Finance and Economics Discussion Series
Divisions of Research & Statistics and Monetary Affairs
Federal Reserve Board, Washington, D.C.

Downside Variance Risk Premium

Bruno Feunou, Mohammad R. Jahan-Parvar and Cedric Okou

2015-020

Please cite this paper as:

Bruno Feunou, Mohammad R. Jahan-Parvar and Cedric Okou (2015). “Downside Variance
Risk Premium,” Finance and Economics Discussion Series 2015-020. Washington: Board of
Governors of the Federal Reserve System, http://dx.doi.org/10.17016 /FEDS.2015.020.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.



Downside Variance Risk Premium

Bruno Feunou* Mohammad R. Jahan-Parvar’ Cédric Okout
Bank of Canada Federal Reserve Board UQAM

March 2015

Abstract

We propose a new decomposition of the variance risk premium in terms of upside and downside
variance risk premia. The difference between upside and downside variance risk premia is a
measure of skewness risk premium. We establish that the downside variance risk premium is the
main component of the variance risk premium, and that the skewness risk premium is a priced
factor with significant prediction power for aggregate excess returns. Our empirical investigation
highlights the positive and significant link between the downside variance risk premium and the
equity premium, as well as a positive and significant relation between the skewness risk premium
and the equity premium. Finally, we document the fact that the skewness risk premium fills the
time gap between one quarter ahead predictability, delivered by the variance risk premium as a
short term predictor of excess returns and traditional long term predictors such as price-dividend
or price-earning ratios. Our results are supported by a simple equilibrium consumption-based
asset pricing model.
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1 Introduction

In contrast to the traditional efficient-market hypothesis prediction that market returns are unpre-
dictable, current asset pricing research accepts that equity market returns are largely predictable
over long horizons. A number of recent studies have additionally argued that the variance risk
premium — the difference between option-implied and realized variance — yields superior forecasts
for stock market returns over shorter, within-year horizons (typically one quarter ahead). Exam-
ples of these studies include, among others, Bollerslev, Tauchen, and Zhou (2009); Drechsler and
Yaron (2011); and Kelly and Jiang (2014). Bollerslev, Tauchen, and Zhou (2009) (henceforth, BTZ)
show that the variance risk premium explains a nontrivial fraction of the time-series variation in
aggregate stock market returns, and that high (low) variance risk premia predict high (low) future

returns.

Drawing on the intuition that investors like good uncertainty — as it increases the potential of
substantial gains — but dislike bad uncertainty — as it increases the likelihood of severe losses — we
propose a new decomposition of the variance risk premium (VRP), expressed in terms of upside
and downside variance risk premia (VRPY and VRPP).! We show that this decomposition a)
identifies the main sources of return predictability uncovered by BTZ and b) characterizes the role
of the skewness risk premium (SRP) — measured through the difference between VRPY and V RPP
— in predicting aggregate stock market returns. We find that on average, and similar to results
in Kozhan, Neuberger, and Schneider (2014), over 80% of the VRP is compensation for bearing
changes in downside risk. In addition, we show that a) the V RPP explains the empirical regularities
reported by BTZ (including the hump-shaped R? and slope parameter patterns), b) the VRPY’s
contribution to the results reported by BTZ is at best marginal, and c) there is a contribution of
the SRP to the predictability of returns which takes effect beyond the one-quarter-ahead window
documented by BTZ.

!"We define the down(up)side variance as the realized variance of the stock market returns for negative (positive)
returns, respectively. The down(up)side variance risk premium is the difference between option-implied and realized
down(up)side variance. Decomposing variance in this way is pioneered by Barndorf-Nielsen, Kinnebrock, and Shep-
hard (2010), and successfully used in empirical studies by Feunou, Jahan-Parvar, and Tédongap (2013, 2014), among
others. In addition, we define the difference between upside and downside variances as the relative upside variance.
Feunou, Jahan-Parvar, and Tédongap (2014) show that relative upside variance is a measure of skewness. Based
on their work, we use the difference between option-implied and realized relative upside variances as a measure of
skewness risk premium.



We show that the prediction power of VRPP and SRP increases over the term structure of
equity returns. In addition, through extensive robustness testing, we show that this result is robust
to the inclusion of a wide variety of common pricing factors. This leads to the conclusion that the
in-sample predictability of aggregate returns by downside risk and skewness measures introduced
here is independent from other common pricing ratios such as the price-dividend ratio, price-earning
ratio, or default spread. Based on revealed the in-sample predictive power of these measures, we
conduct out-of-sample forecast ability comparisons, and show that in comparison with VRPP and
SRP, other common predictors do not have a superior forecast ability. Finally, we study the link
between changes in downside variance risk and skewness risk premia and events or news related to

policy uncertainty, comparable to Amengual and Xiu (2014).

Theoretically, we support our findings by a simple endowment equilibrium asset pricing model,
where the representative agent is endowed with Epstein and Zin (1989) preferences, and where the
consumption growth process is affected by distinct upside and downside shocks. Our model shares
some features with Bansal and Yaron (2004), Bollerslev, Tauchen, and Zhou (2009), Segal, Shalias-
tovich, and Yaron (2015), among others. We show that under common distributional assumptions
for shocks to the economy, we can derive the equity risk premium, upside and downside variance risk
premium, and skewness risk premium in closed form. Our findings support the empirical findings

presented in the paper.

Similar to Colacito, Ghysels, and Meng (2014), our study is not an alternative to jump-tail risk
concerns — as studied in Bollerslev and Todorov (2011a,b) — or rare disaster models,in Nakamura,
Steinsson, Barro, and Ursta (2013). Our framework addresses asymmetries that are observed in
“normal times”. However, our model is well-suited and capable of addressing regularities that
emerge from a rare disaster happening, such as the Great Recession of 2007-2009. Essentially, our
approach provides simple yet insightful economic intuitions supporting the joint directional and
volatility jump risk of Bandi and Reno (2014). We show that our methodology is intuitive, easy to
implement, and generates robust predictions that close the horizon gap between short term models
such as BTZ and long-horizon predictive models such as Fama and French (1988), Campbell and
Shiller (1988), Cochrane (1991), and Lettau and Ludvigson (2001).

Our study is comprised of two natural and linked components. First, we study the role of



the VRPP as the main driver of the within-year predictability results documented by BTZ. In
this effort, we highlight the inherent asymmetry in responses of market participants to negative
and positive market outcomes. To accomplish this goal, we draw on the vast existing literature
on realized and risk-neutral volatility measures and their properties, to construct nonparametric
measures of up and downside realized and risk-neutral semi-variances. We then proceed to show
empirically how the stylized facts documented in the VRP literature are driven almost entirely
by the contribution of VRPP — the difference between realized and risk-neutral semi-variances
extracted from high frequency data. As in Chang, Christoffersen, and Jacobs (2013), our approach
avoids the traditional trade-off problem with estimates of higher moments from historical returns
data needing long windows to increase precision but short windows to obtain conditional instead of
unconditional estimates. Second, we show that using the relative upside variance of Feunou, Jahan-
Parvar, and Tédongap (2013, 2014), a nonparametric measure of skewness, we can enhance the
predictive power of the variance risk premium to horizons beyond one quarter ahead.? Additionally,
we find and document the predictive power of a priced factor — the SRP — that fills the gap between

the variance risk premium and common long-term equity returns predictors.

Thus, we need reliable measures for realized and risk-neutral variance and skewness. A sizable
portion of empirical finance and financial econometrics literature is devoted to measures of volatility.
Canonical papers focused on properties and construction of realized volatility are Andersen, Boller-
slev, Diebold, and Ebens (2001a); Andersen, Bollerslev, Diebold, and Labys (2003); and Andersen,
Bollerslev, Diebold, and Labys (2001b), among others. The construction of realized downside and
upside volatilities (also known as realized semi-variances) is addressed in Barndorff-Nielsen, Kin-
nebrock, and Shephard (2010). We follow the consensus in the literature about construction of these
measures. Similarly, based on pioneering studies such as Carr and Madan (1998, 1999, 2001) and
Bakshi, Kapadia, and Madan (2003), we have a clear view on how to construct risk-neutral mea-
sures of volatility. The construction of option-implied downside and upside volatilities is addressed
in Andersen, Bondarenko, and Gonzalez-Perez (2014). Again, we follow the existing literature in

this respect.

On the other hand, traditional measures of skewness have well-documented empirical problems.

2The relative upside variance is the difference between the upside and downside variances.



Kim and White (2004) demonstrate the limitations of estimating the traditional third moment.
Harvey and Siddique (1999, 2000) explore time variation in conditional skewness by imposing au-
toregressive structures. More recently, Feunou, Jahan-Parvar, and Tédongap (2013) and Ghysels,
Plazzi, and Valkanov (2011) use Pearson and Bowley’s skewness measures, respectively. They over-
come many problems associated with the centered third moment, such as the excessive sensitivity

to outliers documented in Kim and White (2004), by using alternative and more robust measures.

Neuberger (2012) and Feunou, Jahan-Parvar, and Tédongap (2014) study the properties of real-
ized measures of skewness used in Amaya, Christoffersen, Jacobs, and Vasquez (2013) and Chang,
Christoffersen, and Jacobs (2013) in predicting the cross-section of returns at weekly frequency.
Building on results presented in Feunou, Jahan-Parvar, and Tédongap (2014, 2013), we first con-
firm that skewness — measured as the difference between upside and downside variances — is a priced
factor. We then provide new evidences that the SRP — measured as the difference between the risk

neutral and historical expectations of skewness — is both priced and has superior predictive power.

Our study is also related to the recent macro-finance literature which emphasizes the importance
of higher-order risk attitudes such as prudence — a precautionary behavior which characterizes the
aversion towards downside risk — in the determination of equilibrium asset prices. Among those
studies, Eeckhoudt and Schlesinger (2008) investigate necessary and sufficient conditions for an
increase in savings induced by changes in higher-order risk attitudes while Dionne, Li, and Okou
(2014) restate a standard consumption-based capital asset pricing model (using the concept of
expectation dependence) to show that consumption second-degree expectation dependence risk — a
proxy for downside risk which accounts for nearly 80% of the equity premium — is a fundamental

source of the macroeconomic risk driving asset prices.

Based on the work of Amengual and Xiu (2014), we document the links that macroeconomic
announcements and events share with the SRP and VRPP. Following Ludvigson and Ng (2009)
and Feunou, Fontaine, Taamouti, and Tédongap (2014), we survey in a robustness study the
correlations between VRP components and 124 macroeconomic and financial indicators. We find
a much lower correlation of the said macroeconomic and financial indicators with VRPP | as well

as with the SRP; the correlation is greater with the VRP, as well as with the VRPY.

We show through careful robustness exercises that the prediction power of VRPP and SRP



are independent from other common pricing variables. Additionally, in order to address data-
mining concerns raised by Goyal and Welch (2008), we conduct out-of-sample forecasting exercises
to establish that our predictive variables perform at least as well as other common pricing variables

in forecasting excess returns.

The rest of the paper proceeds as follows. In Section 2 we present our decomposition of the
VRP and the method for construction of risk-neutral and realized semi-variances, as well as the
relative upside variance — which is our measure of skewness. Section 3 details the data used in this
study and the empirical construction of predictive variables used in our analysis. We present and
discuss our main empirical results in Section 4. Specifically, we intuitively describe the components
of variance risk and skewness risk premia, link them to macroeconomic factors, to policy news,
discuss their predictive ability, and explore their robustness in Sections 4.1, 4.2, 4.3, 4.4, and 4.5,
respectively. In Sections 4.6 and 4.7, we investigate the out-of-sample forecasting performance of
our measures. In Section 5, we present a simple equilibrium consumption-based asset pricing model

that supports our empirical results. Section 6 concludes.

2 Decomposition of the Variance Risk Premium

In what follows, we decompose equity price changes into positive and negative returns with respect
to a suitably chosen threshold. In this study, we set this threshold to zero, but it can assume
other values, given the questions to be answered. We sequentially build measures for upside and
downside variances, and for skewness. When taken to data, these measures are constructed non-

parametrically.

We posit that stock prices or equity market indices such as the S&P 500, S, are defined over the
physical probability space characterized by (2, P, F), where {F;}{2, € F are progressive filters on
F. The risk neutral probability measure Q is related to the physical measure P through Girsanov’s
change of measure relation fl%| Fr = Zr, T < oo. At time t, we denote total equity returns as
R{ = (S¢ + Dy — Si—1)/Si—1 where Dy is the dividend paid out in period [t — 1,¢]. In high enough
sampling frequencies, Dy is effectively equal to zero. Then, we denote the log of prices by s; = In S;,

f

log-returns by 7 = s; — s;—1 and excess log-returns by rf = r; — r{ , where r{ is the risk-free rate

observed at time t — 1. We obtain cumulative excess returns by summing one-period excess returns,



e _ <k e . - .
T ik = 2 i—0Tt4;» where k is our prediction/forecast horizon.
2.1 Construction of the variance risk premium

We build the variance risk premium following the steps in BTZ as the difference between option-
implied and realized variances. Alternatively, these two components could be viewed as variances
under risk-neutral and physical measures, respectively. In our approach, this construction requires
four distinct steps: building the upside and downside variances under the physical measure, and

then doing the same under the risk neutral measure.

