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Abstract

This paper proposes a new model for high-dimensional distributions of asset returns that utilizes

mixed frequency data and copulas. The dependence between returns is decomposed into linear

and nonlinear components, enabling the use of high frequency data to accurately forecast linear

dependence, and a new class of copulas designed to capture nonlinear dependence among the

resulting uncorrelated, low frequency, residuals. Estimation of the new class of copulas is conducted

using composite likelihood, facilitating applications involving hundreds of variables. In- and out-of-

sample tests con�rm the superiority of the proposed models applied to daily returns on constituents

of the S&P 100 index.
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1 Introduction

A model for the multivariate distribution of the returns on large collections of �nancial assets is a

crucial component in modern risk management and asset allocation. Modelling high-dimensional

distributions, however, is not an easy task and only a few models are typically used in high dimen-

sions, most notably the Normal distribution, which is still widely used in practice and academia

despite its notorious limits, for example, thin tails and zero tail dependence.

This paper provides a new approach for constructing and estimating high-dimensional distribu-

tion models. Our approach builds on two active areas of recent research in �nancial econometrics.

First, high frequency data has been shown to be superior to daily data for measuring and forecast-

ing variances and covariances, see Andersen, et al. (2006) for a survey of this very active area of

research. This implies that there are gains to be had by modelling linear dependence, as captured

by covariances, using high frequency data. Second, copula methods have been shown to be useful

for constructing �exible distribution models in high dimensions, see Christo¤ersen, et al. (2013),

Oh and Patton (2013) and Creal and Tsay (2014). These two �ndings naturally lead to the question

of whether high frequency data and copula methods can be combined to improve the modelling

and forecasting of high-dimensional return distributions.

Exploiting high frequency data in a lower frequency copula-based model is not straightforward

as, unlike variances and covariances, the copula of low frequency (say daily) returns is not generally

a known function of the copula of high frequency returns. Thus the link between high frequency

volatility measures (e.g., realized variance and covariance) and their low frequency counterparts

cannot generally be exploited when considering dependence via the copula function. We overcome

this hurdle by decomposing the dependence structure of low frequency asset returns into linear and

nonlinear components. We then use high frequency data to accurately model the linear dependence,

as measured by covariances, and a new class of copulas to capture the remaining dependence in

the low frequency standardized residuals.

The di¢ culty in specifying a copula-based model for standardized, uncorrelated, residuals, is

that the distribution of the residuals must imply an identity correlation matrix. Independence

is only su¢ cient for uncorrelatedness, and we wish to allow for possible nonlinear dependence

between these linearly unrelated variables. Among existing work, only the multivariate Student�s

t distribution has been used for this purpose, as an identity correlation matrix can be directly
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imposed on this distribution. We dramatically increase the set of possible models for uncorrelated

residuals by proposing methods for generating �jointly symmetric�copulas. These copulas can be

constructed from any given (possibly asymmetric) copula, and when combined with any collection

of (possibly heterogeneous) symmetric marginal distributions they guarantee an identity correlation

matrix. Evaluation of the density of our jointly symmetric copulas turns out to be computationally

di¢ cult in high dimensions, but we show that composite likelihood methods (see Varin, et al. 2011

for a review) may be used to estimate the model parameters and undertake model selection tests.

This paper makes four main contributions. Firstly, we propose a new class of �jointly sym-

metric�copulas, which are useful in multivariate density models that contain a covariance matrix

model (e.g., GARCH-DCC, HAR, stochastic volatility, etc.) as a component. Second, we show that

composite likelihood methods may be used to estimate the parameters of these new copulas, and

in an extensive simulation study we verify that these methods have good �nite-sample properties.

Third, we propose a new and simple model for high-dimensional covariance matrices drawing on

ideas from the HAR model of Corsi (2009) and the DCC model of Engle (2002), and we show

that this model outperforms the familiar DCC model empirically. Finally, we present a detailed

empirical application of our model to 104 individual U.S. equity returns, showing that our proposed

approach signi�cantly outperforms existing approaches both in-sample and out-of-sample.

Our methods and application are related to several existing papers. Most closely related is

the work of Lee and Long (2009), who also consider the decomposition into linear and nonlinear

dependence, and use copula-based models for the nonlinear component. However, Lee and Long

(2009) focus only on bivariate applications, and their approach, which we describe in more detail in

Section 2, is computationally infeasible in high dimensions. Our methods are also clearly related to

copula-based density models, some examples of which are cited above, however in those approaches

only the variances are modelled prior to the copula stage, meaning that the copula model must

capture both the linear and nonlinear components of dependence. This makes it di¢ cult to incor-

porate high frequency data into the dependence model. Papers that employ models for the joint

distribution of returns that include a covariance modelling step include Chiriac and Voev (2011),

Jondeau and Rockinger (2012), Hautsch, et al. (2013), and Jin and Maheu (2013). As models for

the standardized residuals, those papers use the Normal or Student�s t distributions, both of which

are nested in our class of jointly symmetric models, and which we show are signi�cantly beaten in

our application to U.S. equity returns.
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The paper is organized as follows. Section 2 presents our approach for modelling high-dimensional

distributions. Section 3 presents multi-stage, composite likelihood methods for model estimation

and comparison, which are studied via simulations in Section 4. Section 5 applies our model to

daily equity returns and compares it with existing approaches. Section 6 concludes. An appendix

contains all proofs, and a web appendix contains additional details, tables and �gures.

2 Models of linear and nonlinear dependence

We construct a model for the conditional distribution of the N -vector rt as follows:

rt = �t +H
1=2
t et (1)

where et � iid F (�;�) (2)

where F (�;�) is a joint distribution with zero mean, identity covariance matrix and �shape�pa-

rameter �, and �t = E [rtjFt�1] ; Ht = V [rtjFt�1] ; Ft = � (Yt;Yt�1; : : :) ; and Yt includes rt

and possibly other time t observables, such as realized variances and covariances. To obtain H1=2
t ;

we suggest using the spectral decomposition due to its invariance to the order of the variables.

Note that by assuming that et is iid; we impose that all dynamics in the conditional joint distrib-

ution of rt are driven by the conditional mean and (co)variance. This common, and clearly strong,

assumption goes some way towards addressing the curse of dimensionality faced when N is large.

In existing approaches, see Chiriac and Voev (2011), Jondeau and Rockinger (2012), Hautsch,

et al. (2013), and Jin and Maheu (2013) for example, F would be assumed multivariate Normal

(which reduces to independence, given that et has identity covariance matrix) or Student�s t; and

the model would be complete. Instead, we consider the decomposition of the joint distribution F

into marginal distributions Fi and copula C using Sklar�s (1959) theorem:

et � F (�;�) = C (F1 (�;�) ; :::; FN (�;�) ;�) (3)

Note that the elements of et are uncorrelated but may still exhibit cross-sectional dependence,

which is completely captured by the copula C: Combining equations (1)�(3) we obtain the following
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density for the distribution of returns:

ft (rt) = det
�
H
�1=2
t

�
� c (F1 (e1t) ; :::; FN (eNt))�

YN

i=1
fi (eit) (4)

Thus this approach naturally reveals two kinds of dependence between returns: �linear depen-

dence,�captured by conditional covariance matrix Ht; and any �nonlinear dependence�remaining

in the uncorrelated residuals et; captured by the copula C: There are two important advantages

in decomposing a joint distribution of returns in this way. First, it allows the researcher to draw

on the large literature on measuring, modeling and forecasting conditional covariance matrix Ht

with low and high frequency data. For example, GARCH-type models such as the multivariate

GARCH model of Bollerslev, et al. (1988), the BEKK model of Engle and Kroner (1995), and

the dynamic conditional correlation (DCC) model of Engle (2002) naturally �t in equations (1)

and (2). The increasing availability of high frequency data also enables us to use more accurate

models for the conditional covariance matrix, see, for example, Bauer and Vorkink (2011), Chiriac

and Voev (2011), and Noureldin, et al. (2012), and those models are also naturally accommo-

dated by equations (1)�(2).1 Second, the model speci�ed by equations (1)�(3) is easily extended to

high-dimensional applications given that multi-stage separate estimation of the conditional mean

of the returns, the conditional covariance matrix of the returns, the marginal distributions of the

standardized residuals, and �nally the copula of the standardized residuals is possible. Of course,

multi-stage estimation is less e¢ cient than one-stage estimation, however the main di¢ culty in high-

dimensional applications is the proliferation of parameters and the growing computational burden

as the dimension increases. By allowing for multi-stage estimation we overcome this obstacle.

Lee and Long (2009) were the �rst to propose decomposing dependence into linear and nonlinear

components, and we now discuss their approach in more detail. They proposed the following model:

rt = �t +H
1=2
t ��1=2wt (5)

where wt � iid G (�;�) = Cw (G1 (�;�) ; :::; GN (�;�) ;�)

and � � Cov [wt]

1 In the part of our empirical work that uses realized covariance matrices, we take these as given, and do not
take a stand on the speci�c continuous-time process that generates the returns and realized covariances. This means
that, unlike a DCC-type model, for example, which only considers daily returns, or a case where the continuous-time
process was speci�ed, we cannot simulate or generate multi-step ahead predictions from these models.
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Thus rather than directly modelling uncorrelated residuals et as we do, Lee and Long (2009) use

wt and its covariance matrix � to obtain uncorrelated residuals et = ��1=2wt: In this model it is

generally hard to interpret wt, and thus to motivate or explain choices of models for its marginal

distribution or copula. Most importantly, this approach has two aspects that make it unamenable

to high-dimensional applications. Firstly, the structure of this model is such that multi-stage

estimation of the joint distribution of the standardized residuals is not possible, as these residuals

are linear combinations of the latent variables wt: Thus the entire N -dimensional distribution G

must be estimated in a single step. Lee and Long (2009) focus on bivariate applications where this

is not di¢ cult, but in applications involving 10, 50 or 100 variables this quickly becomes infeasible.

Secondly, the matrix � implied by G (�;�) can usually only be obtained by numerical methods,

and as this matrix grows quadratically with N; this is a computational burden even for relatively

low dimension problems. In contrast, we directly model the standardized uncorrelated residuals et

to take advantage of bene�ts from multi-stage separation and to avoid having to compute �. In

addition to proposing methods that work in high dimensions, our approach extends that of Lee

and Long (2009) to exploit recent developments in the use of high frequency data to estimate lower

frequency covariance matrices.

We next describe how we propose modelling the uncorrelated residuals, et; and then we turn

to models for the covariance matrix Ht:

2.1 A density model for uncorrelated standardized residuals

A building block for our model is an N -dimensional distribution, F (�;�) ; that guarantees an

identity correlation matrix. The concern is that there are only a few copulas that ensure zero

correlations, for example, the Gaussian copula with identity correlation matrix (i.e. the indepen-

dence copula) and the t copula with identity correlation matrix, when combined with symmetric

marginals. To overcome this lack of choice, we now propose methods to generate many copulas

that ensure zero correlations by constructing �jointly symmetric�copulas.

We exploit the result that multivariate distributions that satisfy a particular type of symmetry

condition are guaranteed to yield an identity correlation matrix, which is required by the model

speci�ed in equations (1)-(2). Recall that a scalar random variable X is symmetric about the point

a if the distribution functions of (X � a) and (a�X) are the same. For vector random variables

there are two main types of symmetry: in the bivariate case, the �rst (�radial symmetry�) requires
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only that (X1 � a1; X2 � a2) and (a1 �X1; a2 �X2) have a common distribution function, while

the second (�joint symmetry�) further requires that (X1 � a1; a2 �X2) and (a1 �X1; X2 � a2) also

have that common distribution function. The latter type of symmetry is what we require for our

model. The de�nition below for the N -variate case is adapted from Nelsen (2006).

