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Abstract

Using laboratory experiments within a New Keynesian framework, we explore

the interaction between the formation of inflation expectations and monetary policy

design. The central question in this paper is how to design monetary policy when

expectations formation is not perfectly rational. Instrumental rules that use ac-

tual rather than forecasted inflation produce lower inflation variability and reduce

expectational cycles. A forward-looking Taylor rule where a reaction coeffi cient

equals 4 produces lower inflation variability than rules with reaction coeffi cients of

1.5 and 1.35. Inflation variability produced with the latter two rules is not signifi-

cantly different. Moreover, the forecasting rules chosen by subjects appear to vary

systematically with the policy regime, with destabilizing mechanisms chosen more

often when inflation control is weaker.
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1 Introduction

With the development of explicit microfounded models, expectations have become pivotal

in modern macroeconomic theory. Friedman’s proposals (1948 and 1960) for economic

stability postulate that the relationship between economic policies and expectations is

crucial for promoting economic stability. Friedman argues in favor of simple rules because

they are easier to learn and because they facilitate the coordination of agents’beliefs.

Several leading macroeconomists and policymakers, including Bernanke (2007), stress

the importance of improving our understanding of the relationship between economic

policies– especially monetary policy– agents’ expectations, and equilibrium outcomes.

While the theoretical literature has expanded rapidly in the last two decades, less at-

tention has been paid to empirical assessment of the relationship between expectations

and monetary policy. Laboratory experiments provide an opportunity to explore these

relationships, as one can control for the underlying model, shocks, and forecasters’infor-

mation sets.

This paper analyzes the effectiveness of alternative monetary policy rules in stabilizing

the variability of inflation in a setting where inflation expectation-formation processes are

potentially non-rational. We study this question by employing several simple monetary

policy rules in different treatments and examining the relationship between the design of

monetary policy and inflation forecasts. Based on prior reasoning we would expect that,

under rational expectations (RE), a policy rule that reacts to contemporaneous data

would result in lower inflation variability than under a forward-looking rule. We would

also expect that the higher the reaction coeffi cient attached to deviations of the inflation

expectations from the target level, the lower should be the variability in inflation. Using

simple nonparametric analysis of treatment differences, we find that the variability of

inflation is significantly affected by the aggressiveness of monetary policy. Indeed, we find

that the higher the reaction coeffi cient attached to deviations of the inflation expectations

from the target level, the lower the variability in inflation. Our results confirm our prior

that responding to contemporaneous inflation perform better than rules responding to

inflation expectations.

As pointed out by Marimon and Sunder (1995), the actual dynamics of an economy

are the product of a complex interaction between the underlying stability properties of

the model and agents’behavior. Both inflation expectations and monetary policy influ-

ence the variability. To confirm the effects of the monetary policy mentioned above, we

have to first determine how individuals form inflation expectations and then control for

expectations formation. We find that subjects form expectations using different forecast-

ing rules. The most often used by our subjects are trend extrapolation and a general

model that, in some treatments, is of the form of Rational Expectations Equilibrium

(REE) and includes all relevant information to forecast inflation in the next period. A
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significant share of the subjects also use adaptive expectations, adaptive learning, and

sticky-information type models.1 Furthermore, we have to be aware that under the trend

extrapolation rule and adaptive expectations– rules that we characterize as potentially

destabilizing– policy prescriptions are altered. Under these rules, a higher reaction co-

effi cient attached to deviations of inflation expectations from the target level may result

in a higher volatility of inflation. However, even when controlling for the expectation-

formation mechanism, we are still able to identify significant effects of monetary policy:

(i) when monetary policy attaches a higher weight to the deviation of expected inflation

from the inflation target, we observe lower inflation variability and (ii) instrumental rules

that respond to contemporaneous inflation (as opposed to inflation expectations) reduce

inflation variability.

We also find that the interaction between monetary policy and inflation expectations

is important. In particular, we find that the volatility of inflation is significantly higher

when more subjects use trend extrapolation rules. At the same time, the design of mon-

etary policy significantly affects the composition of forecasting rules used by subjects in

the experiment– especially the proportion of subjects who use trend extrapolation rules,

which are identified as the ones most dangerous to the stability of the main macroeco-

nomic variables. The proportion of subjects using trend extrapolation rules increases in

an environment characterized by excessive inflation variability and expectational cycles;

this rule then further amplifies the cycles.

Our experiment relates to previous studies that investigate the expectation-formation

process. Learning-to-forecast experiments have been conducted within a simple macro-

economic setup (e.g., Williams, 1987; Marimon et al., 1993; Evans et al., 2001; Arifovic

and Sargent, 2003) and also within an asset pricing framework (see Hommes et al., 2005

and Anufriev and Hommes, 2012).2 Marimon and Sunder (1995), and Bernasconi and

Kirchkamp (2000) find that most subjects behave adaptively, although the latter provide

evidence of a more complex form of adaptive expectations than argued by the former.

Both papers also investigate the effects of different monetary policies on inflation volatil-

ity. Marimon and Sunder (1995) compare different monetary rules in an overlapping

generations (OLG) framework to explore their influence on the stability of inflation ex-

pectations. In particular, they focus on a comparison between Friedman’s k-percent

money rule and the deficit rule where the government fixes the real deficit and finances it

through seigniorage. They find little evidence that Friedman’s rule could help coordinate

agent beliefs or help stabilize the economy. A similar analysis is performed in Bernasconi

and Kirchkamp (2000). They argue that Friedman’s money growth rule produces less

inflation volatility but higher average inflation compared to a constant real deficit rule.3

1Adaptive learning assumes that the subjects are acting as econometricians when forecasting, i.e.,
reestimating their models each time new data become available. See Evans and Honkapohja (2001).

2See Duffy (2012) and Hommes (2011) for a survey of experimental macroeconomics.
3The effects of monetary policy design on expectations are also examined by Hazelett and Kernen
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Adam (2007) conducts experiments in a sticky-price environment where inflation and

output depend on expected inflation, and analyzes the resulting cyclical patterns of infla-

tion around its steady state. These cycles exhibit significant persistence, and he argues

that they closely resemble a Restricted Perception Equilibrium (RPE) where subjects

make forecasts with simple underparametrized rules. In our experiment, we also detect

cyclical behavior of inflation and the output gap in some treatments. However, we show

that these phenomena are not only associated with the parameterization of the rule but

also with the design of monetary policy and (the influence of monetary policy on) the

way subjects form expectations. Recently, a setup similar to ours has been used by As-

senza et al. (2013), who focus on the analysis of switching between different forecasting

rules, and by Kryvtsov and Petersen (2013), who quantify the contribution of systematic

monetary policy for macroeconomic stabilization.

This paper is organized as follows: Section 2 describes the underlying experimental

economy and its properties under different expectation-formation processes. Section 3

outlines the experimental design. In Section 4 we study the relationship between the

monetary policy design and expectation formation; Section 5 provides concluding re-

marks.

2 A Simple New Keynesian Economy

In our experiment, we use a simplified version of a forward-looking sticky-price New

Keynesian (NK) monetary model.4 The model consists of a forward-looking Phillips curve

(PC), an IS curve, and a monetary-policy reaction function. In this paper, we focus on

the reduced form of the NK model, where we can clearly elicit forecasts and study their

relationship with monetary policy. There is a trade-off between using the model from

“first principles”and employing a reduced form. The former has the advantage of setting

the objectives (payoff function) exactly in line with the microfoundations since subjects

act as producers and consumers and interact on both the labor and final product markets

(for this approach, see Noussair et al., 2011). However, forecasts are diffi cult to elicit in

such an environment, because subjects do not explicitly provide forecasts. We therefore

choose learning-to-forecast design, where incentives are set in order to induce forecasts

that are as accurate as possible.5 In this framework, we do not assign the subjects a

(2002), who search for hyperinflationary paths in the laboratory.
4This small-scale NK model successfully reproduces several stylized facts about major economies and

is also widely used for policy analysis. In an experimental setup, however, it has potential drawbacks. It
requires forecasting two periods ahead. In addition, in standard NK models, agents have to forecast both
inflation and the output gap. We simplify this experiment by asking only for expectations of inflation.