For a given trading day ¢, following Andersen et al. (2003, 2001a), we construct the realized
variance of returns as RV; = Z;“:l rit, where sz,t is the j*" intraday log-return and n; is the number
of intraday returns observed on that day. We add the squared overnight log-return (the difference
in log price between when the market opens at ¢ and when it closes at ¢t — 1), and we scale the
RV} series to ensure that the sample average realized variance equals the sample variance of daily
log-returns. For a give threshold s, we decompose the realized variance into upside and downside

realized variances following Barndorff-Nielsen, Kinnebrock, and Shephard (2010):

nt

RVI'SU(FC) = Zr]z,t]l[m,t>/€]7 (1)
j=1
nt

RVP (k) = D iy, < (2)
j=1

We add the squared overnight “positive” log-return (exceeding the threshold k) to the upside
realized variance RVtU, and the squared overnight “negative” log-return (falling below the threshold
k) to the downside realized variance RV,”. Because the daily realized variance sums the upside
and the downside realized variances, we apply the same scale to the two components of the realized
variance. Specifically, we multiply both components by the ratio of the sample variance of daily

log-returns over the sample average of the (pre-scaled) realized variance.

For a given horizon h, we obtain the cumulative realized quantities by summing the one-day

realized quantities over the h periods:



h
RVY(k) = Y _RVY;(x),
j=1

h
RVS(r) = Y RVZ(»),
j=1
h
RVip = Y RViy(k). (3)
j=1

By construction, the cumulative realized variance adds up the cumulative realized upside and

downside variances:

RVip = RV, (k) + RV (k). (4)

Next, we characterize the V RP of BTZ through premia accrued to bearing upside and downside

variance risks, following these steps:

VRF,, = EF[RVip] - EJ[RV;nl,
= (BRIRVA() ~ EF[RVA()) + (ERIRVE (9)] — EF RV (x)])

VRP,, = VRPY(k)+VRP] (k). (5)

Eq. (5) represents the decomposition of the VRP of BTZ into upside and downside variance risk

premia — VRPY, (k) and VRP] (), respectively — that lies at the heart of our analysis.

2.1.1 Construction of P-expectation

The goal here is to evaluate ]EIE[RV;({L(K)] and EIE[RV;?L(H)}. To this end, we consider three

specifications:

e Random Walk

EF[RV/P (x)] = RV (s0),

where U/D stands for “U or D”; this is the model used in BTZ.



e U/D-HAR

EF RV (w)] = WU/ + 8P RVEP (k) + BYP RV (k) + B/ P RV ().

e M-HAR
Ef[MRViy1(k)] = w + BaM RVi(r) + BuM RV, 5(k) 4 BmM RV 20(k),
where MRV, (k) = (RVt%(Fa), RV;?L(H))’.

Both U/D-HAR and M-HAR specifications mimic Corsi (2009)’s HAR-RV model. To get gen-
uine expected values for realized measures that are not contaminated by forward bias or use of
contemporaneous data, we perform an out-of-sample forecasting exercise to predict the three real-
ized variances, at different horizons, corresponding to 1, 2, 3, 6, 9, 12, 18 and 24 months ahead. In
our subsequent analysis, we find that these alternative specifications provide similar results. Hence,

for simplicity and to save space, we only report the results based on the random walk model.

2.1.2  Construction of Q-expectation

To build the risk-neutral expectation of RV}, we follow the methodology of Andersen and
Bondarenko (2007):

Q

S of [T
E; [RV(K)] E,; [ / UuH[ln(Fu|Fz)>n]dU]a

t

Q t+h 5
= Et [/t UuH[Fu>Ftexp(n)}du}-

Thus,

o My(S
BZRVG(0) ~ 2 [ WSas, (6)
Fiexp(k) 2

MO(&) = min(Pt(g)act(ﬁ))a

where, Pi(S),C(S), and S are prices of European put and call options (with maturity h), and

the strike price of the underlying asset, respectively. F} is the price of a future contract at time ¢,



defined as F; =S¢ exp(rich). Similarly for E;Q[thf,)l(n)}, we get:

Fiexp(k) Mn(S
EZ RV ()] ~ 2 [ "Pas. @

— 00

We simplify our notation by renaming EP [RV#L(K)] and E;Q [RV;%(K)] as

vy = EZRVY(x)), (8)

vh = EZRVA (k). (9)

U/D . . . . . . .
We refer to IV, h/ as the “risk-neutral semi-variance” or “implied semi-variance” of returns. These
b

quantities are conditioned on the threshold value x, which we suppress to simplify notation. As

evident in this section, our measures of realized and implied volatility are model-free.
2.2 Construction of the skewness risk premium

Proposition 2.1 in Feunou, Jahan-Parvar, and Tédongap (2014) shows that the difference between
upside and downside variances (standardized by total variance) meets the criteria set forth by
Groeneveld and Meeden (1984) as a measure for skewness. It is invariant to affine transformation
of a random variable, is an odd function of a random variable, and assumes zero value for a
symmetrically distributed random variable. Since this skewness measure only depends on the
existence of the second moment, it can be computed in instances when the third moment of a

distribution is undefined; see Feunou, Jahan-Parvar, and Tédongap (2014).

To build this measure of skewness, denoted as RSV}, we simply subtract downside variance

from upside semi-variance:
RSVip(k) = RVY, (k) — RV (k). (10)

Thus, if RSV, (k) < 0 we have a left-skewed distribution, and when RSV, (k) > 0 it is right-

skewed.

In addition, we introduce the notion of a skewness risk premium, closely resembling the variance

risk premium. It can be shown that the skewness risk premium is the difference between the



two components of the VRP and is defined as the difference between risk neutral and objective
expectations of the realized skewness. We denote skewness risk premium by SRP, 5, and construct

it as follows:

SRP,, = EYRSV,,]—EF[RSV; 4],

SRP,, = VRPY,(k)— VRPS (k). (11)

It RSV, ), <0, we view SRP, ), as a skewness premium — the compensation for an agent who bears
downside risk. On the other hand, if RSV;; > 0, we view SRFP;} as a skewness discount — the

amount that the agent is willing to pay to secure a positive return on an investment.

Since this measure of skewness risk premium is nonparametric and model-free, it is easier to
implement and interpret than competing parametric counterparts. Also, as mentioned earlier,
through a suitable choice of k it can be used to investigate tail behavior of returns — if such an

exercise is desired. In this study, we are not interested in this application.

3 Data

BTZ results establish that the difference between current returns variation (approximated by RV')
and the markets risk-neutral expectation of future returns variation (approximated by I'V) is a use-
ful predictor of the future returns; it deos this by effectively isolating the systematic risk associated
with the volatility-of-volatility. In this study, we adapt BTZ’s methodology and use modified mea-
sures introduced in Section 2.1. As shown above, these measures also lead to construction of SRP
as a byproduct. We thus need suitable data to construct excess returns, realized semi-variances
(RVUY/P) | and risk-neutral semi-variances (IVY/P). In what follows, we discuss the raw data and

methods we use to construct our empirical measures. Throughout the study, we set x = 0.
3.1 Excess returns

Following BTZ, we are interested in documenting the prediction power of upside and downside
variances risk premia, as well as the skewness risk premium for monthly excess returns of an equity

market portfolio. Our empirical analysis is based on the S&P 500 composite index as a proxy for

10



the aggregate market portfolio. Since our study requires reliable high-frequency data and option-
implied volatilities, our sample spans the September 1996 to December 2010 period. We construct
the excess returns by subtracting 3-month Treasury Bill rates from log-differences in the S&P 500

composite index, sampled at the end of each month.

We report the summary statistics of equity returns in Panel A of Table 1. We report annualized
mean, median, and standard deviations of returns in percentages. The table also reports monthly
skewness, excess kurtosis, and the first order autoregressive coefficient (AR(1)) for the S&P 500

monthly excess returns.
3.2 Options data and risk-neutral variances

Since our study hinges on decomposition of the variance process into upside and downside semi-
variances, we cannot follow BTZ by using VIX as a measure of risk-neutral volatility. As a result,
we construct our own measures of risk-neutral upside and downside variances (IVY/P). We use two
sources of data to construct upside and downside IV measures. First, we obtain from OptionMetrics
Ivy DB daily data of European-style put and call options on the S&P 500 index. We then match
these option data with return series on the underlying S&P 500 index and risk-free rates downloaded

from CRSP files.

For each day in the sample period, which begins in September 1996 and ends in December
2010, we sort call and put option data by maturity and strike price. We construct option prices by
averaging the bid and ask quotes for each contract. To obtain consistent risk-neutral moments, we
preprocess the data by applying the same filters as in Chang, Christoffersen, and Jacobs (2013).% We
only consider out-of-the-money (OTM) contracts. Such contracts are the most traded, and thus, the
most liquid options. Thus, we discard call options with moneyness levels — the ratios of strike prices
to the underlying asset price — lower than 97% (S/S < 0.97). Similarly, we discard put options
with moneyness levels greater than 103% (S/S > 1.03). Raw option data contain discontinuous
strike prices. Therefore, on each day and for any given maturity, we interpolate implied volatilities
over a finely-discretized moneyness domain (S/S), using a cubic spline to obtain a dense set of

implied volatilities. We restrict the interpolation procedure to days that have at least two OTM

3That is, we discard options with zero bids, those with average quotes less than $3/8, and those whose quotes
violate common no-arbitrage restrictions.

11



call prices and two OTM put prices available.

For out-of-range moneyness levels (below or above the observed moneyness levels in the market),
we extrapolate the implied volatility of the lowest or highest available strike price. We perform
this interpolation-extrapolation procedure to obtain a fine grid of 1000 implied volatilities, for
moneyness levels between 0.01 % and 300%. We then map these implied volatilities into call and
put prices. Call prices are constructed for moneyness levels larger than 100% (S/S > 1) whereas
put prices are generated from moneyness levels smaller than 100% (S/S < 1). We approximate the
integrals using a recursive adaptive Lobatto quadrature. Finally, for any given future horizon of
interest (1 to 24 months), we employ a linear interpolation to compute the corresponding moments,
and rely on Eq. (6) and (7) to compute the upside and downside risk-neutral variance measures.
We obtain 3,860 daily observations of upside/downside risk-neutral variances for maturities from 1

to 24 months.

An important issue in the construction of risk-neutral measures is the respective density of
put and call contracts, especially for deep OTM contracts. Explicitly, precise computation of risk-
neutral volatility components hinges on comparable numbers of OTM put and call contracts in
longer horizon maturities (18 to 24 months). Our data set provides a rich environment which
supports this data construction exercise. As clear from Table 2, while there are more OTM put
contracts than OTM call contracts by any of the three measures used — moneyness, maturity,
or VIX level — the respective numbers of contracts are comparable. In addition, Figure 1 shows
that the growth of these contracts has continued unabated. We conclude that our construction
of risk-neutral volatility components is not subject to bias due to sparsity of data in deep OTM

contracts.

Our computations are based on decompiling the variance risk premium based on realized returns
to be above or below a cut-off point, kK = 0. However, x is not directly applicable to the risk-
neutral probability space. Thus, we make the appropriate transformation to use our cut-off point
by letting rf represent the instantaneous risk-free rate, and denote time-to-maturity by 7. Then,
for the market price index at time ¢, we define the applicable cut-off point B = F} exp (k) using the
forward price Fy; = S;exp (rf 7'). We then use B to compute the risk-neutral upside and downside

variances, which thus can be viewed as a model-free corridor risk-neutral volatilities as discussed

12



in Andersen, Bondarenko, and Gonzalez-Perez (2014); Andersen and Bondarenko (2007) and Carr

and Madan (1999), among others.

Panel B of Table 1 reports the summary statistics of risk-neutral volatility measures. As ex-
pected, these series are persistent — AR(1) parameters are all above 0.95 — and demonstrate signif-
icant skewness and excess kurtosis. It is also clear that the main factor behind volatility behavior

is the downside variance.

Figure 2 provides a stark demonstration of this point. It is immediately obvious that the
contribution of upside variance to risk-neutral volatility is considerably less than that of downside
variance. In fact, for most maturities, the median upside variance is about 50 to 80% smaller
than the median downside variance. As time-to-maturity increases — a good measure for future
expectations — the size of the median IVV decreases. Notice that the size of this quantity is never
as large as the median IVP. On the other hand, the size of median IV? increases uniformly over
time-to-maturity, is close to median risk-neutral volatility values at each corresponding point in

time-to-maturity, and demonstrates the same pattern of median risk-neutral volatility.

Thus, compared to its upside counterpart, the downside risk-neutral variance is clearly the
main component of the risk-neutral volatility. We buttress this claim in the remainder of the paper

through empirical analysis.
3.3 High frequency data and realized variance components

We use daily close-to-close S&P 500 returns, realized variances data computed from 5-minute intra-
day S&P 500 prices and 3-Month Treasury Bill Rates for the period September 1996 to December
2010, which yields a total of 3,608 daily observations. The data is available through the Institute

of Financial Markets.

