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Abstract

We consider risk-neutral valuation of a contingent claim under bilateral counterparty risk
in a reduced-form setting similar to that of Duffie and Huang [1996] and Duffie and Singleton
[1999]. The probabilistic valuation formulas derived under this framework cannot be usually
used for practical pricing due to their recursive path-dependencies. Instead, finite-difference
methods are used to solve the quasi-linear partial differential equations that equivalently rep-
resent the claim value function. By imposing restrictions on the dynamics of the risk-free rate
and the stochastic intensities of the counterparties’ default times, we develop path-independent
probabilistic valuation formulas that have closed-form solution or can lead to computationally
efficient pricing schemes. Our framework incorporates the so-called wrong way risk (WWR)
as the two counterparty default intensities can depend on the derivatives values. Inspired by
the work of Ghamami and Goldberg [2014] on the impact of WWR on credit value adjustment
(CVA), we derive calibration-implied formulas that enable us to mathematically compare the
derivatives values in the presence and absence of WWR. We illustrate that derivatives values
under unilateral WWR need not be less than the derivatives values in the absence of WWR.
A sufficient condition under which this inequality holds is that the price process follows a
semimartingale with independent increments.

Keywords: Reduced-Form Modeling, Counterparty Risk, Wrong Way Risk, Credit Value
Adjustment, Basel III

∗The views represented herein are the authors own views and do not necessarily represent the views of Morgan
Stanley, the Federal Reserve Board, or their staff. We thank Robert Anderson, Darrell Duffie, Kay Giesecke, Lisa
Goldberg, and 2015 seminar participants at Morgan Stanley, New York University’s Courant Institute of Mathemat-
ical Sciences, UC Berkeley Center for Risk Management Research, and Stanford University Center of Financial and
Risk Analytics.
†Courant Institute, New York University, email: pcarr@nyc.rr.com.
‡Federal Reserve Board, email: samim.ghamami@frb.gov, and University of California, Berkeley, Center for Risk

Management Research, email: samim ghamami@berkeley.edu.

1



1 Introduction

We consider the problem of valuing a contingent claim under bilateral counterparty risk using the
reduced-form approach. Our framework is similar to that of Duffie and Huang [1996] and Duffie and
Singleton [1999] in that we make the same recovery modeling assumption which is often referred
to as fractional recovery of market value.1 We assume that the contingent claim has a single real-
valued promised payoff occurring at a fixed time. Let ΠT denote the payoff at maturity T > 0, and
Vt denote the risk-neutral value of the claim at time t ∈ [0, T ] conditional on the survival of both
counterparties by time t. Hereafter, we refer to Vt as the survival-contingent or pre-default risk-
neutral value of the claim at time t. Let hA and hB denote the well-defined risk-neutral intensity
processes associated with the default times of counterparty A and counterparty B. We also let
0 ≤ Lit ≤ 1 denote the expected fractional loss in market value if counterparty i were to default at
time t conditional on the information available up to time t; i = A,B.2 As will be shown in Section
2, the risk-neutral derivatives value at time t before any counterparty default takes the following
probabilistic expression

Vt = EQ
t

[
exp

(
−
∫ T

t

(ru + sAu 1{Vu < 0}+ sBu 1{Vu ≥ 0})du
)

ΠT

]
, (1)

where r is the risk-free rate, EQ
t [.] denotes risk-neutral expectation conditional on all information

available up to time t, and sit = hitL
i
t represents the risk-neutral conditional expected rate of loss of

market value at time t owing to the default of counteparty i, i = A,B. That is, sit = hitL
i
t is the

risk-neutral mean-loss rate due to the default of counterparty i. The probabilistic representation
of the survival-contingent risk-neutral derivatives value (1) is path-dependent; it is based on the
recursive integral equation containing the value function. This path-dependent implicit probabilistic
representation is not useful for practical pricing. The value function equivalently solves a quasi-
linear partial differential equation (PDE), where the killing rate, in addition to the risk-free rate,
also depends on the value function, sA and sB. This non-linear PDE is often solved by a finite
difference method for pricing calculations (Duffie and Huang [1996] and Huge and Lando [1999]).
Note that the non-linearity in the pricing PDE or equivalently the recursive path-dependency in
the probabilistic representation of the derivatives value need not arise merely due to the presence of
the indicator functions of the value process caused by the payoff and so V being real-valued. This
is simply because sA or sB can also depend on the derivatives value, V .3

We will work under a Markovian framework where the underlying uncertainty is modeled by a
multidimensional diffusion. By imposing restrictions on the dynamics of the risk-free rate (short
rate), sA, and sB, we derive path-independent probabilistic valuation formulas that have closed-
form solution or can lead to computationally efficient pricing schemes. In the credit literature and
credit modeling practice, once a particular type of recovery modeling assumption is made, one

1See Chapter 6 of Duffie and Singleton [2003] or Chapter 5 of Lando [2004] for various recovery modeling assump-
tions and their implications for reduced-form risk-neutral pricing under default risk.

2We make the usual assumption that A and B cannot default simultaneously.
3For instance, consider the derivatives value, Vt ≥ 0 for all t ∈ [0, T ], under unilateral counterparty risk hA = 0.

When hB is defined as a function of V , i.e., hB ≡ hB(V ), the value function (1) remains recursively path-dependent.
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often ultimately assumes that the recovery rate, i.e., (1 − Li) in our setting, is constant. So, our
restrictions on the dynamics of sA and sB are to be viewed as restrictions on the dynamics of the
counterparty intensities hA and hB. Starting from an arbitrage-free market model where the money
market account growing by short rate is the numeraire, Section 3.1 specifies the short rate dynamics
that facilitate a probability measure change under which the survival-contingent value function
does not depend on the money market account.4 Next, to “remove” the recursive dependence of
the value function under the auxiliary probability measure on counterparty intensities, in Section
3.2 we work with a function of the price process which is required to be a martingale under the
auxiliary measure. This function of the survival-contingent price process is fully specified by the
martingale property and our restrictions on the dynamics of the counterparty intensities. Our
path-independent probabilistic valuation formula is then derived by benefiting from the martingale
property of the aforementioned function of the price process. This is the first contribution of the
paper. Appendix B, which considers derivatives pricing under unilateral counterparty risk, gives an
alternative path-independent probabilistic valuation formula using a novel application of well-known
change of numeraire techniques.

Since the counterparty default intensities in our framework depend on the derivatives values,
our model naturally incorporates bilateral wrong way risk (WWR).5 Recall that the presence of
what is often referred to as wrong (right) way risk implies that the counterparty to a derivatives
transaction becomes more (less) likely to default when the derivatives value increases. It is natural
to consider bilateral wrong (right) way risk in derivatives pricing under bilateral counterparty risk.6

For simplicity, hereafter, unless stated otherwise, we avoid explicitly referring to and using the
term right way risk. Section 4 first outlines the calibration scheme of reduced-form counterparty-
defaultable derivatives pricing models under wrong way risk. It then shows that the calibration
scheme of our risk-neutral valuation model can be developed similarly, but it will be computationally
more involved due to our restrictions on the dynamics of the short rate and counterparty default
intensities.

Wrong way risk is often defined and modeled merely in credit value adjustment (CVA) calcula-
tions, (see, e.g., Ghamami and Goldberg [2014], Hull and White [2012], Li and Mercurio [2015], and
the references therein). It can be easily shown that the very basic definition of CVA as the market
price of counterparty credit risk, i.e., as “the counterparty-default-free value of the derivatives minus
its counterparty-defaultable value” need not be equal to the widely-used CVA formulas that take
risk-neutral-expected-discounted-loss type forms. Let V denote the initial value of the claim under
bilateral counterparty risk. More generally, it is not difficult to show that the widely-used CVA and
debt value adjustment (DVA) formulas appearing as expected-discounted-loss and gain need not
lead to the widely-used price decomposition V = V̂ −CVA+DVA, where V̂ denotes the risk-neutral
initial value of the claim in the absence of counterparty risk. So, it would be less detached from asset

4Appendix A compares our auxiliary probability measure change with the well-known change of numeraire tech-
niques.

5The term (unilateral) wrong way risk was first introduced by Canabarro and Duffie [2003] in a non-mathematical
way.

