Markov switching model of CDS spreads. Arguably, financial
institutions might have been better prepared for the financial crisis had risk management
and rating models incorporated stochastic volatility. As a case study in model risk, Gordy
and Willemann (2012) show that the high investment grade ratings assigned pre-crisis to
constant proportion debt obligations depended crucially on the rating agencies’ assumption
of constant volatility in spreads.

In practical application and in the empirical literature, the most widely-used pricing
models for CDS take the so-called reduced form approach, pioneered by Jarrow and Turnbull
(1995) and Duffie and Singleton (1999), in which a firm’s default occurs at the first event
of a non-explosive counting process with stochastic intensity. Broadly speaking, there are
three ways in which to accommodate the patterns of Figure 1 in this class of models. First,
if we begin with the assumption that the log of the intensity follows a Vasicek process, as
in Pan and Singleton (2008), then we can simply augment the process with positive and
negative jumps. The diffusion component would drive the low volatility periods, and the
jumps would accommodate the high volatility periods. Observe here that the log transform
of the intensity is what allows us to accommodate negative jumps without violating the zero
lower bound on the intensity process, but it carries the price of computational intractability.
A second approach builds on the widely-used and analytically tractable single-factor CIR
specification for the intensity. Jacobs and Li (2008) employ a two-factor specification in
which a second CIR process controls the volatility of the intensity process. They estimate
the model on time-series of corporate bond spreads and find strong evidence of positive
volatility of volatility. The model retains tractability in pricing, but at the expense of
the zero lower bound. Except when volatility of volatility is zero, there is no region of the
parameter space for which the default intensity is bounded nonnegative. The third approach
is to induce stochastic volatility via stochastic time-change. The constant volatility model
is assumed to apply in a latent “business time.” The speed of business time with respect to
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calendar time is stochastic, and captures the intuition of time-variation in the rate of arrival
of news to the market. When applied to default intensity models, analytic tractability is
sacrified to a degree, but Mendoza-Arriaga and Linetsky (2014) and Costin, Gordy, Huang,
and Szerszen (forthcoming) derive computationally efficient series solutions to the time-
changed model. An advantage to this approach is that the calendar-time default intensity
is bounded nonnegative so long as the business-time intensity is bounded nonnegative.

In this paper, we take the third approach. Although CDS pricing is tractable, estimation
of the model presents significant challenges. The model has two latent state variables (one
for the default intensity in business time, and one for the time-change process). Due to
nonlinearities in the pricing function and state-dependent variance in the state evolution,
the model is not well-suited to maximum likelihood estimation by Kalman filter or its
extensions. Bayesian Markov chain Monte Carlo (MCMC) estimation is viable, but the
conventional MCMC algorithm will be prone to very poor convergence rates in our setting
primarily because the latent default intensity has high serial dependence. Variables that are
highly correlated are best sampled in blocks, but the model nonlinearity and state-dependent
variance make this infeasible. To overcome these obstacles, we build on the approach
introduced by Stroud, Müller, and Polson (2003) in which an auxiliary linearized model
facilitates sampling of the latent state variables in blocks. As a by-product of the MCMC
estimation, we obtain smoothed estimates of the path of the default intensity and time-
change increments. Moreover, missing data is easily addressed in the MCMC algorithm.

We estimate the model on firm-level time-series of CDS spreads and find strong evidence
of material stochastic volatility. Relative to the model without time-change, we find that
stochastic time-change offers modest benefit in fitting the cross-section of CDS spreads at
each point in time. However, we find that stochastic time-change offers very large improve-
ments in fitting the time-series, i.e., in bringing agreement between the in-sample moments
of the default intensity and the model-implied moments.

Finally, we assess model performance in out-of-sample density forecasts. We hold pa-
rameters fixed at the mean of the in-sample posterior distribution, and filter state variables
through the out-of-sample period. Although non-adapted particle filters are straightforward
to implement in our model setting, they are prone to particle degeneration whenever abrupt
changes of CDS spreads occur. We develop a partially-adapted auxiliary particle filter which
effectively mitigates particle degeneration while preserving tractability. For nine of the ten
firms in our sample, we reject the baseline CIR model in favor of the model with stochastic
time-change.

Our model specification and CDS pricing are set forth in Section 2. Our econometric
methodology is described in Section 3. Data and estimation results are presented in Section
4. Out-of-sample performance is assessed in Section 5. Section 6 concludes.
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2 Model specification and pricing

Mendoza-Arriaga and Linetsky (2014) and Costin et al. (forthcoming, hereafter CGHS)
introduce stochastic time change to default intensity models for pricing credit default swaps
and other credit sensitive instruments. A firm’s default occurs at the first event of a non-
explosive counting process. Under the business-time clock, the intensity of the counting
process is λt. The intuition driving default intensity models is that λtdt is the probability
of default before business time t+ dt, conditional on survival to business time t.

We assume complete markets, no arbitrage, and the existence of an equivalent mar-
tingale measure Q. Unless stated otherwise, all specifications of stochastic processes and
expectations are taken with respect to this measure. We assume that λt is a CIR process
under the business clock, i.e., that it follows the stochastic differential equation

dλt = (µ− κλt)dt+ σ
√
λtdWt (1)

where Wt is a Brownian motion. We assume that µ > 0 and initial condition λ0 ≥ 0, but
do not restrict κ. Our approach can easily be generalized to allow for independent positive
Poisson jumps in the default intensity process, but we do not pursue this extension here.

Define Λt(s) as the time-integral (or “compensator”) of the default intensity from time
t to time t+ s, i.e., Λt(s) =

∫ t+s
t λudu. Conditional on the survival to time t and the state

λt, the probability of survival to date t+ s is

St(s; `) = Pr(τ > t+ s|τ > t, λt = `) = E [exp(−Λt(s))|λt = `] . (2)

where τ denotes the default time of the firm. This function has an exponential affine form
as detailed in Duffie and Singleton (2003, Appendix A.5).

We now introduce stochastic time-change. Let Tt be the stochastic business time asso-
ciated with calendar time t. For a given firm, let τ̃ denote the calendar default time, so
that τ = Tτ̃ is the corresponding time under the business clock. We assume that processes
λ and T are independent, i.e., that there is no leverage effect. In the empirical literature on
stochastic volatility in stock returns, there is strong evidence for dependence between the
volatility factor and stock returns (e.g., Andersen et al., 2002; Jones, 2003; Jacquier et al.,
2004). In the credit risk literature, the evidence is rather less compelling. Across the firms
in their sample, Jacobs and Li (2008) find a median correlation of around 1% between the
default intensity diffusion and the volatility factor.

We assume that the time-change Tt is an inverse Gaussian (IG) process with mean
parameter t and shape parameter αt2. This is an almost surely increasing Lévy pro-
cess such that E [exp(u(Tt+s − Tt))] = exp(sΨ(u)) where the Laplace exponent is Ψ(u) =
α
(
1−

√
1− 2u/α

)
. As E [Tt+s − Tt] = s for all s and t, we say that the business clock is
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unbiased, i.e., business time moves at the same speed on average as calendar time. The
parameter α can be interpreted as a precision parameter. As α → ∞, business time con-
verges in probability to calendar time (hence, no time-change). As a Lévy subordinator,
the process has increments Tt+s − Tt, Tt+2s − Tt+s, Tt+3s − Tt+2s, . . . that are independent
and identically distributed, so the specification rules out the possibility of volatility clus-
tering in time. The methodology of Mendoza-Arriaga and Linetsky (2014) allows Tt to be
any Lévy subordinator, and CGHS allow for a still broader class of time-change processes.
Nonetheless, we have found the IG specification to be flexible and numerically well-behaved
in our econometric application, so impose this specification throughout this paper.

Independence of the default intensity and business clock implies that time-changing the
default time is equivalent to time-changing Λt; that is, that the compensator in calendar time
is Λ̃t(s) = ΛT (t)(Tt+s−Tt). Since λt and Tt are Markov processes, the triplet (Tt, λ(Tt), τ̃ > t)
is a sufficient statistic for the information at time t. The conditional calendar-time survival
probability function is

S̃t(s; `) = Pr(τ̃ > t+ s|τ̃ > t, Tt, λ(Tt) = `) = Pr(τ > Tt+s|τ > Tt, Tt, λ(Tt) = `)

= E
[
E
[
exp(−ΛT (t)(Tt+s − Tt))|Tt+s, Tt, λ(Tt) = `

] ∣∣∣∣Tt, λ(Tt) = `

]
= Et

[
ST (t)(Tt+s − Tt; `)

]
.

Mendoza-Arriaga and Linetsky (2014) provide a series solution to S̃t(s; `) via Bochner
subordination of the eigenfunction expansion. The expansion is uniformly convergent when
the intensity process is stationary (µ > 0 and κ > 0), but cannot be employed in the
case of non-stationarity (κ ≤ 0). Both Duffee (1999) and Jacobs and Li (2008) find that
the default intensity process is indeed non-stationary under the risk-neutral measure for
the typical firm. In our empirical results below, we find that the mean of the posterior
distribution for κ under the risk-neutral measure is negative for every firm in our sample.
Therefore, we employ the “expansion in derivatives” method of CGHS, which does not
impose any restriction on κ. Calendar-time survival probabilities are given by

S̃t(s; `) ≈
M∑
m=0

α−m
m∑
j=0

cm,js
jDm+j

s ST (t)(s; `) (3)

where Ds is the differential operator d
ds , M is the order of approximation, and

cm,j = 1
2m

1
m

1
(j − 1)!

(
2m
m− j

)

for m ≥ j ≥ 1. For j = 0, c0,0 = 1 and cm,0 = 0 for m > 0. Derivatives of the business-time
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survival function are easily computed using a recurrence rule in §4 of CGHS. CGHS show
that expansion (3) diverges as M → ∞ but yields an accurate approximation when the
series is truncated close to the numerically least term. In our empirical application, we fix
M = 2, which CGHS find generally accurate to within the bid-ask spread.