To construct the daily RVU/Ps series, we use intraday S&P 500 data. We sum the 5-minute
squared negative returns for the downside realized variance (RVD ) and the 5-minute squared pos-
itive returns for the upside realized variance (RVY). We nest add the daily squared overnight
negative returns to the downside semi-variance, and daily squared overnight positive returns to the
upside realized variance. The overnight returns are computed for 4:00 PM to 9:30 AM. The total

realized variance is obtained by adding the downside and the upside realized variance. For the

13



three series, we use a multiplicative scaling of the average total realized variance series to match

the unconditional variance of S&P 500 returns.?

4 Empirical Results

In this section, we provide economic intuition and empirical support for our proposed decomposition
of the variance risk premium. First, based on a sound financial rationale, we intuitively describe
the expected behavior of the components of variance risk premium and skewness risk premium.
We also present some empirical facts about the size and variability of these components. Since our
approach is non-parametric, these facts stand as challenges for realistic models (reduced-form and
general equilibrium). Second, we establish that decomposing the variance risk premium into upside
and downside variance risk premia reveals that while VRP components are positively correlated
with several macroeconomic and financial indicators, the level of spanning across these components
differ. Third, we study the reaction of variance risk premium components to macroeconomic and
financial announcements. In particular, we are interested in uncovering the relationship between
announcements that reduce or resolve uncertainty surrounding monetary or fiscal policy. Fourth,
we provide an extensive investigation of predictability of equity premia, based on variance premium
and its components as well as skewness risk premium. We empirically demonstrate the contribution
of downside risk and skewness risk premia and characterize the sources of VRP predictability doc-
umented by BTZ. Subsequently, we provide comprehensive robustness study. Finally, we conclude
with out-of-sample forecast ability properties of our proposed predictors — downside variance risk

and skewness risk premia.
4.1 Description of the variance risk premium components

The VRP can be interpreted as the premium a market participant is willing to pay to hedge against
variation in future realized volatilities. It is expected to be positive because of the intuition that
risk-averse investors dislike large swings in volatility, especially in “bad times”. This intuition is
rationalized within the general equilibrium model of BTZ, where it is shown that the variance risk

premium is in general positive and proportional to the volatility of volatility. We confirm these

“Hansen and Lunde (2006) discuss various approaches to adjusting open-to-close RVs.
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findings by reporting in Table 1 some summary statistics. We also plot the time-series of VRP, its
components, and SRP in Figure 7. From 1996 to 2010, we can see that the variance risk premium

is positive most of the time, and remains high in uncertain times.

However, several studies including Feunou, Jahan-Parvar, and Tédongap (2013) and Segal,
Shaliastovich, and Yaron (2015) show that there are good and bad uncertainties. On one hand,
market participants like good uncertainty when returns are positive, as it signals the potential of
earning an even higher return. In other words, risk-averse agents like upside variations, and are
willing to pay to be exposed to fluctuations in the upside variance. This argument should induce
a negative expected value for VRPY. Table 1 clearly illustrates these intuitions as the average
VRPY is about —4.41%. Moreover, Figure 7 shows that VRPY is usually negative through our
sample period. On the other hand, investors dislike bad uncertainty (when returns are negative),
as it increases the likelihood of losses. Because risk averse agents dislike downside variations, they
are willing to pay a premium to hedge against fluctuations in future downside variances. Therefore,
V RPP is expected to be positive most of the time. These intuitions are supported by the empirical
evidence in Table 1, where the average downside variance premium is about 3.4%, and in Figure 7,

where we observe that VRPP is usually positive.

Upside and downside variance risk premia tend to have opposite signs. Thus, the (total) variance
risk premium that sums these two components essentially mixes together market participants’
(asymmetric) views about good and bad uncertainties. This entails that positive (total) variance
risk premium reflects the fact that investors are willing to pay more in order to hedge against

changes in bad uncertainty than that for exposure to variations in good uncertainty.

Hence, focusing on the (total) variance risk premium does not provide a detailed overview of the
trade-off between good and bad uncertainties, as a small positive number does not necessarily imply
a lower level of risk and/or risk aversion. It is rather an indication of a smaller difference between

what agents are willing to pay for downside variation hedging versus upside variation exposure.

Building on the same intuition, the sign of the SRP stems from the expected behavior of the
two components of the VRP. The SRP is obtained by subtracting V RPP from VRPY. Given that
(on average) VRPY appears negative whereas VRPP tends to be positive, the SRP is expected to

be negative. This intuition is supported by Figure 7 where the average skewness risk premium is
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—7.8%. Alternatively, this negative sign may be interpreted as follows: market participants prefer

higher skewness, and would like to be exposed to variations in future skewness.

Table 1 also reveals highly persistent, negatively-skewed, and fat-tailed distributions for (down/upside)
variance and skewness risk premia. Nonetheless, upside variance and skewness risk premia appear

more left-skewed and leptokurtic as compared to (total) variance and downside variance risk premia.
4.2 Links to macroeconomic and financial indicators

Following Ludvigson and Ng (2009) and Feunou et al. (2014), we survey the correlations of variance,
upside variance, downside variance, and skewness risk premia with 124 financial and economic
indicators. We carry out this exercise to document the contemporaneous correlation of variance
and skewness risk premia with well-known macroeconomic and financial variables. The VRP and its
components are predictors of risk in financial markets, that is, an increase in VRP or V RPP implies
expectations of elevated risk levels in the future and hence compensation for bearing that risk.
Fama and French (1989) document the counter-cyclical behavior of the equity premium: investors
demand a higher equity premium in bad times. It follows that VRP should be mildly pro-cyclical
and positively correlated with cyclical macroeconomic and financial variables. The relationship
between SRP and macroeconomic and financial factors is an empirically open issue that we address
in this study. Finally, we are interested in the spanning of VRP, its components, and SRP by
macroeconomic and financial factors. Briefly, low levels of spanning imply the information content
in the risk premium measures that is orthogonal to the information content of common financial

or economic quantities.

In our empirical investigation, we focus on contemporaneous correlations and adjusted R?s since,
given orthonormal factors, the regression coefficients depend on identification assumptions. The
analysis and results here are based on a contemporaneous univariate regression model, where the
dependent variable is one of the variance risk premium or skewness measures, and the independent

variable is one of the variables studied by Feunou et al. (2014).°

Table 3 reports the ten variables that yield the highest R%s for each (semi-)variance risk premium

component and their respective slope parameter Student-t¢ statistics. The composition of the factors

5The complete list of these variables and supplementary results regarding our analysis are available in an online
Appendix.
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that explain the variation in variance, upside variance, downside variance, and skewness risk premia
and the size of the adjusted R%s above the 10% threshold wide-ranging. Clearly, variables listed
on this table all yield slope parameters statistically different from zero at conventional significance

levels, as evidenced by the high Student-t statistics.

Slope parameters for VRP and its components are all positive, and imply positive correlation
with the mainly pro-cyclical macroeconomic variables listed in the table. Overall, payroll measures
and industrial production indices are the most important predictors for VRP and its components,
accounting for virtually all top predictors for these quantities. Total payroll in the private sector
is the most powerful contemporaneous predictor for VRP and VRPY. It yields an adjusted R? of
over 50% for VRPY and 40% for VRP. The level of explanatory power of this variable, measured
by the adjusted R2, drops to under 25% for VRPP.

Slope parameters for the regression model containing SRP as the predicted variable and macroe-
conomic and financial variables as predictors, imply a negative contemporaneous correlation. The
top variables with a significant correlation with SRP differ from those in the other three panels of
Table 3. For example, total payroll in the private sector does not have much explanatory power
for the SRP; it yields an adjusted R? equal to 11.63% and is the 9" variable in the list. The
sources of predictability for the SRP — while much weaker — are diverse. Price indices and bond
yields have weak, contemporaneous prediction power for the SRP. Since payroll measures and bond
yields, especially those with shorter maturities such as 6-month Treasury Bills are pro-cyclical,

these findings imply counter-cyclical behavior for the SRP.

Together, the regularities discussed above lead us to conclude that the common financial and
macroeconomic indicators do not span well the VRP components or SRP, since none of them
explains more than 53% of the variation in these premia contemporaneously. Moreover, these
indicators seem to have the least success spanning downside variance and skewness risk premia.
This observation sheds further light on the success of these two factors in predicting equity premia
— their information content is largely uncorrelated with that of a large set of macroeconomic and
financial variables. Similarly, the relatively high correlation of VRPY with several macroeconomic
variables partially explains its poor predictive performance with respect to the equity premium —

it contains less unspanned information.
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4.3 Reaction to announcements and events

Amengual and Xiu (2014) study the impact on decisions and announcements that reduce or resolve
uncertainty, especially regarding monetary and fiscal policies. We use the same set of events com-
piled by Amengual and Xiu (2014) to study the impact of events, such as FOMC announcements,
speeches by Federal Reserve officials and the Presidents of the United States, as well as economic
and political news that had significant impact on market returns or measures of market volatility.

The events are summarized in Table 4.

We report in Table 5 the changes in the variance, upside variance, downside variance, and
skewness risk premia as well as their end-of-the-day levels on event dates. The most striking outcome
from this exercise is the observation that across the board and for all variance risk components
and skewness risk premia, policy announcements that resolve financial or monetary uncertainty,
also reduce the premia. The impact on the SRP, however, is mixed: announcements can increase
or decrease the size of this premium. This observation, by construction, hinges on the size of the
reduction imputed by the announcement on VRPY and VRPP. That said, in 16 out of 22 events

studied, the impact of events on the SRP is negative.

In addition to matching the events recorded by Amengual and Xiu (2014) to changes in variance
risk premium components, we conducted an exercise to perform targeted searches for the largest
changes in variance risk premium components in suitably chosen date intervals that contain the
event date — in this case, a trading week before and after the event date — to identify the largest
changes in (semi-)variance risk premium components in that interval. The results are not funda-
mentally different from what is reported in Table 5. Most large movements are very close to the

event date. Thus they are not reported to save space, but are available upon request.

We may view these observations as evidence that resolution of policy uncertainty or reduction
of political tensions have a negative impact on premia demanded by the market participants to

bear variance or skewness risk.
4.4 Predictability of the equity premium

BTZ derive a theoretical model where the VRP emerges as the main driver of time variation in the

equity premium. They show both theoretically and empirically that a higher VRP predicts higher
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future excess returns. Intuitively, the variance risk premium proxies the premium associated with
the volatility of volatility, which not only reflects how future random returns vary, but also assesses

fluctuations in the tail thickness of the future returns distribution.

Because the VRP sums downside and upside variance risk premia, BTZ’s framework entails
imposing the same coefficient on both (upside and downside) components of the VRP when they
are jointly included in a predictive regression of excess returns. However, such a constraint seems
very restrictive given the asymmetric views of investors on good uncertainty — proneness to upward
variability — versus bad uncertainty — aversion to downward variability. Sections 4.1, 4.2 and 4.3

document that both VRPP and VRPY have intrinsically different features.

Intuitively, risk-averse investors like variability in positive outcomes of returns, but dislike it
in negative outcomes. Hence in a joint regression, we expect coefficient of VRPP to be positive
and that of VRPY to be negative. These observations boil down to a simple intuition: risk-averse
investors ask for a premium to face risks they do not like while they are willing to pay for exposure
to favorable uncertainties — risks they like. Panel A in Table 9 reports results of joint regressions

of excess returns on both VRPP and VRPY. Our findings confirm our intuition at all horizons.

It is important to point out that by highlighting the disparities between upside and downside
variance risk premia, we do not intend to invalidate BTZ’s model. Their study is built to rationalize
the importance of variance risk premium in explaining the dynamics of the equity premium. Our
study pushes further, by documenting that the SRP is pivotal in disentangling the upside from the
downside premium related to future changes in variability. Thus, our goal is to build on BTZ’s
framework, showing that introducing asymmetry in the VRP analysis provides additional flexibility
to the trade-off between return first and second moment risk premia. Ultimately, our approach is

intended to strengthen the concept behind the variance risk premium of BTZ.

Our results are based on a simple linear regression of k-step-ahead cumulative S&P 500 excess
returns on values of a set of predictors that include the VRP, VRPY, VRPP and SRP. Following
the results of Ang and Bekaert (2007), reported Student’s t-statistics are based on heteroscedasticity
and serial correlation consistent standard errors that explicitly take account of the overlap in the

regressions, as advocated by Hodrick (1992). The model used for our analysis is simply:
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T yirn = Bo + Brxi(h) + €sepr, (12)

where 7,1k is the cumulative excess returns between time ¢, t + k, z¢(h) is one of the predictors
discussed in Sections 2.1 and 2.2 at time ¢, h is the construction horizon of x;(h), and ¢ is a zero-
mean error term. We focus our discussion on the significance of the estimated slope coefficients
($18), determined by the robust Student-¢ statistics. We report the predictive ability of regressions,
measured by the corresponding adjusted R?s. For highly persistent predictor variables, the R?s for
the overlapping multi-period return regressions must be interpreted with caution, as noted by BTZ

and Jacquier and Okou (2014), among others.