5The argument is similar to that of Marimon and Sunder (1993, 1994). Bao et al. (2013) show that
within the same model, convergence to REE occurs much faster in the learning-to-forecast design than
in the learning-to-optimize design.
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particular role in the economy; rather they act as “professional”forecasters.6

The forecasts for period t+ 1 are made in period t with the information set consisting

of macro variables up to t−1. Mathematically, we denote this as Et (πt+1|It−1), or simply
Etπt+1. In our case, Et might not be restricted to just RE. The IS curve is specified as

follows:

yt = −ϕ (it − Etπt+1) + yt−1 + gt, (1)

where the interest rate is it, πt denotes inflation, yt is the output gap, and gt is an

exogenous shock.7 The parameter ϕ is the intertemporal elasticity of substitution in

demand. We set ϕ to 0.164.8 One period represents one quarter. Note that we do not

include expectations of the output gap in the specification. Instead, we have a lagged

output gap.9 Compared to purely forward-looking specifications, our model displays

more persistence in the output gap. The supply side of the economy is represented by

the Phillips curve:

πt = βEtπt+1 + λyt + ut. (2)

λ is a parameter that is, among other things, related to price stickiness. McCallum

and Nelson (1999) suggest the value 0.3. The parameter β is the subjective discount

rate and is set to 0.99. The shocks gt and ut are unobservable to subjects and follow the

following process: [
gt

ut

]
= Ω

[
gt−1

ut−1

]
+

[
g̃t

ũt

]
; Ω =

[
κ 0

0 ν

]
,

where 0 < |κ| < 1 and 0 < |ν| < 1. g̃t and ũt are independent white noises, g̃t v N
(
0, σ2g

)
and ũt v N (0, σ2u). gt could be seen as a government spending shock or a taste shock,

and the standard interpretation of ut is a mark-up (or a cost-push) shock. In particular, κ

and ν are set to 0.6, while their standard deviations are 0.08.10 All these shocks are found

to be quite persistent in the empirical literature (see, e.g., Cooley and Prescott, 1995,

or Ireland, 2004). In the experimental context, it is important to have some exogenous

unobservable component in the law of motion for endogenous variables; otherwise all

6One way to think about the relationship between professional forecasters and consumers/firms is
that these economic subjects employ professional forecasters to provide them with forecasts of inflation.

7Detailed derivations can be found in, e.g., Walsh (2003) or Woodford (2003).
8We implement McCallum and Nelson’s (1999) calibration.
9One could argue that this specification of the IS equation corresponds to the case where subjects have

naive expectations about the output gap or where an extreme case of habit persistence is assumed. The
main reason for including a lagged output gap in our specification is that we want another endogenous
variable to influence the law of motion for inflation.
10Parameterization of these shocks is quite important. Increasing κ and v would increase the variability

of inflation and of the output gap. Values of κ and v higher than 0.6 (and closer to empirical estimates)
were avoided as the frequency of the cycles drops and the possibility of having only one big recession
(expansion) over the whole experimental time span increases.
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agents can quickly coordinate on forecasts identical to the inflation target.11

To close the model, we use two alternative forms of Taylor-type interest rate rules in

different treatments that are explained in Section 3. The forward-looking interest rate

rule is specified as:

it = γ (Etπt+1 − π) + π, (3)

where the central bank responds to deviations in subjects’ inflation expectations from

the target, π.12 To ensure positive inflation for most of the periods, we set the inflation

target to π = 3. We vary γ in different treatments. The second specification is the

contemporaneous rule, where the monetary authority responds to deviations in current

inflation from the inflation target:13

it = γ (πt − π) + π. (4)

2.1 Rational Expectations

In this section, we derive the properties the model “should” have under REE. When

all agents in the economy are rational, their perceived law of motion (PLM) is equal

to the actual law of motion (ALM) of the minimum state variable (MSV) form. For a

comparison, we solve the model first as if the agents observe the shocks. Note that πt−1
does not enter the REE solution. The corresponding expectations (PLM) of the REE

form (representation 1) are:

Etπt+1 = (bπ + bπyby) + bπybyyyt−1 + (bπycyy + cπyκ) gt−1 + (bπycyπ + cππν)ut−1. (5)

Parameters b and c represent the REE solution (see Appendix A for details). Note that

for the forward-looking rule there exists an alternative representation of the MSV-REE

(representation 2), which is more useful in our case where subjects do not directly observe

11Besides that it is more realistic to have AR(1) shocks, without them, this would represent the
dominant strategy, as we initialize the model in a REE; at the start of the experiment, we provide 10
data points to the subjects that are generated under RE.
12We assume that the central bank is responding to subjects’inflation expectations and not to their

own inflation expectations.
13We note that this rule is characterized as non-operational, as at the time of interest rate decision

the central bank does not know the realization of πt. However, theoretical research has to a large extend
focused on these type of instrumental rules.
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the shocks:14

Etπt+1 = (aπ + bπyay)− π
(
γ − 1

γ

)
(ϕ (bπycyy + cπyκ) + β (bπycyπ + cππν)) (6)

+ (bπycyπ + cππν) πt−1 + (bπybyy + (bπycyy + cπyκ)− λ (bπycyπ + cππν)) yt−1

− (bπycyy + cπyκ) yt−2 +

(
(bπycyy + cπyκ)ϕ

(
γ − 1

γ

)
+

1

γ
β (bπycyπ + cππν)

)
it−1.

In this representation, REE also depends on πt−1, it−1, and yt−2. If we used a similar pro-

cedure in the contemporaneous rule treatment we would find that the REE is dependent

on the initial values of the shocks and the whole history of π and y.

In Table A3, we present the detailed E-stability and determinacy properties of the

model, while the summary is in Table 2. E-stability is the asymptotic stability of an

equilibrium under least squares learning. By determinacy, we mean the existence of a

unique dynamically-stable equilibrium. Our models produce a determinate and E-stable

outcome under RE when γ > 1 (for both representations). When γ ≤ 1, the equilibria

are E-unstable and indeterminate. Note that the models we analyze retain these stability

properties although we replace the expectations of the output gap by the lagged output

gap in the IS equation.

2.2 Restricted Perceptions

In this section, we outline ten models of expectation formation that have found support

in the empirical literature. As we discuss later on, we will use these rules to describe the

behavior of the subjects in our experiment. To be clear, our subjects are not introduced

to these forecasting rules; they are asked simply to report their forecast for inflation given

the observed data. Based on their observed behavior, we then assign a specific rule to

each subject. This section solves the model assuming agents use expectation-formation

mechanisms that are summarized in Table 1. Shocks were not directly observable, so

these models do not include them.

In model M1, inflation expectations follow a simple AR(1) model, while model M2

represents a weighted-average model similar in formulation to the sticky information

model of Carroll (2003).15 We estimate this model stated in terms of observable variables

with restrictions on the coeffi cients, where η0 = bπ + bπyby and η1 = bπybyy are REE

coeffi cients.