6Bilateral wrong way risk is present, for instance, when a financial institution buys a forward contract on an asset
that is highly negatively correlated with the asset values of itself and its counterparty.
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pricing theory, and it would be more insightful to consider wrong way risk directly in risk-neutral
counterparty-defaultable derivatives pricing as opposed to incorporating WWR in CVA calcula-
tions using expected-discounted-loss type formulas that do not represent the true market price of
counterparty credit risk.7

Using the reduced-form approach, Ghamami and Goldberg [2014] show that CVA under wrong
way risk, denoted by CVAW , need not exceed CVA in the absence of wrong way risk, denoted by
CVAI . Their result relies on developing calibration-implied formulas for CVAI that make CVAI

mathematically comparable to CVAW as summarized in Section 5.1. Drawing upon the work of
Ghamami and Goldberg [2014], we first consider the unilateral case and develop calibration-implied
formulas that enable us to compare derivatives values in the presence and absence of WWR. We
show that derivatives values under unilateral WWR need not be less that derivatives values in the
absence of WWR. A sufficient condition under which this inequality holds is that the survival-
contingent price process follows a semimartingale with independent increments. This is shown
by Proposition 1 of Section 5.2. The survival-contingent value function in (1) cannot be used to
derive calibration-implied formulas in the bilateral case in the absence of WWR. Proposition 2 of
Section 5.2 gives an alternative expression for the survival-contingent price process which facilitates
the derivation of the calibration-implied formulas that make the bilateral counterparty-defaultable
derivatives values in the absence and presence of WWR mathematically comparable. Similar to
our results in the unilateral case, we conclude that no general inequality can be drawn for bilateral
counterparty-defaultable derivatives values in the presence and absence of WWR. Our results on the
impact of wrong way risk on derivatives values under counterparty risk are the second contribution
of the paper. These results have nontrivial implications for finance practitioners, accountants, and
bank regulators. Consider, for instance, a broker-dealer that has purchased a derivatives contract
from its counterparty. When the contract is viewed as its asset, the dealer records and reports
the risk-neutral value of the counterparty-defaultable derivatives as V̂ − CVA on the asset side
of its balance sheet at pre-specified points in time, (see, e.g., Ernst and Young [2013]). Under
wrong way risk, the dealer, following bank regulators’ WWR counterparty risk rules, increases its
CVA expected-discounted-loss calculations, (BCBS [2011]).8 We show that the price decomposition
V̂ − CVA loses its validity under wrong way risk in that it will not represent the true risk-neutral
counterparty-defaultable derivatives value. We also show that counterparty-defaultable derivatives
values need not decrease under WWR.

2 Derivatives Pricing under Bilateral Counterparty Risk

Consider a fixed a probability space (Ω,F , P ) and a family {Ft}t≥0 of sub-σ-algebras of F satisfying
the usual conditions. We suppose that there is a state-variable vector process X = (X1, ..., Xn)∗

7See, e.g., Chapters 12 and 13 of Gregory [2012] for CVA (DVA) definitions and formulas.
8Counterparty risk capital regulations have been premised on the assumption that a financial institution CVA

numbers (both model-based and non-model-based) should increase under wrong way risk, (Ghamami and Goldberg
[2014].
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that is Markovian under an equivalent martingale measure Q.9 The time-homogeneous diffusions
Xi have stochastic differentials of the form

dXi(t) = µi(t)dt+
d∑
j=1

aij(t)dWj(t), (2)

where W1, ...,Wd are independent 1-dimensional Q standard Brownian motions. For notational
simplicity we have suppressed the dependence of µ and a on X, i.e., µ(t) ≡ µ(X(t)) and a(t) ≡
a(X(t)). Let the n × d matrix a = {aij} denote the dispersion matrix of the above n-dimensional
diffusion process. We make the usual assumption that the symmetric diffusion matrix b ≡ aa∗ with
elements bik ≡

∑d
j=1 aijakj is non-negative-definite.10 We consider a market model driven by the

n-dimensional diffusion X where there exists a money market account whose balance starts at one
and grows at some stochastic short interest rate rt ≡ r(Xt, t) ∈ R. We make the usual assumption
that this economy is arbitrage-free. So, from the first Fundamental Theorem of Asset Pricing, there
exists an equivalent martingale measure Q associated with the money market account, and under
Q, a martingale arises whenever the price of any non-dividend paying asset is deflated by the money
market account.

Consider a contingent claim which matures at a fixed time T > 0. The claim’s promised payoff is
given by a function Π(x) : Rn 7→ R. When the claim expires at T , it pays off Π(XT ) at T , assuming
neither counterparty has defaulted prior to T . The claim has no other promised payoffs, either
before or after T . Note that the final promised payoff function Π(x) is not sign-definite, i.e., there
is positive probability that this promised final payoff could be either positive or negative. Examples
of such claims include forward contracts and risk reversals. Taking counterparty A’s perspective,
one can assume that counterparty A long the claim and hence receives Π(XT ) at T assuming no
prior default; counterparty B is short the claim and pays Π(XT ) at T assuming no prior default.

We assume that the default time of counterparty i ∈ {A,B} denoted by τ i is an F-stopping
time valued in [0,∞], which accepts a risk-neutral intensity process hi such that

dH i
t = (1−H i

t)h
i
tdt+ dM i

t , (3)

where H i
t = 1{τ i ≤ t} is the default indicator of counterparty i and M i is a Q martingale.11 Set

τ = τA ∧ τB, i.e., τ is the minimum of τA and τB. We assume that the filtration F = (Ft)t≥0 of
the underlying probability space encompasses the filtration generated by the underlying diffusion X
denoted by FX and the filtration generated by the default indicator process Ht = 1{τ ≤ t} denoted

9∗ denotes transpose.
10See, e.g., Chapter 5 of Karatzas and Shreve [1991], or Chapter 7 of Revuz and Yor [2004]. The diffusion matrix

b ≡ aa∗ is assumed non-negative-definite because it approximates the rate of change in the covariance matrix of the
diffusion vector Xt − X0 for small values of t > 0. To see this heuristically, set xi ≡ Xi(0) and suppose that Xi’s

have zero drift. For small t consider the time-discretized approximations to Xi’s, X̂i(t) = xi +
√
t
∑d
j=1 aij(t)Zj

with Z1, ...Zd being independent standard normal random variables and a(t) ≡ a(X̂t). It is then easy to see that

E[(X̂t−x)(X̂t−x)∗] = tb with b = {bij} and bik ≡
∑d
j=1 aijakj , i = 1, ..., n. The non-negative-definiteness assumption

on the diffusion matrix b is also explicitly used in Section 3.2 when we specify the credit spread dynamics in our
framework.

11The event τ i =∞ means no default.
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by H. That is, Ft = FXt ∨Ht. We also assume that P (τA = τB) = 0. Let U denote the real-valued
value process of the claim from A’s perspective under bilateral default risk of A and B. If a default
occurs at time t, the claim value at time t is specified as follows

U−t (γAt + γBt ), (4)

where

γAt = 1{t = τA}
(
1{U−t < 0}(1− LAt ) + 1{U−t ≥ 0}

)
, (5)

and
γBt = 1{t = τB}

(
1{U−t ≥ 0}(1− LBt ) + 1{U−t < 0}

)
. (6)

We assume that the fractional loss processes Li are bounded by 1 and are predictable. By U−t we
mean the price of the claim just before default, i.e., U−t ≡ lims↑t Us. That is, in words, when the value
to counterparty A is positive, a default by B causes a sudden downward jump in value from Ut− to
(1−LBt )Ut− with LBt ∈ [0, 1] being the stochastic process describing fractional loss to counterparty
A given default by counterparty B at time t. In contrast, when the value to counterparty A is
positive, we assume that a default by A causes no change in value, since B still owes A everything
that was owed just prior to A’s default. Similarly, when the value to counterparty A is negative, a
default by B causes no change in value, since A still owes B everything that was owed just prior to
B’s default. However, when when the value to counterparty A is negative, a default by A causes a
sudden upward jump in value from the negative value Ut− to the less negative value (1 − LAt )Ut−,
where LAt ∈ [0, 1] is the stochastic process describing fractional loss to counterparty B given default
by counterparty A at time t.

Consider the process V with the property that VT = Π(XT ) and Vt = Ut for t < τ . That is,
Vt represents the risk-neutral bilateral counterparty-defaultable derivatives value at time t ∈ [0, T ]
if there has been no default by time t. We have been referring to V as the survival-contingent or
pre-default price process.