Let rt denote the riskfree short rate, which we assume to be independent of the default
intensity and time-change. Our pricing and estimation methods each can be generalized to
allow for dependence, but at significant cost in complexity and computational resources.1

Duffee (1999) finds that the correlation between riskfree rates and default intensity is typ-
ically negative but has second-order importance, so we do not pursue the extension here.
The discount function is given by

Pt(s) = Et
[
exp

(
−
∫ t+s

t
rudu

)]
CDS pricing follows the treatment of Leeming et al. (2010, §2). By independence of the

short rate and default risk, we can write the value of the remaining quarterly premium leg
payments at t+ s1, . . . , t+ sn at date t as

PremiumLeg = c
n∑
i=1

Pt(si)S̃t(si;λT (t))B(si)

where B(s) = min{0.25, s} is the coupon time interval. The value of protection leg payments
is

ProtectLeg = (1− ρ)
∫ s(n)

0
Pt(s)q̃t(s;λT (t)) ds

where ρ is the expected recovery rate as a fraction of face value, and q̃t(s; `) is the density
of the default time under calendar time conditional on business-time intensity λT (t) = `.
This density is simply q̃t(s; `) = −S̃′t(s; `). The model-implied par CDS spread equates the
value of the premium leg to that of the protection leg.2

In Section 4, we will compare the smoothed estimates of the default intensity in a
model without time-change to the calendar-time intensity λ̃t in the full model with time-
change. The default intensity coincides with the instantaneous forward default rate, so
λ̃t = q̃t(0;λT (t)) is readily computed.3

As emphasized by Jarrow et al. (2005), market prices can reveal only the Q-intensity,
1On pricing in a multifactor framework with dependence, see Remark 4.1 in Mendoza-Arriaga and Linet-

sky (2014) and §7 in CGHS.
2Since April 2009, CDS have been traded on an “upfront” basis with annual coupons fixed to 1% or 5%.

For observations since this change in market convention, we convert upfront to par spread using the standard
formula published by ISDA. Leeming et al. (2010, §4).

3Formal treatment of the existence of the calendar-time default intensity can be found in Mendoza-Arriaga
and Linetsky (2014, Theorems 3.2(iii), 3.3(iii)).
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which may or may not contain a risk-premium for the event risk associated with default.
While the intensity under the physical measure P is not identified in our setting, our
smoothed estimate of λt reveals the P-dynamics of the Q-intensity.4 We specify the dynam-
ics of λt under the two measures jointly in the standard fashion. The drift and volatility
parameters in (1) are restricted to be the same across the two measures, but the risk-neutral
mean-reversion parameter κQ differs from the physical κP by an unrestricted risk-premium.
This change of measure is called “drift change in the intensity” by Jarrow et al. (2005),
and has been adopted by Duffee (1999) and Jacobs and Li (2008), among others. In the
empirical implementation below, we will restrict κP > 0 to guarantee stationarity under the
physical measure, but will not restrict κQ.

In principle, we can introduce a second risk-premium on the uncertainty due to time-
change. Say we assume that Tt+s − Tt ∼ IG(s, αs2) under the physical measure P. For
the time-change process Tt to remain within the IG family under Q, the increments to
the business clock must be distributed Tt+s − Tt ∼ IG(sψ, αs2) under Q where the risk-
premium parameter ψ is nonnegative.5 The issue is whether ψ can be estimated. For
large α, Tt+s − Tt converges in probability to sψ. Since λt follows a scale-invariant CIR
process, the parameters of the time-changed default intensity could not be identified in
the asymptotic case of α→∞. In numerical experiments based on simulated time-series of
length comparable to our data and values of α from the range of estimates reported below in
Section 4, we find that ψ is only very weakly identified. Therefore, we make the simplifying
assumption that uncertainty due to time-change is unpriced, i.e., that Tt+s−Tt ∼ IG(s, αs2)
holds under both P and Q.

Stochastic time-change can have a dramatic effect on the kurtosis of changes in the
time-series of CDS spreads. In Figure 2, we plot kurtosis of the stationary distribution of
changes in the CDS spread as a function of α on a log-log scale. Let CDS(λ;α) be the
five-year par spread as a function of the current business-time intensity. For each value of α
and horizon δ, we first draw a sample λ(i)

0 , i = 1, . . . , I, from the stationary distribution for
λt. Next, we draw the elapsed business-time T (i)

δ ; and then draw λ(i)(T (i)
δ ) from the CIR

transition density. From this sample, we calculate the kurtosis of the stationary distribution
of CDS(λ(i)(T (i)

δ );α) − CDS(λ(i)
0 ;α). We plot separate curves for a one day horizon (δ =

1/250, assuming 250 trading days per year), a one month horizon (δ = 1/12), and an
annual horizon (δ = 1). Parameters for the business-time CIR process are fixed to κP =
κQ = 0.2, µ = 0.004, σ0 = .1, and recovery is fixed to ρ = 0.4. As we expect, kurtosis at all
horizons tends to its asymptotic CIR limit as α → ∞. For fixed α, kurtosis also tends to

4This limitation applies as well to Duffee (1999), Jacobs and Li (2008), and Pan and Singleton (2008).
Driessen (2005) brings additional ratings-based information to bear to identify λP

t and λQ
t separately.

5This is the only form that satisfies the necessary integrability conditions on the Radon-Nikodym deriva-
tive of the Lévy measures of jumps under P and Q set forth in Theorem 7.3 of Barndorff-Nielsen and Shiryaev
(2010).
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its CIR limit as δ → ∞. This is because an unbiased trend stationary time-change has no
effect on the distribution of a stationary process far into the future. For intermediate values
of α (say, between 1 and 10), we see that time-change has a modest impact on kurtosis
beyond one year, but a material impact at a one month horizon, and a very large impact
at a daily horizon.

3 Estimation method

Our choice of estimation method is guided by two characteristics of the model of Section
2. First, the mapping from default intensity to CDS spreads is nonlinear and sensitive to
parameters. Second, the latent default intensity is persistent under the physical measure
and has state-dependent variance. Bayesian Markov chain Monte Carlo (MCMC) estimation
is a natural choice in this setting, but the conventional MCMC algorithm will suffer from
very poor convergence rates in our setting primarily because the latent default intensity
has high serial dependence. Variables that are highly correlated are best sampled in blocks,
but the model nonlinearity and state-dependent variance make this infeasible. To overcome
this obstacle, we build on the approach introduced by Stroud, Müller, and Polson (2003,
hereafter SMP) in which an auxiliary linear model facilitates sampling of the latent state
variables in blocks.

MCMC estimation has additional advantages. As a by-product of the estimation, we
obtain smoothed estimates of default intensity and time-change increments. Moreover,
missing data is easily addressed in the MCMC algorithm by augmenting the states. Relative
to particle filtering, a limitation of MCMC is that online estimation of states and parameters
is computationally infeasible. We turn to particle filtering for out-of-sample forecasting
exercises in Section 5.

Section 3.1 offers an introduction to Bayesian MCMC methods in general and the SMP
algorithm in particular. The presentation is in a simplified setting and may be skipped over
by readers familiar with the SMP method. In Section 3.2, we adapt the SMP method to
the model of Section 2.

3.1 MCMC estimation with a linear auxiliary model

Our introduction to Bayesian MCMC methods is modeled after Chib and Greenberg (1996)
and Jones (2003). Let Y = (y1, . . . , yT ) denote the vector of observations, X = (x1, . . . , xT )
be the vector of latent state variables and Θ be the vector of model parameters.6 In Bayesian
inference the joint posterior of states and parameters is of interest and can be derived given

6Throughout the paper, we employ caligraphic font to distinguish dataset dimensions from model quan-
tities, e.g., T as a count of time-series observations vs. Tt as the stochastic time-change process.
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the prior distribution on the parameters:

p(Θ, X|Y ) ∝ p(Y |X,Θ) · p(X|Θ) · p(Θ),

where p(Y |X,Θ) is the likelihood function of the model, p(X|Θ) is the probability distri-
bution of state variables conditional on the parameters and p(Θ) is the prior probability
distribution on the parameters of the model. The joint posterior distribution p(Θ, X|Y )
is in general analytically and computationally intractable. MCMC methods overcome this
problem by breaking the high-dimensional vectors X and Θ into low-dimensional subvectors
with complete conditional posterior distributions that are more easily sampled. The joint
posterior is, by construction, the invariant distribution of the chain.

The Gibbs sampler of Geman and Geman (1984) is typically the preferred method when
the conditional posterior can be sampled directly. We partition X and Θ into, respectively,
JX and J Θ subvectors X(1), X(2), ..., X(JX) and Θ(1),Θ(2), ...,Θ(JΘ). The Markov chain
is initialized at chosen values X0 and Θ0. The chain is formed by drawing iteratively
from transition densities p(X(i)

n |X(−i)
n ,Θn−1, Y ), i = 1, 2, . . . ,JX , and p(Θ(j)

n |Θ(−j)
n , Xn, Y )

j = 1, 2, . . . ,J Θ, where X(−i)
n ≡ (X(k)

n )k<i ∪ (X(k)
n−1)k>i and Θ(−j)

n ≡ (Θ(k)
n )k<j ∪ (Θ(k)

n−1)k>j .
Under mild regularity conditions, the chain (Xn,Θn) converges to its invariant distribution
p(Θ, X|Y ).

When it is difficult or impossible to draw directly from a complete conditional posterior
for a subvectorX(i) or Θ(j), that step is replaced by the Metropolis-Hastings (MH) algorithm
(Metropolis et al., 1953). Say X(i) is the variable to be sampled in iteration n. We sample
from a tractable proposal density p̆(X̆;X(i)

n−1|X
(−i)
n ,Θn−1, Y ). The draw X̆ is accepted with

probability

min

1,
p(X̆|X(−i)

n ,Θn−1, Y ) · p̆(X(i)
n−1; X̆|X(−i)

n ,Θn−1, Y )
p(X(i)

n−1|X
(−i)
n ,Θn−1, Y ) · p̆(X̆;X(i)

n−1|X
(−i)
n ,Θn−1, Y )


If accepted, we set X(i)

n = X̆. If rejected, then the value X(i)
n−1 is retained, i.e., we set

X
(i)
n = X

(i)
n−1. A similar procedure is used when Θ(j) is the variable to be sampled.

Observe that if the true conditional density is taken as the proposal density, the draw is
accepted with probability one, and the MH step is simply a Gibbs sampler. In application,
it is often the case that the true conditional density is too complicated to approximate with
any reliability, in which case a standard approach is to sample as a normal random walk,
i.e., draw X̆ as a normal random variable centered at X(i)

n−1. While simple to implement,
this approach may suffer from slow convergence.

Correlation across parameters or state variables poses a computational challenge in
MCMC estimation. Joint sampling of correlated variables yields faster convergence rates,
but is often much more difficult to implement. In our application, this dilemma is especially
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acute for sampling of the default intensity. Strong persistence in the default intensity implies
that we ought to sample jointly the default intensity states over extended blocks of time.
Were the model linear and Gaussian, we could sample jointly via the forward filtering
backward sampling (FFBS) method of Carter and Kohn (1994) and Frühwirth-Schnatter
(1994). In our model setting, nonlinearity and state-dependent variance make this infeasible.
The single-move MCMC sampler (Carlin et al., 1992) can be applied, but we have found
the cost in rate of convergence to be insurmountable.