We consider two versions of adaptive expectations, where agents revise their expec-

tations according to the last observed error: first, a constant gain learning (CGL) model

14In order to obtain this representation it is crucial that the instrumental rule incorporate expectations
of inflation. To derive this representation we replace the gt−1 and ut−1 in (5) by lagged (1) and (2) and
then use (3) to substitute Et−1πt.
15As in Carroll (2003), the model is a convex combination between the rational forecast and the forecast

made in the previous period.
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Model (Eq.) Specification
AR(1) process (M1) πkt+1|t = α0 + α1π

k
t|t−1

Sticky information type (M2) πkt+1|t = λ1η0 + λ1η1yt−1 + (1− λ1) πkt|t−1
Adaptive expectations CGL (M3) πkt+1|t = πkt−1|t−2 + ϑ(πt−1 − πkt−1|t−2)
Adaptive expectations DGL (M4) πkt+1|t = πkt−1|t−2 + ι

t
(πt−1 − πkt−1|t−2)

Trend extrapolation (M5) πkt+1|t = τ0 + πt−1 + τ1 (πt−1 − πt−2) ; τ1 ≥ 0

General model (M6) πkt+1|t = α0 + α1πt−1 + α2yt−1 + α3yt−2 + α4it−1
Recursive - lagged inflation (M7) πkt+1|t = φ0,t−1 + φ1,t−1πt−1
Recursive - lagged output gap (M8) πkt+1|t = φ0,t−1 + φ1,t−1yt−1
Recursive - trend extrapolation (M9) πkt+1|t = φ0,t−1 + πt−1 + φ1,t−1 (πt−1 − πt−2)
Recursive - AR(1) process (M10) πkt+1|t = φ0,t−1 + φ1,t−1π

k
t|t−1

Table 1: Models of inflation expectation formation. Notes: πt is inflation at time t, yt is
the output gap, it is the interest rate, and πkt+1|t is the k

th forecaster’s inflation expectation
for time t+ 1 made at time t (with information set t− 1).

(M3), where ϑ is the constant gain parameter, and second, a decreasing gain learning

(DGL), where ι is the decreasing gain parameter. Next, we evaluate simple trend extrap-

olation rules (M5). These are identified in Hommes et al. (2005) as particularly important

rules for expectation-formation processes. Simple rules do not capture all the macroeco-

nomic factors that can affect inflation forecasts. Therefore, we estimate a general model

(M6) which coincides with the REE form for the forward-looking rule.16

We also consider forecasting procedures that allow agents to reestimate rules whenever

new information becomes available, as postulated in the adaptive learning literature. In

the following specifications, we test whether agents update their coeffi cients with respect

to the last observed error. We use this estimation procedure for models M7—M10. When

agents estimate their PLM they exploit all the available information up to period t− 1.

As new data become available, they update their estimates according to a stochastic

gradient learning (see Evans et al., 2010) with a constant gain. Let Xt and φ̂t−1 be the

vectors of variables and coeffi cients, respectively, specific to each rule; for example, for

model M7, Xt =
(

1 πt

)
and φ̂t−1 =

(
φ0,t−1 φ1,t−1

)′
. In this version of CGL, agents

update the coeffi cients according to the following stochastic gradient learning rule:

φ̂t = φ̂t−2 + ξX′t−2

(
πt −Xt−2φ̂t−2

)
. (7)

As a backdrop for our empirical part, we examine the stability properties of these rules

in Appendix A.17 In Table 2, we summarize the properties of the REE and different RPEs

16The models in groups 19 − 24 do not have the interest rate as a dependent variable because this
would imply multicollinearity due to the design of the monetary policy in our framework.
17Stability properties are presented for the specific parameterizations of monetary policy rules used

across different treatments in this experiment. For a detailed description of treatments, see Section 3.
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Treatment M6, rep. 2 M2, M8, M1, M7, M10 M6; α4 = 0 M5, M9
Determinacy yes yes yes (unit root) no no

1 B1 E-Stability yes yes yes yes (c.e.) no (c.e.)
B2 E-Stability - - - no no (c.e.)
Determinacy yes yes yes (unit root) no no

2 B1 E-Stability yes yes yes yes (c.e.) no (c.e.)
B2 E-Stability - - - no (c.e.) no (c.e.)
Determinacy yes yes yes (unit root) no yes

3 B1 E-Stability yes yes yes yes (c.e.) -
B2 E-Stability - - - no (c.e.) no (c.e.)
Determinacy - yes yes no no

4 B1 E-Stability - yes yes yes (c.e.) no (c.e.)
B2 E-Stability - - - no (c.e.) no (c.e.)

Table 2: Properties of solutions in the equilibrium under different expectation forma-
tion mechanisms. Notes: (c.e.) stands for complex eigenvalues. For a detailed version
of this table with specific values of their respective ALM, determinacy, and E-stability
conditions, see Table A3.

under both policy rules. Results are also reported in Figure 1. When all agents have RE,

a higher γ leads to less variability in inflation. The general model (M6) produces less

variability for higher γ. It also produces less variability than the REE. This is a somewhat

surprising result because restricted perceptions usually generate more volatility (Evans

and Honkapohja, 2001). Trend extrapolation (M5), however, leads to more volatility

than the REE. The relationship with γ is also nonmonotonic for M5: the minimum is at

γ = 1.98. After this threshold, volatility increases with higher γ.18

A comparison between the forward-looking rule and the contemporaneous rule at

γ = 1.5 suggests that the REE for the contemporaneous rule produces about 25% less

variability (0.52) than the forward-looking rule.19 As discussed in the Appendix, this re-

sult is consistent with a comparison of the eigenvalues of the determinacy condition but

not by the eigenvalues of the E-stability condition (see Table A3). A similar difference

is seen for other expectation-formation mechanisms, except for M5, where the difference

is considerably larger: inflation variance that is only 5% of a variance produced by the

same expectation-formation mechanism under the contemporaneous rule. In Table 2 we

can observe an explanation for this result: under the forward-looking rule only, this equi-

18We perform an additional simulation in which the agents use OLS to estimate the coeffi cients in their
respective rules based on the past data, and compute the standard deviation of inflation while varying
γ between 1 and 2 (see Figure A9). When all the agents employ a sticky information type model, a
higher γ leads to less variability in inflation. Several other expectation formation mechanisms produce
a U-shaped inflation variability. In particular, trend extrapolation rules lead to U-shaped behavior
and eventually higher variability with increasing γ. The minimum variability of inflation with sticky
information and a trend extrapolation rule is achieved at γ = 1.1. Therefore, under certain expectation
formation mechanisms, a lower γ could result in less inflation variability.
19Figure 1 is reproduced for the contemporaneous rule in Figure A10 in Appendix A.
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Figure 1: Equilibrium dynamics of inflation under different expectation formation rules
for the forward-looking rule. Notes: RMSD πt is root mean squared deviation of inflation
from its target. Figure is based on a simulation over 1000 periods. Simulation is performed
for the equilibrium values of the coeffi cients of the respective rules, see Appendix A.

librium exhibits a unit root. In contrast, under the contemporaneous rule, the variability

of M6 is only 3% higher than under the forward-looking rule.

Generally, we can conclude that the properties of the system depend crucially on the

expectation-formation mechanism. Under RE, a higher value of γ will result in lower

variability of inflation, while under some expectation rules, e.g., trend extrapolation rules

(M5), a higher value of γ leads to more volatile inflation. We label these expectation-

formation mechanisms as potentially destabilizing. Another type of forecasting rules

that we classify as potentially destabilizing are those that do not have a MSV solution.

In our case, this holds for adaptive expectations (M3) (see Appendix). Therefore, the

relationship between the variability of inflation and different forecasting rules is nontrivial.

3 Experimental Design

The experimental subjects participate in a simulated economy with 9 agents.20 Each

participant is an agent who makes forecasting decisions, and each simulated economy

20Most learning-to-forecast experiments are conducted with 5 to 6 subjects, e.g., Hommes et al. (2005),
Adam (2007), and Fehr and Tyran (2008).