Set sit = si(Vt, Xt, t) = Lith
i
t and Dt ≡ exp(

∫ t
0
rudu). Benefiting from the tractability inherent in

the fractional recovery of market value assumption of (4) - (6), similar to Duffie and Huang [1996]
and Duffie and Singleton [1999] probabilistic valuation formulas, the survival-contingent derivatives
value at time t can be expressed as

Vt = DtE
Q
[
exp(−

∫ T

t

Rsds)
Π(XT )

DT

∣∣∣∣Xt

]
, (7)

where

Rt = sAt 1{Vt < 0}+ sBt 1{Vt ≥ 0}. (8)

The dependence of the intensities hi and so si on the market value V can capture bilateral wrong way
risk. More specifically, wrong (right) way risk can be incorporated in to the valuation framework
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when hi is defined as an increasing (decreasing) function of V .12

The derivation of the recursive integral equation on the right side of (7) is similar to the method of
proof of Theorem 1 of Duffie and Singleton [1999], which is outlined as follows.13 Set Ht = 1{τ ≤ t}.
The discounted gain process G defined by

Gt = exp(−
∫ t

0

rsds)Vt(1−Ht) +

∫ t

0

exp(−
∫ s

0

rudu)V −s (γAs + γBs )dHs,

should be a martingale under Q. The property that G is a Q martingale and the terminal condition
VT = Π(XT ) gives a complete characterization of arbitrage-free pricing of the contingent claim
under bilateral counterparty default risk. Assuming that V does not jump at τ and given the
stochastic differential of the default indicators H i specified by (3), after using Ito’s formula to
derive the stochastic differential of the discounted gain process, it can be shown that for G to be a
Q martingale, it is necessary and sufficient that

Vt =

∫ t

0

(rs +Rs)Vsds+mt,

for some Q martingale m. We know from Lemma 1 of Duffie et al. [1996] that the equality above
holds for t ≤ T if and only if

Vt = DtE
Q
[
exp(−

∫ T

t

Rsds)
VT
DT

∣∣∣∣Xt

]
,

and so (7) has been derived.
We know from the “Feynman-Kac” formula that, under technical conditions, the survival-

contingent value function V probabilistically represented by (7) equivalently solves the backward
Kolmogorov quasi-linear PDE(
Gx +

∂

∂t

)
V (x, t) =

(
r(x, t) + sA(V (x, t), x, t)1{V (x, t) < 0}+ sB(V (x, t), x, t)1{V (x, t) ≥ 0}

)
V (x, t),

(9)
for x ∈ Rn, t ∈ [0, T ], where Gx is the infinitesimal generator of X,

Gx ≡
n∑
i=1

µi(x)
∂

∂xi
+

1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
dXidXj, (10)

12Recall the definition of CVA. In reduced-form wrong way risk modeling in CVA calculations, Hull and White
[2012] and Ghamami and Goldberg [2014] define the counterparty’s default intensity as an increasing function of the
non-negative part of the derivatives portfolio value (the derivatives portfolio that the financial institution holds with
its counterparty).

13To derive the probabilistic valuation formula (7), one does not need to impose a Markovian or diffusion dynamics;
this can be seen from Duffie and Huang [1996] and Duffie and Singleton [1999]. The derivation of (7) in a non-diffusion
setting requires the assumption that ∆Vτ = 0 which automatically holds in our diffusion-driven setting.
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with the well-known multiplication rule (dWi)(dWj) = 0 for i 6= j and (dWi)
2 = dt. The terminal

condition restricting the survival-contingent claim value is

V (x, T ) = Π(x), x ∈ Rn. (11)

Recall that the absence of arbitrage implies that the asset value Vt deflated by the money market
account e

∫ t
0 r(Xs,s)ds is a local martingale under Q. As a result, the asset value itself must grow in Q

expectation at the risk-free rate r(Xt, t). The reason why the right side of (9) reflects a growth rate
different than merely r(Xt, t) is that the stochastic process actually being described by V (x, t) is the
survival contingent process. The extra proportional drift sA(V (x, t), x, t)1[V (x, t) < 0] compensates
for a possible jump up by the process V towards zero that can occur whenever Vt < 0 and A
defaults, while the extra proportional drift sB(V (x, t), x, t)1[V (x, t) ≥ 0] compensates for a possible
jump down by the process V that can occur whenever Vt > 0 and B defaults.

Remark 1 The recursive integral equation on the right side of (7) can not be directly used for
calculating the risk-neutral price of the contingent claim. Instead, the “pricing” quasi-linear PDEs,
specified by (9) - (11), are usually solved by finite difference methods. For instance, Duffie and
Huang [1996] use the Crank-Nicholson method for their numerical results. Or, Huge and Lando
[1999] extending Duffie and Huang [1996] model to a rating-based framework use another finite
difference method (referred to as Alternating Direction Implicit Finite Difference Method) for their
numerical pricing results.

Remark 2 As stated before, it is more consistent with the asset pricing theory to consider wrong
way risk directly in risk-neutral counterparty-defaultable derivatives pricing as opposed to consider-
ing and incorporating WWR in CVA expected-discounted-loss calculations. Because in the presence
of wrong way risk, the CVA expected-discounted-loss type formulas need not coincide with the basic
definition of CVA as the market price of counterparty credit risk, i.e., the counterparty-default-free
value of the derivatives minus its counterparty-defaultable value. To see this, consider the unilateral
case where sA = 0, and assume zero recovery rate for simplicity. Suppose that Vt ≥ 0 for all t ≥ 0
from counterparty A’s perspective. Set τB ≡ τ and sB = hB ≡ h. Recall (7), the initial value of
the counterparty-defaultable derivatives value becomes

V0 = EQ
[
e−

∫ T
0 (hu+ru)duΠ(XT )

]
.

Note that
V̂0 = EQ

[
e−

∫ T
0 ruduΠ(XT )

]
,

denotes the initial value of the claim in the absence of counterparty risk. Now, it is not difficult to
see that the so-called market price of counterparty credit risk

V̂0 − V0 = EQ
[
e−

∫ T
0 ruduΠ(XT )(1− e−

∫ T
0 hudu)

]
,
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need not equal to the widely-used CVA expected-loss-formula

CVA ≡ EQ
[
e−

∫ τ
0 ruduVτ1{τ ≤ T}

]
,

when τ , representing the credit quality of the counterparty, is dependent on V and r. Since the
expected-discounted-loss CVA formulas do not represent the market price of counterparty risk
in the presence of wrong way risk, it would be more insightful to consider any dependence of
the counterparties credit quality on the derivatives value directly in the reduced-form risk-neutral
valuation framework.

3 Path-Independent Probabilistic Valuation

We are to derive a path-independent probabilistic representation of the survival-contingent value
function V (Xt, t) solving the quasi-linear PDE (9) subject to the terminal condition (11). The
recursive integral equation

V (Xt, t) = EQ
[
e−

∫ T
t [r(Xu,u)+sA(V (Xu,u),Xu,u)1{V (Xu,u)<0}+sB(V (Xu,u),Xu,u)1{V (Xu,u)≥0}]duΠ(XT )

∣∣∣∣Xt

]
,

(12)
for t ∈ [0, T ], is an implicit probabilistic representation of the solution since the function V (Xt, t)
appears on both sides of (12). If sA(v, x, t) = sB(v, x, t) = 0, then the PDE (9) becomes linear and
the probabilistic representation (12) for V becomes explicit, albeit still path-dependent.

To deal with the analytical difficulty arising from the non-linearity in the PDE (9) and equiv-
alently from the recursive path-dependency in (12) we first impose restrictions on the dynamics
of the short rate. Next, we will restrict the form of sA and sB dependence on their three argu-
ments. We will then illustrate how our specification of the short rate, sA, and sB dynamics lead to
path-independent probabilistic formulas for the derivatives values under bilateral counterparty risk.
Appendix B, which considers derivatives pricing under unilateral counterparty risk, gives an al-
ternative path-independent probabilistic valuation formula using a novel application of well-known
change of numeraire techniques.

3.1 Short Rate Dynamics and the Measure Change

Suppose that the 1-dimensional positive process n is a C2 function of Xk for a given 1 ≤ k ≤ n.
We require that

r(x) =
Gxkn(x)

n(x)
+ λ, (13)

where λ is a constant and Gxk is the generator of Xk,

Gxkn(x) = µk
∂n

∂xk
+

1

2

∂2n

∂x2
k

d∑
j=1

a2
kj.

9



It is not difficult to construct simple and realistic examples of short rate processes based on (13).
For instance, setting n(Xk(t)) = exp(−X2

k(t)) gives

r(Xk(t)) = −µk(t)Xk(t) +
1

2

(
X2
k(t)− 1

) d∑
j=1

a2
kj(t) + λ.