SMP propose an MCMC algorithm that is well-suited to our problem. Their approach
is quite general, but for illustration we adopt a simplified setting with nonlinearity in the
measurement equation, constant variance in the state equation, and both yt and xt uni-
dimensional. The essential idea is to extend the state vector to include auxiliary mixing
variables ~k = (k1, . . . , kT ) with kt having discrete support {1, . . . ,K}. Conditional on the
mixing variable, the measurement equation is approximated as Gaussian and linear in xt,
which allows FFBS to be applied to the proposal distribution. Finally, this FFBS draw
is accepted or rejected, as in MH, to account for the gap between the true measurement
equation and the linearized approximation that provides the proposal density. There is a
trade-off in choosing the number of nodes in the approximation: The larger is K, the smaller
is the gap between true and linearized models, so the higher the acceptance rate. However,
the computational cost per MCMC iteration increases with K.

SMP specify the auxiliary model for yt as Gaussian with pa(yt|xt, kt = k,Θ) ∼ N(γt,k +
βt,kxt, ω

2
t,k) for (possibly) time-varying coefficients γt,k, βt,k, ωt,k. The mixture weights are

standardized Gaussian weights

pa(kt = k|xt,Θ) = φ(xt; νk, ξk)
w(xt)

where φ(x; ν, ξ) denotes the normal density with mean ν and variance ξ2 and the scaling
factor w(x) =

∑K
k=1 φ(x; νk, ξk) guarantees that the weights sum to one. For tractability, the

mixture variables are assumed to be serially independent, conditional on xt. The auxiliary
mixture model is then

pa(yt|xt,Θ) =
K∑
k=1

pa(yt|xt, kt = k,Θ) · pa(kt = k|xt,Θ) (4)

The node constants (νk, ξk) and identifying restrictions for (γt,k, βt,k, ωt,k) are chosen so that
the auxiliary density pa(yt|xt,Θ) is close to the target density p(yt|xt,Θ).

In each iteration of the MCMC procedure, we draw Θ in the usual way, and draw the
state variables as follows. For notational compactness, we drop the subscript n for indexing
MCMC iterations.
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1. Generate mixture indicators kt from the complete conditional posterior pa(kt|yt, xt,Θ),
which has a multinomial distribution. By Bayes’ rule,

pa(kt|yt, xt,Θ) ∝ pa(yt|xt, kt,Θ) · pa(kt|xt,Θ)

This is a Gibbs step.

2. Conditional on the mixture indicators, draw states jointly via FFBS from the MH
proposal density for the mixture model. The proposal density is given by:

p̆(X|~k, Y,Θ) = p(x0)
T∏
t=1

p(xt|xt−1,Θ) · pa(yt|xt, kt,Θ) · φ(xt; νk(t), ξk(t))

This is similar to the MH proposal density in a linear model without auxiliary vari-
ables, but incorporates an extra Gaussian kernel φ(xt; νk(t), ξk(t)) to capture the ad-
ditional conditioning information from the auxiliary variables. Denote the proposal
draw X̆ = (x̆1, . . . , x̆T ).

3. Accept or reject X̆. The acceptance probability is

min
{

1,
T∏
t=1

p(yt|x̆t,Θ)
w(x̆t)pa(yt|x̆t,Θ)

w(xt)pa(yt|xt,Θ)
p(yt|xt,Θ)

}
(5)

where the {xt} denote the previous draw of X in the Markov chain.

Observe that the acceptance probability is maximized when the auxiliary model likelihood
pa(yt|xt,Θ) is close to the true likelihood p(yt|xt,Θ). When the acceptance probability is
low, performance may be improved by dividing the time-series into blocks, b = 1, . . . ,B,
and tuning the node constants (νbk, ξbk) on a block-by-block basis.

3.2 Application to estimation of the time-changed default intensity model

In this section, we cast the model of Section 2 as a discrete-time state-space model, and
then adapt the SMP algorithm to accommodate a multidimensional measurement equation
and state-dependent variance in the state equation for the default intensity.

Our notation needs to track three time-scales, one for observations, one for calendar time,
and one for business time. Henceforth, we let t = 1, . . . , T index a set of daily observations.
The associated (deterministic) calendar time is denoted T̃t. For simplicity, we take trading
days as equally spaced in calendar time at an interval of ∆ = T̃t+1 − T̃t = 1/250 of a year.
The stochastic business time associated with observation time t is T (T̃t). For notational
convenience, let ht = λ(T (T̃t)) be the business-time default intensity at the business time
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associated with observation date t.7

Fixing a given reference entity, let yt,m be the log of the CDS spread observed on date
t for maturity m ∈ M = {1, 2, 3, 5, 7, 10} years. Let Fm(ht;µ, κQ, σ, α, ρt, Pt) map ht to a
model-implied log-spread on a CDS of maturity m. For notational compactness, we drop
explicit reference to the date-t riskfree discount function and recovery rate, and simply write
Ft,m(ht;µ, κQ, σ, α).

We assume that CDS log-spreads are observed with noise. Without measurement noise,
the spread would be a deterministic function of underlying parameters and the state, which
would lead to stochastic singularity in filtering and smoothing.8 In the option pricing
literature, this approach has been used by Eraker (2004) and Johannes et al. (2009), among
others. Our measurement equation is

yt,m = Ft,m(ht;µ, κQ, σ, α) + ζ ε
(y)
t,m (6)

Measurement errors ε(y)
t,m are assumed to be i.i.d. standard normal random variables. The

new parameter ζ scales the pricing errors. For parsimony, we impose homoscedasticity
across both time and contract maturity.

The model has two state evolution equations. The first governs the distribution of
increments to the business time clock. Let

χt+1 = T (T̃t+1)− T (T̃t)
iid∼ IG(∆, α∆2) (7)

be the inverse Gaussian increment to the business clock between observations t and t + 1.
The second governs the evolution of the default intensity under the physical measure. We
apply a first order Euler discretization scheme to SDE (1) with stochastic time-increments
to obtain

ht+1 = ht + (µ− κPht)χt+1 + σ
√
htχt+1 ε

(λ)
t+1 (8)

The {ε(λ)
t } are i.i.d. standard normal random variables, independent of {ε(y)

t,m}. We assume
that both κP and µ are strictly positive, so that ht is bounded nonnegative and stationary.9

We refer to equations (6)–(8) as the state-space representation.
Our framework extends the basic SMP algorithm of Section 3.1 along two dimensions.

First, our measurement equation is of dimension #M, as we have one observation for
each contract in maturity set M. As in the standard SMP algorithm, we introduce a

7This should not be confused with the calendar time default intensity λ̃(T̃t).
8In our setting, measurement error could alternatively be justified by misspecification or estimation error

in the fitted riskfree term-structure Pt or by the presence of time-varying liquidity premia in the CDS market.
9Discretization introduces the possibility of negative realizations of the default intensity. We avoid this

in the MCMC simulation by simple truncation at zero.
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linear auxiliary model for the measurement equation with mixing variable k(y)
t . Second,

and of greater consequence, the state equation (8) for ht has state-dependent volatility,
as V [ht+1|ht] = σ2htχt+1. As FFBS requires state-independent volatility, we introduce
a linear auxiliary model for the state equation (8) with a new mixing variable k(λ)

t . For
parsimony, the two mixing variables share the same support {1, . . . ,K}, as well as mean
and volatility constants (νk, ξk).10

We assume that log-spread yt,m is conditionally independent of k(λ)
t given k

(y)
t . The

auxiliary model for the measurement equation is conditionally Gaussian with

pa(yt|ht, k(y)
t ,Θ) =

∏
m∈M

pa(yt,m|ht, k(y)
t ,Θ)

Hence, the auxiliary model is given by the following mixture of Gaussian densities:

pa(yt|ht,Θ) =
K∑
k=1

pa(k(y)
t = k|ht,Θ)

∏
m∈M

pa(yt,m|ht, k(y)
t = k,Θ)

where

pa(k(y)
t = k|ht,Θ) = φ(ht; νk, ξk)

w(ht)
for w(x) =

K∑
k=1

φ(x; νk, ξk)

As in the standard SMP algorithm, we assume that the auxiliary model for the measure-
ment equation is linear and Gaussian conditional on the mixture indicator. We linearize
the measurement equation (6) locally at node k, and define

pa(yt,m|ht, k(y)
t = k,Θ) ∼ N(Ft,m(νk; Θ) + F ′t,m(νk; Θ) · (ht − νk), ζ2)

Observe that the coefficients in the mean of the auxiliary distribution vary over time and
across maturity, as well as across nodes.

We now introduce the auxiliary model for the state evolution equation (8). Conditional
on k(λ)

t and ht−1, ht is independent of the measurement equation mixing variable k(y)
t . The

auxiliary model is conditionally linear and Gaussian. We linearize state equation (8) at
node k, and define

pa(ht|ht−1, k
(λ)
t = k, χt,Θ) ∼ N(µχt + (1− κPχt)ht−1, σ

2χtνk).

As the drift of the true evolution equation is affine in ht−1, the mean of the auxiliary model
can be matched to the true mean without conditioning on the node. Only the variance of

10In our implementation, we achieve higher acceptance rates if the time-series is divided into contiguous
blocks of, say, 40–50 observations each. The node constants are tuned on a block-by-block basis.
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the auxiliary model depends on k(λ).
The auxiliary model for state evolution equation is decomposed in the usual way:

pa(ht|ht−1, χt,Θ) =
K∑
k=1

pa(ht|ht−1, k
(λ)
t = k, χt,Θ) · pa(k(λ)

t = k|ht−1,Θ) (9)

The state k(λ)
t is assumed to be conditionally independent of k(y)

t with

pa(k(λ)
t = k|ht−1,Θ) = φ(ht−1; νk, ξk)

w(ht−1) (10)

We introduce additional notation so that the algorithm can be presented compactly.
The data vector is Y = (y1, . . . , yT ) where yt = (yt,m)m∈M is the vector of CDS log-spreads
observed at time t for all maturitiesm ∈M. The parameter vector is Θ = (µ, κP, κQ, σ, α, ζ).
The state vector X contains four components: default intensities X(λ) = (h1, . . . , hT ); time-
change increments X(χ) = (χ1, . . . , χT ); mixture variables for the observation equation
X(y) = ~k(y) = (k(y)

1 , . . . , k
(y)
T ) with k

(y)
t ∈ {1, . . . ,K}; and mixture variables for the state

evolution equation X(x) = ~k(λ) = (k(λ)
1 , . . . , k

(λ)
T ) with k

(λ)
t ∈ {1, . . . ,K}. For any subset

V ⊂ X, let X(−V ) denote X\V .
In each iteration of the MCMC procedure, we follow these steps:

Draw the mixture indicator variables. By Bayes’ law and the assumption of condi-
tional independence,

pa(k(y)
t |X(−~k(y)), Y,Θ) ∝ pa(yt|ht, k(y)

t ,Θ) · pa(k(y)
t |ht,Θ)

pa(k(λ)
t |X(−~k(λ)), Y,Θ) ∝ pa(ht|ht−1, k

(λ)
t , χt,Θ) · pa(k(λ)

t |ht−1,Θ)

The complete conditional posterior distribution for each mixture indicator is multi-
nomial and is easily sampled.