10



is an independent group. All the participants were undergraduate students recruited

at the Universitat Pompeu Fabra and the University of Tilburg. The participants were

invited from a database of approximately 1300 students at Pompeu Fabra (in May 2006)

and 1200 students at Tilburg (in June 2009). They were predominantly economics and

business majors. On average, the participants earned around €15 (≈$20), depending on

the treatment and individual performance.

There are 4 treatments in the experiment, each based on a different specification

of the monetary policy-reaction function. The experiment consists of 24 independent

groups of 9 subjects (6 groups per treatment), 216 subjects in total. Each subject was

randomly assigned to one group; each group is exposed to only one treatment. The

experimental economy lasts for 70 periods. We scaled the length of each decision sequence

and the number of repetitions in such a way that each session lasted approximately 90

to 100 minutes, including the time for reading the instructions and 5 trial periods at the

beginning.21 We gathered 15120 point forecasts of inflation from the 216 subjects.

The subjects are presented with a simple fictitious economy setup. The economy is

described with three macroeconomic variables: inflation, the output gap, and the interest

rate. The participants observe time series of these variables in a table up to period

t − 1. Ten initial values (periods −9, . . . , 0) are generated by the computer under the

assumption of RE. The subjects’task is to provide inflation forecasts for period t + 1.

Figure 2 provides the timeline of decisions in the experiment. The underlying model of

the economy is qualitatively described to them. We explain the meaning of the main

macroeconomic variables and inform them that their decisions have an effect on the

realized output, inflation, and interest rate at time t. The parameters of the model

are not revealed to subjects. This is the predominant strategy in learning-to-forecast

experiments (see Duffy, 2012, and Hommes, 2011).22 All the treatments have exactly the

same shocks.

In every period t, there are two decision variables: i) a prediction of the t+ 1 period

inflation; and ii) the 95% confidence interval of their inflation prediction. In this paper,

21The experimental interface was designed in z-Tree (Fischbacher, 2007). The experimental instruc-
tions can be found in the Online Supplementary material of the companion paper, Pfajfar and Žakelj
(2014).
22In learning-to-forecast experiments it is not possible to achieve the REE simply by introspection. This

holds even if we provide the subjects with the data generating process because there exists uncertainty
as to how other participants forecast, so the subjects have to engage in a number of trial-and-error
exercises, or, in other words, adaptive learning. It has been proven by Marcet and Sargent (1989)
and further formalized in a series of papers by Evans and Honkapohja (see Evans and Honkapohja,
2001) that agents will achieve the REE if they observe all the relevant variables in the economy and
update their forecasts according to the adaptive learning algorithm (their errors). Bao et al. (2013)
show that convergence to the REE actually occurs faster in the learning-to-forecast design than in the
learning-to-optimize design. For further discussion see Duffy (2012) and Hommes (2011). Kelley and
Friedman (2008) provide a survey of experiments that support the theoretical result above. Examples
of learning-to-forecast experiments are Marimon and Sunder (1993, 1994), Adam (2007), and Hommes
et al. (2005).
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Figure 2: Timeline

we focus on inflation expectations, while our companion paper Pfajfar and Žakelj (2011)

studies the behavior of confidence intervals. After each period, the subjects receive infor-

mation about the realized inflation in that period, their inflation expectations, and the

payoff they have gained. The subjects’payoffs depend on the accuracy of their predic-

tions. The accuracy benchmark is the actual inflation rate computed from the underlying

model on the basis of the predictions made by all the agents in the economy. We replace

Etπt+1 in Eqs. (1), (2), and (3) by 1
K

∑k πkt+1|t, where π
k
t+1|t is subject k’s point fore-

cast of inflation (K is the total number of subjects in the economy). In the subsequent

rounds, the subjects are also informed about their past forecasts. They do not observe

the forecasts of other individuals or their performance. The payoff function, W , is the

sum of two components:

W = W1 +W2, W1 = max

{
100

1 + f
− 20, 0

}
, f =

∣∣πt − πkt+1|t∣∣ .
The first component, W1, depends on the subjects’forecast errors and is designed to

encourage them to give accurate predictions. It gives subjects a payoff if their forecast

errors, f , are less than four.23 The second component, W2, represents an independent

incentive that refers to their confidence intervals and is not the focus of this paper (see

Pfajfar and Žakelj, 2011). We accompanied the payoff function with a careful explanation

and a payoff matrix on a separate sheet of paper to ensure that all the participants

understood the incentives. The participants received detailed instructions, which were

read aloud. They also filled in a short questionnaire after they had read the instructions,

answering questions about the procedure to demonstrate that they understood it.

The different treatments are summarized in Table 3: The first three treatments, which

are shown in Table 3, deal with the parameterization of the forward-looking rule given in

23Compared to more standard quadratic payoff functions, ours gives a greater reward for more accurate
predictions and provides an incentive also to think about small variations in inflation, which may be
important. Since this experiment can potentially produce quite different variations in inflation between
different sessions, it is important to keep the incentive scheme fairly steep. A similar incentive scheme is
used in Adam (2007) and Assenza et al. (2013).
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Treatment Parameter
Forward-looking rule (1) γ = 1.5
Forward-looking rule (2) γ = 1.35
Forward-looking rule (3) γ = 4
Contemporaneous rule (4) γ = 1.5

Table 3: Treatments

Eq. (3). In this setup, the coeffi cient γ determines the central bank’s aggressiveness in

response to deviations of expected inflation from its target. We are particularly interested

to see how subjects react to more and less aggressive interest rate policies. We chose

γ = 1.5 as a baseline specification in line with the majority of empirical findings and the

initial proposal of Taylor (1993), γ = 1.35 as a case with a lower stabilization effect, and

γ = 4 as a parameterization with a high stabilizing effect. Initially, we planned to perform

a treatment with γ < 1. The findings from the pilot treatment, however, convinced us

that such a low γ is not a suitable choice, as subjects quickly reached extremely high

levels of inflation, leading to explosive behavior of the system.24

As we pointed out above, under RE, higher γ results in lower variability. Thus, among

the first three treatments, the variability in inflation should be the lowest in treatment

3, where γ = 4. Comparing treatments 1 and 4, under RE the contemporaneous rule

stabilizes inflation better than the forward-looking rule does. These two statements

represent testable hypotheses in our experiment.

4 Results

Summary statistics of inflation and inflation expectations for each of the 24 independent

groups are presented in Table 4. These statistics are used in the analysis below to

establish whether the differences across treatments are significant. Unconditionally, the

mean inflation forecast for all treatments is around 3.06%, while the mean inflation is

3.02% when the inflation target is set to 3%.

The standard deviations of inflation (expectations) vary considerably across the inde-

pendent groups. The largest standard deviation of inflation expectations is 6.32 and the

smallest 0.23, while the largest standard deviation of inflation is 5.87 and the smallest is

0.24. The differences across treatments are analyzed in the following subsections.

Moreover, if we compare the means of the inflation forecasts in treatments 1 and 4,

we find that the median value in the latter treatment is significantly higher than in the

24Under these circumstances, inflation never returned to the target inflation but just kept growing.
Therefore, the effect of the output gap on inflation never outweighed the expected inflation effect. This
suggests that under non-rational expectations, the Taylor principle is still required in order to generate
stability. Assenza et al. (2013) perform a treatment where γ = 1. In their economy with i.i.d. shocks
this results in a convergence to values of inflation that are different from the target value.
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former treatment (at 10% significance with the Kruskal-Wallis rank test, see Conover,

1999). Similar results are obtained when comparing treatments 2 and 3: the mean

inflation is lower in the latter treatment. If we compute the trend of means of inflation

expectations in inflation forecasting treatments using Jonckheere-Terpstra test for ordered

alternatives, we find that the mean is decreasing with higher γ.