Setting the drift µk equal to zero and choosing a positive λ, r becomes a diffusion that can stay
positive almost surely. As will be shown below, the dynamics of the short rate given by (13) enables
us to define a Q-martingale process denoted by N . We then make an equivalent measure change
going from Q to Q̃ by using N as the Radon-Nikodym derivative of Q̃ with respect to Q. As will
be seen later, the computational work required for the risk-neutral valuation of the counterparty-
defaultable claim can be substantially reduced under the new probability measure Q̃ to which we
refer hereafter as the auxiliary probability measure. Consider the process

N(t) = n(Xk(t)) exp

(
−
∫ t

0

Gxkn(Xk(u))

n(Xk(u))
du

)
, (14)

for any 0 ≤ t ≤ T . Set n′ ≡ ∂n(x)
∂xk

and n(t) ≡ n(Xk(t)). Using Itô’s formula, the stochastic
differential of N can be written as

dN(t) = N(t)
n′(t)

n(t)

d∑
j=1

akj(t)dWj(t).

Given the stochastic differential of log(Nt), we can equivalently write,

N(t) = exp

{
d∑
j=1

∫ t

0

n′(u)

n(u)
akj(u)dWj(u)− 1

2

∫ t

0

(
n′(u)

n(u)

)2 d∑
j=1

a2
kj(u)du

}
, (15)

to arrive at the familiar stochastic exponential or the Doleans-Dade exponential form. Assuming
that the Novikov condition

E

[
exp

(
1

2

∫ T

0

(
n′(u)

n(u)

)2 d∑
j=1

a2
kj(u)du

)]
<∞,

holds, {Nt}t≤T becomes a true Q-martingale. With Dt ≡ exp(
∫ t

0
rudu) and r specified by the process

n as in (13), recall that

Vt
Dt

= EQ
[
exp

(
−
∫ T

t

Rsds

)
Π(XT )

DT

∣∣∣∣Xt

]
,

where

10



Rt = sAt 1{Vt < 0}+ sBt 1{Vt ≥ 0},

with sit ≡ s(V (t), X(t), t), and i = A,B. Define the new auxiliary probability measure Q̃ on FT by

dQ̃ = NTdQ on FT .

Given the Markov property of X, using Bayes’ Theorem, we can write

EQ̃
[
e−

∫ T
t Rsds

Π(XT )

eλTnT

∣∣∣∣Xt

]
=

EQ
[
NT e

−
∫ T
t RsdsΠ(XT )

eλTnT

∣∣∣∣Xt

]
Nt

=
Vt
eλtnt

≡ Ṽt, (16)

where by Girsanov Theorem, under Q̃ the process X evolves with the drift change

dXi(t) = µ̃i(t)dt+
d∑
j=1

aij(t)dW̃j(t) (17)

where W̃j are Q̃ standard Brownian motions and for i 6= k,

µ̃i = µi +
n′

n

d∑
j=1

aijakj, (18)

and

µ̃k = µk +
n′

n

d∑
j=1

a2
kj. (19)

The auxiliary survival-contingent value process Ṽt = Vt
eλtnt

has the same sign as Vt for every t ∈ [0, T ],

and so for R inside the Q̃-conditional expectation on the left side of (16) we can write Rt = sAt 1{Ṽt <
0} + sBt 1{Ṽt ≥ 0}. Note that X dynamics have remained time-homogeneous under Q̃. This has
been achieved by our proposed time-homogeneous definition of the short rate in (13) under Q.
Retaining time-homogeneity aids in our goal of ultimately deriving closed-form or computationally
efficient formulas for the value of the contingent claim. Appendix A compares our proposed change
of probability measure with the well-known numeraire change techniques.

3.2 Default-Intensity Dynamics

The recursive path-dependency still exists in the probabilistic representation of the auxiliary survival-
contingent value function,

Ṽt = EQ̃
[
e−

∫ T
t (sAu 1{Ṽu<0}+sBu 1{Ṽu≥0})duΠ(XT )

eλTnT

∣∣∣∣Xt

]
, t ∈ [0, T ], (20)
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as Ṽ appears on both sides of the above equality. Note that si can also depend on Ṽ in addition
to the underlying Q̃-diffusion X and time, t. To “remove” the path-dependency on the right side
of (20), suppose that we could define the process {f(Ṽt)}t≤T to be a Q̃-martingale with f being

a well-defined C2 function of Ṽ . Then, given that ṼT = Π(XT )
eλTnT

, the martingale property of f(Ṽ )

would give f(Ṽt) = EQ̃[f(Π(XT )
eλTnT

)|Xt]. So, when f is invertible, the path-independent probabilistic

expression for Ṽt, with t ∈ [0, T ], becomes

Ṽt = f−1

(
EQ̃
[
f

(
Π(XT )

eλTnT

)∣∣∣∣Xt

])
,

where f−1 denotes the inverse of f . In what follows we illustrate how to specify f by imposing
restrictions on the dynamics of sA and sB while requiring f(Ṽ ) to be a Q̃-martingale. Viewing
the auxiliary value process Ṽ as a function of the n-dimensional diffusion X under Q̃, and using
multidimensional Itô’s formula, the stochastic differential of Ṽ can be written as

dṼ (t) =
∂Ṽ

∂t
dt+

n∑
i=1

∂Ṽ

∂xi
dXi(t) +

1

2

n∑
i=1

n∑
j=1

∂2Ṽ

∂xi∂xj
dXi(t)dXj(t). (21)

Given (20), the PDE representation of the auxiliary value process Ṽ via Feynman-Kac becomes(
Gx +

∂

∂t

)
Ṽ (x, t) =

(
sA(Ṽ (x, t), x, t)1{Ṽ (x, t) < 0}+ sB(Ṽ (x, t), x, t)1{Ṽ (x, t) ≥ 0}

)
Ṽ (x, t)

with the terminal condition

Ṽ (x, T ) =
Π(x)

eλTn(x)
, x ∈ Rn.

Note that just as the asset value V deflated by the money market account is a local martingale
under the risk-neutral measure Q, the auxiliary asset value Ṽ is a local martingale under the
auxiliary measure Q̃. However, if we condition on survival, the Ṽ process drifts down when Ṽ < 0
to compensate for the possible jump up upon default by A, and the Ṽ process drifts up when Ṽ > 0
to compensate for the possible jump down upon default by B. The magnitude of this compensation
for the jumps under Q̃ is given by

EQ̃dṼt =
(
sA(Ṽ (Xt), Xt, t)1{Ṽ (Xt) < 0}+ sB(Ṽ (Xt), Xt, t)1{Ṽ (Xt) > 0}

)
Ṽ (Xt),

for t ∈ [0, T ]. Let f(Ṽ ) be a C2 function. We use Itô’s formula to derive the stochastic differential
of f(Ṽ ). We then set its drift equal to zero so that f(Ṽ ) becomes a local Q̃-martingale. Given the
PDE representation of the auxiliary value process Ṽ , setting the drift of the process f(Ṽ ) equal to
zero can be expressed by

f ′(Ṽt)
(
sAt 1{Ṽt < 0}+ sBt 1{Ṽt ≥ 0}

)
Ṽt +

1

2
f ′′(Ṽt)β = 0, (22)
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where β ≡ (dṼt)
2 = (dṼt).(dṼt) is computed according to the Itô’s multiplication rules and is equal

to

β ≡
n∑
i=1

(
∂Ṽ

∂xi

)2 d∑
j=1

a2
ij(t) +

n∑
i=1

n∑
j=1

∂Ṽ

∂xi

∂Ṽ

∂xj

d∑
k=1

aik(t)ajk(t). (23)

Set Ṽx ≡ ( ∂Ṽ
∂x1
, ∂Ṽ
∂x1
, ..., ∂Ṽ

∂xn
)∗. Note that in matrix notation β takes the quadratic form β = Ṽ ∗x bṼx,

where b = aa∗ is the non-negative-definite diffusion matrix defined in Section 2. That is, β becomes
non-negative due to b being non-negative-definite, and β will be positive when the diffusion matrix
b is positive-definite. To derive our path-independent probabilistic representation of the auxiliary
value function Ṽ , we now impose structure on sA and sB by requiring that each non-negative
function si take the multiplicative form,

si(ṽ, x, t) = gi (ṽ) β(x, t), i = A,B, ṽ ∈ R, x ∈ Rn, t ∈ [0, T ], (24)

where gi (ṽ) : R 7→ R+, and β(x, t) : Rn × [0, T ] 7→ R+. As mentioned before, after any particular
type of recovery modeling, the modeler often ultimately assumes that the recovery rate, which is
(1 − Li) in our setting, is constant. That is, our restrictions on the dynamics of sA and sB are to
be viewed as restrictions on the dynamics of the counterparty default intensities hA and hB. We
require that the positive function β(x, t) be given by (23). So, our intensity dynamics (24) imply
that the counterparty default intensities hA and hB are restricted in their dependence on β(x, t)
given in (23) and are freely specified by the modeler’s choice of gA and gB as functions of the
auxiliary survival-contingent price process Ṽ .