De�nition 1 (Joint symmetry) Let X be a vector of N random variables and let a be a point

in RN : Then X is jointly symmetric about a if the following 2N sets of N random variables have

a common joint distribution:

~X(i) =
h
~X
(i)
1 ; :::; ~X

(i)
N

i0
, i = 1; 2; :::; 2N

where ~X(i)
j = (Xj � aj) or (aj �Xj), for j = 1; 2; :::; N:

From the following simple lemma we know that all jointly symmetric distributions guarantee an

identity correlation matrix, and are thus easily used in a joint distribution model with a covariance

modelling step.

Lemma 1 Let X be a vector of N jointly symmetric random variables with �nite second moments.

Then X has an identity correlation matrix.

If the variable X in De�nition 1 has Unif (0; 1) marginal distributions, then its distribution is a

jointly symmetric copula. It is possible to show that, given symmetry of the marginal distributions,2

joint symmetry of the copula is necessary and su¢ cient for joint symmetry of the joint distribution,

via the N -dimensional analog of Exercise 2.30 in Nelsen (2006):

Lemma 2 Let X be a vector of N continuous random variables with joint distribution F; marginal

distributions F1; ::; FN and copula C: Further suppose Xi is symmetric about ai 8 i. Then X is

jointly symmetric about a � [a1; :::; aN ] if and only if C is jointly symmetric.

Lemma 2 implies that any combination of symmetric marginal distributions, of possibly di¤erent

forms (e.g., Normal, Student�s t with di¤erent degrees of freedom, double-exponential, etc.) with

any jointly symmetric copula yields a jointly symmetric joint distribution, and by Lemma 1, all

2We empirically test the assumption of marginal symmetry in our application in Section 5, and there we also
describe methods to overcome this assumption if needed.
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such distributions have an identity correlation matrix, and can thus be used in a model such as the

one proposed in equations (1)-(2).

While numerous copulas have been proposed to explain various features of dependences in the

literature, only a few existing copulas are jointly symmetric, for example, the Gaussian and t

copulas with an identity correlation matrix. To overcome this limited choice of copulas, we next

propose a novel way to construct jointly symmetric copulas by �rotating�any given copula, thus

vastly increasing the set of possible copulas to use in applications.

Theorem 1 Assume that N dimensional copula C; with density c; is given.

(i) The following copula CJS is jointly symmetric:

CJS (u1; : : : ; uN ) =
1

2N

2X
k1=0

� � �
2X

kN=0

(�1)R �C (eu1; : : : ; eui; : : : ; euN ) (6)

where R =
NX
i=1

1 fki = 2g , and eui =
8>>><>>>:

1; if ki = 0

ui; if ki = 1

1� ui; if ki = 2

(ii) The probability density function cJS implied by CJS is

cJS (u1; : : : ; uN ) =
@NCJS (u1; : : : ; uN )

@u1 � � � @uN
=

1

2N

2X
k1=1

� � �
2X

kN=1

c (eu1; : : : ; eui; : : : ; euN ) (7)

Theorem 1 shows that the average of mirror-image rotations of a potentially asymmetric copula

about every axis generates a jointly symmetric copula. Note that the copula cdf, CJS ; in equation

(6) involves all marginal copulas (i.e., copulas of dimension 2 to N � 1) of the original copula,

whereas the density cJS requires only the densities of the (entire) original copula, with no need for

marginal copula densities. Also notice that cJS requires the evaluation of a very large number of

densities even when N is only moderately large, which may be slow even when a single evaluation

is quite fast. In Section 3 below we show how composite likelihood methods may be employed to

overcome this computational problem.

We next show that we can further increase the set of jointly symmetric copulas for use in

applications by considering convex combinations of jointly symmetric copulas.
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Proposition 1 Any convex combination of N -dimensional distributions that are jointly symmetric

around a common point a 2 R1 is jointly symmetric around a. This implies that (i) any convex

combination of univariate distributions symmetric around a common point a is symmetric around

a, and (ii) any convex combination of jointly symmetric copulas is a jointly symmetric copula.

It is simple to visualize how to construct a jointly symmetric copula in terms of the copula

density: the upper panels of Figure 1 show density contour plots for zero, 90-, 180- and 270-degree

rotations of the Clayton copula, when combined with standard Normal marginal densities. The

�jointly symmetric Clayton�copula is obtained by taking an equal-weighted average of these four

densities, and is presented in the lower panel of Figure 1.

[INSERT FIGURE 1 ABOUT HERE]

Figure 2 presents density contour plots for six jointly symmetric distributions that di¤er only in

their jointly symmetric copula. The upper left panel is the case of independence, and the top right

panel presents the jointly symmetric t copula, which is obtained when the correlation parameter

of that copula is set to zero. The remaining four panels illustrate the �exibility of the models that

can be generated using Theorem 1. To aid interpretability, the lower four copulas have parameters

chosen so that they are each approximately equally distant from the independence copula based

on the Kullback-Leibler information criterion (KLIC). Figure 2 highlights the fact that the copula

for uncorrelated random variables can be very di¤erent from the independence copula, capturing

di¤erent types of �nonlinear�dependence.

[INSERT FIGURE 2 ABOUT HERE]

2.2 Forecasting models for multivariate covariance matrix

Research on forecasting models for multivariate covariance matrices with low-frequency data is

pervasive, see Andersen, et al. (2006) for a review, and research on forecasting models using

high frequency data is growing, e.g. Chiriac and Voev (2011), Noureldin, et al. (2012) among

others. There are two major concerns about forecasting models for multivariate covariance matrices:

parsimony and positive de�niteness. Keeping these two concerns in mind, we combine the essential

ideas of the DCC model of Engle (2002) and the heterogeneous autoregressive (HAR) model of Corsi

(2009) to obtain a simple and �exible new forecasting model for covariance matrices. Following the
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DCC model, we estimate the variances and correlations separately, to reduce the computational

burden. We use the HAR model structure, which is known to successfully capture the long-memory

behavior of volatility in a simple autoregressive way.

Let � be the sampling frequency (e.g., 5 minutes), which yields 1=� observations per trade

day. The N �N realized covariance matrix for the interval [t� 1; t] is de�ned by

RV arCov�t =

1=�X
j=1

rt�1+j��r
0
t�1+j�� (8)

and is re-written in terms of realized variances and realized correlations as:

RV arCov�t =
q
RV ar�t �RCorr�t �

q
RV ar�t (9)

whereRV ar�t = diag
�
RV arCov�t

	
is a diagonal matrix with the realized variances on the diagonal,

and RCorr�t =
�
RV ar�t

��1=2 �RV arCov�t � �RV ar�t ��1=2 :
We propose to �rst apply the HAR model to each (log) realized variance:

logRV ar�ii;t = �
(const)
i + �

(day)
i logRV ar�ii;t�1 + �

(week)
i

1

4

X5

k=2
logRV ar�ii;t�k (10)

+�
(month)
i

1

15

X20

k=6
logRV ar�ii;t�k + �it, i = 1; 2; :::; N:

and the coe¢ cients
n
�
(const)
i ; �

(day)
i ; �

(week)
i ; �

(month)
i

oN
i=1

are estimated by OLS for each variance.

We use the logarithm of the realized variance to ensure that all variance forecasts are positive, and

also to reduce the in�uence of large observations, which is important as the sample period in our

empirical analysis includes the 2008 �nancial crisis.

Next, we propose a model for realized correlations, using the vech operator. Consider the

following HAR-type model for correlations:

vech
�
RCorr�t

�
= vech

�
RCorr�T

�
(1� a� b� c) + a � vech

�
RCorr�t

�
(11)

+b � 1
4

X5

k=2
vech

�
RCorr�t�k

�
+ c � 1

15

X20

k=6
vech

�
RCorr�t�k

�
+ �t

where RCorr�T =
1
T

PT
t=1RCorr

�
t and (a; b; c) 2 R3: A more �exible version of this model would

allow (a; b; c) to be replaced with N (N � 1) =2 � N (N � 1) =2 matrices (A;B;C), however the
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number of free parameters in such a speci�cation would be O
�
N2
�
; and is not feasible for high-

dimensional applications. In this parsimonious speci�cation, the coe¢ cients a; b; and c are easily

estimated by OLS regardless of the dimension. Note that the form of the model in equation (11)

is such that the predicted value will indeed be a correlation matrix (when the vech operation is

undone), and so the residual in this speci�cation, �t; is one that lives in the space of di¤erences of

correlation matrices. As we employ OLS for estimation, we are able to avoid having to specify a

distribution for this variable.

Let \RV arCov�t denote a forecast of the covariance matrix based on equations (10) and (11)

and estimated parameters. The theorem below provides conditions under which \RV arCov�t is

guaranteed to be positive de�nite.

Theorem 2 Assume that (i) Pr [x0rt = 0] = 0 for any nonzero x 2 RN (i.e. rt does not have

redundant assets), (ii)
h
â; b̂; ĉ

i
� 0; and (iii) â+ b̂+ ĉ < 1: Then, \RV arCov�t is positive de�nite.

Our forecasting model for the realized covariance matrix is simple and fast to estimate and

positive de�niteness is ensured by Theorem 2. We note that the above theorem is robust to the

misspeci�cation of return distributions, i.e. Theorem 2 holds regardless of whether or not return

distribution follows the proposed model speci�ed by equations (1)�(2).

3 Estimation methods and model comparisons

This section proposes a composite likelihood approach to estimate models from the class of jointly

symmetric copulas proposed in Theorem 1, and then describes corresponding methods for model

comparison tests of copula models speci�ed and estimated in this way. Finally, we present results

on how to handle the estimation error for the complete model, taking into account the multi-stage

nature of the proposed estimation methods.

3.1 Estimation using composite likelihood

The proposed method to construct jointly symmetric copulas in Theorem 1 requires 2N evaluations

of the given original copula density. Even for moderate dimensions, say N = 20; the likelihood

evaluation may be too slow to calculate. We illustrate this using a jointly symmetric copula based

on the Clayton copula, which has a simple closed-form density and requires just a fraction of a
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second for a single evaluation.3 The �rst row of Table 1 shows that as the dimension, and thus the

number of rotations, increases, the computation time for a single evaluation of the jointly symmetric

Clayton copula grows from less than a second to several minutes to many years.4

[INSERT TABLE 1 ABOUT HERE]

For high dimensions, ordinary maximum likelihood estimation (MLE) is not feasible for our

jointly symmetric copulas. A composite likelihood (Lindsay, 1988) consists of combinations of

the likelihoods of submodels or marginal models of the full model, and under certain conditions

maximizing the composite likelihood (CL) can be shown to generate parameter estimates that are

consistent for the true parameters of the model.5 The essential intuition behind CL is that since

submodels include partial information on the parameters of the full model, by properly using that

partial information we can estimate the parameters of full model, although of course subject to

some e¢ ciency loss.

The composite likelihood can be de�ned in various ways, depending on which sub-models of the

full model are employed. In our case, the use of bivariate sub-models is particularly attractive, as a

bivariate sub-model of the jointly symmetric copula generated using equation (6) requires only four

rotations. This is easily shown using some copula manipulations, and we summarize this result in

the proposition below.

Proposition 2 For N -dimensional jointly symmetric copulas generated using Theorem 1, the (i; j)

bivariate marginal copula density is obtained as

cJSij (ui; uj) =
1

4
fcij (ui; uj) + cij (1� ui; uj) + cij (ui; 1� uj) + cij (1� ui; 1� uj)g

where cij is the (i; j) marginal copula density of the original N -dimensional copula.

Thus while the full model requires 2N rotations of the original density, bivariate marginal models

only require 22 rotations. Similar to Engle, et al. (2008), we consider CL based either on all pairs

3All computational times reported are based on using Matlab R2014a on a 3.4GHz Intel PC with Windows 7.
4While evaluation of the likelihood is slow, simulating from this model is simple and fast (see Section 4.1 for

details). This suggests that simulation-based alternatives to maximum likelihood might be feasible for these models.
We leave the consideration of this interesting possibility for future research.