4.1 Inflation Variability and Monetary Policy

Woodford (2003) points out that within a standard NK model, monetary policy should

minimize the variability in inflation and the output gap around its targets, as this behavior

corresponds to maximizing the utility of consumers. In our setup, the monetary authority

cares only about inflation, so we focus our analysis on the variability in inflation. We

graph the evolution of inflation for all independent groups in Figure 3.

Does monetary policy have an influence on the inflation variability? Theory says that

it should: As we demonstrated in Figure 1, simulations under RE show that a forward-

looking rule produces a lower standard deviation of inflation with increasing γ. The first

column of Table 5 summarizes these results. Specifically, when γ = 1.35 the standard

deviation is 0.46, and when γ = 4 it reduces to 0.15. Table 5 also shows that when γ = 1.5,

the contemporaneous rule produces a slightly lower standard deviation of inflation than

the forward-looking rule. Turning to our experimental results, the standard deviation

of inflation is higher than that simulated under RE. The difference between the average

standard deviation and that under RE is significant for all treatments (p-value: 0.0110).

The average standard deviation among the treatments with the inflation forecasting rule

is lowest when γ = 4 (0.42) and the highest when γ = 1.5 (2.25). In the treatment with

the contemporaneous rule, the average standard deviation is 0.65.

Standard Mean Median Comparison
deviation standard standard with treat. 1

Treatment Groups under RE deviation deviation (p-value)
1: Fwd-l. rule γ = 1.5 1− 6 0.37 2.25 1.52 −
2: Fwd-l. rule γ = 1.35 7− 12 0.46 2.18 1.35 0.6310
3: Fwd-l. rule γ = 4 13− 18 0.15 0.42 0.29 0.0104
4: Cont. rule γ = 1.5 19− 24 0.33 0.65 0.50 0.0250

Table 5: Standard deviation of inflation for each treatment and Kruskal-Wallis test of
differences between treatments using group-level standard deviations.

When we test for differences in the median variances of inflation across the treatments,

the null hypothesis that the median variances are the same in all the treatments is rejected

at the 1% level with the Kruskal-Wallis test. Table 5 shows a comparison of the median

standard deviations of inflation in treatments 2, 3, and 4 with the baseline treatment
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1 (p-values from the Kruskal-Wallis test are reported).25 According to these pairwise

comparisons, the standard deviation of inflation in treatment 3 is significantly lower than

the standard deviation of inflation in both treatments 1 (p-value: 0.0104) and 2 (p-value:

0.0250). However, as can be seen in Figure 3, the frequency of cycles (in terms of number

of changes from above to below the inflation target) is higher in treatment 3, where the

monetary authority responds more strongly to deviations of inflation expectations from

the inflation target. Our results suggest that the median (and mean) standard deviation

is lower in treatment 2 compared to treatment 1, although not significantly different. We

can also jointly compare the three inflation forecasting treatments and investigate the

behavior in the standard deviation of inflation when changing γ. Using the Jonckheere-

Terpstra test, we find that there is a descending standard deviation of inflation when

we increase γ. Thus, we can argue that the size of the policy reaction (γ) is important.

Regarding the form of the policy rule, the contemporaneous rule (treatment 4) produces

a significantly lower standard deviation of inflation (and inflation forecasts) than the

forward-looking rule with the same reaction coeffi cient (treatment 1); see Table 5.
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Figure 3: Group comparison of inflation realized by treatment. Notes: Each line

represents one of the 24 independent groups. Treatment 1 has forward-looking rule

(FWR) with γ = 1.5. Treatment 2 has FWR with γ = 1.35. Treatment 3 has FWR

with γ = 4. Treatment 4 has contemporaneous rule with γ = 1.5.

Now that we have established that there is a difference in the variability of inflation

between treatments, we further analyze the origins of these differences. There are two
25Results are identical if we consider only the last 40 periods of our sample.
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possible explanations: monetary policy and inflation expectations. To proceed with the

analysis and disentangle the two effects, we have to first establish how the subjects form

expectations.

4.2 Formation of Individual Expectations

In this subsection, we choose among the ten models introduced in Table 1 to find the

one that “best fits”the actual expectations of each individual. The models are estimated

using OLS. We consider an individual “to use”the model that produces the lowest RMSE

among all competing models. In the case of the recursive models (M7—M10), we search

for the parameter ϑ and initial values that minimize the RMSE between the simulated

forecast under adaptive learning and the subjects’ forecasts (see Pfajfar and Santoro,

2010).

We can reject rationality under the assumption of homogeneous expectations for each

of 216 subjects.26 In addition, models M4 and M10 describe none of the participants. A

detailed discussion on heterogeneity of expectation-formation mechanisms in this exper-

iment can be found in Pfajfar and Žakelj (2014).

Model (Eq.)\ Treatments 1 2 3 4 All
AR(1) process (M1) 0.0 0.0 0.0 1.9 0.5
Sticky information type (M2) 5.6 7.4 11.1 1.9 6.5
Adaptive expectations CGL (M3) 11.1 1.9 7.4 14.8 8.8
Adaptive expectations DGL (M4) 0.0 0.0 0.0 0.0 0.0
Trend extrapolation (M5) 33.3 29.6 13.0 29.6 26.4
General model (M6) 33.3 29.6 55.6 29.6 37.0
Recursive - lagged inflation (M7) 3.7 13.0 3.7 13.0 7.8
Recursive - lagged output gap (M8) 0.0 1.9 1.9 1.9 1.4
Recursive - trend extrapolation (M9) 13.0 16.7 7.4 9.3 11.6
Recursive - AR(1) process (M10) 0.0 0.0 0.0 0.0 0.0

Table 6: Inflation expectation formation across treatments (percentage of subjects using
a given rule).

In Table 6, we compare the empirical models across all the treatments. The behavior

of about 37% of the subjects is best described by the general model (M6), using all the

relevant information to forecast inflation. About 26% of the subjects simply extrapolate

the trend (M5) and another 12% extrapolate the trend while updating their coeffi cients

recursively (M9). About 9% employ adaptive expectations (M3), while the remaining

16% mostly behave in accordance with adaptive learning and sticky-information type

models. However, there are considerable differences across the treatments, especially in

the proportion of subjects using the trend extrapolation rule (M5) and subjects using the

26However, in experiments it is possible to go one step further, as we are able to control the subjects’
information sets. For a detailed assessment of rationality, see Pfajfar and Žakelj (2014).
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general model. Treatment 3 has the lowest proportion of trend extrapolating subjects

and the highest proportion of subjects using the general model (M6).

4.3 Inflation Variability and Expectations

In the exercise in Section 2, we learned that different expectation-formation mechanisms

can have different implications for the stability of the system. The analysis in the previ-

ous section shows that several forecasting mechanisms are used, and their structure varies

across the treatments. In the present section we analyze these differences. In particu-

lar, we focus on establish the relationship between the observed expectation-formation

mechanisms and inflation variability, and the effect of monetary policy design on inflation

variability.

The results from Section 4.1 demonstrate that the inflation volatility in every group in

our experiment is significantly higher than that simulated on the basis of Rational Expec-

tations Equilibrium (REE) and Restricted Perceptions Equilibria (RPEs) considered in

Section 2.2, possibly with the exception of equilibrium dynamics under M6 in treatments

with the forward-looking rule. Possible reasons for this discrepancy are (i) misspecifica-

tion of the Perceived Law of Motion (PLM), (ii) the use of nonoptimal coeffi cients, and

(iii) the use of adaptive learning with a constant gain. In the existing literature, the

evidence for these temporary equilibria dynamics is not very abundant. In a forecasting

experiment, Adam (2007) argues that subjects rely on simple underparameterized rules

to forecast inflation, and thus the equilibrium dynamics resembles the RPE. We observe

similar dynamics. In addition, many subjects in our experiment use misspecified models

as they include inflation in their specifications of the forecasting rules, e.g., the general

model (M6). As discussed above, this has important consequences for inflation dynamics.