Recall the zero-drift condition (22), given our required intensity dynamics in (24), f(ṽ) solves
the following linear ordinary differential equation (ODE),

−1

2

f ′′(ṽ)

f ′(ṽ)
= gB(ṽ)ṽ+ − gA(ṽ)v−, ṽ ∈ R.

whose general solution is

f(ṽ) = c0 + c1

∫ ṽ

0

e−2
∫ y
0 [gB(z)z+−gA(z)z−]dzdy,

where c0 and c1 are arbitrary real-valued constants. We choose c0 = 0 and c1 = 1 for concreteness;
so,

f(ṽ) =

∫ ṽ

0

e−2
∫ y
0 [gB(z)z+−gA(z)z−]dzdy. (25)

This function is increasing everywhere and hence invertible. Assuming that f(Ṽt) is a true Q̃
martingale, rather than just a local martingale, the martingale property implies that

f(Ṽt) = EQ̃[f(ṼT )|Xt] = EQ̃
[
f

(
Π(XT )

eλTnT

)∣∣∣∣Xt

]
,

13



where nt ≡ n(Xk(t)) for t ∈ [0, T ].14 Applying f−1 to both sides of the above equation gives

Ṽt = f−1

(
EQ̃
[
f

(
Π(XT )

eλTnT

)∣∣∣∣Xt

])
. (26)

This probabilistic representation for the auxiliary value function Ṽ holds so long as the positive
function β is given by (23), where Ṽ is fully specified by both (26) and the Q̃ dynamics of X in
(17). Recall that Vt = eλtntṼt. So, the desired path-independent probabilistic representation of the
value function V , which solves the non-linear PDE (9) and is subject to the terminal condition (11),
becomes

Vt = eλtntf
−1

(
EQ̃
t

[
f

(
Π(XT )

eλTnT

)])
, t ∈ [0, T ], (27)

where the subscript t in Et[.] denote conditioning on Xt. Again, recall that the process nt ≡ n(Xk(t))
and the constant λ specify the dynamics of the short rate via (13), and the invertible function f(Ṽ )
is specified by (25). In sum, the path-independent probabilistic representation of the bilateral
counterparty-defaultable derivatives value in (27) has been derived due to the special structure
imposed on the short rate dynamics in (13) and on the counterparty credit spread dynamics in
(24).

Example Consider unilateral counterparty-defaultable derivatives pricing where sAt ≡ 0 and Vt ≥
0 for all t ∈ [0, T ]. Suppose that the counterparty’s fractional loss LB is constant and assume that
it is equal to one for simplicity, i.e., assume zero recovery rate. Suppose that the counterparty’s
intensity hB ≡ h is to be defined as a decreasing function of the survival-contingent auxiliary price
process Ṽ . For instance, set

h(Ṽt) =
bt

Ṽt
β,

where β is given in (23), and let b denote a deterministic function of time to be specified based on the
market-implied credit spreads via the model calibration scheme outlined in the next section. The
counteparty intensity h as defined above satisfies our required intensity dynamics in (24) by setting
g(Ṽt) = bt/Ṽt. Recall that our intensity dynamics restrictions lead to the function f being specified
by (25). For this example, we have f(Ṽt) = 1

2bt
(1− exp(−2btṼt)) and f−1(Ṽt) = − 1

2bt
log(1− 2btṼt).

So, given (27), conditional on survival by time t, the closed-form formula for the risk-neutral value
of the derivatives at time t ∈ [0, T ] becomes

Vt = −1

2

eλtnt
bt

log

(
1− bt

bT
+
bt
bT
EQ̃
t

[
exp

(
−2bT

Π(XT )

eλTnT

)])
,

where n ≡ n(Xk) and the constant λ specifying the dynamics of the short rate are given in (13),
and the Q̃-dynamics of X is specified by (17).

14Given the zero-drift condition (22) of the stochastic differential of {f(Ṽt)}t≤T , the Novikov’s criterion (Theorem

41 of Chapter 2 of Protter [2004]) gives a sufficient condition for f(Ṽ ) to be a true martingale. Alternatively, after
the modeler’s choice of gA and gB in (24), given the specific functional form of f in (25), one could check whether
E[f(Ṽt)] < ∞ holds for every 0 ≤ t ≤ T to conclude that f(Ṽ ) is a true martingale, (Theorem 51 of Chapter 1 of
Protter [2004]). For instance, it turns out that since this latter condition holds for our simple unilateral example of
Section 3.2, the Novikov’s criterion need not assume to be held for that particular example.
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4 Outline of the Calibration Scheme

Many of the reduced-form models in the credit literature benefit from the the computational con-
venience of affine intensity modeling by assuming that the stochastic intensity of the default time
τ , denoted by h, is an affine function of a latent Markov process X, such that the conditional
expectation below representing the survival probabilities can be written as,

P (τ > t|τ > s) = Es

[
e−

∫ t
s h(Xu)du

]
= eα(s,t)+β(s,t)Xs , (28)

where coefficients α and β depend only on s and t, 0 < s < t.15 The Markov process X can be
multidimensional; however for simplicity, think of X as a 1-dimensional process, e.g., a square-root
diffusion. The conditional survival probabilities on the left side of Formula (28) are market implied.
For instance, they can be approximated from corporate bond spreads or credit default swap spreads.
Given the convenient form of the conditional expectation in (28) and given that X has usually well
known distributional properties, statistical estimates of the parameters of X and h are often based
on (approximate) maximum likelihood estimation methods or the Kalman filter.16

Model calibration in derivatives pricing under counterparty risk in the presence of wrong way risk
is challenging since the intensity of the counterparty’s default time h - instead of being a function of
merely latent Markov processes - is defined as a monotone function of the risk-neutral pre-default
price process V . In what follows we assume that the survival-contingent price process V is time-
homogeneous; we first outline possible calibration schemes of the intensity h in the absence of our
restrictions on the short rate and the counterparty default intensity dynamics. Next, we outline
how similar ideas can be applied to our setting that led to the derivation of the path-independent
valuation formula (27). For simplicity, the calibration schemes are outlined in the unilateral case.

Consider the time grid 0 ≡ t0 < t1 < ... < tn ≡ T , and suppose that the counterparty’s survival
probabilities P (τ > ti) ≡ pi are approximated from the counterparty’s CDS maturity-ti spreads,
i = 1, ..., n.17 That is, p1, p2, ..., pn are market-implied. The modeler defines the intensity h as a
function of the pre-default price process V and an unknown deterministic function of time b, which
is piecewise constant on the time grid. Given,

pi = E
[
e
−

∫ ti
ti−1

h(Vu,bu)du
]
, i = 1, ..., n, (29)

b can be sequentially approximated by replacing the expectation above with the average of market-
observed counterparty-defaultable derivatives values when assuming time-homogeneity on the price
process. For instance, in the presence of WWR where h is increasing in V , set h(Vt) = Vt + bt
with Vt ≥ 0. Then, the first step of the calibration scheme gives b1 = −t−1

1 log(p1/ε1) where ε1

is an approximation of E[exp(−
∫ t1

0
Vudu)] obtained from market prices over an interval of length

t1 assuming time-homogeneity on V . That is, proceeding sequentially, given bi specified in the ith

15See, e.g., Duffie and Singleton [2003] and Lando [2004] and the references therein.
16See Duffie et al. [2000], Appendix B of Duffie and Singleton [2003], and Lando [2004]. Also, Duffie et al. [2003]

and Duffee [1999] are examples of papers using an approximate maximum likelihood estimation method and Kalman
filter, respectively.

17See, for instance, the calibration scheme of Hull and White [2012].
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step, pi+1 approximated from maturity-ti+1 CDS spreads, and E[exp(−
∫ ti+1

0
Vudu)] approximated

by εi+1 from the market prices, the calibration scheme uses (29) to approximate bi+1, i = 1, ..., n.
The calibration scheme of our setting can be outlined similarly. However, it would be computa-

tionally more intensive. Recall (24) which specifies and restricts the dynamics of the intensities in
our framework. Suppose that the fractional loss process L, i.e., one minus recovery rate, is constant.
Consider the case where the underlying Q̃-diffusion is 1-dimensional,

dXt = µ̃(Xt)dt+ a(Xt)dW̃t, (30)

and µ̃(Xt) = µ(Xt) + n′(Xt)
n(Xt)

a2(Xt). Set L = 1 for notational simplicity. Then,

ht = g(Ṽt)

(
a(Xt)

∂Ṽ

∂x
(t,Xt)

)2

, (31)

where the auxiliary value process Ṽt = Vt
eλtn(Xt)

for t ∈ [0, T ]. Suppose that g to be chosen by the
modeler depends also on an unknown piecewise constant deterministic function of time denoted by
b. For instance, in the presence of wrong way risk, one can define g(Ṽt) = btṼt with Ṽt ≥ 0. Set

βt ≡ (a(Xt)
∂Ṽ
∂x

(t,Xt))
2. Then, given the intensity dynamics (31) and assuming time-homogeneity

of the the price process, our model calibration scheme uses

pi = E
[
e
−

∫ ti
ti−1

g(Ṽu,bu)βudu
]
, i = 1, ..., n, (32)

by replacing the expectation above by its approximation via market-observed prices to sequentially
specify b1, ..., bn. The calibration scheme of our model that gives the path-independent risk-neutral
valuation formula (27) is computationally more involved than the calibration scheme (29) of a model
that requires numerically solving the quasi-linear PDEs for pricing. This is so because of the presence
of the time-homogeneous process n(Xt) used to specify our short rate dynamics (13) and also due
to the presence of the variance rates β on the right side of (32) that is to be approximated from
market-observed derivatives values, realizations of the process n, and realizations the underlying
diffusion X.