5See Varin, et al. (2011) for an overview of this method, and see Engle, et al. (2008) for an application of this
method in �nancial econometrics.
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of variables, only adjacent pairs of variables,6 and only the �rst pair of variables:

CLall (u1; : : : ; uN ) =

N�1X
i=1

NX
j=i+1

log ci;j (ui; uj) (12)

CLadj (u1; : : : ; uN ) =
N�1X
i=1

log ci;i+1 (ui; ui+1) (13)

CLfirst (u1; : : : ; uN ) = log c1;2 (u1; u2) (14)

As one might expect, estimators based on these three di¤erent CLs will have di¤erent degrees of

e¢ ciency, and we study this in detail in our simulation study in the next section.

While there are many di¤erent ways to construct composite likelihoods, they all have some

common features. First of all, they are valid likelihoods since the likelihood of the sub-models are

themselves valid likelihoods. Second, the joint model implied by taking products of densities of

sub-models (i.e., imposing an incorrect independence assumption) causes misspeci�cation and the

information matrix equality will not hold. Third, the computation of the composite likelihood is

substantially faster than that of the full likelihood. In our application the computational burden

is reduced from O
�
2N
�
to O

�
N2
�
; O (N) or O (1) when we use all pairs, only adjacent pairs,

or only the �rst pair of variables. The bottom three rows in Table 1 show the computation gains

from using a composite likelihood based on one of the three combinations in equations (12)�(14)

compared with using the full likelihood.

Let us de�ne maximum composite likelihood estimation (MCLE) as based on:

�̂MCLE = argmax
�

TX
t=1

CL (u1t; ::; uNt;�) (15)

where CL is a composite log-likelihood, such as one of those in equations (12)�(14). Under mild reg-

ularity conditions (see Newey and McFadden, 1994 or White, 1994), and an identi�cation condition

we discuss in the next paragraph, Cox and Reid (2004) show that

p
T
�
�̂MCLE��0

�
d�!N

�
0;H�10 J0H

�1
0

�
(16)

where H0 = �E
h

@2

@�@�0
CL (u1t; ::; uNt;�0)

i
and J0 = V

�
@
@�CL (u1t; ::; uNt;�0)

�
: We refer the

6For a given (arbitrary) order of the variables, the �adjacent pairs�CL uses pairs (ui; ui+1) for i = 1; : : : ; N � 1.
Similarly, the ��rst�pair is simply whichever series were arbitrarily labelled as the �rst two.
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reader to Cox and Reid (2004) for the proof. The asymptotic variance of MCLE takes a �sandwich�

form, and is of course weakly greater than that of MLE. We investigate the extent of the e¢ ciency

loss of MCLE relative to MLE in the simulation study in the next section.

The identi�cation condition required for CL estimation comes from the �rst-order condition

implied by the optimization problem. Speci�cally, it is required that

E

�
@

@�
CL (u1t; ::; uNt;�)

� 8<: = 0 for � = �0

6= 0 for � 6= �0
(17)

That is, the components of the composite likelihood must be rich enough to identify the parameters

of the full likelihood. As a problematic example, consider a composite likelihood that uses only

the �rst pair of variables (as in equation 14), but some elements of � do not a¤ect the dependence

between the �rst pair. With such a CL, � would not be identi�ed, and one would need to look for

a richer set of submodels to identify the parameters, for example using more pairs, as in equation

(12) and (13), or using higher dimension submodels, e.g. trivariate marginal copulas. In our

applications, we consider as �generating�copulas only those with a single unknown parameter that

a¤ects all bivariate copulas, and thus all of the CLs in equations (12)�(14) are rich enough to

identify the unknown parameter.

3.2 Model selection tests with composite likelihood

We next consider in-sample and out-of-sample model selection tests when composite likelihood is

involved. The tests we discuss here are guided by our empirical analysis in Section 5, so we only

consider the case where composite likelihoods with adjacent pairs are used. We �rst de�ne the

composite Kullback-Leibler information criterion (cKLIC) following Varin and Vidoni (2005).

De�nition 2 Given an N -dimensional random variable Z =(Z1; :::; ZN ) with true density g; the

composite Kullback-Leibler information criterion (cKLIC) of a density h relative to g is

Ic (g;h) = Eg(z)

"
log

N�1Y
i=1

gi (zi; zi+1)� log
N�1Y
i=1

hi (zi; zi+1)

#

where
N�1Q
i=1

gi (zi; zi+1) and
N�1Q
i=1

hi (zi; zi+1) are adjacent-pair composite likelihoods using the true

density g and a competing density h.
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We focus on the CL using adjacent pairs, but other cKLICs can be de�ned similarly. Note that

the composite log-likelihood for the joint distribution can be decomposed using Sklar�s theorem

(equations 3�4) into the marginal log-likelihoods and the copula composite log-likelihood. We use

this expression when comparing our joint density models in our empirical work below.7 ;8

CLh �
N�1X
i=1

logh (zi; zi+1) (18)

= log h1 (z1) + log hN (zN ) + 2

N�1X
i=1

log hi (zi) +

N�1X
i=1

log c (Hi (zi) ;Hi+1 (zi+1))

Secondly, notice that the expectation in the de�nition of cKLIC is with respect to the (complete)

true density g rather than the CL of the true density, which makes it possible to interpret cKLIC

as a linear combination of the ordinary KLIC of the submodels used in the CL:

Ic (g;h) =

N�1X
i=1

Eg(z)

�
log

gi (zi; zi+1)

hi (zi; zi+1)

�
=

N�1X
i=1

Egi(zi;zi+1)

�
log

gi (zi; zi+1)

hi (zi; zi+1)

�
(19)

The second equality holds since the expectation of a function of (Zi; Zi+1) only depends on the

bivariate distribution of those two variables, not the entire joint distribution. The above equation

shows that the cKLIC can be viewed as a linear combination of the ordinary KLICs of the submod-

els, which implies that existing in-sample model selection tests, such as those of Vuong (1989) for

iid data and Rivers and Vuong (2002) for time series, can be straightforwardly applied to model

selection using the cKLIC.9 To the best of our knowledge, combining the cKLIC with Vuong (1989)

or Rivers and Vuong (2002) tests is new to the literature.

We may also wish to select the best model in terms of out-of-sample (OOS) forecasting per-

formance measured by some scoring rule, S; for the model. Gneiting and Raftery (2007) de�ne

�proper�scoring rules as those which satisfy the condition that the true density always receives a

higher score, in expectation, than other densities. Gneiting and Raftery (2007) suggest that the

7 In our empirical work, we also include the pair (z1; zN ) in the �adjacent�composite likelihood so that all marginals
enter into the joint composite likelihood twice.

8Note that the marginal distribution models, hi, may include three estimation stages: the conditional means
(�xed at zero, or estimated by QLME), the conditional variances and corrrelations (estimated by QLME), and the
conditional densities of the standardized, uncorrelated, residuals (estimated by MLE). We describe these stages in
more detail in Section 3.3.

9We note that a model selection test based on the full likelihood could give a di¤erent answer to one based on a
composite likelihood. We leave the consideration of this possibility for future research.
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�natural�scoring rule is the log density, i.e. S (h (Z)) = logh (Z) ; and it can be shown that this

scoring rule is proper.10 We may consider a similar scoring rule based on log composite density:

S (h (Z)) =
N�1X
i=1

loghi (Zi; Zi+1) (20)

This scoring rule is shown to be proper in the following theorem.

Theorem 3 The scoring rule based on log composite density given in equation (20) is proper, i.e.

E

"
N�1X
i=1

loghi (Zi; Zi+1)

#
� E

"
N�1X
i=1

log gi (Zi; Zi+1)

#
(21)

where the expectation is with respect to the true density g, and gi and hi are the composite likelihoods

of the true density and the competing density respectively.

This theorem allows us to interpret OOS tests based on CL as being related to the cKLIC,

analogous to OOS tests based on the full likelihood being related to the KLIC. In our empirical

analysis below we employ a Giacomini and White (2006) test based on an OOS CL scoring rule.

3.3 Multi-stage estimation and inference

We next consider multi-stage estimation of models such as those de�ned by equations (1)-(3). We

consider general parametric models for the conditional mean and covariance matrix:

�t � � (Yt�1;�
mean) , Yt�1 2 Ft�1 (22)

Ht � H (Yt�1;�
var)

This assumption allows for a variety of models for the conditional mean, for example, ARMA,

VAR, linear and nonlinear regressions for the mean, and various conditional covariance models,

such as DCC, BEKK, and DECO, and stochastic volatility models (see Andersen, et. al (2006)

and Shephard (2005) for reviews) as well as the new model proposed in Section 2.2.

10The expectation of the log scoring rule is equal to the KLIC up to an additive constant. Since the KLIC measures
how close the density forecasts to the true density, the log scoring rule can be used as a metric to determine which
model is closer to the true density.
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The standardized uncorrelated residuals in equation (3) follow a parametric distribution:

et � iid F = C
�
F1 (�;�mar1 ) ; :::; FN (�;�marN ) ;�copula

�
(23)

where the marginal distributions Fi have zero mean, unit variance, and are symmetric about zero

and the copula C is jointly symmetric, which together ensures an identity correlation matrix for

et. The parametric speci�cation of �t; Ht; Fi and C theoretically enables the use of (one-stage)

maximum likelihood estimation, however, when N is large, this estimation strategy is not feasible,

and multi-stage ML (MSML) estimation is a practical alternative. We describe MSML estimation

in detail below. To save space �mean is assumed to be known in this section. (For example, it is

common to assume that daily returns are mean zero.)

The covariance model proposed in Section 2.2 allows for the separate estimation of the condi-

tional variances and the conditional correlation matrix, similar to the DCC model of Engle (2002)

which we also consider in our empirical application below. Thus we can decompose the parameter

�var into [�var1 ; : : : ;�varN ;�corr] ; and then represent the complete set of unknown parameters as

� �
h
�var1 . . . �varN �corr �mar1 . . . �marN �cop

i
: (24)

As usual for multi-stage estimation, we assume that each sub-vector of parameters is estimable in

just a single stage of the analysis, and we estimate the elements of � as follows:

�̂
var
i � argmax

�vari

TX
t=1

log lvarit (�vari ) ; i = 1; : : : ; N

�̂
corr � argmax

�corr

TX
t=1

log lcorrt

�
�̂
var
1 ; : : : ; �̂

var
N ;�corr

�
(25)

�̂
mar
i � argmax

�mari

TX
t=1

log lmarit

�
�̂
var
1 ; : : : ; �̂

var
N ; �̂

corr
;�mari

�
; i = 1; : : : ; N

�̂
cop � argmax

�cop

TX
t=1

log lcopt

�
�̂
var
1 ; : : : ; �̂

var
N ; �̂

corr
; �̂
mar
1 ; : : : ; �̂

mar
N ;�cop

�
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In words, the �rst stage estimates the N individual variance models based on QMLE; the next

stage uses the standardized returns to estimate the correlation model, using QMLE or a composite

likelihood method (as in Engle, et al., 2008); the third stage estimates the N marginal distributions

of the estimated standardized uncorrelated residuals; and the �nal stage estimates the copula of the

standardized residuals based on the estimated �probability integral transforms.�This �nal stage

may be maximum likelihood (if the copula is such that this is feasible) or composite likelihood, as

described in Section 3.1. We denote the complete vector of estimated parameters obtained from

these four stages as �̂MSML:

As is clear from the above, later estimation stages depend on previously estimated parame-

ters, and the accumulation of estimation error must be properly incorporated into standard error

calculations for �̂MSML. Multi-stage ML estimation (and, in particular, multi-stage ML with a

composite likelihood stage) can be viewed as a form of multi-stage GMM estimation, and under

standard regularity conditions, it can be shown (see Newey and McFadden, 1994, Theorem 6.1)

that
p
T
�
�̂MSML���

�
d! N (0; V �MSML) as T !1 (26)

Consistent estimation of V �MSML is theoretically possible, however in high dimensions it is not

computationally feasible. For example, the proposed model used in Section 5 for empirical analysis

has more than 1000 parameters, making V �MSML a very large matrix. An alternative is a bootstrap

inference method, see Gonçalves, et al. (2013) for conditions under which block bootstrap may

be used to obtain valid standard errors for multi-stage GMM estimators. Although this bootstrap

approach is not expected to yield any asymptotic re�nements, it allows us to avoid having to

compute a large Hessian matrix. The bootstrap procedure is as follows: (i) generate a bootstrap

sample of length T using a block bootstrap, such as the stationary bootstrap of Politis and Romano

(1994), to preserve time series dependence in the data; (ii) obtain �̂
(b)
MSML from the bootstrap

sample, (iii) repeat steps (i)-(ii) B times and use the quantiles of
n
�̂
(b)
MSML

oB
b=1
as critical values,

or use �=2 and (1� �=2) quantiles of
n
�̂
(b)
MSML

oB
b=1

to obtain (1� �) con�dence intervals for

parameters.
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4 Simulation study

4.1 Finite sample properties of MCLE for jointly symmetric copulas

In this section we use simulations to study the e¢ ciency loss from maximum composite likeli-

hood estimation (MCLE) relative to MLE, and we compare the e¢ ciency of the three composite

likelihoods presented in equations (12)�(14), namely �all pairs,��adjacent pairs,�and ��rst pair.�

We specify the data generating process as follows, based on some copula C and a set of inde-

pendent Bernoulli random variables:

~uit = Zituit + (1� Zit) (1� uit) , t = 1; 2; :::T (27)

where [u1t; :::; uNt] � ut s iid C (�)

and Zit s iid Bernoulli (1=2) , and Zit ? Zjt 8 i 6= j

We consider two choices for C; the Clayton copula and with parameter equal to one and the

Gumbel copula with parameter equal to two. We set T = 1000 and we consider dimensions

N = 2; 3; 5; 10; 20; :::; 100: We repeat all simulations 500 times.

We consider four di¤erent estimation methods: MLE, MCLE with all pairs (equation 12),

MCLE with adjacent pairs (equation 13), and MCLE with the �rst pair (equation 14). MLE is not

computationally feasible for N > 10, but the MCLEs are feasible for all dimensions considered.11

We report estimated run times for MLE for N � 20 to provide an indication of how long MLE

would take to complete in those dimensions.

Table 2 presents the simulation results for the Clayton copula, and the web appendix presents

corresponding results for the Gumbel copula. The average biases for all dimensions and for all

estimation methods are small relative to the standard deviations. The standard deviations show,

unsurprisingly, that MLE is more accurate than the three MCLEs; the e¢ ciency loss of MCLE

with �all pairs�to MLE is ranges from 5% to 37%. Among the three MCLEs, MCLE with all pairs

has the smallest standard deviations and MCLE with the �rst pair has the largest, as expected.

Comparing MCLE with adjacent pairs to MCLE with all pairs, we �nd that loss in e¢ ciency is

23% for N = 10; and 5% for N = 100, and computation speed is two times faster for N = 10 and

11Note that the four estimation methods are equivalent when N = 2; and so the results are identical in the top
row. Also note that the ��rst pair�MCLE results are identical across values of N; but we repeat the results down
the rows for ease of comparison with the other estimation methods.
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70 times faster for N = 100: For high dimensions, it is con�rmed that MCLE with adjacent pairs

performs quite well compared to MCLE with all pairs according to accuracy and computation time,

which is similar to results in Engle, et al. (2008) on the use of adjacent pairs in the estimation of

the DCC model.

In sum, MCLE is less e¢ cient than MLE but still approximately unbiased and very fast for

high dimensions. The accuracy of MCLE based only on adjacent pairs is similar to that of MCLE

with all pairs, especially for high dimensions, and the gains in computation time are large. For this

reason, we use MCLE with adjacent pairs for our empirical analysis in Section 5.

[INSERT TABLE 2 ABOUT HERE]

4.2 Finite sample properties of multi-stage estimation

Next we study multi-stage estimation for a representative model for daily asset returns. We assume:

rt = H
1=2
t et (28)

Ht � Cov [rtjFt�1]

et � iid F = C (F1 (�; �1) ; :::; FN (�; �N ) ;')

We set the mean return to zero, and we assume that the conditional covariance matrix,Ht; follows a

GARCH(1,1)-DCC model (see the web appendix for details of this speci�cation). We use parameter

values for these models based approximately on our empirical analysis in Section 5: we set the

GARCH parameters as [ i; �i; �i] = [0:05; 0:1; 0:85] 8 i, the DCC parameters as [�; �] = [0:02 0:95] ;

and we set the unconditional correlation matrix to equal the sample correlations of the �rst N

stock returns used in our empirical analysis. We use a standardized Student�s t distribution for the

marginal distributions of the standardized residuals, Fi, and set the degrees of freedom parameter

to six. We specify C as a jointly symmetric copula constructed via Theorem 1, using the Clayton

copula with parameter equal to one.

We estimate the model using the multi-stage estimation described in Section 3.3. The parame-

ters of GARCH for each variables are estimated via QML at the �rst stage, and the parameters

of the DCC model are estimated via variance targeting and composite likelihood with adjacent

pairs, see Engle, et al. (2008) for details. We use ML to estimate the marginal distributions of the
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standardized residuals, and �nally we estimate the copula parameters using MCLE with adjacent

pairs as explained in Section 3.1. We repeat this scenario 500 times with time series of length

T = 1000 and cross-sectional dimensions of N = 10; 50; and 100: Table 3 reports all parameter

estimates except Q. The columns for  i; �i; �i and �i report the summary statistics obtained from

500�N estimates since those parameters are the same across all variables.

[INSERT TABLE 3 ABOUT HERE]

Table 3 reveals that the estimated parameters are centered on the true values with the average

estimated bias being small relative to the standard deviation. As the dimension size increases,

the copula model parameters are more accurately estimated, which was also found in the previous

section. Since this copula model keeps the dependence between any two variables identical, the

amount of information on the unknown copula parameter increases as the dimension grows. The

average computation time is reported in the bottom row of each panel, and it indicates that multi-

stage estimation is quite fast: for example, it takes �ve minutes for the one hundred dimension

model, in which the total number of parameters to estimate is more than 5000.

To see the impact of estimation errors from the former stages to copula estimation, we compare

the standard deviations of the estimated copula parameters in Table 3 with the corresponding

results in Table 2. The standard deviation increases by about 30% for N = 10, and by about

19% for N = 50 and 100: The loss of accuracy caused by having to estimate the parameters

of the marginals is relatively small, given that more than 5000 parameters are estimated in the

former stages. We conclude that multi-stage estimation with composite likelihood results in a large

reduction in the computational burden (indeed, they make this estimation problem feasible using

current computing power) and yields reliable parameter estimates.

5 Empirical analysis of S&P 100 equity returns

In this section we apply our proposed multivariate distribution model to equity returns over the

period January 2006 to December 2012, a total of T = 1761 trade days. We study every stock

that was ever a constituent of the S&P 100 equity index during this sample, and which traded

for the full sample period, yielding a total of N = 104 assets. The web appendix contains a table

with the names of these 104 stocks. We obtain high frequency transaction data on these stocks
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from the NYSE TAQ database, and clean these data following Barndor¤-Nielsen, et al. (2009),

see Bollerslev, et al. (2014) for details. We adjust prices a¤ected by splits and dividends using

�adjustment�factors from CRSP. Daily returns are calculated using the log-di¤erence of the close

prices from high frequency data. For high frequency returns, log-di¤erences of �ve minute prices

are used and overnight returns are treated as the �rst return in a day.

5.1 Volatility models and marginal distributions

Table 4 presents the summary statistics of the data and the estimates of conditional mean model.

The top panel presents unconditional sample moments of the daily returns for each stock. Those

numbers broadly match values reported in other studies, for example, strong evidence for fat tails.

In the lower panel, the formal tests for zero skewness and zero excess kurtosis are conducted. The

tests show that only 3 stocks out of 104 have a signi�cant skewness, and all stocks have a signi�cant

excess kurtosis. For reference, we also test for zero pair-wise correlations, and we reject the null

for all pairs of asset returns. The middle panel shows the estimates of the parameters of AR(1)

models. Constant terms are estimated to be around zero and estimates of the AR(1) coe¢ cients

are slightly negative, both are consistent with values in other studies.

[INSERT TABLE 4 ABOUT HERE]

We estimate two di¤erent models for conditional covariance matrix: the HAR-type model de-

scribed in Section 2.2 and a GJR-GARCH�DCC model.12 The latter model uses daily returns, and

the former exploits 5-minute intra-daily returns;13 both models are estimated using quasi-maximum

likelihood. The estimates of HAR variance models are presented in Panel A of Table 5, and are

similar to those reported in Corsi (2009): coe¢ cients on past daily, weekly, and monthly realized

variances are around 0.38, 0.31 and 0.22. For the HAR-type correlation model, however, the co-

e¢ cient on past monthly correlations is the largest followed by weekly and daily. The parameter

estimates for the DCC model presented in Panel B are close to other studies of daily stock returns,

indicating volatility clustering, asymmetric volatility dynamics, and highly persistent time-varying

correlations. The bootstrap standard errors described in Section 3.3 are provided for the correlation

models, and they take into account the estimation errors of former stages.
12 In the interest of space, we report the details of this familiar speci�cation in the web appendix to this paper.
13We use the standard realized covariance matrix, see Barndor¤-Nielsen and Shephard (2004), in the HAR models,

and we do not try to correct for the (weak) AR dynamics captured in the conditional mean model.
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[INSERT TABLE 5 ABOUT HERE]

The standardized residuals are constructed as êt;M � Ĥ�1=2
t;M (rt � �̂t) whereM 2 fHAR;DCCg :

We use the spectral decomposition rather than the Cholesky decomposition to compute the square-

root matrix due to the former�s invariance to the order of the variables. Summary statistics on the

standardized residuals are presented in Panels A and B of Table 6.

Our proposed approach for modelling the joint distribution of the standardized residuals is

based on a jointly symmetric distribution, and thus a critical �rst step is to test for univariate

symmetry of these residuals. We do so in Panel D of Table 6. We �nd that we can reject the

null of zero skewness for only 4/104 and 6/104 series based on the HAR and DCC models. Thus

the assumption of symmetry appears reasonable for this data set.14 We also test for zero excess

kurtosis and we reject it for all 104 series for both volatility models. These two test results motivate

our choice of a standardized Student�s t distribution for the marginal distributions of the residuals.

Finally, as a check of our conditional covariance models, we also test for zero correlations between

the residuals. We �nd that we can reject this null for 9.2% and 0.0% of the 5356 pairs of residuals,

using the HAR and DCC models. Thus both models provide a reasonable estimate of the time-

varying conditional covariance matrix, although by this metric the DCC model would be preferred

over the HAR model.

Panel C of Table 6 presents the cross-sectional quantiles of 104 estimated degrees of freedom

parameters of standardized Student�s t distributions. These estimates range from 4.1 (4.2) at

the 5% quantile to 6.9 (8.3) at the 95% quantile for the HAR (DCC) model. Thus both sets of

standardized residuals imply substantial kurtosis, and, interestingly for the methods proposed in

this paper, substantial heterogeneity in kurtosis. A simple multivariate t distribution could capture

the fat tails exhibited by our data, but it imposes the same degrees of freedom parameter on all 104

series. Panel C suggests that this restriction is not supported by the data, and we show in formal

model selection tests below that this assumption is indeed strongly rejected.