Following our discussion of the observed mildly cyclical behavior of the VRP and those of
VRPY and VRPP in Section 4.2, and given the counter-cyclical behavior of the equity premium,
we expect to observe positive slope parameters in the regression model in equation (12), when z;(h)

is one of variance risk premia quantities.

We decompose the contribution of our predictors to show that: 1) predictability results doc-
umented by BTZ are driven by the downside variance risk premium, 2) predictability results are
mainly driven by risk-neutral expectations — thus, risk neutral measures contribute more than re-
alized measures, and 3) the contribution of the skewness risk premium increases as a function of

both the predictability horizon (k) and construction horizon (h).

Our empirical findings, presented in Tables 6 to 9, support all three claims made above. In Panel
A, Table 6, we show that the two main regularities uncovered by BTZ, hump-shaped increase in
robust Student-¢ statistics and adjusted R?s reaching their maximum at k = 3 (one quarter ahead),
are present in the data. Both regularities are visible in the upper-left-hand-side plots in Figures 4
and 5. These effects, however, weaken as the construction horizon (h) increases from one month to

three months or more: the predictability pattern weakens and then largely disappears for h > 6.

Panel B of Table 6 reports the predictability results based on using VRPP as the predictor.
A visual representation of these results is available in the upper-right-hand-side plots in Figures 4
and 5. It is immediately obvious that both regularities observed in the VRP predictive regressions
are preserved. We observe the hump-shaped pattern for Student’s ¢-statistics and the adjusted R?s

reaching their maximum between k = 3 or k = 6 months. Moreover, these results are more robust
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to the construction horizon of the predictor. We notice that in contrast to the VRP results — where
predictability is only present for monthly or quarterly constructed risk premia — the VRPP results
are largely robust to construction horizons; the slope parameters are statistically different from
zero even for annually constructed downside variance risk premia (h = 12). Moreover, the V RPP
results yield higher adjusted R?s compared with the VRP regressions at similar prediction horizons,
an observation that we interpret as the superior ability of the VRPP to explain the variation in
aggregate excess returns. Last but not least, we notice a gradual shift in prediction results from
the familiar one-quarter-ahead peak of predictability documented by BTZ to 9-12-months-ahead
peaks, once we increase the construction horizon h. Based on these results, we infer that the the

V RPP is the likely candidate to explain the predictive power of VRP, documented by BTZ.

Our results for predictability based on the VRPY, reported in Panel C of Table 6 and the
two lower left-hand-side plots in Figures 4 and 5, are weak. The hump-shaped pattern in both
robust Student’s t-statistics and in adjusted R?s, while present, is significantly weaker than the
results reported by BTZ. Once we increase the construction horizon h, these results are lost. We
conclude that bearing upside variance risk does not appear to be an important contributor to the
equity premium, and hence, is not a good predictor of this quantity. In addition, we interpret these

findings as a low contribution of the VRPY to overall VRP.

We observe a set of interesting regularities, however, when we use the SRP as our predictor.
These results are reported in Panel D of Table 6 and the bottom-right-hand-side plots in Figures
4 and 5. It is immediately clear that this factor displays predictive power at longer horizons
than the VRP. For monthly excess returns, the SRP slope coeflicient is statistically different from
zero at prediction horizons of 6-months-ahead or longer. At k = 6, the adjusted R? of the SRP
is comparable in size with that of the VRP (2.30% against 3.65%, respectively) and is strictly
greater thereafter. At k = 6, the adjusted R? for the monthly excess return regression based on
the SRP is smaller than that of the VRPP. However, their sizes are comparable at k = 9 and
k = 12 months ahead. Both trends strengthen as we consider higher aggregation levels for excess
returns. At the semi-annual construction level (h = 6), the SRP already has more predictive power
than both the VRP and VRPP at a quarter-ahead prediction horizon. The increase in adjusted

R2%s of the SRP is not monotonic in the construction horizon level. We can detect a maximum
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at a roughly three-quarters-ahead prediction window for semi-annual and annually constructed
SRPs. This observation implies that this factor is the intermediate link between one-quarter-ahead
predictability using the VRP uncovered by BTZ and the long-term predictors such as the price-
dividend ratio, dividend yield, or consumption-wealth ratio of Lettau and Ludvigson (2001). We
conclude that predictability of cumulative excess returns by the SRP increases in both prediction

horizon, k, and construction horizon, h, for the SRP.

At this point, it is natural to inquire about including both VRP components in a predictive
regression. We present the empirical evidence from this estimation in Panel A of Table 9. After
inclusion of the VRPY and VRPP in the same regression, the statistical significance of the VRPY’s
slope parameters is broadly lost. We also notice a sign change in Student’s t-statistics associated
with the estimated slope parameters of the VRPY and V RPP. This observation, as documented in
Feunou, Jahan-Parvar, and Tédongap (2013), lends credibility to the role of the SRP as a predictor

of aggregated excess returns.%

We claim that the patterns discussed above, and hence the predictive power of the VRP, V RPP,
and SRP are rooted in expectations. That is, the driving force behind our results, as well as those
of BTZ, are expected risk-neutral measures of the volatility components. To show the empirical
findings supporting our claim, we run predictive regressions, using Equation (12). Instead of using
the “premia” employed so far, we use realized and risk-neutral measures of variances, up- and

downside variances, and skewness for xy, based on our discussions in Section 2, respectively.

Our empirical findings using risk-neutral volatility measures are available in Table 7. In Panel
A, we report the results of running a predictive regression when the predictor is the risk-neutral
variance obtained from direct application of the Andersen and Bondarenko (2007) method. It is
clear that the estimated slope parameters are statistically different from zero for k& > 3 at most
construction horizons, h. The reported adjusted R2s also imply that the predictive regressions have
explanatory power for aggregate excess return variations at k > 3. The same patterns are discernible
for risk-neutral downside and upside variances (Panels B and C) and risk-neutral skewness (Panel

D). Adjusted R?s reported are lower than those reported in Table 6, and these measures of variation

5Briefly, based on arguments similar to those advanced by Feunou, Jahan-Parvar, and Tédongap (2013), we expect
estimated parameters of the VRPY and VRPP to have opposite signs, and be statistically “close”. As such, they
imply that the SRP is the factor we should have included.
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yield statistically significant slope parameters at longer prediction horizons than what we observe
for the VRP and its components. Taken together, these observations imply that using the premium

(rather than the risk-neutral variation) yields better predictions.

However, in comparison with realized (physical) variation measures, risk-neutral measures yield
better results. The analysis using realized variation measures are available in Table 8. It is obvious
that by themselves, the realized measures do not yield reasonable predictability, an observation
corroborated by empirical findings of Bekaert, Engstrom, and Ermolov (2014). The majority of
estimated slope parameters are statistically indistinguishable from zero, and adjusted R?s are low.
Inclusion of both risk-neutral or realized variance components does not change our findings dra-

matically, as demonstrated in Panels B and C of Table 9.

We observe in Panel D of Table 8 and in Panel C of 9 statistical significance and notable adjusted
R2s for realized skewness in long prediction horizons (k > 6) and for construction horizons (h > 6).
By itself (as opposed to the SRP studied earlier), the realized skewness lacks predictive power in
low construction or prediction horizons. Based on our results presented in Table 6, we argue that
the SRP (and not the realized skewness) is a more suitable predictive factor, as it overcomes these

two shortcomings.

A visual representation of the prediction power of risk neutral (integrated) and physical (re-
alized) variation components is available in Figure 6. Given the weak performance of realized
measures, it is easy to conclude that realized variation plays a secondary role to risk-neutral varia-
tion measures in driving the predictability results documented by BTZ or in this study. However,
we need both elements in construction of the variance or skewness risk premia since realized or

risk-neutral measures individually posses inferior prediction power.
4.5 Robustness

We perform extensive robustness exercises to document the prediction power of the VRPP and
SRP for aggregate excess returns, in the presence of traditional predictor variables. The goal is to
highlight the contribution of our proposed variables in a wider empirical context. Simply put, we
observe that predictive power does not disappear when we include other pricing variables, implying

that the VRPP and SRP are not simply proxies for other well-known pricing ratios.
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Following BTZ and Feunou et al. (2014) among many others, we include equity pricing measures
such as log price-dividend ratio (log(p:/d)), lagged log price-dividend ratio (log(p;—1/d:), and
log price-earning ratio (log(p:/et)); yield and spread measures such as term spread (tms; ) — the
difference between 10-year U.S. Treasury Bond yield and 3-month U.S. Treasury Bill yield —, default
spread (df s;) — the difference between BBB and AAA corporate bond yields —; CPI inflation (infl;),
and finally Kelly and Pruitt (2013) partial least squares-based, cross-sectional in-sample and out-

of-sample predictive factors (kpis; and kpos;, respectively).

We consider two periods for our analysis: our full sample — September 1996 to December 2010
— and a pre-Great Recession sample — September 1996 to December 2007. The latter ends at the
same point in time as the BTZ sample. We report our empirical findings in Tables 10 to 13. These
results are based on semi-annually aggregated excess returns and estimated for the one-month-
ahead prediction horizon.” In this robustness study, we scale the cumulative excess returns; we use

r_446/6 as the predicted value and regress it on a one-month lagged predictive variable.

Full-sample simple predictive regression results are available in Table 10. Among VRP com-
ponents, only the downside variance risk premium (dvrp;) and skewness risk premium (srp;) have
slope parameters that are statistically different from zero and have adjusted R2s comparable in
magnitude with other pricing variables. Once we use dvrp; along with other pricing variables, we
observe the following regularities in Table 11 which reports the following joint multi-variate regres-
sion results. First, the estimated slope parameter for dvrp, is statistically different from zero in all
cases, except when we include srp;. This result is not, however, surprising since srp; and dvrp, are
linearly dependent. Second, these regressions yield adjusted R?s which range between 3.10% (for
dvrp; and tmsy, in line with findings of BTZ that report weak predictability for tms;) to 25.71%
(for dvrp; and infl;).2 The downside variance risk premium in conjuncture with the variance risk
premium or upside variance risk premium remains statistically significant and yields adjusted R2s

that are in the 7% neighborhood.

"A complete set of robustness checks, including monthly, quarterly, and annually aggregated excess returns results,
are available in an online Appendix.

8The dynamics of inflation during the Great Recession period mimic the behavior of our variance risk premia.
Gilchrist et al. (2014) meticulously study the behavior of this variable in the 2007-2009 period. According to their
study, both full and matched PPI inflation in their model display an aggregate drop in 2008-2009, while the reaction
of financially sound and weak firms are asymmetric, with the former lowering prices and the latter raising prices in
this period. Thus, the predictive power of this variable, given the inherent asymmetric responses, is not surprising.
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We obtain adjusted R?s that are decidedly lower than those reported by BTZ for quarterly and
annually aggregated multivariate regressions. These differences are driven by inclusion of the Great
Recession period data in our full sample. To illustrate this point, we repeat our estimation with
the data set ending in December 2007. Simple predictive regression results based on this data are
available in Table 12. We immediately observe that exclusion of the Great Recession period data
improves even the univariate predictive regression adjusted R?s across the board. The estimated

slope parameters are also closer to BTZ estimates and generally statistically significant.

In Table 13, we report multivariate regression results, based on 1996-2007 data. We notice that
once dvrp; is included in the regression model, the variance risk premium, upside variance risk
premium and skewness risk premium are no longer statistically significant. Other pricing variables,
except for term spread, default spread, and inflation, yield slope parameters that are statistically
significant. Thus, inflation seems to lack prediction power in this sub-sample. We do not observe
statistically insignificant slope parameters for the downside variance risk premium except when we

include vrp;. Across the board, adjusted R?s are high in this sub-sample.
4.6 Out-of-sample analysis

Our goal in this section is to compare the forecast ability of downside variance and skewness risk
premia with common financial and macroeconomic variables used in equity premium predictability

exercises.

To assess the ability of downside variance risk and skewness risk premia to forecast excess re-
turns, we follow the literature on predictive accuracy tests. We assume a benchmark model (B)
and a competitor model (C) in order to compare their predictive power for a given sample {y}L ;.
To generate k-period out-of-sample predictions y; |, for yiix, we split the total sample of T" obser-
vations into in-sample and out-of-sample portions, where the first 1,...,¢r in-sample observations
are used to obtain the initial set of regression estimates. The out-of-sample observations span the
last portion of the total sample t =tg +1,...,7T and are used for forecast evaluation. The models
are recursively estimated with the last in-sample observation ranging from ¢t = tp tot =T — k,
at each t forecasting ¢ + k. That is, we use time t data to forecast the k-step ahead value. In our

analysis, we use half of the total sample for the initial in-sample estimation, that is tg = L%J where
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|y| denotes the largest integer that is less than or equal to y. In order to generate subsequent sets
of forecasts, we employ a recursive scheme (expanding window), even though the in-sample period

can be fixed or rolling. The forecast errors from the two models are

B _ B
Civklt = Ytk — Yk
C _ C
Covklt = Ytk T Yk
where t = tg,...,T — k. Thus, we obtain two sets of t =T — tg — k + 1 recursive forecast errors.