Remark 3 Note that the expectations in (29) and (32) are under the risk-neutral probability
measure Q and the auxiliary probability measure Q̃, respectively. That is, we have not specified
and used the dynamics of the default intensity process under the physical measure P in the cali-
bration scheme as we do not intend to characterize and quantify various types of risk premia in the
counterparty credit spreads. For our study it suffices to consider the hQ dynamics and develop a
calibration scheme that specifies the parameters of hQ using the market-implied information, (see,
e.g., Eckner [2009]).18 One can compare our working of merely with Q-dynamics to the well-known
martingale modeling in the interest rate literature where in the absence of the interest in studying

18See, e.g., Chapter 14 of Singleton [2006], Section 6 of Eckner [2010], Azizpour et al. [2011], and the references
therein on using reduced-form models for characterizing the risk premia and empirically studying its structure in the
credit markets.
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the risk premia in the bond market, the short rate dynamics is specified only under Q and the model
parameter estimation becomes feasible under the Q-dynamics by matching the model-implied term
structure to the market-implied (empirical) term structure as closely as possible.19

5 Wrong Way Risk and Derivatives Pricing

Using the reduced-form approach, Ghamami and Goldberg [2014] show that wrong way CVA,
CVAW , need not exceed independent CVA, CVAI . Their result relies on deriving calibration-
implied formulas for CVAI that make CVAI mathematically comparable to CVAW as summarized
in Section 5.1. Inspired by the work of Ghamami and Goldberg [2014], in Section 5.2 we derive
calibration-implied formulas that enable us to mathematically compare counterparty-defaultable
derivatives values in the presence and absence of WWR in our framework. We show that derivatives
values under unilateral WWR need not be less that derivatives values in the absence of WWR. A
sufficient condition under which this inequality holds is that the survival-contingent price process
follows a semimartingale with independent increments. This is shown by Proposition 1 of Section
5.2. Next, considering the bilateral case, Proposition 2 gives an alternative expression for the
survival-contingent price process which facilitates the derivation of the calibration-implied formulas
that make the counterparty-defaultable derivatives values in the absence and presence of WWR
mathematically comparable. Similar to our results in the unilateral case, we conclude that no general
inequality can be drawn for bilateral counterparty-defaultable derivatives values in the presence and
absence of WWR. Hereafter, to simplify the notation, we do not append the superscript Q to E;
i.e., we set E ≡ EQ.

5.1 The Impact of WWR on CVA

Recall the widely-used CVA risk-neutral expected-discounted-loss formula at time zero

CVA = E[D̃τVτ1{τ ≤ T}],

where assuming zero recovery rate, Vt denotes the non-negative part of the derivatives portfolio
value at time t that a financial institution holds with its counterparty, T is the longest maturity
transaction in the portfolio, D̃t ≡ exp(−

∫ t
0
rudu), and τ is the counterparty’s default time, a non-

negative random variable with density f . Suppose that τ has a well-defined stochastic intensity h.
Under some technical conditions, it can be shown that

CVAW =

∫ T

0

E
[
D̃tVth

w
t e
−

∫ t
0 h

w
u du
]
dt.

Note that under wrong way risk h ≡ hw is defined as an increasing function of V . The calibration-
implied formula for CVAI is derived as follows

19This is usually referred to as the inversion of the yield curve in the interest rate modeling literature, (see, e.g.,
Chapter 22 of Bjork [2009]).
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CVAI =

∫ T

0

E[D̃tVt]fτ (t)dt =

∫ T

0

E[D̃tVt]E[hwt e
−

∫ t
0 h

w
u du]dt,

where the first equality follows due to the independence of τ , V and r, and the second equality
leading to the calibration-implied formula follows by noting that any model calibration scheme is to
approximate the model parameters by matching model-implied survival probabilities E[e−

∫ t
0 h

w
u du]

to market-implied survival probabilities P (τ > t), for any 0 ≤ t ≤ T , as closely as possible. Now,
given that the wrong way intensity process hw appears in the calibration-implied formula, i.e., right
side of the CVAI formula above, CVAW and CVAI become mathematically comparable. It then
becomes clear to see that one need not exceed the other. Interestingly, Ghamami and Goldberg
[2014] give numerical and analytical examples under which CVAI > CVAW .

5.2 The Impact of WWR on Derivatives Values

We first consider derivatives pricing in our framework under unilateral counterparty default risk.
Assume that the fractional loss process LB ≡ L is 1 and so sB = hB ≡ h. Recall the survival-
contingent valuation formula

Vt = Et

[
e−

∫ T
t (ru+hu)duΠT

]
.

Under wrong way risk h is defined as an increasing function of V ,

V W
t = Et

[
e−

∫ T
t (ru+hwu )duVT

]
,

and when τB ≡ τ , V , and r are independent we have

V I
t = P (τ > T |τ > t)Et

[
e−

∫ T
t ruduVT

]
= Et

[
e−

∫ T
t hwu du

]
Et

[
e−

∫ T
t ruduVT

]
, (33)

where the right side above is the calibration-implied formula of in our setting. It is derived by noting
that any model calibration scheme is to ensure that the model-implied conditional survival proba-

bilities Et

[
e−

∫ T
t hwu du

]
match the market-implied conditional survival probabilities P (τ > T |τ > t)

as closely as possible for any t ∈ [0, T ). Since our calibration-implied formula, i.e. right side of (33),
is expressed based on the wrong way intensity hw, derivatives values in the presence and absence of
WWR become mathematically comparable. Consider, for instance, derivatives initial values in the
presence and absence of WWR and assume zero (constant) short rate for simplicity,

V W
0 = E

[
e−

∫ T
0 hwu duVT

]
, and V I

0 = E
[
e−

∫ T
0 hwu du

]
E [VT ] .

Knowing that hw is an increasing function of V does not have any implication for the sign of

the covariance between VT and e−
∫ T
0 hwu du. For instance, when this covariance is non-negative, the
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derivatives initial value under wrong way risk V W
0 exceed the derivatives initial value in the absence

of WWR, V I
0 . Proposition 1 below identifies sufficient conditions under which the reverse holds,

i.e., V W
0 ≤ V I

0 .

Proposition 1. Consider unilateral counterparty-defaultable derivatives values at time zero, V W
0 ,

V I
0 , under wrong way risk and in its absence as defined above. Assume that the risk-free rate

is constant. Suppose that V is a semimartingale with independent increments. Let hwt ≡ h(Vt),
0 ≤ t ≤ T , denote the counterparty’s stochastic default intensity process under wrong way risk,
where h is a C2 function which is increasing in V . The covariance of two random variables

e−
∫ T
0 h(Vu)du and VT ,

is non-positive and so V W
0 ≤ V I

0 .

Proof To simplify the notation assume zero short rate. Let 0 ≡ t0 < t1 < t2 < ... < tn ≡ T
denote a time grid on [0, T ] assumed to be equidistant with ∆ ≡ ti − ti−1 = T/n for notational
simplicity. Set Vi ≡ Vti , i = 1, ..., n. First consider the covariance of E ≡ exp (−∆

∑n
i=1 h(Vi)) and

VT , and note that

cov (E , VT ) = cov (E , V1 + (V2 − V1) + ...+ (Vn − Vn−1)) =
n∑
i=1

cov (E , Vi − Vi−1) , (34)

with V0 ≡ 0. Now, consider the covariance inside the sum on the right side above for a given
1 ≤ k ≤ n and note that the conditional covariance formula gives,

cov (E , Vk − Vk−1) = cov (E[E|Vk − Vk−1], Vk − Vk−1) . (35)

To see this, recall the conditional covariance formula,20

cov (E , Vk − Vk−1) = E[cov (E , Vk − Vk−1|Vk − Vk−1)] + cov (E[E|Vk − Vk−1], Vk − Vk−1) ,

and note that the first term on the right side above is zero.
Given that the random variables V1, (V2 − V1),..., (Vi − Vi−1),...,(Vn − Vn−1), are independent

by the independent-increment assumption on V , and that h is an increasing function of V , the
conditional expectation on the right side above,

E[E|Vk − Vk−1] = E

[
exp

(
−∆

n∑
i=1

h

(
i∑

j=1

(Vj − Vj−1)

))∣∣∣∣Vk − Vk−1

]
≡ f(Vk − Vk−1),

20See, for instance, Chapter 3 of Ross [2009].