[INSERT TABLE 6 ABOUT HERE]
14 If these tests indicated the presence of signi�cant asymmetry, then an alternative approach based on a combination

of the one presented here and that of Lee and Long (2009) might be employed: First, use the current approach for
the joint distribution of the variables for which symmetry is not rejected. Then use Lee and Long�s approach for
the joint distribution of the asymmetric variables. Finally combine the two sets of variables invoking the assumption
that the entire (N -dimensional) copula is jointly symmetric. As discussed in Section 2, such an approach will
be computationally demanding if the number of asymmetric variables is large, but this hybrid approach o¤ers a
substantial reduction in the computational burden if a subset of the variables are symmetrically distributed.
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5.2 Speci�cations for the copula

We next present the most novel aspect of this empirical analysis: the estimation results for a

selection of jointly symmetric copula models. Parameter estimates and standard errors for these

models are presented in Table 7. We consider four jointly symmetric copulas based on the t, Clayton,

Frank, and Gumbel copulas. The jointly symmetric copulas based on Clayton, Frank and Gumbel

are constructed using Theorem 1, and the jointly symmetric t copula is obtained simply by imposing

an identity correlation matrix for that copula.15 We compare our jointly symmetric speci�cations

with two well-known benchmark models: the independence copula and the multivariate Student�s

t distribution. The independence copula is a special case of a jointly symmetric copula, and there

is no parameter to estimate. The multivariate t distribution is what would be obtained if our

jointly symmetric t copula and all 104 univariate t distributions had the same degrees of freedom

parameter, and in this case there would be no gains to using Sklar�s theorem to decompose the

joint distribution of the residuals into marginal distributions and the copula. Note that while the

independence copula imposes a stronger condition on the copula speci�cation than the multivariate t

distribution, it does allow each of the marginal distributions to be possibly heterogeneous Student�s

t distributions, and so the ordering of these two speci�cations is not clear ex ante. This table also

reports bootstrap standard errors which incorporate accumulated estimation errors from former

stages. We follow steps explained in Section 3.3 to obtain these standard errors. The average block

length for the stationary bootstrap is set to 100.

[INSERT TABLE 7 ABOUT HERE]

The log-likelihoods of the complete model for all 104 daily returns are reported for each of the

models in Table 7, along with the rank of each model according to its log-likelihood, out of the

twelve competing speci�cations presented here. Comparing the values of the log-likelihoods, we

draw two initial conclusions. First, copula methods (even the independence copula) outperform

the multivariate t distribution, which imposes strong homogeneity on the marginal distributions

and the copula. Second, high frequency data improves the �t of all models relative to the use of

daily data: the best six performing models are those based on the HAR speci�cation.

15 It is important to note that the combination of a jointly symmetric t copula with the 104 univariate t marginal
distributions does not yield a multivariate t distribution, except in the special case that all 105 degrees of freedom
parameters are identical. We test that restriction below and �nd that it is strongly rejected.
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We next study the importance of allowing for nonlinear dependence. The independence cop-

ula assumes no nonlinear dependence, and we can test for the presence of nonlinear dependence

by comparing the remaining speci�cations with the independence copula. Since the four jointly

symmetric copulas and the multivariate t distribution all nest the independence copula,16 we can

implement this test as a simple restriction on an estimated parameter. The t-statistics for those

tests are reported in the bottom row of each panel of Table 7. Independence is strongly rejected

in all cases, and we thus conclude that there is substantial nonlinear cross-sectional dependence

in daily returns. While linear correlation and covariances are important for describing this vector

of asset returns, these results reveal that these measures are not su¢ cient to completely describe

their dependence.

Our model for the joint distribution of returns invokes an assumption that while linear de-

pendence, captured via the correlation matrix, is time-varying, nonlinear dependence, captured

through the distribution of the standardized residuals, is constant. We test this assumption by

estimating the parameters of this distribution (the copula parameter, and the parameters of the

104 univariate Student�s t marginal distributions) separately for the �rst and second half of our

sample period, and then test whether they are signi�cantly di¤erent. We �nd that 16 (19) of the

HAR (DCC) marginal distribution parameters are signi�cantly di¤erent at the 5% level, but none

of the copula parameters are signi�cantly di¤erent. Importantly, when we implement a joint test

for a change in the entire parameter vector, we �nd no signi�cant evidence (the p-values are both

0.99), and thus overall we conclude that this assumption is consistent with the data.17

We now turn to formal tests to compare the remaining, mostly non-nested, models. We consider

both in-sample and out-of-sample tests.

16The t copula and the multivariate t distribution nest independence at ��1 = 0; the Clayton and Frank jointly
symmetric copulas nest independence at � = 0; the Gumbel jointly symmetric copula nests independence at � = 1:
We note, however, that independence is nested on the boundary of the parameter space in all cases, which requires
a non-standard t test. The asymptotic distribution of the squared t -statistic no longer has �21 distribution under the
null, rather it follows an equal-weighted mixture of a �21 and �

2
0; see Gouriéroux and Monfort (1996, Ch 21). The

90%, 95%, and 99% critical values for this distribution are 1.28, 1.64, and 2.33 which correspond to t -statistics of
1.64, 1.96, and 2.58.
17An alternative approach to capturing time-varying nonlinear dependence could be to specify a generalized au-

toregressive score (GAS) model (Creal, et al., 2013) for these parameters. GAS models have been shown to work well
in high dimensions, see Oh and Patton (2013). We leave this interesting extension for future research.

24



5.3 Model selection tests

5.3.1 In-sample tests

As discussed in Section 3.2, the composite likelihood KLIC, (cKLIC) is a proper scoring rule,

and can be represented as a linear combination of bivariate KLICs, allowing us to use existing

in-sample model selection tests, such as those of Rivers and Vuong (2002). In a Rivers and Vuong

test comparing two models, A and B; the null and alternative hypotheses are:

H0 : E
�
CLAt (�

�
A)� CLBt (��B)

�
= 0 (29)

vs. H1 : E
�
CLAt (�

�
A)� CLBt (��B)

�
> 0

H2 : E
�
CLAt (�

�
A)� CLBt (��B)

�
< 0

where CLMt (�
�
M ) is the day t composite likelihood for the joint distribution from model M 2

fA;Bg ; and the expectation is taken with respect to the true, unknown, joint distribution. Rivers

and Vuong (2002) show that a simple t-statistic on the di¤erence between the sample averages of

the log-composite likelihood has the standard Normal distribution under the null hypothesis:

p
T
n
CL

A
T

�
�̂A

�
� CLBT

�
�̂B

�o
�̂T

! N (0; 1) under H0 (30)

where CL
M
T

�
�̂M

�
� 1

T

PT
t=1

PN�1
i=1 log h

M
i;i+1

�
zi;t; zi+1;t; �̂M

�
; for M 2 fA;Bg and �̂T is some

consistent estimator of V
hp

T
n
CL

A
T

�
�̂A

�
� CLBT

�
�̂B

�oi
; such as the HAC estimator of Newey

and West (1987).

Table 8 presents t-statistics from Rivers and Vuong (2002) model comparison tests. A positive

t-statistic indicates that the model above beats the model to the left, and a negative one indicates

the opposite. We �rst examine the bottom row of the upper panel to see whether the copula-based

models outperform the multivariate t distribution. The multivariate t distribution is widely used

as an alternative to the Normal distribution not only in the literature but also in practice due

to its thick tails and non-zero tail dependence. We observe that all t-statistics in that row are

positive and larger than 18, indicating strong support in favor of the copula-based models. This

outperformance is also achieved when the GARCH�DCC model using daily data is used (see the

right half of the bottom row of the lower panel).
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[INSERT TABLE 8 ABOUT HERE]

Next we consider model comparisons for the volatility models, to see whether a covariance

matrix model that exploits high frequency data provides a better �t than one based only on daily

data. The diagonal elements of the left half of the lower panel present these results, and in all cases

we �nd that the model based on high frequency data signi�cantly out-performs the corresponding

model based on lower-frequency data. In fact, all t-statistics in the left half of the lower panel

are positive and signi�cant, indicating that the worst high frequency model is better than the best

daily model. This is strong evidence of the gains from using high frequency data for capturing

dynamics in conditional covariances.

Finally, we identify the best-�tting model of all twelve models considered here. The fact that

all t-statistics in Table 8 are positive indicates that the �rst model listed in the top row is the best,

and that is the model based on the jointly symmetric t copula. This model signi�cantly beats all

alternative models. (The second-best model is based on the jointly symmetric Clayton copula.) In

Figure 3 we present the model-implied conditional correlation and the 1% quantile dependence, a

measure of lower-tail dependence,18 for one pair of assets in our sample, Citi Group and Goldman

Sachs, using the best model. The plot shows that the correlation between this pair ranges from 0.25

to around 0.75 over this sample period. The lower tail dependence implied by the jointly symmetric

t copula ranges from 0.02 to 0.34, with the latter indicating very strong lower-tail dependence.

[ INSERT FIGURE 3 ABOUT HERE]

5.3.2 Out of sample tests

We next investigate the out-of-sample (OOS) forecasting performance of the competing models.

We use the period from January 2006 to December 2010 (R = 1259) as the in-sample period, and

January 2011 to December 2012 (P = 502) as the out-of-sample period. We employ a rolling window

estimation scheme, re-estimating the model each day in the OOS period. We use the Giacomini and

White (2006) test to compare models based on their OOS composite likelihood. The implementation

of these tests is analogous to the Rivers and Vuong test described above. We note here that the

Giacomini and White test punishes complicated models that provide a good (in-sample) �t but are

18For two variables with a copula C; the q-quantile dependence measure is obtained as � q = C (q; q) =q; and is
interpretable as the probability that one of the variables will lie in the lower q tail of its distribution, conditional on
the other variable lying in its lower q tail.
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subject to a lot of estimation error. This feature is particularly relevant for comparisons of our

copula-based approaches, which have 104 extra parameters for the marginal distribution models,

with the multivariate t distribution, which imposes that all marginal distributions and the copula

have the same degrees of freedom parameter.19

Table 9 presents t-statistics from these pair-wise OOS model comparison tests, with the same

format as Table 8. The OOS results are broadly similar to the in-sample results, though with

somewhat lower power. We again �nd that the multivariate t distribution is signi�cantly beaten

by all competing copula-based approaches, providing further support for the models proposed in

this paper. We also again �nd strong support for the use of high frequency data for the covariance

matrix model, with the HAR-type models outperforming the daily GARCH-DCC models.

Comparing the independence copula with the jointly symmetric copulas we again �nd that the

independence copula is signi�cantly beaten, providing evidence for the out-of-sample importance

of modeling dependence beyond linear correlation. One di¤erence in Table 9 relative to Table 8

is in the signi�cance of the di¤erence in performance between the four jointly symmetric copulas:

we �nd that the jointly symmetric Gumbel copula is signi�cantly beaten by the t and the Clayton,

but neither of these latter two signi�cantly beats the other, nor the Frank copula. The jointly

symmetric t remains the model with the best performance, but it is not signi�cantly better than

the jointly symmetric Clayton or Frank models out of sample.