Generate proposal default intensity states. We apply Bayes’ law to the auxiliary model
for the state equation:

pa(X(λ)|X(−λ), Y,Θ) ∝ pa(Y |X(λ),~k(y),~k(λ),Θ) · pa(X(λ)|~k(y),~k(λ), X(χ),Θ)

∝ pa(Y |X(λ),~k(y),Θ) · pa(~k(y)|X(λ),Θ) · pa(X(λ)|~k(λ), X(χ),Θ)
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where

pa(Y |X(λ),~k(y),Θ) =
T∏
t=1

∏
m∈M

pa(yt,m|ht, k(y)
t ,Θ)

pa(~k(y)|X(λ),Θ) =
T∏
t=1

φ(ht; νkt , ξkt)
w(ht)

pa(X(λ)|~k(λ), X(χ),Θ) = pa(h0|k(λ)
1 ,Θ)

T∏
t=2

pa(ht|ht−1, k
(λ)
t , χt,Θ)

The proposal distribution is

p̆(X(λ)|X(−λ), Y,Θ) ∝ pa(X(λ)|X(−λ), Y,Θ) ·
T∏
t=1

w(ht)

The standard FFBS algorithm can be used to sample jointly default intensity states
from the proposal distribution p̆.

Accept or reject proposal draw. By repeated application of Bayes’ law:

p(X(λ)|X(−λ), Y,Θ)
p̆(X(λ)|X(−λ), Y,Θ)

∝ p(Y |X(λ),Θ) · p(X(λ)|X(χ),Θ) · pa(~k(y)|X(λ),Θ) · pa(~k(λ)|X(λ),Θ)
pa(Y |X(λ),~k(y),Θ) · pa(X(λ)|~k(λ),Θ) · pa(~k(y)|X(λ),Θ) ·

∏T
t=1w(ht)

∝ p(Y |X(λ),Θ) · p(X(λ)|X(χ),Θ)
pa(Y |X(λ),Θ) · pa(X(λ)|X(χ),Θ) ·

∏T
t=1w(ht)

Hence, the MH acceptance probability is given by:

min
{

1, p(Y |X̆
(λ),Θ) · p(X̆(λ)|X(χ),Θ) · pa(Y |X̆(λ),Θ) · pa(X̆(λ)|X(χ),Θ) ·

∏T
t=1w(X̆(λ)

t )
p(Y |X(λ),Θ) · p(X(λ)|X(χ),Θ) · pa(Y |X(λ),Θ) · pa(X(λ)|X(χ),Θ) ·

∏T
t=1w(ht)

}
(5′)

where X̆(λ) = (h̆1, . . . , h̆T ) is the proposal draw and X(λ) = (h1, . . . , hT ) is the current
value. Relative to the standard SMP acceptance probability in (5), expression (5′)
introduces the ratio of kernels pa(X̆(λ)|X(χ),Θ) and p(X̆(λ)|X(χ),Θ) to account for
the second auxiliary model for the state equation. Calculation of the acceptance
probabilities is straightforward, as the kernels for true model p involve only Gaussian
densities, and the auxiliary kernels pa are mixtures of Gaussian densities.

Draw the parameters. The conditional posteriors for the parameters κP and ζ2 are con-
jugate under the choice of normal prior and inverse gamma prior, respectively. Thus,
the Gibbs sampler can be used for these parameters. The remaining parameters
(µ, κQ, σ, α) have complete conditional posteriors that depend intractably both on the
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time-series of default intensity states (ht)t=1,...,T and the observed data Y . We sample
these parameters via the MH normal random walk algorithm. For all parameters we
assume flat uninformative priors. We restrict κP and α to be strictly positive.

Draw the time-change increments. By Bayes’ law and the conditional independence
of the increments,

p(χt|X(−χ), Y,Θ) ∝ p(ht|ht−1, χt,Θ) · p(χt|Θ)

It is straightforward to show that these kernels give a generalized inverse Gaussian
(GIG) density from which we can sample directly in a Gibbs sampler step.

4 Empirical results

We estimate the CIR and time-changed CIR models on daily data for CDS spreads on
ten single-name reference entities for the period from the beginning of 2002 to the end of
2009. The sample period spans the financial crisis of 2007–09. We retain the period from
the beginning of 2010 to the end of 2011 for out-of-sample forecasting exercises in Section
5. The sample of reference entities includes U.S. and European nonfinancial corporations
of varying credit quality: Alcoa, Anadarko, CenturyLink, Clear Channel, Ford, Lennar,
Limited Brands, RadioShack, Sprint Nextel, and Tyson Foods. All have liquid trading in
CDS. For each name, spreads on CDS of maturities 1, 2, 3, 5, 7 and 10 years are taken from
the Markit database.11 In the upper panels of Figures 3 and 4 we plot time-series of 1, 5
and 10 year CDS spreads for Alcoa and Ford, which are among the most heavily-traded
names in our sample.

Even for these liquid names, it is not unusual to find missing observations in CDS
data. In Table 1 we report the number of missing observations in our eight year sample by
reference entity and maturity. As a practical matter, it would be infeasible to estimate the
model without a convenient and rigorous means to accommodate missing observations. In
MCMC estimation, we can simply treat missing observations as latent variables and sample
from their complete conditional posteriors. This approach avoids additional assumptions
on the missing data points and does not interfere with the law of motion imposed by the
observed data points.12

Model-implied CDS spreads depend on the riskfree discount function Pt and on recovery
rates. We parameterize Pt using the Svensson yield curve, for which we rely on daily

11The time-series for Sprint Nextel Corp. begins on August 24, 2005. Data for the other nine firms span
the entire sample period.

12See Tsay (2010, §12.6) on the handling of missing data via data augmentation.
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parameter estimates provided by the Federal Reserve Board.13 Recovery rates are taken
from the Markit database.

We estimate model specifications both with and without time-change in default intensity
using the algorithm of Section 3.2. Recall that the model without time-change is nested in
the time-change model as the limiting case α = ∞. After discarding the burn-in period,
we simulate chains with 100,000 draws from the invariant distribution for each model. The
parameter estimates and the smoothed state estimates are calculated as means of draws
from the joint posterior distribution of parameters and states.

The parameter estimates of CDS pricing models are reported in Tables 2.a–2.j. The
tables report for each firm the mean, standard deviation, 5% quantile and 95% quantile of
the posterior distribution for the state-space model in equations (6)–(8). All parameters
are estimated with high precision except for the speed of mean reversion under the physical
measure. This exception is not unexpected. In maximum likelihood estimation of a CIR
specification for interest rates, Chapman and Pearson (2000) and Phillips and Yu (2009)
show that κP has a large standard error in reasonable sample sizes. The speed of mean
reversion under the risk-neutral measure (κQ) is for all firms negative even at the 95%
quantiles. This finding is qualitatively consistent with Duffee (1999), Pan and Singleton
(2008) and Jacobs and Li (2008), and underscores the necessity of a pricing methodology
that remains valid under non-stationarity.

The estimates of the parameter α provide strong evidence for stochastic time-change
in default intensities. For two of the firms (Lennar and Sprint), the mean of the posterior
distribution of α is near 20. At such values, stochastic time-change has essentially no effect
on the term-structure of credit spreads. Nonetheless, as illustrated in Figure 2, the kurtosis
of daily changes in CDS spreads is nonetheless an order of magnitude larger than the
kurtosis in the CIR model without time-change. For RadioShack, the mean and even the
95% quantile of the posterior for α is below 2.0. At such values, time-change has a noticeable
effect on credit spreads. For the remaining seven firms in our sample, the estimated α lie
between these extremes.

Alcoa and Ford are typical in this regard, with estimated α between 7 and 8. In the
middle panels of Figures 3 and 4, we plot smoothed estimates of the calendar-time de-
fault intensity (λ̃t) for these two firms for the models with and without time-change. The
smoothed time-series track quite closely across the two models, except when the estimated
CIR default intensity dips below 1bp. Intuitively, the close alignment is a consequence
of the small effect of time-change on the model-implied term-structure of spreads and the
sufficiency of the observed term-structure to pin down the latent default intensity.

In the lower panels, we plot smoothed estimates of the time-change increments (χt)
13Daily Svensson curves are publicly available for download at the Federal Reserve Board website. For

details on data sources and methodology, see Gürkaynak et al. (2007).
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for the time-changed model. We scale by ∆ so that the increments have unit mean. Not
surprisingly, we find very large outliers during the financial crisis of 2007–09 with business
time ticking 15 times faster than calendar time for the most active days for Alcoa and up to
about 25 times faster for Ford. Counter to our model assumption of Lévy time change, the
smoothed time-series suggest serial correlation in time-change increments. We leave this as
an avenue for future research.

The moments of the estimated residuals in the measurement equations and state equa-
tion for the default intensity provide metrics of in-sample fit for the CDS pricing models
with and without time-change. Table 3 reports the posterior mean, standard deviation,
skewness and kurtosis of the smoothed distribution of the stacked measurement equation
residuals, ε(y)

t,m. A correct specification implies that these residuals are standard normal with
mean zero, standard deviation one, skewness zero and kurtosis three. Comparison of the
moments suggests that stochastic time-change offers modest benefit in fitting CDS spreads.
The most notable improvement is a reduction in skewness for nine of the ten reference
entities.

It is in the time-series dimension where we see a clear distinction between the models
with and without time-change. Table 4 reports the moments of the smoothed distribution
of the innovations (ε(λ)

t ) in the default intensity state equation. Across all firms in our
sample, introducing stochastic time-change brings the mean, standard deviation, skewness
and kurtosis of the state equation innovations closer to the moments of the standard normal
distribution. In the case of Alcoa, for example, the mean falls from 0.05 for the CIR model to
0.01 for the time-changed model, variance increases from 0.67 to 0.82, skewness decreases
from 0.34 to 0.03, and kurtosis falls from 4.27 to 3.22. Indeed, introducing time-change
essentially eliminates skewness and reduces kurtosis to below 3.25 for every firm in the
sample.