The accuracy of each forecast is measured by a loss function L(e). Among the popular loss
functions are the squared error loss L(ey ;) = (er4)? and the absolute error loss L(ey ) =
et el Let dB¢ = L(et+k‘t)B —L(et+k|t)c be the error loss differential between the benchmark and
competitor models, and denote the expectation operator by E(e). To gauge if a model yields better
forecasts than an alternative specification, a two-sided test may be run, where the null hypothesis

Y

is that the “two models have the same forecast accuracy” against the alternative hypothesis that

the “two models have different forecast accuracy”. Formally:
Hy : E(dPY) =0vs. Hy:E(dPC) #0.

Alternatively, a one-sided test may be considered, where the null hypothesis is that “model C' does
not improve the forecast accuracy compared to model B” against the alternative hypothesis that

“model C improves the forecast accuracy compared to model B”. Formally:

Hy : E(dP9) <0vs. Hy:E(@dPC) > 0.

In the context of our study, we apply forecast accuracy tests to non-nested models. The inno-
vation of our analysis is to introduce two new predictors, the VRPP and SRP. We compare the
benchmark model B, which includes our proposed predictors, and the competitor C', which con-
tains a traditional predictive variable such as the price-dividend ratio, dividend yield, price-earning
ratio, etc. Failure to reject the null leads us to conclude that the classical predictor does not yield

more accurate forecasts than our proposed predictor. Diebold and Mariano (1995) and West (1996)
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provide further inference results on this class of forecast accuracy tests.
4.7 Out-of-sample empirical findings

Following the influential study of Inoue and Kilian (2004), we first investigate the in-sample fit of
the data by our proposed predictors — the VRPP and SRP — and traditional predictors studied in
the literature. Inoue and Kilian (2004) convincingly argue that to make dependable out-of-sample
inference, we need reasonable in-sample fit. The second column of Table 14 reports adjusted R2s
for monthly, quarterly, and semi-annually aggregated excess returns regressed on our proposed and
traditional predictors. These are in-sample results and no forecasting is performed. We notice
that, first, for all predictors, adjusted R?s improve with the prediction horizon. Second, we notice
that for all predictors except Kelly and Pruitt’s 2013 out-of-sample cross-sectional book-to-market
index, adjusted R?s are reasonably high. The Kelly-Pruitt index is by construction an out-of-sample

predictor. Thus, the seemingly poor in-sample performance is not a cause for concern for us.

Once we establish the in-sample prediction power, we move to investigate out-of-sample forecast
ability. Not surprisingly, out-of-sample adjusted R?s — reported in the third column of Table 14 —
are much smaller than their in-sample counterparts, with the exception of the Kelly-Pruitt index.
This observation may be due to inclusion of data from the 2007-2009 Great Recession period in the
out-of-sample exercise. As documented in Section 4.5, most predictors lose significant prediction

power once data from this period is included in the analysis.

Our task is to investigate the relative forecast performance of our proposed downside and
skewness risk premium measures against other well-known predictors. To this end, we implement
the Diebold and Mariano (1995) (henceforth, DM) tests of prediction accuracy. The results of
performing out-of-sample forecast accuracy tests are available in the fourth and the sixth column
of Table 14, where we report DM test statistics, and in the fifth and the seventh columns of the
same Table, where we report the associated p-values. We cannot reject the null of equal or superior
forecast accuracy when the benchmark is the downside variance (or skewness) risk premium and
the alternative model contains one of the traditional predictors, since p-values are greater than the
conventional 5% test size. We note the following important considerations. First, these results

are based on the DM forecast accuracy test for non-nested models. Our findings are robust for
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all the horizons we consider in our analysis (1, 3 and 6 months). Second, the null hypothesis
states that the mean squared forecast error of the alternative model is larger than or equal to that
of the benchmark model. This is a one-sided test, and negative DM statistics indicate that the
alternative model performed worse than the benchmark model. Third, we interpret the p-values
cautiously, following Boyer, Jacquier, and van Norden (2012). They point out that p-values are
hard to interpret due to the Lindley-Smith paradox, and in addition, they need to be adjusted.
To be precise, we produce multiple p-values in this analysis. Using unadjusted p-values in such
an environment overstates the evidence against the null. Thus, following Boyer, Jacquier, and van
Norden (2012), we apply a Bonferroni adjustment to the generated p-values. Our reported findings
are, therefore, suitably conservative and reliable. Conventional competing variables such as the
variance risk premium, price-dividend ratio, and price-earning ratio, have lower forecast accuracy

than our proposed measures.

In a nutshell, the prediction power of the downside variance risk premium and skewness risk
premium are not a figment of good in-sample fit of the data. In comparison with other pricing
ratios and variables, our proposed measures have at least similar (and often superior) out-of-sample

accuracy.

5 A Simple Equilibrium Model

Our goal in this section is to show that our empirical findings are supported by a simple equilibrium
consumption-based asset pricing model. Our main objective is to highlight the roles that upside
and downside variance play in pricing a risky asset in an otherwise standard asset pricing model. In
particular, we show that under standard and mild assumptions, the weights and the signs attributed
to upside and downside variances are inline with our empirical findings. To save space, we only

report the main results. An online Appendix reports our derivations in great detail.
5.1 Preferences

We consider a endowment economy in discrete time. The representative agent’s preferences over
the future consumption stream are characterized by Kreps and Porteus (1978) intertemporal pref-

erences, as formulated by Epstein and Zin (1989) and Weil (1989):
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1y 1T
U=|1-90)C,° 46 (EtUtl_Hy) 9] ) (13)

where C} is the consumption bundle at time ¢, § is the subjective discount factor, v is the coefficient

of risk aversion, and 1) is the elasticity of intertemporal substitution (IES). Parameter 6 is defined

as 0 = 11_Y . If 6 =1, then v = 1/¢ and EZ preferences collapse to expected power utility, which

P
implies an agent who is indifferent to the timing of resolution of uncertainty of the consumption

path. With v > 1/1, the agent prefers early resolution of uncertainty. For v < 1/1, the agent
prefers late resolution of uncertainty. Epstein and Zin (1989) show that the logarithm of stochastic

discount factor (SDF) implied by these preferences is given by:

0
In Myy1 =myqy1 =6Ind — iAct_H + (0 — 1)reita, (14)

where Aciy1 = In <Cé—ﬂ:l) is the log growth rate of aggregate consumption, and r.; is the log return

of the asset that delivers aggregate consumption as dividends. This asset represents the returns on

a wealth portfolio. The Euler equation states that

Et [exp (me41 + 1ie41)] = 1, (15)

where r.; represents the log returns for the consumption generating asset (r.;). The risk-free rate,
which represents the returns on an asset that delivers a unit of consumption in the next period

with certainty, is defined as:
¥ 1
ry =ln|=———]|. 16
' [Et(MtJrl)] (1e)
5.2 Consumption Dynamics under the Physical Measure

Our specification of consumption dynamics incorporates elements from Bansal and Yaron (2004),
Bekaert, Engstrom, and Ermolov (2014), and especially BTZ and Segal, Shaliastovich, and Yaron
(2015).

Fundamentally, we follow Bansal and Yaron (2004) in assuming that consumption growth has

a predictable component. We differ from Bansal and Yaron in assuming that the predictable
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component is proportional to consumption growth’s upside and downside volatility components:®

Aciyr = po + p1 Ve + p2Vas + 0c (Eug+1 — €de+1) 5 (17)

where €,¢11 and €441 are two mean-zero shocks that affect both the realized and expected con-
sumption growth.'® €u,t+1 represents upside shocks to consumption growth, and €441 stands for
downside shocks. Following Bekaert, Engstrom, and Ermolov (2014) and Segal, Shaliastovich, and
Yaron (2015), we assume that these shocks follow a demeaned Gamma distribution and model them

as

i1 = Eipr1 — Vig @ = {u,d}, (18)

where &; 441 ~ I'(Vj4,1). These distributional assumptions imply that volatilities of upside and
downside shocks are time-varying and driven by shape parameters V,,; and Vg;. In particular, we

have that

Vardeip1) = Vig, i = {u,d}. (19)

Naturally, the total conditional variance of consumption growth when €,41 and 4441 are condi-

tionally independent, is simply o2 (V¢ + Vi)

As a result, sign and size of pu; and po matter in this context. With puy = pe, we have a
stochastic volatility component in the conditional mean of consumption growth process, similar to
the classic GARCH-in-Mean structure for modeling risk-return trade-off in equity returns. With
both slope parameters equal to zero, the model yields the BTZ unpredictable consumption growth.!!

If 1| = |p2l, with g1 > 0 and py < 0, we have Skewness-in-Mean, similar in spirit to Feunou,

9Segal, Shaliastovich, and Yaron (2015) maintain this assumption in their definition of the long-run risk component.

10This assumption is for the sake of brevity. Violating this assumption adds to algebraic complexity, but does not
affect our analytical findings.

11t can be shown that assuming an unpredictable consumption growth process does not support the existence of
distinct upside and downside variance risk premia that are supported by empirical evidence, if we assume agents
endowed with Epstein and Zin (1989) preferences. In particular we have found that combining constant expected
consumption growth with Epstein and Zin (1989) preferences will always yields positive upside variance risk-premium,
which is in contradiction with our empirical findings. Using asymmetric preferences, such as smooth ambiguity
aversion preferences of Klibanoff, Marinacci, and Mukerji (2009) or disappointment aversion of Gul (1991), it may be
possible to derive plausible upside and downside variance risk premia for an economy with unpredictable consumption
growth. The cost we pay is the loss of closed form analytical results. Miao, Wei, and Zhou (2012) use smooth ambiguity
aversion preferences to motivate their study of variance risk premium, but assume time-variation in the conditional
mean of the consumption growth.
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Jahan-Parvar, and Tédongap (2013) formulation for equity returns. With p; # pe, we have free
parameters that have an impact on loadings of risk factors on risky asset returns and the stochastic
discount factor. Both w1 and uo are real-valued. Intuitively, we expect p; > 0: a rise in upside
volatility at time ¢ implies higher consumption growth at time t + 1, all else equal. By the same
logic, we intuitively expect a negative-valued po, implying an expected fall in consumption growth
following an up-tick in downside volatility — following bad economic outcomes, households curb
their consumption. In what follows, we buttress our intuition with theory and derive the analytical

bounds on these parameters that ensure consistency with empirical facts.

We observe that

InE; exp (ng‘,t—i-l) = f(V)Vi,m (20)

where f(v) = —(In(1 — v) + v). Both Bekaert, Engstrom, and Ermolov (2014) and Segal, Shalias-
tovich, and Yaron (2015) use this compact functional form for the Gamma-distribution cumulant.

It simply follows that f(v) > 0, f”(v) > 0, and f(v) > f(—v) for all v > 0.

We assume that V;; follow a time-varying, square root process with time-varying volatility-

of-volatility, similar to the specification of the volatility process in Bollerslev, Tauchen, and Zhou

(2009):
Vu,t+1 = oy + 5uVu,t + \/@zﬁrla (21)
Qut+l = Yu,0 T Yu,1qu,t T Pu/ QU,tzt1+17 (22)
Vager = ag+ BaVas + \/@Zgﬂa (23)
Qiti1 = Va0 + Va1ddt + Pd/TdtZiis (24)

where 2! are standard normal innovations, and i = {u,d,1,2}. The parameters must satisfy the
following restrictions: a, > 0,aq > 0,70 > 0,740 > 0,|Bu] < 1,184] < 1,1l < 1,|ya1] <
1,y > 0,94 > 0. In addition we assume that {z}'}, {2}, {2} }, and {27} are i.i.d. ~ N(0,1), and

jointly independent from {e,;} and {eq+}.

The assumptions above yield time-varying uncertainty and asymmetry in consumption growth.
Through volatility-of-volatility processes g, and gq, the set up induces additional temporal vari-

ation in consumption growth. Temporal variation in volatility-of-volatility process is necessary for
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generating sizable variance risk premium. Asymmetry is needed to generate upside and downside

variance risk premia, as we show in what follows.

We solve the model following the same methodology proposed by Bansal and Yaron (2004),
Bollerslev, Tauchen, and Zhou (2009), Segal, Shaliastovich, and Yaron (2015), and many others.
We consider that the logarithm of wealth-consumption ratio wy or price-consumption ratio (pc; =
In (%)) for the asset that pays the consumption endowment {Cyy;}32,, is affine with respect to

state variables V;; and g¢; ;.

We then posit that the consumption-generating returns are approximately linear with respect

to the log price-consumption ratio, as popularized by Campbell and Shiller (1988). That is:

Tegrl = Ko+ K1Wer1 — Wi + Acyq,

wy = Ao+ AV + AV + Asqus + Asqay,

where kg and k1 are log-linearization coefficients and Ag, A1, As, A3 and A4 are factor loading
coefficients to be determined. We solve for the consumption-generating asset returns, r.;, using

the Euler equation (15). Following standard arguments, we find the equilibrium values of coefficients

AO to A42

f [Uc(l - '7)] + (1 =7)m

Al = - e(lﬁlﬁu — 1) ) (25)
f[— oc(l - 7)} + (1 =)
S T T R 2
_ B — T 22, A2
4 - (1= K1yu1) — V(1 — K17u,1)2 — 0 %’ﬁfh’ (27)
Or3 02
(1 —K17va,1) — \/(1 — K17a,1)? — 025K A3
Ay = SI0) ’ (28)
Oki0;
Iné+ (1-— i)uo + ko + k1 (A1 + agAs + Yu043 + Y4,044)
Ay = — . (29)

It is easy to see that while A3 and A4 are negative-valued, the signs of A; and A, depend

on signs and sizes of uy and pe. We report the conditions that ensure A; > 0 and Ay < 0 after
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introducing the dynamics of the model under the risk-neutral measure.