We first focus on (i), the role of the specification of the PLM. It has already been

suggested that the proportion of trend extrapolation subjects plays a particularly impor-

tant role in the stability of the system. We observe that there is a considerable degree of

heterogeneity across the treatments (see Table 6) and that there is a strong correlation

between the variability of inflation and the degree of trend extrapolation behavior. We

use panel data regressions to test these conjectures regarding the relationship between

the variability and the proportions of different categories of subjects:27

sds,t = η0sds,t−1 + η1pjs,t + η2T+ εs,t, (8)

27To obtain the panel data for the standard deviation of inflation and the proportion of different rules,
we compute for each period t the standard deviation of inflation and determine the best forecasting
rule for each individual based on her information set in that period. Note that this is different from
calculations for Table 6. For details, see Pfajfar and Žakelj (2014). Results for cross-sectional models
are reported in the Appendix in Table A1, with both robust and clustered standard errors, as clustered
standard errors might not have good properties for small samples.
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where sds,t is the standard deviation of inflation in group s up to time t, pjs,t is a vector

of the proportions of agents in group s that use forecasting rules j (M2—M7 and M9 from

Table 6) in time t, and T is a vector of treatment dummies. We limit ourselves to models

M2—M7 and M9 since other rules were selected seldomly or not at all in this exercise.

The results are reported in Table 7.

sds,t : (a) (b) (c) (d)

sds,t−1 1.0065∗∗∗ 1.0056∗∗∗ 1.0065∗∗∗ 1.0033∗∗∗

(0.0065) (0.0073) (0.0072) (0.0054)

pjs,t (j = M2) -0.0007 -0.0013 -0.0019∗ -0.0016
(0.0014) (0.0019) (0.0011) (0.0012)

pjs,t (j = M3) -0.0008 -0.0015∗∗

(0.0009) (0.0007)

pjs,t (j = M4) -0.0015 -0.0017 -0.0027∗∗∗ -0.0021∗∗

(0.0009) (0.0011) (0.0010) (0.0009)

pjs,t (j = M5) 0.0037∗∗∗ 0.0033∗∗ 0.0026∗∗ 0.0033∗∗∗

(0.0013) (0.0015) (0.0011) (0.0013)

pjs,t (j = M6) 0.0016∗∗ 0.0011
(0.0008) (0.0011)

pjs,t (j = M7) -0.0011 -0.0017
(0.0014) (0.0012)

pjs,t (j = M9) -0.0011
(0.0011)

T2 0.0350 0.0330 0.0363 0.0368
(0.0327) (0.0339) (0.0326) (0.0351)

T3 -0.1191∗∗ -0.1172∗∗ -0.1273∗∗ -0.1104∗∗

(0.0517) (0.0500) (0.0498) (0.0490)

T4 -0.0916∗∗ -0.0887∗∗ -0.0989∗∗ -0.0807∗

(0.0464) (0.0440) (0.0464) (0.0465)

cons -0.0208 0.0301 0.0984∗∗∗ 0.0638∗

(0.0607) (0.1007) (0.0218) (0.0381)

N 1560 1560 1560 1560
χ2 107822.0 216120.0 143881.7 97425.5

Table 7: Influence of the decision model on the standard deviation of inflation. Notes:
Estimations are conducted using the system GMM estimator of Blundell and Bond (1998)
for dynamic panels. Arellano-Bond robust standard errors in parentheses. */**/***
denotes significance at 10/5/1 percent level.

A higher proportion of trend-extrapolation agents increases the standard deviation

of inflation. The proportion of these agents probably plays the most important role for

the stability of inflation.28 In contrast, having more agents that behave according to the
28It also helps to explain the differences among groups within the same treatment. Generally, we note

that groups with a lower proportion of trend extrapolation rules are more stable than groups with a
higher proportion in the same treatment.
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adaptive expectations models (M3 and M4) (and potentially M2) decreases the standard

deviation of inflation and thus has a stabilizing effect on the experimental economy. From

the treatment dummies, we learn that treatments 3 and 4 both produce effects that are

significant even when controlling for the subjects’alternative forecasting rules. These

effects are negative, which confirms that, compared to treatment 1, the monetary policies

in treatments 3 and 4 have a stabilizing effect on the inflation variability.

The second reason (ii) for the increased volatility in inflation is non-optimal parameter

estimates of certain rules. In the Appendix we present simulations that demonstrate this

point (Figures A1 and A2). Higher updating coeffi cients are related to higher inflation

variability, especially for trend extrapolation and adaptive expectations. Hommes et al.

(2005) show that coeffi cients in the trend extrapolation rules that are above 1 can severely

compromise the dynamic stability of the model.

The coeffi cients of individuals that use a given rule in our experiment are quite differ-

ent across treatments. We observe that the average coeffi cient of the trend extrapolation

rule (τ1) in M5 is higher in the treatments where inflation is more volatile, on average.

It is the highest in treatment 1 (0.53) and the lowest in treatment 3 (0.38). Sticky in-

formation type rules (M2) also exhibit significant differences across the treatments. The

subjects in treatment 3 have the highest average λ1 (0.37), while those in treatment 2

have the lowest (0.11). Therefore, these expectation rules produce a less destabilizing

effect in treatment 3 than in treatment 2. Similar evidence is also found for the adaptive

expectation rule (M3), where rules with a coeffi cient (τ1 or ϑ) larger than 1 represent

another threat to stability. As can be seen in Figure A7, updating coeffi cients of the

trend-extrapolation rule that are higher than 0.6 could induce severe instability.29

It is possible to evaluate those effects more formally by estimating the effects of the

average coeffi cient of the trend extrapolation rule in each group on the standard deviation

of inflation (see Table A1). The coeffi cient is positive and significant; the higher it is,

the higher is inflation variability. Furthermore, we also investigate the joint effect of the

proportion of agents using the trend extrapolation rule and their average coeffi cients,

and we find the same results. Compared to the previous two regressions for the trend

extrapolation rule, this regression explains the most variability of the standard deviation

of inflation. In all of these regressions, the treatment dummies have a significant effect,

emphasizing the importance of the monetary policy (see Table A3).

The third issue (iii) we investigate is the relationship between the gain parameter in

adaptive learning PLMs and the stability of the system: constant gain learning produces

greater variability of the underlying series than does decreasing gain learning. Marcet

and Nicolini (2003) show that this relationship could explain the evolution of inflation

29Results in this paragraph are based on estimations of all models in Table 2 for each individual.
For further details see Figures A3 —A8, where we plot these results for different expectation formation
mechanisms.
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in Latin America. Furthermore, the variability increases with the level of the (constant)

gain parameter. If this mechanism represented an important source of volatility, we would

expect higher average gains in more volatile treatments. However, we find higher average

(and median) gains for more stable treatments (3 and 4) than for more volatile treatments

(1 and 2). This result suggests that constant gain learning cannot explain the differences

in volatility across the treatments.

In addition to the effect of the monetary policy that was evident from the significance

of the treatment dummies in regressions (8) (see Table 7), it seems plausible that the

monetary policy also, at least partly, influences the choice of the expectation-formation

mechanism. The relationship between the underlying model and the expectation forma-

tion has recently been studied by Heemeijer et al. (2009) and Bao et al. (2012). They

compare experimental results from positive and negative expectation feedback models.30

In a positive expectation system, e.g., an asset pricing model, they observe a cyclical

behavior of prices similar to our behavior of inflation, and they note that when there

is stronger positive feedback more agents resort to trend following rules. This result

is also evident in Assenza et al. (2013). The link between the realized inflation and

the expectation-formation mechanism can be represented by the expectational feedback,

which is determined by the underlying model (monetary policy). The expectational feed-

back is the effect of a change in the average expectations in period t for period t + 1,

Etπt+1, on the change in the realization of inflation in period t, πt, formally ∂πt
∂Etπt+1

. It

can be calculated by substituting the monetary policy rule into the IS equation (1) and

then substituting the resulting equation into the PC equation (2). The expectational

feedback for the forward-looking rule is β + λϕ (1− γ), while for the contemporaneous

rule it is β+λϕ
λγϕ+1

. We see that this derivative is decreasing in γ for both rules. Comparing

treatments 1 and 4, we see that the derivative is higher for the contemporaneous rule

than for the forward-looking rule.