[INSERT TABLE 9 ABOUT HERE]

6 Conclusion

This paper proposes a new general model for high-dimensional distributions of asset returns that

utilizes mixed frequency data and copulas. We decompose dependence into linear and nonlinear

components, and exploit recent advances in the analysis of high frequency data to obtain more ac-

curate models for linear dependence, as measured by the covariance matrix, and propose a new class

of copulas to capture the remaining dependence in the low frequency standardized residuals. By

assigning two di¤erent tasks to high frequency data and copulas, we obtain signi�cantly improved

models for joint distributions. Our approach for obtaining jointly symmetric copulas generates
19Also note that the Giacomini and White (2006) test can be applied to nested and non-nested models, and so all

elements of Table 9 are computed in the same way. See Patton (2012) for more details on implementing in-sample
and out-of-sample tests for copula-based models.
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a rich set of models for studying the dependence of uncorrelated, but dependent, variables. The

evaluation of the density of our jointly symmetric copulas turns out to be computationally di¢ cult

in high dimensions, but we show that composite likelihood methods may be used to estimate the

parameters of the model and undertake model selection tests.

We employ our proposed models to study daily return distributions of 104 U.S. equities over the

period 2006 to 2012. We �nd that our proposed models signi�cantly outperform existing alternatives

both in-sample and out-of-sample. The improvement in performance can be attributed to three

main sources. Firstly, the use of a copula-based approach allows for the use of heterogeneous

marginal distributions, relaxing a constraint of the familiar multivariate t distribution. Secondly,

the use of copula models that allow for dependence beyond linear correlation, which relaxes a

constraint of the Normal copula, leads to signi�cant gains in �t. Finally, consistent with a large

extant literature, we �nd that linear dependence, as measured by the covariance matrix, can be

more accurately modelled by using high frequency data than using daily data alone.

Appendix: Proofs

The following two lemmas are needed to prove Lemma 2.

Lemma 3 Let fXigNi=1 be N continuous random variables with joint distribution F; marginal distributions

F1; ::; FN : Then fXigNi=1 is jointly symmetric about faig
N
i=1 if and only if

F (a1 + x1; ::; ai + xi; ::; aN + xN ) = F (a1 + x1; ::;1; ::; aN + xN ) (31)

�F (a1 + x1; ::; ai � xi; ::; aN + xN ) 8i

F (a1 + x1; : : : ;1; : : : ; aN + xN ) and F (a1 + x1; : : : ; ai � xi; : : : ; aN + xN ) mean that only the ith element

is 1 and ai� xi, respectively, and other elements are fa1 + x1; : : : ; ai�1 + xi�1; ai+1 + xi+1; : : : ; aN + xNg.

Proof. ()) By De�nition 1, the joint symmetry implies that the following holds for any i,

Pr [X1 � a1 � x1; ::; Xi � ai � xi; ::; XN � aN � xN ] = Pr [X1 � a1 � x1; ::; ai �Xi � xi; ::; XN � aN � xN ]

(32)
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and with a simple calculation, the right hand side of equation (32) is written as

Pr [X1 � a1 � x1; ::; ai �Xi � xi; : : : ; XN � aN � xN ] (33)

= Pr [X1 � a1 � x1; ::; Xi � 1; ::; XN � aN � xN ]� Pr [X1 � a1 � x1; ::; Xi � ai � xi; ::; XN � aN � xN ]

= F (a1 + x1; ::;1; ::; aN + xN )� F (a1 + x1; ::; ai � xi; ::; aN + xN )

and the left hand side of equation (32) is

Pr [X1 � a1 � x1; ::; Xi � ai � xi; ::; XN � aN � xN ] = F (a1 + x1; ::; ai + xi; ::; aN + xN )

(() Equation (31) can be written as

Pr [X1 � a1 � x1; ::; Xi � ai � xi; ::; XN � aN � xN ]

= Pr [X1 � a1 � x1; ::; Xi � 1; ::; XN � aN � xN ]� Pr [X1 � a1 � x1; ::; Xi � ai � xi; ::; XN � aN � xN ] 8i

and by equation (33), the right hand side becomes Pr [X1 � a1 � x1; ::; ai �Xi � xi; ::; XN � aN � xN ] :

Therefore

Pr [X1 � a1 � x1; ::; Xi � ai � xi; ::; XN � aN � xN ] = Pr [X1 � a1 � x1; ::; ai �Xi � xi; ::; XN � aN � xN ] 8i

and this satis�es the de�nition of joint symmetry.

Equation (31) provides a de�nition of joint symmetry for general CDFs. The corresponding de�nition

for copulas is given below.

De�nition 3 (Jointly symmetric copula) A N-dimensional copula C is jointly symmetric if it satis�es

C (u1; ::; ui; ::; uN ) = C (u1; ::; 1; ::; uN )�C (u1; ::; 1� ui; ::; uN ) 8 i (34)

where ui 2 [0; 1] 8 i: �C (u1; : : : ; 1; : : : ; uN )�and �C (u1; : : : ; 1� ui; : : : ; uN )�are taken to mean that the ith

element is 1 and 1� ui, respectively, and other elements are fu1; : : : ; ui�1; ui+1; : : : ; uNg.

Lemma 4 Consider two scalar random variables X1 and X2; and some constant b1 in R1. If (X1 � b1; X2)

and (b1 �X1; X2) have a common joint distribution, then Cov [X1; X2] = 0:

Proof. X1�b1 and b1�X1 have the same marginal distribution and the same moments, so E [X1 � b1] =

E [b1 �X1] ) E [X1] = b1: The variables (X1 � b1; X2) and (b1 �X1; X2) also have the same moments,
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so E [(X1 � b1)X2] = E [(b1 �X1)X2] ) E [X1X2] = b1E [X2] : Thus the covariance of X1 and X2 is

Cov [X1; X2] = E [X1X2]� E [X1]E [X2] = 0:

Proof of Lemma 1. Joint symmetry of (Xi; Xj) around (bi; bj) ; for i 6= j; is su¢ cient for Lemma 4

to hold. This is true for all pairs (i; j) of elements of the vector X; and so Corr [X] = I:

Proof of Lemma 2. ()) We follow Lemma 3 and rewrite equation (31) as

C (F1 (a1 + x1) ; ::; Fi (ai + xi) ; ::; FN (aN + xN ))

= C (F1 (a1 + x1) ; ::; 1; ::; FN (aN + xN ))�C (F1 (a1 + x1) ; ::; Fi (ai � xi) ; ::; FN (aN + xN )) 8i

and we know Fi (ai + xi) = 1� Fi (ai � xi) due to the assumption of the symmetry of each Xi: Therefore,

C (u1; ::; ui; ::; uN ) = C (u1; ::; 1; ::; uN )�C (u1; ::; 1� ui; ::; uN ) 8i

where ui � Fi (ai + xi) :

(() Following the reverse steps to above, equation (34) becomes equation (31), and the proof is done

by Lemma 3.

Proof of Theorem 1. We seek to show that CJS in equation (6) satis�es equation (34), i.e.:

CJS (u1; ::; ui; ::; uN ) = C
JS (u1; ::; 1; ::; uN )�CJS (u1; ::; 1� ui; ::; uN ) 8i

We �rst show this equality for i = N: Re-write equation (6) as

CJS (u1; ::; uN ) =
1

2N
�
C(�N) (u1; ::; uN�1; uN )�C(�N) (u1; ::; uN�1; 1� uN ) +C(�N) (u1; ::; uN�1; 1)

�

where C(�N) (u1; ::; uN�1; uN ) =
2X

k1=0

� � �
2X

kN�1=0

(�1)R(�N) �C (eu1; ::; euN�1; uN )

R(�N) �
N�1X
i=1

1 fki = 2g and eui =
8>>><>>>:

1 for ki = 0

ui for ki = 1

1� ui for ki = 2
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Then similarly re-write CJS (u1; ::; uN�1; 1) and CJS (u1; ::; uN�1; 1� uN ) to obtain:

CJS (u1; ::; uN�1; 1)�CJS (u1; ::; uN�1; 1� uN )

=
1

2N

264C(�N) (u1; ::; uN�1; 1)�C(�N) (u1; ::; uN�1; 0)| {z }
=0

+C(�N) (u1; ::; uN�1; 1)

375
� 1

2N
�
C(�N) (u1; ::; uN�1; 1� uN )�C(�N) (u1; ::; uN�1; uN ) +C(�N) (u1; ::; uN�1; 1)

�
=

1

2N
�
C(�N) (u1; ::; uN�1; uN )�C(�N) (u1; ::; uN�1; 1� uN ) +C(�N) (u1; ::; uN�1; 1)

�
= CJS (u1; ::; uN )

This equation holds similarly for all i = 1; : : : ; N � 1; so the proof is done.

Proof of Proposition 1. Let fFsgSs=1 be a collection of distributions jointly symmetric around a. By

Lemma 2 this implies

F (a+ x1; ::; a+ xi; ::; a+ xN ) = F (a+ x1; ::;1; ::; a+ xN )� F (a+ x1; ::; a� xi; ::; a+ xN ) 8i

Next let G (x) �
SX
s=1

!sFs (x) : Then

G (a+ x1; ::; a+ xi; ::; a+ xN )

=
SX
s=1

!sFs (a+ x1; ::; a+ xi; ::; a+ xN )

=
SX
s=1

!sF (a+ x1; ::;1; ::; a+ xN )�
SX
s=1

!sF (a+ x1; ::; a� xi; ::; a+ xN ) 8 i

� G (a+ x1; ::;1; ::; a+ xN )�G (a+ x1; ::; a� xi; ::; a+ xN ) 8 i

and thus G is jointly symmetric around a by Lemma 2. Claim (i) of the proposition is proved by noting

that joint symmetry reduces to (univariate) symmetry when N = 1. Claim (ii) is proven by noting that

if fFsgSs=1 all have Unif (0; 1) marginal distributions then they are all jointly symmetric copulas, and as

convex combinations of copulas are copulas, G is then a jointly symmetric copula.

To prove Theorem 2, we need the following lemma. Below we use M to denote the number of daily

observations for the DCC model, and the total number of intra-daily observations for the HAR-type model.

Lemma 5 If rank[y1; : : : ;yM ] � N;where ym 2 RN ; then
PM

m=1 ymy
0
m is positive de�nite.

Proof. Assume that
PM

m=1 ymy
0
m is only positive semi-de�nite. Then there exists a nonzero vector

x 2RN such that x0
�PM

m=1 ymy
0
m

�
x = 0; and this implies x0 � ym = 0 for any m. On the other hand, if
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rank[y1; : : : ;yM ] � N; then [y1; : : : ;yM ] span RN ; which implies there exist f�igMi=1 such that

�1y1 + :::+ �MyM = x:

Premultiplying by x0 gives �1x
0y1 + :::+ �Mx

0yM = x0x:

The left hand side is zero since x0 �ym = 0 for any m; which contradicts that x is a nonzero vector. Therefore,PM
m=1 ymy

0
m is positive de�nite.

Proof of Theorem 2. First we note that equation (10) is guaranteed to yield a positive variance

forecast, and so the diagonal matrix of variance forecasts is positive de�nite. Given the fact that if matrices U

and V are positive de�nite, then UV U is also positive de�nite, we just need to establish positive de�niteness

of the correlation matrix forecast \RCorr�t below. Substituting
�
â; b̂; ĉ

�
for (a; b; c) in equation (11), and

undoing the �vech�operation, we obtain \RCorr�t :

\RCorr�t = RCorr�T

�
1� â� b̂� ĉ

�
+ â �RCorr�t�1 + b̂ �

1

4

5X
k=2

RCorr�t�k + ĉ �
1

15

20X
k=6

RCorr�t�k

The �rst term is positive de�nite since RCorr�T is positive de�nite by Lemma 5 if the number of days multi-

plied by the intra-day frequency is greater than N and
�
1� â� b̂� ĉ

�
is greater than zero by assumption.

The other three terms are positive semi-de�nite by the positive semi-de�niteness of realized correlation and

the assumption that
h
â; b̂; ĉ

i
� 0: Thus \RCorr�t is positive de�nite.