Standard algebraic manipulations yield the following representations for conditional equity pre-

mium and innovations of conditional equity premium:

rers1 = 1n5+w+{M_J”[<fc<1—'y>]]V +[M2_f[—0c<1—7>qu7t

v LY 0 R K7 0
+0oc(Eutt1 — Edpr1) + (K1Yu1 — 1) Asque + (K17d1 — 1) Aaqas (30)

+K1 |:(Alztu+1 + SDUA3Zt1+1) VQuit + (A2Z§l+1 + @dAzLZtQH) \/Qd,t} ;
Tet+1 — Et(Tc,tH) = Uc(£u,t+1 - Ed,t+1)

+r1 {(Alzg-&-l +pudszisg) ug + <A2Zfl+1 + ‘PdA4Zt2+1> \/Qd,t} - (31)

It is immediately obvious that there is significant correspondence between our characterization
of risky returns and equation (10) of BTZ. The differences are driven by the different distribu-
tional assumptions regarding consumption growth shocks and the fact that we model upside and
downside uncertainty explicitly rather than targeting aggregate uncertainty as in BTZ. Notice that
[—M} < [—M] and both terms are positive-valued. Thus, the impact of V,; and
Vi on expected returns depend on pq and pa. We provide a crisp characterization of the equity

premium to complete the analysis subsequently.

Due to differences in distributional assumptions, we do not follow BTZ or Bansal and Yaron
methods for deriving equity premium and various variance risk premia. The dynamics specified so
far are all under the physical measure (P). We need to compute the dynamics under the risk-neutral
measure (Q) to derive the formulae for upside and downside variance risk premia and skewness risk

premium.
5.3 Risk-Neutral Dynamics and the Premia

We derive the risk-neutral distribution of all the shocks, ey 41, a1, 2415 2ia1s 2ii1, and 22,
Namely, we construct the characteristic functions of the shocks and exploit their salient properties
to derive the expectations under the risk-neutral measure. Thus, our computations yield exact
equity and risk premia measures, in contrast to approximate values reported by, for example, in

equation (15) of Bollerslev, Tauchen, and Zhou (2009) or in Drechsler and Yaron (2011). Details
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of these derivations are available in the online Appendix.

The risk-neutral expectations of the upside and downside consumption shocks are

EQ c _ 1 Vo= _ YOc ’
t [U,t+1] f(=voe) u,t 1+ o, u,t
ag
E? [ea 1] = f/(VUc)Vd,t =1 ;Uc Vai-

Using a similar methodology, we characterize the risk-neutral distributions of Gaussian shocks

U d 1 2 .
21y Zig1s Zpgrs and 2 g

241 N ((0 — 1)k1A1\/Quy, 1)

2l o~ ON((0 - 1)k1A2\/qaz, 1)
N((6
N((6

- 1 51A3()0u\/ qu,t, 1)

— 1) k1A404\/qaz: 1) -

241 ™

2
241

Any premium — whether equity, variance risk, or skewness risk premia — can be defined as the

difference between the physical and risk-neutral expectations of processes. Hence, we commence

computing the premia of interest, starting with the equity risk premium:

ERP, = Elreps1) — E [regs1]

= 1 (B [wea] — B [we]) + Ex [Acrsa] — EE [Acpia].

It is clear from equation (32) that we need to compute both E;[Aciyi] —

Et [wiy1] — E? [wit1]. It can be shown that:

1 1
Et [A0t+1] — E? [Act+1] = ’)’0’3 <1 o Vu,t + 1_ ~o Vd,t) .
c c
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Similarly:

B fwri] — EF [wia] = Av (Bx [V = EP [Vl + Ao (Be [Vad — BF (Vo))

+A3 (Et (qus] — EZ [Qu,tD + Ay (Et [qas) — B2 [Qd,t]) .

To compute E; [wy41] — E? [we41], we need the premia for each risk factor (Vi ¢, Vi, gue and gqz).

Straightforward algebra yields:

Et Vi —EZ Vil = (1 - 0)k1A1quy,
E¢ [Vag] —EZ [Vae] = (1 - 0)k14sqay,
Et[qus] — E2 [qus] = (1—0)rk14302qus,
Et (g4, — EZ [qae] = (1—0)r1As05qay.

Thus, it easily follows that the equity premium in our model is:

2 2

YO0, YO ¢ 2 2 2 2 2 2
1 ~Oq u,t 1 . d,t ( )’fl ( 1 3(Pu) Qu.t ( )/’431 ( 2 490(1) qd,t ( )

ERPtE

This expression for equity premium clearly shows that our model implies unequal loadings for
upside and downside volatility factors. The slope coefficients for volatility-of-volatility factors are

also — in general — unequal. We require that o, < % to maintain finite factor loadings.

We proceed and derive the closed form expressions for upside and downside variance risk premia.

From equation (31) we know that

Ort = Vary [Tc,t+1]

= Vary O'C(é‘u,H_l — Ed,t+1) + K1 [(AlZ;ﬂrl + (puAgztlJrl),/qu,t + (AQZngl + QOdA4ZtZ+1). /Qd’tH

= 02Vuy +02Vas + K7 (AT + A302) que + K1 (A3 + Af¢D) qay,
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where upside and downside variances are defined as:

(0r)” = o2Vuu+s1 (AT + A307) qus, (34)

o2Vas + k1 (A3 + Ale]) qas (35)

/N
Q
I3
~~
N——
no

Using the definition of variance risk premium, we compute the upside variance risk premium as:

VRPY = EZ? |:(0‘71f7t+1)2:| —E; |:(O':it+1)2:| ;

= (0—1) (02m AL+ KT (AT + A30D) Asel) quit- (36)

Similarly, we derive the following expression for the downside variance risk premium:

5 (o] - (o)

= (0 -1) (02r14s + &7 (A3 + Alpd) Aspy) dar- (37)

VRPP

Empirical evidences, presented in Section 4.4, imply VRPY < 0 and VRPP > 0, hence it

follows that

ook1AL + K] (AT + A3pl) Azl > 0, (38)

ger1As + 1] (A3 + Ajpd) Aspy < 0. (39)
Since A4 < 0, Ay < 0 is a sufficient condition for o2r1 Ay + f@:f (Ag + Aigoz) A4g0§ < 0. Moreover,

f|:_0'0(1_7):|
Ay <0 & pp < —————. In particular, g <0 = Ay < 0= VRP! > 0. Since 43 <0, A; >0

is a necessary condition for o2k1 A1 + k5 (Af + A3p2) Asp2 > 0. It is easily shown that
o2k1 A1 + K} (AT + A302) Asp? > 0 AT < Ay < AY

with

2 2
—o2k1 +JodR] — 4 (kP A393)” A3} - —02K1 — \/Ué‘ﬁ% — 4 (K} A393)" A3pd

.
213 A2 ’ 23 Agp?
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Both AY and Al are positive. In addition, it is easy to see that

f |:0'c(1 - 7)] + (1 =7)m
e(ﬁlﬁu - 1)

Al < A <AV o AF < - < AY,

Al < A < AV o b <y < il

with

f[ac(l - v)] +0(k1 8, — 1) AL

L
= >0
/’Ll N — 1 9
floct=] + omap, — vay
U
= 0
K1 v — 1 >0,
which implies
w1 > 0.

Consequently, confirming our earlier intuition, we find that for upside variance risk-premium to
be negative, expected consumption growth must increases with the upside variance. Similarly, a
non-positive relation between expected consumption growth and downside variance is sufficient to

induce a positive downside variance risk-premium.

Next, we derive the closed form expression for the skewness risk premium. Following Feunou,

Jahan-Parvar, and Tédongap (2013, 2014), we define the skewness as
9 2
skrt = (opy)" — (aﬁt> .

As a result, we calculate the skewness risk premium as

SRP, = VRP!—-VRP}?

- [ (o)) - [(oten)]] - 22 (oten)] [t

= (0 -1)[(02mAr + 57 (AT + Afpy) Asl) quie — (00k1 Az + K] (A3 + A9]) Aapd) gas] -(40)

Based on our theoretical findings so far, it is easy to see that given § < 0 and conditions (38)
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and (39) — which we just verified — skewness risk premium is negative-valued, in compliance with
our empirical findings in Section 4 and in Figure 7. Finally, since equation (33) implies that the
equity risk-premium load positively on both ¢, and ¢4, and because VRPY < 0 is negatively
proportional to ¢,; and VRPP > 0 is positively proportional to Gdt, the equity risk-premium
load positively on the downside variance risk-premium and negatively on the upside variance risk-
premium, in compliance with our empirical findings in Section 4 and in Table 9. At this point, we
have fully characterized the equity risk premium, upside and downside variance risk premia, the

skewness risk premium, and by extension, risky asset returns.

In a nutshell, we show that first, our empirical findings are naturally aligned with a simple
consumption-based asset pricing model. Second, the assumptions needed to support our empirical
results are mild — we require distinct and time-varying upside and downside shocks to the consump-
tion growth process, a predictable component in conditional consumption growth proportional to
these up and down shocks variances, and an affine loading on risk factors. These are commonly
maintained assumptions in the variance risk premium literature. Given these assumptions, we show
that the upside variance risk premium is smaller in absolute term than the downside variance risk
premium, that both upside and downside variance risk premia have opposite signs, and that the

skewness risk premium is a negative-valued quantity.

6 Conclusion

In this study, we have decomposed the celebrated variance risk premium of Bollerslev, Tauchen, and
Zhou (2009) — arguably one of the most successful short-term predictors of excess equity returns
— to show that its prediction power stems from the downside variance risk premium embedded in
this measure. Market participants seem more concerned with market downturns and demand a
premium for bearing that risk. By contrast, they seem to like upward uncertainty in the market.
As a result, the downside variance risk premium — the difference between option-implied, risk-
neutral expectations of market downside volatility and historical, realized downside variances —
demonstrates significant prediction power (that is at least as powerful as the variance risk premium

and often stronger) for excess returns.

We also show that the difference between upside and downside variance risk premia — our
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proposed measure of the skewness risk premium — is both a priced factor in equity markets and
a powerful predictor of excess returns. The skewness risk premium performs well for intermediate
prediction steps beyond the reach of short-run predictor such as downside variance risk or variance
risk premia and long-term predictors such as price-dividend or price-earning ratios alike. The
skewness risk premium constructed from one-month’s worth of data predicts excess returns between
8 months to a year ahead. The same measure constructed from a quarter’s worth of data, predicts

monthly excess returns between 4 months to one year ahead.

Our findings demonstrate remarkable robustness to the inclusion of common pricing variables.
Downside variance risk and skewness risk premia have similar or better out-of-sample forecast

ability in comparison with common pricing factors.