We use the estimated parameters for Alcoa to illustrate how stochastic time-change
alters the implications of the baseline CIR model. In Figure 5, we plot the term structure
of CDS spreads on three dates, one during the credit boom (18 March 2005), one in the
early phase of the crisis (19 June 2008), and one in the late phase of the crisis (19 March
2009).14 The five-year CDS spreads on these dates for Alcoa were 19bp, 93bp and 851bp,
respectively. For each model and date, model parameters are fixed to the mean of the
posterior distribution for the model, as reported in Table 2.a. The business time default
intensity is taken from the estimated smoothed distribution of ht for the date and model.
Despite the two-orders-of-magnitude difference across dates in the initial condition (ht), the
two models produce very similar term structures, which suggests that the two models will

14Dates are chosen to be representative of the range of observed spreads over the sample period. Each of
these dates immediately precedes a CDS settlement date, so the nominal maturity of a CDS on these dates
equals the exact actual maturity.

17



yield similar fit to the cross-section of observed spreads on each sample date.
The fitted models differ, however, in the forecast distribution for spreads at a future

horizon. We again fix parameters for each model to the mean of the posterior distribution
for Alcoa. For simplicity, we fix a riskless rate of 3% and recovery of 40%. For the CIR
model, we simulate the quantiles of the forecast distribution of CDS(λδ) for δ = 1/250 (i.e.,
a horizon of one trading day) given initial condition λ0. Similarly, for the time-changed
model we simulate the quantiles of the forecast distribution of CDS(λ(Tδ);α). We do this
for two values of λ0, one below the long-run mean (5 bp) and one above the long-run mean
(50 bp), and report results in Table 5. Consistent with the findings on kurtosis of spread
changes (Figure 2), we find that the time-change model assigns higher probability to very
large changes in the spread over the short horizon.

We return briefly to consider whether empirical results are consistent with two orthog-
onality assumptions imposed in Section 2:

• There is no leverage effect, i.e., the innovation ε
(λ)
t in the default intensity state

equation is uncorrelated with time-change increments χt.

• The default intensity process is independent of the riskfree short rate process, i.e., ε(λ)
t

is uncorrelated with the change in the federal funds rate from t− 1 to t.

To test these assumptions, we report in Table 6 the posterior means and standard deviations
of the respective time-series correlations. We find the correlation between ε(λ)

t and changes
in the short rate is economically small and statistically insignificant for all ten names in our
sample. The correlation between ε(λ)

t and χt is positive for all ten names and in some cases
statistically significant, but generally of second-order economic magnitude. For all firms
except Sprint, the posterior mean correlation is under 3%.

5 Out-of-sample performance

In this section, we assess out-of-sample model performance. For each observation date
in the out-of-sample period from January 2010 through December 2011, we calculate the
day-ahead forecast density implied by the models with and without time-change in default
intensity. For each model and each date, the forecast density is evaluated at the realized
next-day observation. The test statistic, due to Diebold and Mariano (1995) and Amisano
and Giacomini (2007), allows for a two-sided test of the null hypothesis that the two models
perform equally well.

Construction of forecast densities presents new challenges. The MCMC algorithm of
Section 3.2 delivers a smoothed estimator of the default intensity, whereas for this applica-
tion online filtering is required. As in our MCMC estimator, the filtering algorithm must
accommodate nonlinearity in the measurement equation and non-Gaussian state evolution.
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Particle filtering is well-suited to such challenges, but the most tractable filters, such as
the SIR filter of Gordon et al. (1993), are ill-suited to our setting. Since the latent time-
change process has serially independent increments, propagation of state variables from t to
t+ 1 using only time-t information leads to particle degeneration, because the filter cannot
“anticipate” abrupt changes in CDS spreads.15 Contrasted to such non-adapted filters are
fully-adapted filters, in which propagation is conditioned on the observation at t+ 1. Here
the challenge is tractability. To navigate between these obstacles, we develop a partially-
adapted particle filter using an auxiliary linearized model in the spirit of our approach in
Section 3.2. To reduce the dimensionality of the problem, we fix all model parameters to
the in-sample posterior means estimated in Section 4.

5.1 Partially-adapted particle filter on a linearized model

The particle filter is a recursive algorithm that constructs a discrete approximation to the
filtered distribution of the state variables at each observation date:

x
(i)
t

iid∼ p(xt|Y t) for all t = T + 1, . . . , T ∗

where Y t = (y1, . . . , yt) are observations available up to time t, xt is the state vector, I is
the number of particles i = 1, . . . , I, and T ∗ − T is the number of trading days in the out-
of-sample period. To reduce notation, explicit dependence on model parameters is omitted
throughout this section.

In the auxiliary particle filter (APF) of Pitt and Shephard (1999), the sample of par-
ticles at observation time t is constructed as the marginal distribution for xt in the joint
distribution for (xt, xt−1) given Y t, for which the kernel can be decomposed as

p(xt, xt−1|Y t) ∝ p(xt|xt−1, yt) · p(yt|xt−1) · p(xt−1|Y t−1). (11)

Fully-adapted sampling from this distribution is conducted in two steps. First, the particles
{x(i)

t−1}i=1,...,I that serve as a discrete approximation to p(xt−1|Y t−1) are resampled with
weights proportional to p(yt|x(i)

t−1). This step requires pointwise evaluation of the required
density and induces consistency of the “old” particles x(i)

t−1 with the “new” observation
yt. Second, the resampled time-t − 1 particles are propagated to time t by sampling from
p(xt|xt−1, yt). As is often the case in application, in our model setting we cannot easily
evaluate p(yt|xt−1) for the resampling step, nor can we sample directly from p(xt|xt−1, yt).

15Particle degeneration arises when only a small number of particles have significant weight in the resam-
pling stage. See Lopes and Tsay (2011) for a review of particle filter methods with discussion of particle
degeneration.
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We substitute xt = (ht, χt) in equation (11) and re-write the first two kernels as

p(ht, χt|ht−1, χt−1, yt) · p(yt|ht−1, χt−1)

= p(ht|χt, ht−1, χt−1, yt) · p(yt|χt, ht−1, χt−1) · p(χt|ht−1, χt−1, Y
t−1).

In our model, the χt are iid, so p(χt|ht−1, χt−1, Y
t−1) = p(χt). Conditional on ht−1, the CDS

spread at t does not depend on χt−1, so p(yt|χt, ht−1, χt−1) = p(yt|χt, ht−1). Similarly, con-
ditional on ht−1, ht does not depend on χt−1, so p(ht|χt, ht−1, χt−1, yt) = p(ht|χt, ht−1, yt).
Combining these terms, we re-write equation (11) as

p(ht, χt, ht−1, χt−1|Y t) ∝ p(ht|χt, ht−1, yt) · p(yt|χt, ht−1)p(χt) · p(ht−1, χt−1|Y t−1) (12)

As the propagation kernel p(ht|χt, ht−1, yt) is intractable, we introduce an auxiliary
linear model.16 Begin by writing

p(ht|χt, ht−1, yt) · p(yt|χt, ht−1) = p(yt|ht, χt, ht−1) · p(ht|χt, ht−1) (13)

In our setting, this is simplified by noting that

p(yt|ht, χt, ht−1) = p(yt|ht) =
∏
m∈M

p(yt,m|ht).

In the auxiliary model, the measurement equation is linearized as

yt,m = γt,m + βt,mht + ζ ε
(y)
t,m (6′)

so that pa(yt,m|ht) ∼ N(γt,m+βt,mht, ζ
2). The choice of constants γt,m and βt,m determines

how well the auxiliary linear model approximates the true nonlinear model. The auxiliary
model state equations are assumed to be the same as those for the true model in (7) and (8).
In the appendix, we derive a proposal propagation density p̆(ht|χt, ht−1, yt) and auxiliary
evaluation weights pa(yt|χt, ht−1) such that equation (13) can be replaced by

p̆(ht|χt, ht−1, yt) · pa(yt|χt, ht−1) = pa(yt|ht) · p(ht|χt, ht−1) (13′)

The proposal propagation density is Gaussian (so sampling is trivial), and the auxiliary
evaluation weights are similarly convenient to compute.

We arrive at the following algorithm for sampling {ht, χt} conditional on particles
{h(i)

t−1}i=1,...,I and on Y t:
16The possibility of constructing a proposal distribution on a linearization of the true model was suggested

by Pitt and Shephard (1999, §3.3).
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1. Draw particles {χ(i)
t }i=1,...,I blindly from the unconditional IG distribution for χt.

2. Draw particles {ḣ(i)
t−1, χ̇

(i)
t }i=1,...,I by resampling {h(i)

t−1, χ
(i)
t }i=1,...,I with weights pro-

portional to pa(yt|χ(i)
t , h

(i)
t−1).

3. Propagate {h̆(i)
t }i=1,...,I by sampling from p̆(ht|χ̇(i)

t , ḣ
(i)
t−1, yt).

4. To restore consistency with the law of the true model, generate {h(i)
t , ḧ

(i)
t−1, χ

(i)
t }i=1,...,I

by resampling from {h̆(i)
t , ḣ

(i)
t−1, χ̇

(i)
t }i=1,...,I with weights proportional to17

ω
(i)
t =

p(h̆(i)
t |χ̇

(i)
t , ḣ

(i)
t−1, yt) · p(yt|χ̇

(i)
t , ḣ

(i)
t−1)

p̆(h̆(i)
t |χ̇

(i)
t , ḣ

(i)
t−1, yt) · pa(yt|χ̇

(i)
t , ḣ

(i)
t−1)

= p(yt|h̆(i)
t )

p̆(yt|h̆(i)
t )

(14)

5. Discard the sample of χt, and regenerate by sampling χ(i)
t from p(χt|h(i)

t , ḧ
(i)
t−1). As

noted in Section 3.2, the conditional distributed is GIG.

This algorithm is fully-adapted for ht with respect to the auxiliary model. Even though
the auxiliary model diverges from the true model, with reasonable choices of γt,m and βt,m
we can still expect that the realization of yt will inform the propagation of ht−1 to ht. We
impose

βt,m = F ′t,m(ĥt)

γt,m = Ft,m(ĥt)− βt,mĥt

where ĥt is given by the inverse of model-implied 5-year CDS spread observed at time t:
ĥt = F−1

t,5 (yt,5).
Sampling of χt in Step 1 is non-adapted, but the regenerated sample in Step 5 is fully

adapted, i.e., it utilizes all the information content of yt under the true model. The regen-
eration step is permissible only because χt does not enter the observation equation (i.e.,
because yt is independent of χt when conditioned on ht). It is straightforward to show
that the regenerated {χt}i=1,...,I has the same conditional distribution as the sample after
Step 4, but regeneration improves the efficiency of sampling. We include the final step to
facilitate examination of the time-series of filtered states in Section 5.2.