Proof of Proposition 2. We obtain the marginal copula density by �rst obtaining the marginal copula

CDF. Recall that a the (i; j) bivariate copula CDF implied by an N -dimensional copula CDF is obtained by

setting all arguments of the original copula to 1, except i and j:

Cij (ui; uj) = C (1; :::; 1; ui; uj ; 1; :::1) (35)

For jointly symmetric copulas generated using equation (6) this implies

CJSij (ui; uj) = CJS (1; :::; 1; ui; uj ; 1; :::1)

=
1

2N

2X
j1=0

� � �
2X

jN=0

(�1)R �C (eu1; ::; euN )
=

1

2N

1X
k1=0

� � �
2X

ki=0

2X
kj=0

� � �
1X

kN=0

(�1)R �C (eu1; ::; euN )
since um = 1 8m =2 fi; jg ; and so eum = 0 whenever km = 2; and C = 0 whenever any one of its arguments
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is equal to zero. Then

CJSij (ui; uj) =
1

2N
2N�2

2X
ki=0

2X
kj=0

(�1)R �Cij (eui; euj) = 1

4

2X
ki=0

2X
kj=0

(�1)R �Cij (eui; euj)
since eum = 1 for km = 0 or km = 1, for all m =2 fi; jg : Expanding above we obtain

CJSij (ui; uj) =
1

4
f2ui + 2uj � 1 +Cij (ui; uj)�Cij (ui; 1� uj)�Cij (1� ui; uj) +Cij (1� ui; 1� uj)g ;

and then taking the second cross partial derivative we �nd

cJSij (ui; uj) �
@2CJSij (ui; uj)

@ui@uj
=
1

4
fcij (ui; uj) + cij (ui; 1� uj) + cij (1� ui; uj) + cij (1� ui; 1� uj)g

as claimed.

Proof of Theorem 3. By applying log (y) � y � 1 to hi(Zi;Zi+1)
gi(Zi;Zi+1)

, the following is shown:

N�1X
i=1

Eg(z)

�
log

hi (Zi; Zi+1)

gi (Zi; Zi+1)

�
�

N�1X
i=1

�
Eg(z)

�
hi (Zi; Zi+1)

gi (Zi; Zi+1)

�
� 1
�

=
N�1X
i=1

�
Egi(zi;zi+1)

�
hi (Zi; Zi+1)

gi (Zi; Zi+1)

�
� 1
�

�
N�1X
i=1

�Z
gi (zi; zi+1)

hi (zi; zi+1)

gi (zi; zi+1)
dzidzi+1 � 1

�
= 0

where the second line holds since only submodel for (Zi; Zi+1) is needed to evaluate the above expectation,

and the third line holds since hi is a valid density. Thus E
hPN�1

i=1 loghi (Zi; Zi+1)
i
� E

hPN�1
i=1 log gi (Zi; Zi+1)

i
as claimed.
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Table 1: Computation times for jointly symmetric copulas

N 10 20 30 50 100

Full likelihood 0:23 sec 4 min 70 hours 106 years 1017 years
Composite likelihood using all pairs 0:05 sec 0:21 sec 0:45 sec 1:52 sec 5:52 sec
Composite likelihood using adjacent pairs 0:01 sec 0:02 sec 0:03 sec 0:06 sec 0:11 sec
Composite likelihood using �rst pair 0:001 sec 0:001 sec 0:001 sec 0:001 sec 0:001 sec

Note: Computation times for one evaluation of the density of jointly symmetric copula based
on the Clayton copula. These times are based actual computation times for a single evaluation
of an N -dimension Clayton copula, multiplied by the number of rotations required to obtain the
jointly symmetric copula likelihood

�
2N
�
or composite likelihood based on all pairs (2N (N � 1)) ;

adjacent pairs (4 (N � 1)) ; or a single pair (4) :
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Table 3: Simulation results for multi-stage estimation

Variance Correlation Marginal Copula
Const ARCH GARCH DCC � DCC � t dist JS Clayton

 i �i �i � � �i '

True value 0.05 0.10 0.85 0.02 0.95 6.00 1.00

N = 10

Bias 0.0123 0.0007 -0.0162 -0.0012 -0.0081 0.1926 -0.0122
Std 0.0442 0.0387 0.0717 0.0060 0.0277 1.1023 0.0650
Median 0.0536 0.0959 0.8448 0.0184 0.9459 5.9837 0.9920
90% 0.1027 0.1478 0.9015 0.0263 0.9631 7.5215 1.0535
10% 0.0271 0.0580 0.7619 0.0119 0.9196 5.0559 0.9165
90-10 Di¤ 0.0756 0.0898 0.1397 0.0144 0.0435 2.4656 0.1370
Time/rep. 54 sec

N = 50

Bias 0.0114 0.0012 -0.0149 -0.0018 -0.0051 0.1880 -0.0136
Std 0.0411 0.0412 0.0687 0.0040 0.0111 1.0936 0.0390
Median 0.0529 0.0958 0.8454 0.0179 0.9458 6.0000 0.9880
90% 0.1019 0.1499 0.9025 0.0234 0.9580 7.5223 1.0312
10% 0.0268 0.0567 0.7615 0.0135 0.9313 5.0454 0.9413
90-10 Di¤ 0.0751 0.0931 0.1410 0.0098 0.0267 2.4769 0.0899
Time/rep. 138 sec

N = 100

Bias 0.0119 0.0017 -0.0158 -0.0020 -0.0041 0.1813 -0.0133
Std 0.0419 0.0404 0.0691 0.0034 0.0094 1.0748 0.0362
Median 0.0533 0.0966 0.8440 0.0177 0.9467 6.0002 0.9886
90% 0.1025 0.1504 0.9022 0.0223 0.9566 7.4963 1.0244
10% 0.0270 0.0576 0.7607 0.0139 0.9337 5.0492 0.9432
90-10 Di¤ 0.0756 0.0928 0.1415 0.0084 0.0229 2.4471 0.0811
Time/rep. 329 sec

Note: This table presents the results from 500 simulations of multi-stage estimation of the
model described in Section 3.3. The sample size is T = 1000 and cross-sectional dimensions are
N = 10; 50; and 100. The �rst row of each panel presents the average di¤erence between the
estimated parameter and its true value. The second row presents the standard deviation in the
estimated parameters. The third, fourth and �fth rows present the 50th, 90th and 10th percentiles
of the distribution of estimated parameters, and the �nal row presents the di¤erence between the
90th and 10th percentiles.
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Table 4: Summary statistics and conditional mean estimates

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Panel A: Summary statistics
Mean 0.0002 -0.0006 0.0001 0.0002 0.0004 0.0006
Std dev 0.0219 0.0120 0.0159 0.0207 0.0257 0.0378
Skewness -0.0693 -0.6594 -0.3167 -0.0318 0.1823 0.5642
Kurtosis 11.8559 6.9198 8.4657 10.4976 13.3951 20.0200
Corr 0.4666 0.3294 0.4005 0.4580 0.5230 0.6335

Panel B: Conditional mean
Constant 0.0002 -0.0006 0.0000 0.0002 0.0004 0.0006
AR(1) -0.0535 -0.1331 -0.0794 -0.0553 -0.0250 0.0105

Panel C: Test for skewness, kurtosis, and correlation

# of rejections
H0 : Skew [rit] = 0 3 out of 104
H0 : Kurt [rit] = 3 104 out of 104
H0 : Corr [rit; rjt] = 0 5356 out of 5356

Note: Panel A presents summary statistics on the daily equity returns used in the empirical
analysis. The columns present the mean and quantiles from the cross-sectional distribution of the
measures listed in the rows. Panel B presents the parameter estimates for AR(1) models of the
conditional means of returns. Panel C shows the number of rejections at the 5% level for tests of
zero skewness, zero excess kurtosis, and zero cross-correlation for the 104 stocks under 5% level.
(The total number of pairs of stocks is 5356.)
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Table 5: Conditional covariance model parameter estimates

Panel A: HAR-type models based on 5-min returns

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Variance models
Constant �(const)i -0.0019 -0.0795 -0.0375 -0.0092 0.0207 0.1016

HAR day �(day)i 0.3767 0.3196 0.3513 0.3766 0.3980 0.4414

HAR week �(week)i 0.3105 0.2296 0.2766 0.3075 0.3473 0.3896

HAR month �(month)i 0.2190 0.1611 0.1959 0.2146 0.2376 0.2962

Est Std Err
Correlation model
HAR day (a) 0.1224 0.0079
HAR week (b) 0.3156 0.0199
HAR month (c) 0.3778 0.0326

Panel B: DCC models based on daily returns

Variance models
Constant  i � 104 0.0864 0.0190 0.0346 0.0522 0.0811 0.2781
ARCH �i 0.0252 0.0000 0.0079 0.0196 0.0302 0.0738
Asym ARCH �i 0.0840 0.0298 0.0570 0.0770 0.1015 0.1535
GARCH �i 0.9113 0.8399 0.9013 0.9228 0.9363 0.9573

Est Std Err
Correlation model
DCC ARCH (�) 0.0245 0.0055
DCC GARCH (�) 0.9541 0.0119

Note: Panel A presents summaries of the estimated HAR-type models described in Section 2.2
using 5-minute returns. Panel B presents summaries of the estimated GJR-GARCH�DCC models
using daily returns. The parameter estimates for variance models are summarized in the mean
and quantiles from the cross-sectional distributions of the estimates. The estimates for correlation
parts are reported with bootstrap standard errors which re�ect accumulated estimation errors from
former stages.
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Table 6: Summary statistics and marginal distributions
for the standardized residuals

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Panel A: HAR standardized residuals
Mean 0.0023 -0.0122 -0.0042 0.0016 0.0076 0.0214
Std dev 1.0921 0.9647 1.0205 1.0822 1.1423 1.2944
Skewness -0.1613 -1.5828 -0.4682 -0.0837 0.3420 0.7245
Kurtosis 13.1220 5.0578 6.8422 9.8681 16.0303 32.7210
Correlation 0.0026 -0.0445 -0.0167 0.0020 0.0209 0.0502

Panel B: GARCH-DCC standardized residuals
Mean 0.0007 -0.0155 -0.0071 0.0004 0.0083 0.0208
Std dev 1.1871 1.1560 1.1737 1.1859 1.2002 1.2240
Skewness -0.1737 -1.4344 -0.5293 -0.0307 0.2628 0.7920
Kurtosis 12.6920 5.0815 6.7514 10.1619 15.9325 28.8275
Correlation -0.0011 -0.0172 -0.0073 -0.0008 0.0053 0.0145

Panel C: Marginal t distribution parameter estimates
HAR 5.3033 4.1233 4.7454 5.1215 5.8684 6.8778

DCC 6.0365 4.2280 5.0314 5.9042 7.0274 8.2823

Panel D: Test for skewness, kurtosis, and correlation

# of rejections
HAR DCC

H0 : Skew [eit] = 0 4 out of 104 6 out of 104
H0 : Kurt [eit] = 3 104 out of 104 104 out of 104
H0 : Corr [eit; ejt] = 0 497 out of 5356 1 out of 5356

Note: Panel A presents summary statistics of the uncorrelated standardized residuals obtained
from the HAR-type model, and Panel B presents corresponding results based on the GARCH-
DCC model. Panel C presents the estimates of the parameters for the marginal distribution of
standardized residuals, obtained from the two volatility models. Panel D reports the number of
rejections, at the 5% level, for tests of zero skewness, zero excess kurtosis, and zero cross-correlation.
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Table 7: Estimation results for the copula models

Jointly symmetric copula models Benchmarks

t Clayton Frank Gumbel Indep MV t dist

HAR Est.
(s.e.)

39:4435
(4:3541)

0:0876
(0:0087)

1:2652
(0:0942)

1:0198
(0:0038)

- 6:4326y
(0:1405)

log L -282491 -282500 -282512 -282533 -282578 -284853
Rank 1 2 3 4 5 6
t-test of indep 8.45 10.07 13.43 5.25 - 45.72

DCC Est.
(s.e.)