Finally, we show that our results are compatible with a simple equilibrium consumption-based
asset pricing model. We develop a model where consumption growth features separate upside
and downside time-varying shock processes, with feedback from volatilities to future growth. We
show that under mild requirements about consumption growth, upside, and downside volatility
processes, we can characterize the equity premium, upside and downside variance risk premia,
and the skewness risk premium that support the main stylized facts obtained from our empirical
investigation. In particular, we observe unequal weights for upside and downside variances in the

equity premium, and opposite signs for upside and downside variance risk premia.
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Table 1: Summary Statistics

Mean (%) Median (%) Std. Dev. (%) Skewness Kurtosis AR(1)

Panel A: Excess Returns

Equity 1.9771 14.5157 20.9463 -0.1531 10.5559 -0.0819
Equity (1996-2007) 3.0724 12.5824 17.6474 -0.1379 5.9656 -0.0165
Panel B: Risk-Neutral

Variance 19.3544 18.7174 6.6110 1.5650 7.6100 0.9897
Downside Variance 16.9766 16.2104 5.8727 1.6746 8.0637 0.9880
Upside Variance 9.2570 9.1825 3.1295 1.1479 6.0030 0.9885
Skewness -7.7196 -7.0090 3.0039 -2.0380 9.6242 0.9679
Panel C: Realized

Variance 19.2776 18.1475 8.7583 2.0683 8.7517 0.9998
Downside Variance 13.5841 12.7362 6.2639 2.0297 8.6130 0.9998
Upside Variance 13.6748 12.9029 6.1295 2.1022 8.8680 0.9998
Skewness 0.0907 0.1186 0.4124 -0.3292 2.7632 0.9694
Panel D: Risk Premium

Variance 0.0768 0.8349 4.7214 -1.3578 7.5797 0.9802
Downside Variance 3.3925 3.3805 3.5259 -0.0114 5.9518 0.9684
Upside Variance -4.4178 -3.3486 3.7281 -2.4339 10.6756 0.9909
Skewness -7.8103 -6.9824 2.9213 -2.1850 10.3067 0.9668

This table reports the summary statistics for the quantities investigated in this study. Mean, median, and standard deviation
values are annualized and in percentages. We report excess kurtosis values. AR(1) represents the values for the first autocor-
relation coefficient. The full sample is September 1996 to December 2010. We also consider a sub-sample ending in December
2007.
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Panel A: By Moneyness
Number of contracts
Average price

Average implied volatility

Panel B: By Maturity
Number of contracts
Average price

Average implied volatility

Panel C: By VIX Level
Number of contracts
Average price

Average implied volatility

Table 2: S&P 500 Index Option Data

OTM Put OTM Call
) — e 10
& S S S
o — — —
Vv Vv Vv V
I~ 0 ) o) 0 10
D ~ ~ ~ ~ o
3 Al oAl oAl Al =
\/ \Y \Y \Y Vv A
2 S & S = 2 =
2] o S — — 78] <
223,579 57,188 71,879 57,522 26,154 100,121 536,443
15.08 39.44 39.67 38.47 21.97 15.50 23.90
25.68 17.05 15.88 15.58 14.30 16.31 20.06
o
o )
2 S B %
Vv Vv Vv ; o
; a A A @ é
Vv Vv V
& o o o < & =
A ) D = — A <
115,392 140,080 83,937 36,163 22,302 138,569 536,443
10.45 14.90 20.17 24.88 26.20 45.82 23.90
19.40 20.20 20.06 21.11 20.48 20.13 20.06
< a R 3
Vv V V V
= & & - & =3
V. > > > > A
o v v Vv v ) B
= = < i~ = = =
74,048 115,970 164,832 88,146 37,008 56,439 536,443
17.90 20.70 24.89 26.84 26.80 28.93 23.90
11.63 15.92 19.42 22.20 25.31 34.72 20.06

This table sorts S&P 500 index option data by moneyness, maturity, and VIX level. Out-of-the-money (OTM) call and put
options from OptionMetrics from September 3, 1996 to December 30, 2010 are used. The moneyness is measured by the ratio

of the strike price (S) to underlying asset price (S).

price and the average implied volatility are expressed in dollars and percentages, respectively.
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DTM is the time to maturity in number of calendar days. The average
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Table 6: Predictive Content of Premium Measure

h 1 3 6 12
t-Stat  R?  t-Stat R? t-Stat R? t-Stat R?
k Panel A: Variance Risk Premium
1 2.43 2.61 2,51  2.83 1.02 0.02 0.68 -0.30
2 2.84  3.76 3.42 558 1.50 0.68 1.04 0.05
3 4.11 8.13 3.58 6.18 1.78 1.19 1.56 0.78
6 2.78 3.65 2.24 222 157 0.82  2.09 1.87
9 1.98 1.65 1.94 157 147 066 198 1.64
12 1.96 1.64 143 0.61 1.53 077 1.73 1.14
k Panel B: Downside Variance Risk Premium
1 2.57  2.99 2.68 330 1.27 034 0.95 -0.06
2 3.22 492 408 795 207 1.78 154 0.74
3 476 10.72 446 9.50 2.61 3.12 232 2.37
6 3.72 6.75 3.42 570 2.84 3.8 3.21 4.98
9 2.96 4.27 314 486 2.82 3.86 299 4.35
12 3.04 4.60 2.65 339 281 3.86 2.80 3.84
k Panel C: Upside Variance Risk Premium
1 2.08 1.79 1.91 144 044 -044 -0.04 -0.55
2 2.15 1.96 2.15 196 0.39 -0.47 -0.18 -0.54
3 3.05 4.41 207 179 026 -0.52 -0.27 -0.52
6 1.57 0.82 0.61 -0.36 -0.40 -0.48 -0.27 -0.53
9 0.83 -0.18 0.36 -0.50 -0.52 -0.42 -0.14 -0.57
12 074 -0.27 -0.05 -0.59 -0.33 -0.52 -0.41 -0.49
k Panel D: Skewness Risk Premium
1 -0.10 -0.55 0.41 -0.46 0.96 -0.04 1.25 0.30
2 0.61 -0.35 1.67 098 198 1.59 2.16 1.98
3 1.03 0.04 224 218 281 370 3.29 5.17
6 2.27  2.30 3.33 538 4.05 8.00 4.45 9.59
9 2.57  3.13 3.39 570 420 873 3.98 10.59
12 2.83 3.95 3.43 593 3.88 7.60 4.07 8.34

This table reports predictive regression results for prediction horizons (k) between 1 and 12 months ahead, and aggregation
levels (h) between 1 and 12 months, based on a predictive regression model of the form 74,11 = Bo+ B1x¢(h) +€t—yt+k. In this
regression model, r;_,; 1 is the cumulative excess returns between ¢t and t + k, x¢(h) is the proposed variance or skewness risk
premia component that takes the values from variance risk, upside variance risk, downside variance risk, or skewness risk premia
measures, and €;_,;4 is a zero-mean error term. The reported Student’s t-statistics for slope parameters are constructed from
heteroscedasticity and serial correlation consistent standard errors that explicitly take account of the overlap in the regressions,
following Hodrick (1992). R? represents adjusted RZs.
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Table 7: Predictive Content of Risk-INeutral Measure

>

1 3 6 12
t-Stat R?> t-Stat R? t-Stat R®?> t-Stat R?
Panel A: Risk-Neutral Variance

0.28 -0.51 0.50 -0.41 0.69 -0.29 0.75 -0.24
1.14 017 124 030 135 044 139 0.51
1.30 038 152 0.72 183 128 213 1.92
2.10 1.88 233 243 276 357 321 4.95
2.32 244 255 3.05 295 422 315 4.85

2 221 220 245 282 289 411 330 5.45

Panel B: Risk-Neutral Downside Variance

0.27 -0.51 0.57 -0.37 0.77 -0.23 0.87 -0.14
1.22 027 139 0.51 1.49 066 1.54 0.74
142 056 1.70 104 203 170 235 244
223 217 252 291 297 421 342 5.67
2.43 271 2.68 342 310 4.70 3.26 5.22

2 232 248 255 3.09 299 442 342 584

Panel C: Risk-Neutral Upside Variance

0.29 -0.50 0.27 -0.51 0.36 -0.48 0.20 -0.53
0.93 -0.07 076 -0.23 0.78 -0.21 0.60 -0.35
0.99 -0.02 094 -0.06 1.04 0.05 1.00 0.00
1.74 112 172 109 192 148 205 1.77
2.01 .71 209 189 231 242 238 2.59

2 190 1.49 2.09 192 245 2.83 257 3.17

Panel D: Risk-Neutral Skewness

0.22 -0.52 0.87 -0.14 1.10 0.11 1.27  0.34
1.51 070 202 167 206 176 208 1.79
193 148 247 274 285 380 3.13 4.65
2.70 342 328 521 380 7.02 4.11 8.18
2.76  3.64 3.17 492 364 6.54 356 6.26

2 267 344 288 4.07 327 535 3.66 6.73

= O O W RN OO WN R FNHFE OO WN R OO WN -

This table reports predictive regression results for risk-neutral variance and skewness measures. The predictive regression model,
prediction horizons, aggregation levels, and notation are the same as in the results reported in Table 6. The difference is in the
definition of z¢(h): instead of risk premia, we use risk-neutral measures for variance, upside variance, downside variance, and
skewness.
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Table 8: Predictive Content of Realized (Physical) Measure

=
[

3 6 12
t-Stat R? t-Stat R? t-Stat R? t¢-Stat R?

k Panel A: Realized Variance

1 -1.10  0.12  -0.99 -0.01 -0.10 -0.55 0.09 -0.55
2 -0.67 -0.30 -0.86 -0.15 0.18 -0.54 040 -0.47
3 -1.18 022 -0.75 -0.25 036 -048 0.62 -0.34
6 0.01 -0.57 048 -0.44 1.13 0.15 1.07 0.09
9 0.55 -0.40 0.78 -0.22 133 044 1.12 0.15
12 049 -0.45 098 -0.02 1.27 035 1.40 0.56
k Panel B: Realized Downside Variance

1 -1.05 0.06 -0.90 -0.10 -0.08 -0.55 0.09 -0.55
2 -0.563 -0.40 -0.76 -0.23 0.21 -0.53 0.39 -0.47
3 -1.04 0.05 -0.68 -0.30 0.39 -048 0.59 -0.36
6 0.05 -0.57 0.48 -0.44 1.08 0.10 0.99 -0.01
9 0.54 -0.41 075 -0.25 1.21 0.27 1.01 0.01
12 044 -0.48 0.89 -0.12 1.14 0.18 1.30 0.40
k Panel C: Realized Upside Variance

1 -1.15  0.18  -1.09 0.10 -0.13 -0.54 0.10 -0.55
2 -0.82 -0.18 -0.95 -0.05 0.14 -0.54 041 -0.46
3 -1.33 043 -0.82 -0.18 0.34 -049 0.66 -0.32
6 -0.05 -0.57 048 -0.44 1.17 0.21 1.16  0.19
9 0.39 -0.41 081 -0.19 144 0.61 1.23  0.29
12 0.54 -042 1.08 0.09 1.39 054 151 0.74
k Panel D: Realized Skewness

1 0.44 -0.45 1.58 0.81 0.63 -0.33 -0.06 -0.55
2 .51 070 1.67 099 096 -0.06 -0.26 -0.52
3 1.45 0.61 1.19 023 071 -0.28 -0.89 -0.12
6 0.54 -0.40 0.11 -0.56 ~-1.01 0.01 -2.64 3.25
9 0.07 -0.58 -0.54 -0.41 -3.01 4.41 -3.67 6.67
12 -0.55 -0.41 -1.82 133 -3.37 570 -3.36 5.67

This table reports predictive regression results for realized variance and skewness measures. The predictive regression model,
prediction horizons, aggregation levels, and notation are the same as in the results reported in Table 6. The difference is in
the definition of z¢(h): instead of risk premia, we use realized (historical) measures for variance, upside variance, downside
variance, and skewness.
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Table 9: Joint Regression Results

h 1 3 6 12
t-Stat R? t-Stat R? t-Stat R? t-Stat R?
k Up Down Up Down Up Down Up Down
Panel A: Risk Premium
1 -0.01 1.49 2.45  -0.12 1.86 2.77  -0.58 1.32 -0.03 -0.85 1.27 -0.21
2 -0.78 2.49 4.72  -1.28 3.66 8.28 -1.38 2.46 2.26 -1.54 2.17 1.49
3 -1.28 3.79 11.04 -1.81 4.32 10.63 -2.06 3.33 4.84 -2.34 3.31 4.77
6 -2.46  4.19 9.36  -3.00 4.56 9.80 -3.31 4.39 898 -3.14 4.54 9.54
9 -2.75 3.99 7.76  -3.10 4.45 9.36 -3.46 4.49 9.50 -2.74  4.09 7.83
12 -3.06 4.29 9.06 -3.18 4.18 8.30 -3.13 4.24 8.61 -2.97 4.10 8.06
Panel B: Risk-Neutral Measures
1 0.08 -0.01 -1.06 -1.13 1.24 -0.22  -1.30 1.46 0.15 -1.48 1.70 0.51
2 -1.00 1.27 0.27 -2.42 2.69 3.10 -2.27  2.61 2.90 -2.00 2.45 2.35
3 -1.59 1.89 1.39 -2.92 3.26 5.01 -3.22 3.68 6.55 -2.87  3.59 6.21
6 -1.64 2.14 3.09 -2.93 3.47 6.89 -3.25 3.99 9.12 -2.61 3.79 8.66
9 -1.32 1.88 3.12  -2.02 2.62 5.09 -2.25 3.05 6.88 -1.42 2.62 5.78
12 -1.35 1.89 2.94 -1.49 2.07 3.77  -1.39 2.18 493 -1.28 2.55 6.20
Panel C: Realized (Physical) Measures

1 -0.63 0.42 -0.28 -1.82 1.72 1.17  -0.69 0.68 -0.84 0.11 -0.10  -1.10
2 -1.62 1.50 0.51 -1.92 1.83 1.24 -0.93 0.95 -0.60 0.48 -0.46 -0.90
3 -1.68 1.46 1.05 -1.41 1.34 0.25 -0.62 0.64 -0.82 1.27 -1.24 -0.02
6 -0.54 0.54 -0.97 -0.01 0.06 -1.01 139 -1.31 0.61 3.54 -3.49 6.14
9 0.01 0.08 -0.99 0.72 -0.64 -0.54 3.61 -3.52 6.77 482 -4.76 11.39
12 063 -0.55 -0.83 2.07 -1.98 1.77 3.99 -3.91 8.24 466 -4.59 11.22

This table reports predictive regression results when multiple variance components (risk premia, risk-neutral, and realized
measures) are included in the regression model. The prediction horizons, aggregation levels, and notation are the same as in
the results reported in Table 6. The difference is in the regression model. Both upside and downside variance components are
in the model: ry_,4y = Bo + B1z1,t(h) + Bax2,¢(h) + €t ¢+k. x1,:(h) pertains to upside measures and z2 ¢(h) represents the

downside measures used in the analysis.