19



can be viewed as a non-increasing function of (Vk − Vk−1) for any given 1 ≤ k ≤ n, where we have
referred to this function as f on the right side above. That is, given (35),

cov (E , Vk − Vk−1) = cov (f(Vk − Vk−1), Vk − Vk−1) ≤ 0, (36)

where the inequality above follows from the Chebyshev’s algebraic inequality.21 So, given (34), we
conclude,

cov
(
e−∆

∑n
i=1 h(Vi), VT

)
≤ 0. (37)

Given that V is a semimartingale and h is in C2, we know from the theory of stochastic in-
tegration that Xn ≡ ∆

∑n
i=1 h(Vi) converges to X ≡

∫ T
0
h(Vu)du in L2 and in probability as

n → ∞ (equivalently as |∆| converges to zero).22 Set Y ≡ VT . Let H, F , and G denote the
joint cdf, marginal cdf of X, and marginal cdf of Y , respectively. Recall Hoeffding [1940] covariance
formula, cov(X, Y ) =

∫
R2 (H(x, y)− F (x)G(y)) dxdy. Knowing that convergence in probability im-

plies weak convergence (denoted by ⇒), we have Fn ⇒ F and that P (Xn ≤ x, Y ≤ y) converges to
H(x, y) ≡ P (X ≤ x, Y ≤ y) for all x and y that are continuity points of H.23 So, from bounded
convergence and Hoeffding [1940] covariance formula we conclude cov(Xn, Y ) → cov(X, Y ) as n
goes to infinity. That is, (37) implies that

cov
(
e−

∫ T
0 h(Vu)du, VT

)
≤ 0,

and so V W
0 ≤ V I

0 .

The Bilateral Case We now consider risk-neutral valuation under bilateral counterparty risk.
We assume zero recovery rate, i.e., we set LA = LB = 1, for simplicity. In what follows we develop
calibration-implied formulas for the independent case where both counterparty default intensities
are independent of derivatives values. Derivatives values then become mathematically comparable
in the presence and absence of bilateral wrong way risk. Recall the risk-neutral value of the
bilateral counterparty-defaultable derivatives value in our framework at time t ∈ [0, T ] under the
zero-recovery assumption,

Vt = Et

[
e−

∫ T
t (ru+hBu 1{Vu≥0}+hAu 1{Vu<0})duΠT

]
.

The right side above cannot be used to deveop calibration-implied formulas for the independent case.
Proposition 2 below provides an alternative expression for the survival-contingent price process.
This alternative risk-neutral survival-contingent valuation formula enables us to ultimately derive
our desired calibration-implied formulas to mathematically compare the derivatives values in the
presence and absence of WWR.

21See, for instance, Egozcue et al. [2009].
22See, for instance, Section 2 in Chapter 4 of Revuz and Yor [2004], or Section 4 in Chapter 2 of Protter [2004].
23See, for instance, Section 2.2. in Chapter 2 of Durrett [2005].
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Proposition 2. Assume that both recovery rates are zero. The process Vt

Vt = D̂tEt

[
D̂−1
T VT +

∫ T

t

D̂−1
u Vu

(
1{Vu ≥ 0}hAu + 1{Vu < 0}hBu

)
du

]
, (38)

with

D̂t = exp

(∫ t

0

(ru + hAu + hBu )du

)
,

can be equivalently expressed as

Vt = Et

[
e−

∫ T
t (ru+hBu 1{Vu≥0}+hAu 1{Vu<0})duVT

]
, (39)

where the subscript t on the expectation Et denotes conditioning on FXt .

Proof Consider (38) and set

R̂t = 1{Vt ≥ 0}hAt + 1{Vt < 0}hBt .

Note that

Vt = D̂t

(
Et

[
D̂−1
T VT +

∫ T

0

D̂−1
u VuR̂udu

]
−
∫ t

0

D̂−1
u VuR̂udu

)
. (40)

Given (40), the stochastic differential of V can be written as

dVt =
(
rt + hAt + hBt

)
Vtdt− VtR̂tdt+ dmt = Vt

(
rt + hAt 1{Vt < 0}+ hBt 1{Vt ≥ 0}

)
dt+ dmt, (41)

with m being a Q martingale. It is now not difficult to show that the right side of (41) implies (39).
Set

R̃t = exp

(
−
∫ t

0

(ru + hAu 1{Vu < 0}+ hBu 1{Vu ≥ 0})du
)
.

Given (41) and the definition of R̃, the stochastic differential of VtR̃t becomes d(VtR̃t) = dMt with
M being a Q martingale; we now integrate both sides from t to T and take conditional expectation
with respect to FXt to recover (39).24 This completes the proof.

24This last part of the proof is due to Lemma 1 of Duffie et al. [1996]; we have included it in the paper for
completeness.
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We now compare the risk-neutral derivatives value at time zero in the presence and absence
of bilateral wrong way risk. Recall that the filtration F = (Ft)t≥0 of the underlying probability
space encompasses the filtration generated by the underlying diffusion X, denoted by FX , and the
filtration generated by the default indicator process Ht = 1{τ ≤ t}. Set h ≡ hA + hB. Under the
assumption P (τA = τB) = 0, it well known that,25

P (τ > t) = E[e−
∫ t
0 hudu] and P (τ = τ i|τ = t,FXT ) =

hit
ht
, i = A,B. (42)

Given (42), it is not difficult to show that

P (τ = τ i, τ ≤ t) = E

[∫ t

0

hiue
−

∫ u
0 hsdsdu

]
, i = A,B. (43)

This is done by noting that P (τ = τ i, τ ≤ t) = E[P (τ = τ i, τ ≤ t|FXT )] and using (42).
Suppose that both hB ≡ hB,w and hA ≡ hA,w are monotone increasing in V . Set hw ≡ hA,w+hB,w.

Using Proposition 2, the risk-neutral value of the derivatives contract at time zero under biletral
WWR becomes,

V WW
0 = E

[
e−

∫ T
0 (ru+hwu )duVT

]
+

∫ T

0

E
[
V +
u h

A,w
u e−

∫ u
0 (rs+hws )ds

]
du

−
∫ T

0

E
[
V −u h

B,w
u e−

∫ u
0 (rs+hws )ds

]
du, (44)

where V +
t ≡ Vt1{Vt ≥ 0} and V −t ≡ −Vt1{Vt ≥ 0}. Now consider the case where the absence of

bilateral wrong way risk implies that counterparty default times τA and τB and so their associated
default intensities hA and hB are independent of V . We also assume that hA and hB are independent
of the short rate r. Given Proposition (2), the risk-neutral derivatives value at time zero in the
independent case is given by

V I
0 = P (τ > T )E

[
e−

∫ T
0 ruduVT

]
+

∫ T

0

E
[
e−

∫ u
0 rsdsdsV +

u

]
P (τ = τA|τ = u)fτ (u)du

−
∫ T

0

E
[
e−

∫ u
0 rsdsdsV −u

]
P (τ = τB|τ = u)fτ (u)du,

where fτ denotes the density of τ . Note that any calibration scheme is to ensure that model param-
eters are approximated or statistically estimated such that the model-implied survival probabilities
E[e−

∫ t
0 h

w
u du] match the market-implied survival probabilities P (τ > t) for any t ∈ (0, T ] as closely as

possible. Suppose that, for instance, market-implied survival probabilities are approximated from
credit spreads associated with a (fictitious) first-to-default swap referencing only counterparty A

25See, for instance, Theorem T15 in Chapter 2 of Bremaud [1981] for the right side of (42) and Chapter 7 of
Bielecki and Rutkowski [2004] for the other term.
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and counterparty B. Similarly, the model calibration scheme is to ensure that market-implied default

probabilities P (τ = τ i, τ ≤ t) match the model-implied default probabilities E
[∫ t