28:2068
(5:4963)

0:1139
(0:0155)

1:5996
(0:1540)

1:0312
(0:0071)

- 7:0962y
(0:3586)

log L -289162 -289190 -289217 -289255 -289404 -291607
Rank 7 8 9 10 11 12
t-test of indep 6.13 7.36 10.36 4.40 - 17.80

Note: This table presents the estimated parameters of four di¤erent jointly symmetric copula
models based on t, Clayton, Frank, and Gumbel copulas, as well as the estimated parameter of
the (standardized) multivariate t distribution as a benchmark model. The independence copula
model has no parameter to estimate. Bootstrap standard errors are reported in parentheses. Also
reported is the log-likelihood from the complete distribution model formed by combining the copula
model with the HAR or DCC volatility model. (The MV t distribution is not based on a copula
decomposition, but its joint likelihood may be compared with those from copula-based models.)
The bottom row of each panel reports t-statistics for a test of no nonlinear dependence. yThe
parameter of the multivariate t distribution is not a copula parameter, but it is reported in this
row for simplicity.

43



Table 8: t-statistics from in-sample model comparison tests

HAR models GARCH-DCC models

tJS CJS FJS GJS Indep MV t tJS CJS FJS GJS Indep

HAR models
tJS �
CJS 2.92 �
FJS 2.16 1.21 �
GJS 5.38 6.02 1.75 �

Indep� 8.45 10.07 13.43 5.25 �
MV t 19.70y 19.52 19.45 19.23 18.40z �

GARCH-DCC models
tJS 7.86 7.85 7.85 7.84 7.82 6.92 �
CJS 7.86 7.86 7.85 7.85 7.83 6.93 4.48 �
FJS 7.85 7.85 7.84 7.83 7.82 6.91 2.69 1.27 �
GJS 7.88 7.87 7.87 7.86 7.84 6.94 6.74 7.47 1.74 �

Indep� 7.90 7.90 7.90 7.89 7.87 6.97 6.13 7.36 10.36 4.40 �
MV t 8.95 8.95 8.94 8.94 8.92 8.03 18.50y 18.11 17.94 17.60 15.69z

Note: This table presents t-statistics from pair-wise Rivers and Vuong (2002) model comparison
tests introduced in Section 3.2. A positive t-statistic indicates that the model above beat the model
to the left, and a negative one indicates the opposite. tJS ; CJS ; FJS ; and GJS stand for jointly
symmetric copulas based on t, Clayton, Frank, and Gumbel copulas respectively. �Indep� is the
independence copula. MV t is the multivariate Student�s t distribution. The upper panel includes
results for models that use 5-min data and the HAR-type covariance model introduced in Section
2.2, the lower panel includes results for models based on a GARCH-DCC covariance model. �The
comparisons of jointly symmetric copula-based models with the independence copula, reported in
the penultimate row of the top panel, and the right half of the penultimate row of the lower panel,
are nested comparisons and the Rivers and Vuong (2002) test does not apply. The t-statistics here
are the same as those in Table 7. yThe MV t density is nested in the density based on the jointly
symmetric t copula, and so strictly the Rivers and Vuong (2002) test does not apply, however it is
computationally infeasible to implement the formal nested test; we report the Rivers and Vuong
t-statistic here for ease of reference. zThe MV t density and the density based on the independence
copula are nested only at a single point, and we apply the Rivers and Vuong (2002) test here.
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Table 9: t-statistics from out-of-sample model comparison tests

HAR models GARCH-DCC models

tJS CJS FJS GJS Indep MV t tJS CJS FJS GJS Indep

HAR models
tJS �
CJS 1.50 �
FJS 0.89 0.44 �
GJS 2.88 3.09 1.21 �

Indep 2.57 2.60 2.34 1.84 �
MV t 10.75 10.63 10.65 10.48 10.00 �

GARCH-DCC models
tJS 5.23 5.23 5.23 5.23 5.22 4.55 �
CJS 5.23 5.23 5.23 5.23 5.22 4.55 1.55 �
FJS 5.23 5.22 5.23 5.22 5.21 4.55 1.79 1.34 �
GJS 5.24 5.24 5.24 5.23 5.22 4.56 2.96 3.31 0.01 �

Indep 5.24 5.24 5.24 5.23 5.22 4.56 3.10 3.12 2.38 2.44 �
MV t 6.05 6.05 6.05 6.05 6.04 5.41 14.65 14.33 14.56 13.88 12.80

Note: This table presents t-statistics from pair-wise comparisons of the out-of-sample likelihoods
of competing density forecasts based on the test of Giacomini and White (2006). A positive t-
statistic indicates that the model above beat the model to the left, and a negative one indicates the
opposite. tJS ; CJS ; FJS ; and GJS stand for jointly symmetric copulas based on t, Clayton, Frank,
and Gumbel copulas respectively. �Indep� is the independence copula. MV t is the multivariate
Student�s t distribution. The upper panel includes results for models that use 5-min data and the
HAR-type covariance model introduced in Section 2.2, the lower panel includes results for models
based on a GARCH-DCC covariance model.
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Figure 1: Iso-probability contour plots of joint distributions with standard Normal margins and
various copulas: the Clayton copula (� = 2), and its 90-, 180-, and 270-degree rotations (upper
panel), and an equal-weighted average of the four Clayton copulas (lower panel).
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Figure 2: Iso-probability contour plots of joint distributions with standard Normal margins and
various jointly symmetric copulas.
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Figure 3: Model-implied linear correlation (upper panel) and 1% quantile dependence (lower panel)
for daily returns on Citi Group and Goldman Sachs, based on the HAR-type model for the condi-
tional covariance matrix, and the jointly symmetric t copula model.
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S.A.1: The Dynamic Conditional Correlation (DCC) model

The DCC model by Engle (2002) decomposes the conditional covariance matrix Ht as:

Ht = DtRtDt (2)

where Dt = diag

�nq
�2i;t

oN
i=1

�
(3)

and then the conditional correlation matrix is assumed to follow:

Rt = diag (Qt)
�1=2Qtdiag (Qt)

�1=2 (4)

where Qt = (1� �� �)Q+ �
�
"t�1"

0
t�1
�
+ �Qt�1 (5)

and "t = D�1
t (rt � �t) (6)

and Q is the sample correlation matrix of "t:All that remains is to specify models for the individual

conditional variances, and for those we assume the GJR-GARCH model of Glosten, et al. (1993):

�2i;t =  i + �i
�
ri;t�1 � �i;t�1

�2
+ �i

�
ri;t�1 � �i;t�1

�2
1f(ri;t�1��i;t�1)<0g + �i�

2
i;t�1 (7)

The total number of parameters to estimate in this model is 4N +N (N � 1) =2 + 2:
Engle (2002) suggests estimating the model above using Gaussian quasi-maximum likelihood,

and we follow this for the volatility estimation stage. For the DCC estimation stage, Engle, et

al. (2008) �nd that when N is large the estimates of � and � may be biased due to the impact

of estimation error from estimating Q and they suggest the composite likelihood based estimator

based on bivariate likelihoods. We follow their suggestion and use composite likelihood for this

stage in Section 4.2 and 5.
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S.A.2: Additional material on jointly symmetric copulas

For added intuition, consider the bivariate case. Theorem 1 then shows that the jointly sym-

metric copula CDF is:

CJS (u1; u2) =
1

4

2X
k1=0

2X
k2=0

(�1)R �C (eu1; eu2)
=

1

4
[C (1; 1) +C (1; u2)�C (1; 1� u2)

+C (u1; 1)+C (u1; u2)�C (u1; 1� u2)

�C (1� u1; 1)�C (1� u1; u2) +C (1� u1; 1� u2)]

=
1

4
[C (u1; u2)�C (u1; 1� u2)�C (1� u1; u2) +C (1� u1; 1� u2) + 2u1 + 2u2 � 1]

using the fact that C (1; 1) = 1 and C (1; a) = C (a; 1) = a: The PDF is simply:

cJS (u1; u2) =
1

4
[c (u1; u2) + c (1� u1; u2) + c (u1; 1� u2) + c (1� u1; 1� u2)]

The PDF has the nice feature that no copula marginals need to be handled, while the CDF requires

keeping track of these, a task that gets more complicated in higher dimensions.

The CDF of a jointly symmetric copula constructed via rotations can also be expressed more

compactly using the multinomial formula. (We thank Bruno Rémillard for suggesting the following.)

Let (uA)i =

(
ui; i 2 Ac

1� ui; i 2 A
, i = 1; 2; ::; N

so A is the subset of the N variables that are rotated, and below we sum across all possible subsets

of these, of which there are 2N :

Then

CJS (u) =
1

2N

X
A�f1;:::;Ng

Pr [UA � u] =
1

2N

X
A
E

"Y
i2Ac

1 fUi � uig
Y
i2A

(1� 1 fUi � 1� uig)
#

=
1

2N

X
A

X
B�A

(�1)jBjE
"Y
i2Ac

1 fUi � uig
Y
i2B
1 fUi � 1� uig

#

=
1

2N

X
A

X
B�A

(�1)jBjC (uB;A)

where (uB;A)i =

8>><>>:
1� ui; i 2 B
ui; i 2 Ac

1; i 2 AnB
, i = 1; 2; :::; N:
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S.A.3 Additional tables and �gures

Table A1: 104 Stocks used in the empirical analysis

Ticker Name Ticker Name Ticker Name
AA Alcoa EMR Emerson Elec NOV National Oilwell
AAPL Apple ETR Entergy NSC Norfolk South
ABT Abbott Lab. EXC Exelon NWSA News Corp
AEP American Elec F Ford ORCL Oracle
ALL Allstate Corp FCX Freeport OXY Occidental Petrol
AMGN Amgen Inc. FDX Fedex PEP Pepsi
AMZN Amazon.com GD General Dynam PFE P�zer
AVP Avon GE General Elec PG Procter Gamble
APA Apache GILD Gilead Science QCOM Qualcomm Inc
AXP American Ex GOOG Google Inc RF Regions Fin
BA Boeing GS Goldman Sachs RTN Raytheon
BAC Bank of Am HAL Halliburton S Sprint
BAX Baxter HD Home Depot SBUX Starbucks
BHI Baker Hughes HNZ Heinz SLB Schlumberger
BK Bank of NY HON Honeywell SLE Sara Lee Corp.
BMY Bristol-Myers HPQ HP SO Southern Co.
BRKB Berkshire Hath IBM IBM SPG Simon property
C Citi Group INTC Intel T AT&T
CAT Caterpillar JNJ JohnsonJ. TGT Target
CL Colgate JPM JP Morgan TWX Time Warner
CMCSA Comcast KFT Kraft TXN Texas Inst
COF Capital One KO Coca Cola UNH UnitedHealth
COP Conocophillips LLY Lilly Eli UNP Union Paci�c
COST Costco LMT Lock�dMartn UPS United Parcel
CPB Campbell LOW Lowe�s USB US Bancorp
CSCO Cisco MCD MaDonald UTX United Tech
CVS CVS MDT Medtronic VZ Verizon
CVX Chevron MET Metlife Inc. WAG Walgreen
DD DuPont MMM 3M WFC Wells Fargo
DELL Dell MO Altria Group WMB Williams Co
DIS Walt Disney MON Monsanto WMT WalMart
DOW Dow Chem MRK Merck WY Weyerhauser
DVN Devon Energy MS MorganStanley XOM Exxon
EBAY Ebay MSFT Microsoft XRX Xerox
EMC EMC NKE Nike

Note: This table presents the ticker symbols and names of the 104 stocks used in the empirical
analysis of this paper.
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