52



01 9661 Ioquerdeg woiy 103o1paxd peSSe| (yjuow-T) porrod-ouo yoes uwo @\.TWWL

=0
9

‘0T0g Ioquiada(]

X = @\mjrf!w.\. UIN}aI $S90Xd dAIjRNWND (pa[eds) A[enuue-Twes oY) Jo suorssaifor oaarjorpeid sjuesaxd oiqe) siyg,

ovIe’e Qz0F'8  L080'TZ  ©LIS0-  000S°0-
(86L5°C)
€021°0
(0LTO'F)
zLVT0
(LE1L°97)
2S08°0-
(288€°0)
celL9'T
(ggT10)
I8TL0
(e060'z-) (691T°¢-)  (L29g'9)  (L9000-) (€62T°0)
€600°0-  S0T00- 0120°0 00000- %0000

6006°T

(L8V0°2-)
¥8€0°0-

(7260°2)
¥150°0

oLyTS

(ogere-)
8.¥0°0-

(8L6T°€)
1980°0

€6LT'Y

(0£98°2-)
6170°0-

(9206°2)
9¢20°0

907L°0

(Le67'T)
91500

(0gzL0)
2100°0

1799 6evEe
(L009°¢-)
8€8T°0-
(0065°2)
cerT0
(Fogo'e-) (2€9o1'1-)
ze10°0- 9200°0-

LG16°0-

(L16€°0-)
6L10°0-

(661°0)
S000°0

(%) v
tsody

*sudy

fw

'sfp

1519
(*a2/d)boy
(*p/T*d)boy
(*p/*d)boy
tduaa

tdus

daap

daan

adoouoguy

0102 "99( 07 9661 "dog ‘suolssaiSoy oA110Ipald o[dwiIg [enuue-Twag ()] 9[qe],

93



‘0T0g I9quIada(] 03 9661 Ioquajdeg wory uIny ul 10301paid aAljeuIa)[e
ouo pue duap wniwoeid YSII 90uRIIRA 9PISUMOP pa3Se] (Yjuow-1) porred-suo uo @\.m+wg HHMN = @\w.,rflwf. WINoI $s90X0 dAljR[nWND (Pa[eos) A[[enuue-1was oY) Jo suolssaior aa13orpaid sjusseid aiqey sIyJ,

£099°9 ¢gee I TIT1L°ST eF8]'E 9T0T°€ TLGY9 006€°0T TLES'S 7996°9 €0G6°9 €069 (%) .4 "y
(8219°2)

L6IT0 sody
(6£76°€)
Ger10 tsudy
(LL60°L-)
TLT8°0" Hfue
(¥98€°1)
9v¢Z9 *s Jp
(189.°0)
00621 tsuug
(e1v52-)
TL¥0°0- (*a/*d)boy
(LL2L 7€)
L850°0- (*p/T—*d)bo)
(e112°€")
z9v0°0- (*p/*d)boy
(LLT1LT)
07920~ dan
(€21LT)

GFST°0- s

(8zz9z)  (8t6ve)  (66¥ee)  (aLr16c)  (8¢99°2)  (0866'7)  (0csze)  (8896'2)  (G09%°¢)  (6%ST'T)  (689L°€)
621T°0 8T0T°0 682T°0 65€1°0 8LIT°0 60€1°0 T6E1°0 zLT10 1270 €GG0°0 0012°0 tdaap

(eT1LC)
GHGI 0- tdaan

(06g8°c-) (¢z9se-) (6866F) (zeLl1-) (gsse1-)  (9ozkz)  (pw19e)  (gs60€)  (68¥6C-) (6Le6'C-)  (GL€67T)
1€10°0-  LET00- 1L10°0 ¥800°0-  S¥00°0- 78500 1660°0 L820°0 €€10°0- 82100 STI00- gdooappug

010Z ‘92 0} 9661 ‘dog ‘suolssaiSoy] aA1pdIpalg o[dI NI\ [enuue-Tudg 1T 9[qe],

o4



01 9661 Ioquerdeg woiy 103o1paxd peSSe| (yjuow-T) porrod-ouo yoes uwo @\.TWWL

=0
9

,00% Ioquuiada(]

X = @\mjrf!w.\. UIN}aI $S90Xd dAIjRNWND (pa[eds) A[enuue-Twes oY) Jo suorssaifor oaarjorpeid sjuesaxd oiqe) siyg,

T96L°E 0808°0T  9£S9°0-
(6,97°T)
0%60°0
(2820°7)
L1210
(6207°0-)
GeL0°0-
(zozce'1-)  (0geTz-)  (8090°T)
L¥00°0-  6500°0- 25000

888G

(8110°€-)
9€89°Ge-

(7¥87°€)
90200

089.°0- 9¢99'6 0209'9z  TI8.TFC  TO6TTT
(g621°0-)
066T°0-
(vLy8°€-)
2990°0-
(9016'9-)
9L11°0-
(2809°9-)
z601°0-
(9015°9)
00£2°0
(soger)  (1886°'¢)  (ggro2)  (¢119°9)  (¥6L0°1)
G000 €160°0 ¥912°0 91020 ¥100°0

Gz0T'8 690€°CT
(9L1¢°€-)
9612°0-
(£989'9)
¥8LT°0
(0L¥9°2-)  (g109°¢)
¥210°0-  0L00°0-

¢c08c’'€l

(8¢eS'F)
69270
(88¢eT1°9)
6210°0

(%)4 "fpy
tsody

*sudy

nfur

'sfp

s
(*2/d)boy
(*p/1-d)boy
("p/*d)boy
duaa

tdus

daap

daan

adoouoguy

2002 99 07 9661 "dog ‘suolssei3oy 9AI1Ipald o[dwIg [enuue-Twog :7] 9[qe],

95



*L00Z I19quIada( 09 9661 Ioquejideg wogy uiny ul 10301paid oA1jeUIL}[R
¢

oK = 9/97# %4 winjex sseoxo oarge[NMIND (poreos) A[renuue-Twas oY) jo suoisseifor oarjorpard syueserd o[qe) SI,

auo pue duap wniweld }siI 9duRLIRA OPISUMOP pad8e[ (Yjuow-1) porred-suo uo 9/ .Truf =

G09V'0€  GL60'GE  SGTT'9T  €0T6'FE  GOST'CT  9EES TV LE6E6V  EVETSY  OVLSVE 096 TT  09v6VT (%) PV
(z8gz'e)

0460T°0 1sody
(9905°%)
8YIT0 1s1dy
(gggeT)
17420 Hfue
(8€86°0-)
79167~ s fp
(2LL6°0)
901€'T swug
(0€T1°9-)
GG80°0- (+a/d)bo]
(2698°L)
eT1IT 0" (*p/1Hd)bo)
(7268°9-)
0660°0- (*p/*d)boy
(e€15°0)
z€90°0 .o
(0029°0)

¥H0°0 td.is

(L9202)  (1€669)  (S¥88'9)  (gesLq)  (spaL9)  (gauvs)  (08¢92)  (96902)  (Le1w1)  (1esve)  (T12G7)
L¥8T°0 91LZ°0 0862°0 6992°0 €68Z°0 9¢1€°0 6292°0 iZ3etall €90Z°0 800€°0 sl tdaap

(0029°0)
¥Sr0°0 td.san

(61, ¥-) (gop8e)  (6€18°C) (9687°0-) (889z°¢-)  (ggoLc)  (e18¢L)  (8¢199) (26v0°'1-)  (6600°1-)  (6600°T-)
£910°0-  SGT0°0-  GPI00-  €€00°0-  L800°0- €60T°0 YS61°0 9¢L1°0 6700°0-  S¥00'0-  S¥00°0- gdaouaru

00T 99 07 9661 'daS ‘SUOISSOISoY 9AIPIPaId S[dI}[NJA [enuue-Twss :CT 9[(R],

96



Table 14: Out-of-Sample Analysis

dvrp vs. ot STp VS. Xt
Adj. R*(%) for IS  Adj. R*(%) for OOS DM  p—walue DM p—wvalue
Panel A: One Month

dorpy 4.6723 0.6347 -0.0426 0.5170
STt 3.4862 -0.6055 0.0426 0.4830

VTDy 3.7175 -0.1087 -0.0271 0.5108 -0.0374 0.5149
log(pe/dys) 6.3871 -1.1465 -0.3716 0.6449 -0.4769 0.6833
log(pe—1/dy) 6.7059 -1.1123 -0.2414 0.5954 -0.3453 0.6351
log(p:/et) 4.2430 -0.9384 0.2572 0.3985 0.2930 0.3848
kpos: -1.0697 2.0261 1.3282 0.0921 1.7998 0.0359

Panel B: Three Months

dvrp: 24.6956 5.5674 0.0895 0.4644
STt 21.3847 -0.8775 -0.0895 0.5356

VTDy 19.8333 4.6494 0.3654 0.3574 0.2742 0.3919
log(pe/dys) 16.8502 -1.0456 0.5398 0.2947 0.6162 0.2689
log(pi—1/dy) 18.4235 -0.5345 0.5425 0.2937 0.6304 0.2642
log(pt/et) 11.2493 0.2510 0.9778 0.1641 1.0725 0.1417
kpos, -0.6580 0.6473 1.7537 0.0397 1.8782 0.0302

Panel C: Six Months

dvrp: 35.4498 0.1580 -1.2144 0.8877
Srpe 20.0010 2.3028 1.2144 0.1123

VTP 31.7578 2.7778 -0.4553 0.6756 -1.0558 0.8545
log(pe/dy) 28.2580 0.4752 0.3393 0.3672 -1.2086 0.8866
log(pe—1/ds) 32.1452 1.2361 0.2877 0.3868 -1.2333 0.8913
log(pt/et) 17.2860 1.0359 0.8114 0.2086 -0.6382 0.7383
kpost 2.9373 12.1162 1.7801 0.0375 1.2382 0.1078

This table presents the out-of-sample performance of predictors to forecast monthly (7‘?_>t+1 in the top panel), quarterly
(r¢,¢13/3 in the middle panel) and semi-annually (r§,; /6 in the bottom panel) scaled cumulative excess returns, with
observations spanning September 1996 to December 2010. The first two columns present the adjusted R? (%) for the in-sample
(IS) and out-of-sample (OOS) observations, that is the first and last half fractions of the data. The columns headed “dvrp vs. z¢”
test the null hypothesis that “an alternative predictor (z¢) does not yield a better forecast than the downside variance risk
premium (dvrp)”. The columns headed “srp vs. x+” test the null hypothesis that “an alternative predictor (z¢) does not yield a
better forecast than the skewness risk premium (srp)”. The reported test statistics and p-values are computed from the Diebold
and Mariano (1995) model comparison procedure. Note that the Bonferroni adjustment is required when multiple p-values are
produced, to avoid overstating the evidence against the null. Thus, to maintain an overall significance level of 5% (resp. 10%),
one should adjust each individual test size to 0.0083 = 5%/6 (resp. 0.0167 = 10%/6) since 6 tests are performed for a given
horizon.
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Figure 1: S&P 500 Put and Call Contracts per Day
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This graph show the number of outstanding put and call contracts written on the S&P 500 index per day for the 1996-2010
period. In addition, it plots the sum of put and call contract numbers. Source: OptionMetrics Ivy DB accessed via WRDS.
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Figure 2: The Term-Structure of Risk Neutral Variance
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Figure 3: The Term-Structure of Realized Variance
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Figure 4: Student’s t-Statistics for Predictive Regressions
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These figures plot the t-statistics for slope parameters of predictive regressions — Equation (12) — constructed following Hodrick
(1992) from heteroscedasticity and serial correlation consistent standard errors that explicitly take account of the overlap in
the regressions. The predictors here are variance risk, upside variance risk, downside variance risk, and skewness risk premia.
In these figures, k£ is the prediction horizon, ranging between 1 and 12 months ahead. To simplify the figures, only three

aggregation levels — h — are shown.
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Figure 5: Adjusted R? for Predictive Regressions
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These figures plot the adjusted R2s of predictive regressions — Equation (12). The predictors here are variance risk, upside
variance risk, downside variance risk, and skewness risk premia. In these figures, k is the prediction horizon, ranging between
1 and 12 months ahead. To simplify the figures, only three aggregation levels — h — are shown.
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Figure 6: Comparison of Adjusted R?s for Risk-Neutral and Physical Variance Measures
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These figures plot the adjusted R2s for predictive regressions — Equation (12). The predictors here are risk-neutral and realized
variance, upside variance, downside variance, and skewness. In these figures, k is the prediction horizon, ranging between 1 and
12 months ahead. To simplify the figures, only three aggregation levels — h — are shown.
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Figure 7: Time-Series for Variance and Skewness Risk Premia
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These figures plot the paths of annualized monthly values (><103) for the variance risk premium, upside variance risk premium,
downside variance risk premium, and skewness risk premium, extracted from U.S. financial markets data for September 1996
to December 2011. The shaded areas represent NBER recessions.
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