0
hiue

−
∫ u
0 hsdsdu

]
,

i = A,B, for any t ∈ (0, T ] as closely as possible. So, the calibration-implied formula for derivatives
value at time zero in the independent case becomes

V I
0 = E

[
e−

∫ T
0 ruduVT

]
E
[
e−

∫ T
0 hwu du

]
+

∫ T

0

E
[
e−

∫ u
0 rsdsV +

u

]
E
[
hA,wu e−

∫ u
0 hws ds

]
du

−
∫ T

0

E
[
e−

∫ u
0 rsdsV −u

]
E
[
hB,wu e−

∫ u
0 hws ds

]
du. (45)

The calibration-implied formula (45) makes the derivatives values under bilateral wrong way risk
(44) mathematically comparable with the derivatives values in the independent case. This is because
the initial derivatives value in the absence of WWR (45) has been expressed based on wrong way
intensities hA,w and hB,w. For instance, consider the second terms on the right side of (44) and (45)
and assume zero short rate for simplicity. While hA,w being an increasing function of V implies
E[V +

t h
A,w
t ] ≥ E[V +

t ]E[hA,wt ], the presence of the exponential terms

E[V +
t h

A,w
t e−

∫ t
0 h

w
s ds] , E[V +

t ]E[hA,wt e−
∫ t
0 h

w
s ds]

prevent us from drawing any general inequalities by merely relying on the intensities being monotone
functions of the survival-contingent value process. So, similar to our results in the unilateral case, we
conclude that no general inequality can be drawn for bilateral counterparty-defaultable derivatives
values in the presence and absence of WWR.

Appendix

A Comparison with the Numeraire Change

To compare the well-known numeraire change techniques of Geman et al. [1995] to our proposed
change of probability measure, consider the following simple example in the absence of default risk.
Suppose that the univariate state variable X has the stochastic differential

dXt = µ(Xt)dt+ a(Xt)dWt. (46)

Consider a contingent claim with maturity T > 0 and payoff Π(XT ), and a martingale measure Q
relative to money market account D as numeraire. That is, the risk-neutral value of the contingent
claim at time t < T is given by

Vt
Dt

= EQ
[

Π(XT )

DT

∣∣∣∣Xt

]
.

23



Let p(t, T ) denote the time-t value of a default-free zero coupon bond with maturity T . Using the
following change of probability measure

dQT = LTdQ on FT with Lt =
p(t, T )

Dtp(0, T )
, 0 ≤ t ≤ T,

the T -bond becomes the new numeraire. That is, Theorem 1 of Geman et al. [1995] gives

Vt
p(t, T )

= EQT
[
Π(XT )

∣∣∣∣Xt

]
.

Note that p(T, T ) = 1 and that p(t, T ) can be directly observed in the market at time t. The
numeraire change will then ultimately be beneficial when the QT conditional expectation on the
right side above can be computed conveniently. This is often done by assuming deterministic
money market account and by imposing structure on the dynamics of the T -zero coupon bond.
For instance, when one assumes deterministic D and that p(t, T ) evolves according to the following
stochastic differential

dp(t, T ) = rtp(t, T )dt+ σ(t, T )p(t, T )dWt,

where coefficient processes are adapted, the process L takes the familiar stochastic differential

dLt = Ltσ(t, T )dWt,

as in Proposition 24.7 of Bjork [2009]. Then, using Girsanov Theorem, the state variable X evolves
under QT with the drift change,

dXt = [µ(Xt) + σ(t, T )a(Xt)] dt+ a(Xt)dW
T
t ,

with W T being a QT standard Brownian motion. In practical applications of the numeraire change
technique, it is often assumed that the numeraire’s volatility process and the Girsanov kernel are
deterministic, (see, e.g., Section 3.2 of Geman et al. [1995] where the applications of their general
option pricing formula are discussed). For instance, in the example of this section, if we further
assume that the coefficients µ, a, and σ are deterministic, X remains Gaussian under QT and the
integral EQT

[Π(XT )|Xt] can be computed conveniently.
This numeraire change is to be compared with our probability measure change of Section 3. More

specifically, in this univariate example, suppose that the constant λ in (13) is zero and the short rate

dynamics is given by r(x) = Gxn(x)
n(x)

with Gx being the generator of X. Then, with Nt = nt
Dt

, where
D evolves based on our proposed short rate dynamics, the auxiliary probability measure change,

dQ̃ = NTdQ on FT with dNt = Nt
n′(Xt)

n(Xt)
a(Xt)dWt, 0 ≤ t ≤ T,

gives,

Vt
n(Xt)

= EQ̃
[

Π(XT )

n(XT )

∣∣∣∣Xt

]
,
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where X has the stochastic differential

dXt =

[
µ(Xt) +

n′(Xt)

n(Xt)
a2(Xt)

]
dt+ a(Xt)dW̃t,

under Q̃ with W̃ being a standard Q̃ Brownian motion.

In sum, with the numeraire change to the T -bond, one arrives at the path-independent condi-
tional expectation EQT

[Π(XT )|Xt]. Alternatively, using our proposed auxiliary probability measure,

one arrives at the path-independent conditional expectation EQ̃[Π(XT )
n(XT )

|Xt]. To compare the two
measure change methods given a specific functional form of the payoff function, in addition to the
computational convenience of these conditional expectations under the new probability measures,
one should also take in to account and compare the restrictions and assumptions imposed on the
dynamics of the underlying processes in each approach, i.e., the restrictions imposed on the dynam-
ics of the T -bond and the money market account in the more familiar numeraire change technique
and the short rate dynamics assumptions of our approach.

B The Defaultable T-bond as Numeraire

Consider risk-neutral valuation of a contingent claim with maturity T > 0 and sign-definite payoff
Π(XT ) ≥ 0 under unilateral counterparty risk. Recall that our reduced-form framework, which uses
the fractional recovery of market value assumption of Duffie and Singleton [1999] and Duffie and
Huang [1996], leads to the following survival-contingent value process,

Vt = EQ
[
e−

∫ T
t (ru+su)duΠ(XT )

∣∣∣∣Xt

]
, t ∈ [0, T ],

where st = Ltht with LB ≡ L and hB ≡ h denoting the fractional loss and hazard rate processes
of counterparty B, i.e., a financial institution’s counterparty in the derivatives transaction. For
simplicity assume that the underlying diffusion is one-dimensional and evolves based on (46). Set
Ďt ≡ exp(

∫ t
0
(ru + su)du) and view Ď as a numeraire that makes the normalized survival-contingent

price process a Q-martingale,

Vt

Ďt

= EQ
[

Π(XT )

ĎT

∣∣∣∣Xt

]
.

Let p̂(t, T ) denote the time-t survival-contingent risk-neutral value of counterparty B’s defaultable
zero coupon bond with maturity T; p̂(t, T ) > 0 with t ∈ [0, T ] and p̂(T, T ) = 1. Suppose that
p̂(t, T ) is a traded asset. Given that Q is a martingale measure for the numeraire Ď, assume that
p̂(t, T ) is a positive survival-contingent price process such that p̂(t, T )/Ďt is a true Q-martingale.
Now consider the following change of probability measure,

dQ̂T = L̂TdQ on FT with L̂t =
p̂(t, T )

Ďtp̂(0, T )
, 0 ≤ t ≤ T,
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through which Q̂T has become a martingale measure for p̂(t, T ) as the (new) numeraire asset. Then,
following Theorem 1 of Geman et al. [1995] the survival-contingent price process under Q̂T becomes,

Vt = p̂(t, T )EQ̂T
[
Π(XT )

∣∣∣∣Xt

]
. (47)

Assuming that the counterparty’s survival-contingent defaultable T -bond at time t is market observ-
able, (47) gives the path-independent probabilistic valuation formula under unilateral counterparty
risk. It remains to show that how the conditional expectation in (47) can be computed. Suppose
that p̂(t, T ) based on the following stochastic differential,

dp̂(t, T ) = rtp̂(t, T )dt+ σ(t, T )p̂(t, T )dWt, (48)

with adapted well-defined coefficient processes. Then, given that

L̂t =
p̂(t, T )

Ďtp̂(0, T )
, 0 ≤ t ≤ T,

is a Q-martingale, its stochastic differential becomes dL̂t = L̂tσ(t, T )dWt. Using Girsanov Theorem,
the state variable X evolves under Q̂T with the drift change,

dXt = [µ(Xt) + σ(t, T )a(Xt)] dt+ a(Xt)dW
T
t , (49)

with W T being a Q̂T standard Brownian motion. So, assuming the survival-contingent defaultable
T -bond dynamics (48), the Q̂T-conditional expectation in (47) can be calculated according to the
Q̂T-dynamics of the underlying diffusion specified in (49).
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