Finally, it is trivial to modify the algorithm for the baseline model without time-change,
because the pricing model is a special case of the model with time-change. We can simply
fix χ(i)

t = ∆ in Step 1 and drop Step 5.
17We denote the resampled ht−1 as {ḧt−1}i=1,...,I in order to avoid confusion with the original cloud of

particles {ht−1}i=1,...,I , which are conditioned only on Y t−1.
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5.2 Density forecast analysis

In this section we present the out-of-sample model selection analysis based on the Diebold
and Mariano (1995) and Amisano and Giacomini (2007) test statistic. We begin with a
brief description of the test. The average predictive likelihood for the out-of-sample points
t = T + 1, . . . , T ∗ is given by:

LM = 1
T ∗ − T

T ∗∑
t=T +1

log
(
p(yt|Y t−1,ΘM)

)

where M ∈ {TC,CIR} denotes a model specification with “CIR” for the baseline model
without time-change and “TC” for the model with time-change, p denotes the predictive
likelihood evaluated at the future realized CDS log-spread at time t, given model parameters
ΘM, which are fixed at the in-sample MCMC estimates. The predictive likelihood can be
computed from the filtering distribution as follows:

p(yt|Y t−1,ΘM) =
∫
p(yt|xt,ΘM) p(xt|Y t−1,ΘM) dxt

p(xt|Y t−1,ΘM) =
∫
p(xt|xt−1,ΘM) p(xt−1|Y t−1,ΘM) dxt−1

The particle filter provides a sample {x(i)
t−1}i=1,...,I from the filtering distribution p(xt−1|Y t−1,ΘM).

We propagate this sample forward via the state evolution equations by drawing from the
transition density p(xt|x(i)

t−1,ΘM) to obtain a sample {x̂(i)
t }i=1,...,I from the distribution

p(xt|Y t−1,ΘM). The predictive likelihood for observation t is approximated as the Monte
Carlo integral

L̂M,t = log
(

1
I

I∑
i=1

p(yt|x̂(i)
t ,ΘM)

)
.

Finally, we average across time to obtain

L̂M = 1
T ∗ − T

T ∗∑
t=T +1

L̂M,t.

Intuitively, a model that performs better out-of-sample has a higher value of average
predictive likelihood. Under the null hypothesis of equal performance the Amisano and
Giacomini (2007) statistic

U =
√
T ∗ − T (L̂TC − L̂CIR)√

1
T ∗−T −1

∑T ∗
t=T +1

(
L̂TC,t − L̂CIR,t

)2
−
(
L̂TC − L̂CIR

)2
(15)
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has an asymptotic standard normal distribution.
The partially-adapted APF of Section 5.1 is implemented for each model and each firm

with I = 100,000 particles. We confirm that our particle filter avoids significant particle
degeneration. In the case of the time-changed model for Ford, for example, the range of
the efficient sample size (as a fraction of the number of particles) for the partially-adapted
APF is (68.3%, 99.8%) with the 1%-quantile of 80.6%. We have implemented the standard
SIR filter as well, and in this case find a range of (1.7%, 88.4%) along with the 1%-quantile
of 15.6%.

The test statistic U is estimated for each of the ten names in our sample and reported
in Table 7. For nine of the names (all firms but Lennar), the coefficient is positive and
significant at the 1% level. In Figures 6 and 7, we contrast the typical case of Ford with
the exceptional case of Lennar. We plot CDS spreads (top graph), the filtered estimates
of default intensity (middle graph), and the filtered estimates of time-change increments
(bottom graph) for the out-of-sample period covering 2010 and 2011.18 The filtered time-
series of χt for Ford exhibits significant volatility with multiple spikes, whereas for Lennar
this time-series is roughly constant with only two minor instances of higher activity. In
each case, the spikes in χt coincide with relatively large movements in the one-year CDS
spread and the filtered default intensity. Thus, adding stochastic time-change to the baseline
CIR model improves the forecast performance when the CDS spread exhibits volatility in
volatility, but may lead to overfit when volatility is relatively constant.

6 Conclusion

Stochastic volatility has been studied extensively in markets for equities, interest rates
and commodities, but there has been relatively little empirical work to date on stochastic
volatility in credit markets. We appear to be the first to estimate a model in which stochastic
volatility in default intensity is induced by stochastic time change. Nonlinearity in the
CDS pricing function and state-dependent variance in the evolution of the default intensity
present significant challenges for estimation. We overcome these difficulties using a new
Bayesian MCMC estimation method that builds on earlier work by Stroud, Müller, and
Polson (2003). For out-of-sample density forecasts, we also develop an auxiliary particle
filter. Although computationally intensive, both methodologies performed well on our data,
and may have application to related problems in modeling interest rate or volatility swaps.

We estimate our model on firm-level time-series of single-name credit default swap
spreads. In-sample, stochastic time-change is found to be a statistically and economically
significant feature of the data for all firms in our sample. In out-of-sample density forecasts

18To be precise, the plotted value at date t for the filtered estimate is the mean of the sample of
{x(i)

t }i=1,...,I from the partially-adapted APF.
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tests, we find that the time-changed model outperforms the baseline CIR model at high
levels of significance for nine of our ten firms.

Smoothed estimates of the increments of stochastic time show large outliers during the
financial crisis of 2007–09 with business time ticking substantially faster than calendar time
for the most volatile days in our sample. Intuitively, large jumps in the business clock
allow the model to accommodate large daily changes in the default intensity (i.e., relative
to volatility). While the time-changed model offers only modest improvement in fitting
the term-structure of observable spreads on any given date, it greatly improves the fit in
the time-series dimension. The findings have important implications for risk-management
applications, because the time-changed model allows for much higher kurtosis in the loss
distribution over short horizons, and so higher quantiles in the tail (i.e., higher value-at-
risk). For similar reasons, the findings also suggest that the widely-used CIR model will
tend to underprice deep out-of-the-money options on CDS.

While the model imposes a variety of independence restrictions, only one appears to be
materially at odds with the data. Counter to our model assumption of Lévy time change, the
smoothed time-series of state variables exhibit serial correlation in time-change increments.
The pricing methodology can easily be extended to allow for such volatility clustering,
but our MCMC and particle filter methodologies would be quite challenging without the
tractability afforded by serial independence. We leave this as an avenue for future research.

Appendix: Proposal and resampling weights in linearized model

Application of the proposed adapted filter requires sampling from p̆(ht|χt, ht−1, yt) and
evaluation of the weights pa(yt|χt, ht−1). We begin with the kernels on the right-hand-side
of equation (13′). Since pa(yt,m|ht) ∼ N(γt,m + βt,mht, ζ

2) and the measurement errors are
independent across maturity, we have

pa(yt|ht) =
∏
m∈M

φ (yt,m; γt,m + βt,mht, ζ)

=
(

1√
2πζ

)#M ∏
m∈M

exp
(
−1

2

(
yt,m − γt,m − βt,mht

ζ

)2)

=
(

1√
2πζ

)#M ∏
m∈M

exp

−1
2

(
ht − νt,m
ξt,m

)2
 =

∏
m∈M

1
βt,m

φ (ht; νt,m, ξt,m)

where νt,m ≡ (yt,m − γt,m)/βt,m and ξt,m ≡ ζ/βt,m. From the state equation (8), we have
p(ht|χt, ht−1) = φ (ht; νt,∗, ξt,∗) where νt,∗ ≡ ht−1 + (µ − κPht−1)χt and ξ2

t,∗ ≡ σ2 ht−1χt,
where the asterisk indicates parameters of the state equation. For notational convenience
in combining these kernels, we define the set N = M ∪ {∗}.
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The right-hand-side of equation (13′) is

pa(yt|ht)p(ht|χt, ht−1) =

 ∏
m∈M

1
βt,m

φ (ht; νt,m, ξt,m)

φ (ht; νt,∗, ξt,∗)

=
(

1√
2πζ

)#M 1√
2πξt,∗

exp

−1
2
∑
m∈N

(
ht − νt,m
ξt,m

)2
 (16)

For m ∈ N, let ξ2
t,−m ≡

∏
j∈N\{m} ξ

2
t,j , and let ηt,m be the weight ηt,m = ξ2

t,−m/
∑
j∈N ξ

2
t,−j .

Let ξ2
t be the harmonic sum of the variances, i.e.,

ξ
2
t ≡

∏
m∈N ξ

2
t,m∑

m∈N ξ
2
t,−m

=

∑
m∈N

1
ξ2
t,m

−1

It is straightforward to sum the fractions within the exp() term of equation (16) as

∑
m∈N

(
ht − νt,m
ξt,m

)2

=
(
ht −

∑
m∈N ηt,mνt,m

ξt

)2

+ 1
ξ

2
t

∑
m∈N

ηt,mν
2
t,m −

∑
m∈N

ηt,mνt,m

2


Observe that ht appears only in the first term, which we embed in the proposal density as

p̆(ht|χt, ht−1, yt) = φ

ht; ∑
m∈N

ηt,mνt,m, ξt


Intuitively, the proposal is the posterior distribution for an unobserved state given a set of
independent Gaussian signals with realization {νt,m}m∈N. The mth signal receives weight
ηt,m, which is proportional to its precision 1/ξ2

t,m. The precision of the posterior, 1/ξ2
t , is

the sum of signal precisions.
To enforce identity (13′), remaining terms in equation (16) are captured in the resam-

pling weight

pa(yt|χt, ht−1) =
(

1√
2πζ

)#M
ξ

ξt,∗
exp

(
−1

2

∑
m∈N ηt,mν

2
t,m − (

∑
m∈N ηt,mνt,m)2

ξ
2
t

)

The resampling weight is low when the variation across signals νt,m is large. Thus, a particle
carrying state (χt, ht−1) is penalized in the resampling step when it implies large differences
across the #M + 1 equations in the likelihood of yt.
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Table 1: Counts of missing observations in CDS data.
The table reports the number of missing observations in the estimation sample from the beginning
of 2002 to the end of 2009 (with the time series for Sprint Nextel starting on August 24, 2005).

Maturity
1y 2y 3y 5y 7y 10y

Alcoa 0 0 0 0 0 8
Anadarko 6 32 0 0 0 8
CenturyLink 61 115 12 3 11 107
Clear Channel 0 1 0 0 0 0
Ford 0 0 0 0 0 0
Lennar 120 301 71 2 218 233
Limited Brands 18 42 10 3 0 19
RadioShack 16 17 4 0 1 4
Sprint Nextel 0 0 0 0 0 0
Tyson Foods 39 147 22 30 25 208

29



Table 2.a: Parameter estimates of CDS pricing models: Alcoa.
The table reports the mean, standard deviation, 5%- and 95%-quantiles of the MCMC posterior
distribution for the CDS pricing model in equations (6)-(8). The results are reported for model
specifications without time-change (CIR model) and with time-change in default intensity (CIR +
IG Time Change Model).