By changing the monetary policy, we augment the degree of positive feedback from

inflation expectations to current inflation. In an environment with higher expectational

feedback, inflation expectations have a higher importance relative to the output gap

for the realization of inflation. This makes inflation more vulnerable to the presence of

potentially destabilizing expectation-formation mechanisms, such as the trend extrapo-

lation rule. When at least one subject extrapolates the trend, the first and second lags

of inflation also enter the ALM for inflation. This has at least two effects: Inflation

variability increases, and it becomes optimal for others to use the two lags of inflation

as well (to have the PLM of the same form as the ALM), which results in a further

increase in the inflation variability. If we compare systems with higher and lower expec-

tational feedbacks, the former will require fewer subjects that use potentially destabilizing

expectation-formation mechanisms (with given coeffi cients) to produce the same inflation

30Fehr and Tyran (2008) also compare the two environments, although in a different context.
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variability. Alternatively, if the number of subjects using these rules is the same, the co-

effi cients must be higher to achieve the same effect. Therefore, the design of monetary

policy is important for the expectation-formation mechanism and vice versa. We found

that both the percentage of potentially destabilizing expectation-formation mechanisms

(e.g., trend extrapolation rules or adaptive expectations) and the variability of inflation

are the lowest in treatment 3, where the expectational feedback is the lowest.

5 Conclusion

In a macroeconomic experiment where the subjects are asked to forecast inflation, we

study the effectiveness of alternative monetary policy designs. The underlying model

of the economy is a simplified version of the standard New Keynesian model that is

commonly used for the analysis of monetary policy. In different treatments, we employ

various modifications of Taylor-type instrumental rules. We compare two forms of the

Taylor-type rules responding to either deviations of inflation expectations or current

inflation from the target, and study the effects of varying the degree of responsiveness to

deviations of the inflation expectations from the target level.

Under rational expectations, we expect the contemporaneous rule to result in a lower

variability in inflation than under the forward-looking rule. We also expect lower vari-

ability in inflation when the reaction coeffi cient attached to deviations of the inflation

expectations from the target level (γ) is higher. However, these policy prescriptions are

altered under certain potentially destabilizing expectations formation mechanisms, espe-

cially trend extrapolation and adaptive expectations. Under these mechanisms, a higher

γ may result in a higher volatility of inflation. The degree of expectational feedback also

plays an important role in reducing the likelihood of ending up in the self-enforcing effect

of potentially destabilizing expectations.

In all treatments of our experiment, we observe the cyclical behavior of inflation and

the output gap around their steady states. The variance of inflation in all the groups in

the experiment is higher than that under rational expectations. We find that monetary

policy matters in our environment and that there are sizeable differences in inflation

variability across the alternative designs under scrutiny. Among the monetary policy

rules that react to deviations of the inflation expectations from inflation target, the one

with a reaction coeffi cient 4 results in a lower inflation variability compared to those

with reaction coeffi cients 1.35 and 1.5. Between the latter two there is no statistical

difference. We find that instrumental rules that are less aggressive are more vulnerable

to the emergence of potentially destabilizing forecasting mechanisms.

We also explore the contemporaneous rule, an instrumental rule that reacts to inflation

rather than inflation expectations. The results show that the inflation variance under the

contemporaneous rule is significantly lower than under the forward-looking rule at the
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same level of sensitivity of the interest rate to the deviation of the inflation (expectations)

from the target. Bernanke and Woodford (1997) also suggest that forward-looking rules

may entail undesirable properties. It is noteworthy that the lower inflation variance

is not accompanied by a significantly smaller proportion of subjects using potentially

destabilizing expectation-formation mechanisms. Under the contemporaneous rule, both

the variability of interest rates and the expectational feedback are lower, resulting in lower

inflation variability. Our analysis suggests that both the design of the monetary policy

and the expectation-formation mechanisms are important for the dynamic stability of the

model. Therefore, it is imperative to understand the interplay between the two.
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A Properties of theModel under Different Expectation-
Formation Mechanisms

The actual dynamics of endogenous variables in the model is a result of the interaction
between the underlying model and the expectation-formation mechanism. Several recent
papers, using both experimental and survey data, have shown that the expectations of
individuals are heterogeneous.31 In this section we outline the properties of the underly-
ing model under different expectation-formation mechanisms in order to compare these
properties with the observed aggregate behavior in the experiment.

A.1 Rational Expectations

When all agents in the economy are rational, their perceived law of motion (PLM) is
equal to the actual law of motion (ALM) of the minimum state variable (MSV) form.
If agents would observe the shocks there would exist a unique evolutionary stable REE
with the following form:[

yt
πt

]
= B

[
1
yt−1

]
+C

[
gt−1
ut−1

]
+D

[
g̃t
ũt

]
, B =

[
by byy
bπ bπy

]
,C =

[
cyy cyπ
cπy cππ

]
.

B is the matrix of coeffi cients specific to each treatment. It is presented in the first
column of Table 2 below along with the other properties of possible equilibria in this
framework. C and D are matrices of coeffi cient values for the exogenous variables. D is
specific to the form of the Taylor rule employed. Note that πt−1 does not enter the REE
solution. To solve this model for RE we use the method of undetermined coeffi cients.
The corresponding expectations (PLM) of the REE form (representation 1) are:

Etπt = bπ + bπyyt−1 + cπygt−1 + cππut−1,

Etπt+1 = bπ + bπyEtyt + cπyEtgt + cππEtut,

= (bπ + bπyby) + bπybyyyt−1 + (bπycyy + cπyκ) gt−1 + (bπycyπ + cππν)ut−1. (9)

We insert (10) into the IS equation (1), where we substitute in the monetary policy rule
and the PC equation (2). We thus obtain the ALM. By comparing the PLM and the ALM
we solve this model for the MSV-REE. The parameters of the RE forecasting rule (B and
C) can be found in Table A3 in the Appendix. Note that for the forward-looking rule
treatments there exists an alternative representation of the MSV-REE (representation
2), which is actually more useful in our case where subjects do not directly observe the
shocks:

Etπt+1 = (aπ + bπyay)− π
(
γ − 1

γ

)
(ϕ (bπycyy + cπyκ) + β (bπycyπ + cππν)) (10)

+ (bπycyπ + cππν) πt−1 + (bπybyy + (bπycyy + cπyκ)− λ (bπycyπ + cππν)) yt−1

− (bπycyy + cπyκ) yt−2 +

(
(bπycyy + cπyκ)ϕ

(
γ − 1

γ

)
+

1

γ
β (bπycyπ + cππν)

)
it−1.

31Support in survey data is found in, e.g., Branch (2004) and Pfajfar and Santoro (2010). For a survey
of experimental support see Hommes (2011). Fehr and Tyran (2008) and Arifovic and Sargent (2003)
also suggest that the expectations of individuals are heterogeneous.
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In this representation REE also depends on πt−1, it−1, and yt−2. If we used a similar pro-
cedure in the contemporaneous rule treatment we would find that the REE is dependent
on the initial values of the shocks and the whole history of π and y.