Mean Std Dev 5% Quantile 95% Quantile
Alcoa: CIR Model
κP 0.4794 0.3698 0.0366 1.1952
σ 0.1877 0.0030 0.1826 0.1925
µ ∗ 100 0.0829 0.0009 0.0814 0.0844
κQ −0.2526 0.0068 −0.2634 −0.2413
ζ 0.1627 0.0011 0.1609 0.1645
Alcoa: CIR + IG Time Change Model
κP 0.6590 0.5188 0.0483 1.6713
σ 0.2238 0.0019 0.2207 0.2269
µ ∗ 100 0.0688 0.0009 0.0673 0.0702
κQ −0.3787 0.0068 −0.3903 −0.3679
ζ 0.1583 0.0010 0.1566 0.1600
α 7.1439 0.4384 6.4713 7.9060

Table 2.b: Parameter estimates of CDS pricing models: Anadarko.
The table reports the mean, standard deviation, 5%- and 95%-quantiles of the MCMC posterior
distribution for the CDS pricing model in equations (6)-(8). The results are reported for model
specifications without time-change (CIR model) and with time-change in default intensity (CIR +
IG Time Change Model).

Mean Std Dev 5% Quantile 95% Quantile
Anadarko: CIR Model
κP 0.6569 0.3852 0.0915 1.3452
σ 0.0975 0.0042 0.0910 0.1051
µ ∗ 100 0.1643 0.0012 0.1623 0.1662
κQ −0.0318 0.0035 −0.0382 −0.0265
ζ 0.1627 0.0011 0.1610 0.1645
Anadarko: CIR + IG Time Change Model
κP 1.7103 1.2431 0.1488 4.0767
σ 0.2596 0.0025 0.2555 0.2636
µ ∗ 100 0.1096 0.0018 0.1067 0.1128
κQ −0.3398 0.0094 −0.3547 −0.3223
ζ 0.1535 0.0010 0.1519 0.1552
α 5.5933 0.3528 5.0505 6.2100
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Table 2.c: Parameter estimates of CDS pricing models: CenturyLink.
The table reports the mean, standard deviation, 5%- and 95%-quantiles of the MCMC posterior
distribution for the CDS pricing model in equations (6)-(8). The results are reported for model
specifications without time-change (CIR model) and with time-change in default intensity (CIR +
IG Time Change Model).

Mean Std Dev 5% Quantile 95% Quantile
CenturyLink: CIR Model
κP 1.1616 0.7956 0.1122 2.6471
σ 0.2531 0.0036 0.2471 0.2589
µ ∗ 100 0.2095 0.0031 0.2044 0.2145
κQ −0.3253 0.0104 −0.3423 −0.3078
ζ 0.2002 0.0013 0.1980 0.2024
CenturyLink: CIR + IG Time Change Model
κP 1.8575 1.3345 0.1640 4.3793
σ 0.2922 0.0023 0.2884 0.2960
µ ∗ 100 0.1558 0.0034 0.1505 0.1618
κQ −0.5531 0.0132 −0.5730 −0.5302
ζ 0.1944 0.0013 0.1923 0.1965
α 5.9933 0.4425 5.3364 6.7968

Table 2.d: Parameter estimates of CDS pricing models: Clear Channel.
The table reports the mean, standard deviation, 5%- and 95%-quantiles of the MCMC posterior
distribution for the CDS pricing model in equations (6)-(8). The results are reported for model
specifications without time-change (CIR model) and with time-change in default intensity (CIR +
IG Time Change Model).

Mean Std Dev 5% Quantile 95% Quantile
Clear Channel: CIR Model
κP 0.2310 0.1806 0.0171 0.5820
σ 0.2332 0.0040 0.2266 0.2398
µ ∗ 100 0.2594 0.0064 0.2493 0.2702
κQ −0.3094 0.0115 −0.3275 −0.2904
ζ 0.2689 0.0017 0.2661 0.2719
Clear Channel: CIR + IG Time Change Model
κP 0.1759 0.1373 0.0133 0.4422
σ 0.2662 0.0038 0.2601 0.2725
µ ∗ 100 0.1983 0.0056 0.1889 0.2081
κQ −0.5013 0.0172 −0.5301 −0.4738
ζ 0.2640 0.0017 0.2613 0.2669
α 3.8124 0.4316 3.1516 4.5369
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Table 2.e: Parameter estimates of CDS pricing models: Ford.
The table reports the mean, standard deviation, 5%- and 95%-quantiles of the MCMC posterior
distribution for the CDS pricing model in equations (6)-(8). The results are reported for model
specifications without time-change (CIR model) and with time-change in default intensity (CIR +
IG Time Change Model).

Mean Std Dev 5% Quantile 95% Quantile
Ford: CIR Model
κP 0.3466 0.2579 0.0283 0.8446
σ 0.3207 0.0028 0.3162 0.3254
µ ∗ 100 0.4686 0.0094 0.4529 0.4834
κQ −0.4997 0.0086 −0.5136 −0.4859
ζ 0.1824 0.0012 0.1805 0.1844
Ford: CIR + IG Time Change Model
κP 0.3299 0.2508 0.0263 0.8129
σ 0.3390 0.0028 0.3345 0.3436
µ ∗ 100 0.4147 0.0112 0.3958 0.4318
κQ −0.6419 0.0127 −0.6626 −0.6213
ζ 0.1801 0.0012 0.1782 0.1821
α 7.5902 0.6288 6.6347 8.6549

Table 2.f: Parameter estimates of CDS pricing models: Lennar.
The table reports the mean, standard deviation, 5%- and 95%-quantiles of the MCMC posterior
distribution for the CDS pricing model in equations (6)-(8). The results are reported for model
specifications without time-change (CIR model) and with time-change in default intensity (CIR +
IG Time Change Model).

Mean Std Dev 5% Quantile 95% Quantile
Lennar: CIR Model
κP 0.4378 0.3252 0.0356 1.0646
σ 0.2576 0.0057 0.2479 0.2670
µ ∗ 100 0.2983 0.0037 0.2924 0.3047
κQ −0.1736 0.0114 −0.1927 −0.1545
ζ 0.1802 0.0013 0.1782 0.1823
Lennar: CIR + IG Time Change Model
κP 0.6873 0.5193 0.0537 1.6897
σ 0.3197 0.0037 0.3137 0.3258
µ ∗ 100 0.2593 0.0027 0.2549 0.2639
κQ −0.3330 0.0103 −0.3500 −0.3158
ζ 0.1771 0.0012 0.1751 0.1791
α 18.1031 1.4843 15.8002 20.6781
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Table 2.g: Parameter estimates of CDS pricing models: Limited Brands.
The table reports the mean, standard deviation, 5%- and 95%-quantiles of the MCMC posterior
distribution for the CDS pricing model in equations (6)-(8). The results are reported for model
specifications without time-change (CIR model) and with time-change in default intensity (CIR +
IG Time Change Model).

Mean Std Dev 5% Quantile 95% Quantile
Limited Brands: CIR Model
κP 0.3738 0.2655 0.0343 0.8747
σ 0.1334 0.0068 0.1218 0.1442
µ ∗ 100 0.2292 0.0041 0.2227 0.2361
κQ −0.0922 0.0088 −0.1063 −0.0771
ζ 0.2399 0.0016 0.2374 0.2425
Limited Brands: CIR + IG Time Change Model
κP 0.9273 0.7077 0.0722 2.2911
σ 0.2531 0.0034 0.2477 0.2587
µ ∗ 100 0.1518 0.0037 0.1453 0.1576
κQ −0.3907 0.0148 −0.4178 −0.3680
ζ 0.2334 0.0015 0.2309 0.2358
α 3.8126 0.3055 3.3556 4.3503

Table 2.h: Parameter estimates of CDS pricing models: RadioShack.
The table reports the mean, standard deviation, 5%- and 95%-quantiles of the MCMC posterior
distribution for the CDS pricing model in equations (6)-(8). The results are reported for model
specifications without time-change (CIR model) and with time-change in default intensity (CIR +
IG Time Change Model).

Mean Std Dev 5% Quantile 95% Quantile
RadioShack: CIR Model
κP 0.6419 0.4726 0.0538 1.5468
σ 0.1907 0.0025 0.1866 0.1947
µ ∗ 100 0.0681 0.0022 0.0644 0.0717
κQ −0.3902 0.0082 −0.4036 −0.3764
ζ 0.2660 0.0018 0.2632 0.2689
RadioShack: CIR + IG Time Change Model
κP 1.3374 1.0143 0.1068 3.2928
σ 0.1968 0.0025 0.1928 0.2008
µ ∗ 100 0.0388 0.0018 0.0358 0.0418
κQ −0.6591 0.0167 −0.6856 −0.6314
ζ 0.2561 0.0016 0.2534 0.2588
α 1.7946 0.0901 1.6592 1.9488
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Table 2.i: Parameter estimates of CDS pricing models: Sprint.
The table reports the mean, standard deviation, 5%- and 95%-quantiles of the MCMC posterior
distribution for the CDS pricing model in equations (6)-(8). The results are reported for model
specifications without time-change (CIR model) and with time-change in default intensity (CIR +
IG Time Change Model).

Mean Std Dev 5% Quantile 95% Quantile
Sprint: CIR Model
κP 0.5126 0.4062 0.0367 1.3034
σ 0.2404 0.0032 0.2351 0.2456
µ ∗ 100 0.1407 0.0018 0.1378 0.1437
κQ −0.3992 0.0101 −0.4154 −0.3820
ζ 0.1836 0.0017 0.1809 0.1864
Sprint: CIR + IG Time Change Model
κP 0.5894 0.4706 0.0422 1.5102
σ 0.2543 0.0028 0.2498 0.2591
µ ∗ 100 0.1320 0.0018 0.1291 0.1348
κQ −0.4586 0.0106 −0.4769 −0.4424
ζ 0.1822 0.0016 0.1796 0.1848
α 21.3563 2.2668 17.8964 25.3523

Table 2.j: Parameter estimates of CDS pricing models: Tyson Foods.
The table reports the mean, standard deviation, 5%- and 95%-quantiles of the MCMC posterior
distribution for the CDS pricing model in equations (6)-(8). The results are reported for model
specifications without time-change (CIR model) and with time-change in default intensity (CIR +
IG Time Change Model).