A.2 Other models

A.2.1 Stability Properties of Restricted Perceptions

It is important to analyze the stability properties of the equilibria in all four underlying
models under different expectation-formation mechanisms.32

It is not possible to use the undetermined coeffi cients technique to calculate the opti-
mal coeffi cients in adaptive expectation models (M3 and M4): in our setting there are no
solutions for the coeffi cients ϑ and ι. Therefore, only temporary equilibria exist.33 In the
case of the sticky information type model (M2), this technique shows that the optimal
coeffi cient is λ1 = 1, and is studied in the second column of Table 2. Also, the AR(1)
process model (M1) in equilibrium has a coeffi cient α1 = 0 and thus reduces to forecast-
ing the steady state. Of course, recursive representations of the models have optimal
coeffi cients equal to the static counterparts. In general, we can write all the remaining
forecasting models using πkt+1|t = φXt, where Xt =

[
1 yt πt−1 πt−2 πkt|t−1

]′
. But first

we define the RPE, which exists for all models except M3 and M4:34

Definition 1 Restricted Perception Equilibria in ModelsM∗ (M∗ ∈ {M1,M2,M5, ...,M10})
are stationary sequences {yt, πt}∞t=0 generated by (1), (2) and either (3) or (4) depend-
ing on the treatment where agents use Model M∗

(
πkt+1|t = φXt

)
with parameters φ∗M to

forecast inflation at time t for time t+ 1 where φ∗M is the orthogonal projection of πt on
Xt.

Definition 2 There exist four classes of Restricted Perception Equilibria in Model M∗:

1. Iff M∗ ∈ {M2,M8}, φ∗M is the orthogonal projection of πt on
[
1 yt−1

]
, the dy-

namics are characterized as a Underparameterized Perception Equilibrium level 1
(UPE1).35

2. Iff M∗ ∈ {M1,M7,M10}, φ∗M is the orthogonal projection of πt on
[
1
]
, the dy-

namics are characterized as a Underparameterized Perception Equilibrium level 2
(UPE2).

3. Iff M∗ = M6 and α3 = 0, φ∗M is the orthogonal projection of πt on
[
1 yt−1 πt−1

]
,

the dynamics are characterized as a Misspecified Perception Equilibrium level 1
(MPE1).

32Stability analysis of the economy with a single forecasting rule is, of course, not directly applicable to
the environment of heterogeneous agents as observed in our experiment (see Berardi (2007) for analysis
of such an environment). Given the number of rules considered in our case, too many combinations are
possible to make an informed conclusion. Thus, separate analysis of each rule is more indicative of the
possible outcomes.
33Strictly speaking, there might exist an equilibrium with a different (nonfundamental) representation

using alternative methods to the undetermined coeffi cients, e.g., common factor representation.
34It is worth pointing out that in general our stochastic gradient models M7—M10 converge to a path

around the RPE.
35M2 is misspecified, but the inclusion of past forecasts does not alter the properties of the equilibrium.
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4. Iff M∗ ∈ {M5,M9}, φ∗M is the orthogonal projection of πt on
[
1 πt−1 πt−2

]
,

the dynamics are characterized as a Misspecified Perception Equilibrium level 2
(MPE2).36

In Table 2 we present the REE and different RPEs and the summary of their deter-
minacy and E-stability properties across all treatments. For the parameter of the ALM,
B, under each expectation-formation mechanism, the corresponding eigenvalues of the
determinacy condition, and the values of the eigenvalues of the T-map, see Table A3 in
the Appendix.37

The second column in the table presents a UPE1, which has the same form as the
REE (9) except that we omit shocks from the representation because they were not di-
rectly observable by the subjects in our experiment. UPE1’s determinacy and E-stability
properties are the same as those of the RE. The third column of Table 2 represents UPE2.
In this case only a constant (equal to inflation target) is used for the forecasting. The
models in these two columns are determinate and E-stable.
The fourth column of Table 2 contains the stability results for a MPE1. As in the

previous case, the optimal coeffi cient on the lagged inflation is always zero (see Table
A3 in Appendix). Note that the difference between UPE1 and MPE1 is a result of the
inclusion of πt−1 in M6. Comparing these results with those for the UPE1 in the first
column, it can be observed that the inclusion of a lagged inflation causes indeterminacy
and different values for the ALM. Furthermore, this inclusion causes the eigenvalues of
the T-map to be complex in all treatments, and only the B1 solutions are E-stable. As
Marimon and Sunder (1995) observe, if the eigenvalues are complex, then the convergence
is cyclical.
The MPE2 in the last column yields a determinate outcome only in treatment 3.

The other treatments have two evolutionary stable solutions (thus indeterminacy), which
could result in higher inflation volatility. Furthermore, solutions in all treatments are
E-unstable. The trend extrapolation rule (M5) is restricted to positive coeffi cients τ1,
so only solution B1 is sensible in treatments 1, 2, and 4, while no evolutionary stable
solution with positive τ1 exists in treatment 3 (they exist only for γ < 2.99).
Generally, we can conclude that the stability and determinacy of the system crucially

depend on the expectation-formation mechanism. A system that is E-stable and deter-
minate under RE might not be so under different expectation rules. In E-stable models
under RE, a higher value of γ will result in lower eigenvalues of both the determinacy
and E-stability conditions.38 On the contrary, under some expectation rules, e.g., trend
extrapolation rules (M5), a higher value of γ can produce higher eigenvalues of the de-
terminacy and E-stability conditions and thus more volatile inflation. We label these
expectation-formation mechanisms as potentially destabilizing. Another type of forecast-
ing rules that we classify as potentially destabilizing are those that do not have a MSV

36This equilibria is similar to the Behavioral Learning Equilibria of Hommes and Zhu (2014).
37Table A3 reports numerical values for different treatments. In the case of indeterminacy we report

both solutions and their corresponding eigenvalues of the E-stability condition. The analytical solutions
can be obtained upon request from the authors. We also omit the eigenvalues of the E-stability condition
corresponding to the shocks because they are always less than one and specific only to treatments (thus
C and D are omitted as well) and not to the expectation formation rules for the cases under scrutiny.
38Increasing γ has two effects on the dynamic behavior of inflation: i) it always increases the frequency

of cycles regardless of the expectation formation mechanism, and ii) it affects the amplitude of the cycle,
depending on the expectation formation mechanism. For models that have a decreasing pattern in Figure
1, the amplitude is lower when γ is higher, while in the other cases, most notably for the lagged inflation
model, the relationship is not monotonic.
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solution, i.e., adaptive expectations (M3), as seen in the simulations in Figures A3 and
A4. Therefore, the relationship between the variability of inflation and different forecast-
ing rules is nontrivial. We confirm the results of Marimon and Sunder (1995), that the
stability properties of the system, especially the eigenvalues of the determinacy condi-
tion, provide a good explanation for inflation volatility, but only with respect to stable
expectation-formation mechanisms (mechanisms that always produce less variability of
inflation when we increase γ).

B Additional Tables and Figures
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Trend extrapolation (M5)

sds : cluster robust cluster robust

τ 1,s 1.6490 1.8727∗∗

(1.016) (0.730)

τ 1,sps 0.4539∗ 0.4565∗∗∗

(0.186) (0.137)

T2 0.6676 0.2027
(0.849) (0.817)

T3 -0.9487∗ -1.0316∗

(0.541) (0.519)

T4 -1.6194∗ -1.6396∗∗

(0.799) (0.748)

cons 0.5515∗ 0.8765∗ 0.4929∗ 1.0452∗∗

(0.1810) (0.461) (0.203) (0.461)

N 24 24 24 24
R2 0.21 0.49 0.33 0.56

Table A2: Relation of standard deviation of inflation to the average coeffi cient τ1 from
equation (M5) of subjects that use trend extrapolating rule. Notes: OLS estimates. Stan-
dard errors in parentheses. */**/*** denotes significance at 10/5/1 percent level. Under
column robust, robust standard errors are calculated. Under column cluster, standard
errors allow for correlation within treatment.
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