Mean Std Dev 5% Quantile 95% Quantile
Tyson Foods: CIR Model
κP 0.7200 0.5119 0.0630 1.6877
σ 0.2469 0.0034 0.2412 0.2524
µ ∗ 100 0.2753 0.0027 0.2708 0.2798
κQ −0.2400 0.0075 −0.2524 −0.2279
ζ 0.1683 0.0011 0.1665 0.1702
Tyson Foods: CIR + IG Time Change Model
κP 1.1482 0.8454 0.0946 2.7624
σ 0.2916 0.0027 0.2870 0.2960
µ ∗ 100 0.2384 0.0026 0.2339 0.2427
κQ −0.3805 0.0091 −0.3949 −0.3651
ζ 0.1647 0.0011 0.1630 0.1665
α 12.1615 0.8741 10.8246 13.6870
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Table 3: Moments of measurement equation residuals.
The table reports the posterior mean of mean, std. deviation, skewness and kurtosis of measurement
equation residuals, ε(y), calculated at each iteration of MCMC algorithm for model specifications
without time-change (CIR model) and with time-change in default intensity (CIR + IG Time Change
Model). A correct specification implies that the residuals are standard normal with mean zero,
standard deviation one, skewness zero and kurtosis three.

Mean Std Dev Skewness Kurtosis
Alcoa
CIR Model −0.0157 0.9998 −0.1532 4.3142
CIR-IG TC Model −0.0051 1.0000 0.0274 4.4102
Anadarko
CIR Model −0.0048 1.0000 −0.4178 3.4865
CIR-IG TC Model −0.0044 0.9999 −0.1429 3.4420
CenturyLink
CIR Model −0.0169 0.9998 −0.6530 4.0214
CIR-IG TC Model −0.0041 0.9999 −0.4849 4.0898
Clear Channel
CIR Model −0.0112 0.9999 −0.2315 3.7204
CIR-IG TC Model −0.0049 1.0000 −0.0709 3.6722
Ford
CIR Model −0.0125 0.9999 −0.4358 4.3982
CIR-IG TC Model −0.0048 0.9999 −0.3012 4.4348
Lennar
CIR Model −0.0097 0.9999 −0.3456 3.9502
CIR-IG TC Model −0.0040 0.9999 −0.1962 3.8164
Limited Brands
CIR Model −0.0068 0.9999 −0.6464 3.5192
CIR-IG TC Model −0.0028 1.0000 −0.4513 3.2429
RadioShack
CIR Model −0.0208 0.9998 −0.5183 3.5148
CIR-IG TC Model −0.0022 1.0000 −0.2493 3.3394
Sprint
CIR Model −0.0122 0.9999 −0.0525 3.2900
CIR-IG TC Model −0.0047 1.0000 −0.0032 3.3974
Tyson Foods
CIR Model −0.0134 0.9999 0.0039 3.6866
CIR-IG TC Model −0.0042 1.0000 0.1442 3.7100
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Table 4: Moments of state equation innovations.
The table reports the posterior mean of mean, std. deviation, skewness and kurtosis of state equation
residuals, ε(λ), calculated at each iteration of MCMC algorithm for model specifications without
time-change (CIR model) and with time-change in default intensity (CIR + IG Time Change Model).
A correct specification implies that the residuals are standard normal with mean zero, standard
deviation one, skewness zero and kurtosis three.

Mean Std Dev Skewness Kurtosis
Alcoa
CIR Model 0.0463 0.6674 0.3405 4.2667
CIR-IG TC Model 0.0108 0.8230 0.0316 3.2158
Anadarko
CIR Model 0.0159 0.9196 0.1544 3.2541
CIR-IG TC Model −0.0018 0.8354 0.0232 3.1892
CenturyLink
CIR Model 0.0492 0.7081 0.2956 3.3331
CIR-IG TC Model −0.0024 0.8671 0.0242 3.1424
Clear Channel
CIR Model 0.0420 0.8925 0.1341 3.4407
CIR-IG TC Model 0.0015 0.9581 0.0177 3.0508
Ford
CIR Model 0.0306 0.8265 0.1025 3.4196
CIR-IG TC Model 0.0001 0.9351 0.0156 3.0696
Lennar
CIR Model 0.0436 0.7893 0.2021 3.3338
CIR-IG TC Model 0.0127 0.8083 0.0392 3.2169
Limited Brands
CIR Model 0.0308 0.9215 0.1456 3.1110
CIR-IG TC Model −0.0023 0.9208 0.0173 3.0802
RadioShack
CIR Model 0.0359 0.7439 0.1330 3.1776
CIR-IG TC Model −0.0040 0.9290 0.0065 3.0734
Sprint
CIR Model 0.0728 0.7659 0.4195 4.4997
CIR-IG TC Model 0.0398 0.8156 0.0451 3.2393
Tyson Foods
CIR Model 0.0406 0.7290 0.2760 3.4170
CIR-IG TC Model 0.0003 0.8201 0.0351 3.2036
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Table 5: Forecast distribution for 1-day horizon.
For the CIR model, we report the quantiles of the forecast distribution of CDS(λδ) for δ = 1/250
(i.e., a horizon of one trading day) given initial condition λ0 and the posterior mean parameters
estimated for Alcoa. For the time-changed model we report the quantiles of the forecast distribution
of CDS(λ(Tδ);α). Two values of λ0 are considered, one below the long-run mean (5 bp) and one
above the long-run mean (50 bp). Parameters for each model are fixed to the mean of the posterior
distribution. A riskless rate is fixed at 3% and recovery rate at 40%.

λ0 (bp) Quantiles of 5-year CDS(λ(Tδ)) in basis points
0.001 0.01 0.1 0.25 0.5 0.75 0.9 0.99 0.999

CIR Model
5 17.2 17.6 18.9 20.0 21.5 23.3 25.2 28.9 32.2

50 42.7 47.2 54.1 58.5 63.6 69.1 74.3 83.9 90.9
CIR-IG TC Model

5 17.5 17.5 21.2 22.5 23.1 23.7 24.7 32.7 61.8
50 17.5 40.7 68.8 72.5 74.3 76.1 79.3 104.5 177.6

Table 6: Validation of independence assumptions.
For the time-changed model, we report the posterior mean and standard deviation of correlations
between innovations ε(λ)

t in the default intensity process and time-change increments χt, and between
ε

(λ)
t and changes in the federal funds rate (dFFRt = FFRt−FFRt−1).

Corr
[
ε(λ), χ

]
Corr

[
ε(λ), dFFRt

]
Mean Std Dev Mean Std Dev

Alcoa 0.0248 0.0125 0.0033 0.0204
Anadarko 0.0209 0.0122 0.0023 0.0218
CenturyLink 0.0212 0.0110 0.0048 0.0209
Clear Channel 0.0284 0.0145 0.0000 0.0216
Ford 0.0251 0.0138 −0.0083 0.0213
Lennar 0.0231 0.0128 0.0109 0.0225
Limited Brands 0.0235 0.0125 0.0010 0.0214
RadioShack 0.0197 0.0109 0.0024 0.0221
Sprint 0.0503 0.0184 −0.0014 0.0279
Tyson Foods 0.0276 0.0122 0.0030 0.0204
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Table 7: Out-of-sample density forecast performance results.
The table reports Amisano and Giacomini (2007) test statistics defined in equation (15). Under the
null hypothesis of equal performance, the statistics have an asymptotic standard normal distribution.
The positive (negative) values support the time-changed (standard CIR) model.

U

Alcoa 10.98
Anadarko 6.47
CenturyLink 17.65
Clear Channel 47.62
Ford 19.44
Lennar −14.73
Limited Brands 63.07
RadioShack 39.79
Sprint 9.45
Tyson Foods 23.60
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Figure 1: Daily changes in log-spreads.
Daily changes in the log-spread for the on-the-run 5 year CDX.NA.IG index. Index roll dates
(marked on the x-axis) are dropped to avoid contamination from changes in index composition.
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Figure 2: Kurtosis of change in the CDS spread.
Stationary CIR model under business time with parameters κP = κQ = 0.2, µ = 0.004, σ = 0.1,
and R = 0.4. Black dotted line marks limit as δ → ∞ of kurtosis of spread change in CIR model.
Both axes on log-scale. Moments of the calendar time increments are obtained by simulation with
4 million trials.
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Figure 3: In-sample CDS spreads and smoothed state estimates: Alcoa.
We plot CDS spreads (top panel, log-scale), smoothed estimates of the default intensity (mid-
dle panel, log-scale) and smoothed estimates of time-change increments (bottom panel) for Alcoa.
Smoothed estimates of the default intensity are obtained as the posterior mean of the MCMC chain
for the model without time-change (CIR) and with time-change in default intensity (CIR + IG Time
Change). The smoothed estimates of time-change increments for the model with time-change are
scaled by ∆ for ease of comparison against model without time-change.
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Figure 4: In-sample CDS spreads and smoothed state estimates: Ford.
We plot CDS spreads (top panel, log-scale), smoothed estimates of the default intensity (mid-
dle panel, log-scale) and smoothed estimates of time-change increments (bottom panel) for Ford.
Smoothed estimates of the default intensity are obtained as the posterior mean of the MCMC chain
for the model without time-change (CIR) and with time-change in default intensity (CIR + IG Time
Change). The smoothed estimates of time-change increments for the model with time-change are
scaled by ∆ for ease of comparison against model without time-change.
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Figure 5: Model-implied term structure of spreads for Alcoa.
Term-structure of credit spreads for Alcoa on three dates for fitted model with time-change (solid
lines) and without time-change (dashed lines). Spreads plotted in basis points on a log scale.
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Figure 6: Out-of-sample CDS spreads and filtered state estimates: Ford.
We plot CDS spreads (top panel, log-scale), filtered estimates of the default intensity (middle panel,
log-scale) and filtered estimates of time-change increments (bottom panel) for Ford. Filtered esti-
mates of the default intensity are obtained as the mean of the filtered distribution produced by the
particle filter for the model without time-change (CIR) and with time-change in default intensity
(CIR + IG Time Change). The filtered estimates of time-change increments for the model with
time-change are scaled by ∆ for ease of comparison against model without time-change.
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Figure 7: Out-of-sample CDS spreads and filtered state estimates: Lennar.
We plot CDS spreads (top panel, log-scale), filtered estimates of the default intensity (middle panel,
log-scale) and filtered estimates of time-change increments (bottom panel) for Lennar. Filtered
estimates of the default intensity are obtained as the mean of the filtered distribution produced
by the particle filter for the model without time-change (CIR) and with time-change in default
intensity (CIR + IG Time Change). The filtered estimates of time-change increments for the model
with time-change are scaled by ∆ for ease of comparison against model without time-change.
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