
Finance and Economics Discussion Series
Divisions of Research & Statistics and Monetary Affairs

Federal Reserve Board, Washington, D.C.

Modelling Dependence in High Dimensions with Factor Copulas

Dong Hwan Oh and Andrew J. Patton

2015-051

Please cite this paper as:
Dong Hwan Oh and Andrew J. Patton (2015). “Modelling Dependence in
High Dimensions with Factor Copulas,” Finance and Economics Discussion Se-
ries 2015-051. Washington: Board of Governors of the Federal Reserve System,
http://dx.doi.org/10.17016/FEDS.2015.051.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.



Modelling Dependence in High Dimensions

with Factor Copulas�

Dong Hwan Ohy

Federal Reserve Board

Andrew J. Pattonz

Duke University

This version: 18 May 2015

Abstract

This paper presents �exible new models for the dependence structure, or copula, of economic variables

based on a latent factor structure. The proposed models are particularly attractive for relatively high di-

mensional applications, involving �fty or more variables, and can be combined with semiparametric marginal

distributions to obtain �exible multivariate distributions. Factor copulas generally lack a closed-form den-

sity, but we obtain analytical results for the implied tail dependence using extreme value theory, and we

verify that simulation-based estimation using rank statistics is reliable even in high dimensions. We consider

�scree�plots to aid the choice of the number of factors in the model. The model is applied to daily returns on

all 100 constituents of the S&P 100 index, and we �nd signi�cant evidence of tail dependence, heterogeneous

dependence, and asymmetric dependence, with dependence being stronger in crashes than in booms. We

also show that factor copula models provide superior estimates of some measures of systemic risk.
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1 Introduction

One of the many surprises from the �nancial crisis of late 2007 to 2008 was the extent to which assets

that had previously behaved mostly independently suddenly moved together. This was particularly

prominent in the �nancial sector, where poor models of the dependence between certain asset

returns (such as those on housing, and those related to mortgage defaults) are thought to be one of

the causes of the collapse of the market for CDOs and related securities, see Coval et al. (2009) and

Zimmer (2012) for example. Many models that were being used to capture the dependence between

a large number of �nancial assets were revealed as being inadequate during the crisis. However,

one of the di¢ culties in analyzing risks across many variables is the relative paucity of econometric

models suitable for the task. Correlation-based models, while useful when risk can be summarized

using the second moment, are often built on an assumption of multivariate Gaussianity, and face

the risk of neglecting dependence between the variables in the tails, i.e., neglecting the possibility

that large crashes may be correlated across assets.

This paper makes two primary contributions. First, we propose new models for the dependence

structure, or copula, of economic variables based on a latent factor structure, the use of which

makes them particularly attractive for relatively high dimensional applications, involving �fty or

more variables.1 These copula models may be combined with existing parametric, semiparamet-

ric, or nonparametric models for univariate distributions to construct �exible yet tractable joint

distributions for large collections of variables. The proposed copula models permit the researcher

to determine the degree of �exibility based on the number of variables and the amount of data

available. For example, by allowing for a fat-tailed common factor the model captures the possi-

bility of correlated crashes, and by allowing the common factor to be asymmetrically distributed

the model allows for the possibility that the dependence between the variables is stronger during

downturns than during upturns. By allowing for multiple common factors, it is possible to capture

heterogeneous pair-wise dependence within the overall multivariate copula. High dimension eco-

nomic applications often require some strong simplifying assumptions in order to keep the model

tractable, and an important feature of the class of proposed models is that such assumptions can

be made in an easily understandable manner, and can be tested and relaxed if needed.

1For recent work on high dimensional covariance matrix estimation, see Engle et al. (2008), Fan et al. (2008),

Engle and Kelly (2012), Fan et al. (2012) and Hautsch et al. (2012).
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Factor copulas do not generally have a closed-form density, but certain properties can neverthe-

less be obtained analytically. Using extreme value theory we obtain theoretical results on the tail

dependence properties for general factor copulas, and for the speci�c parametric class of factor cop-

ulas that we use in our empirical work. Given the lack of closed-form density, maximum likelihood

estimation for these copulas is di¢ cult, and we employ the simulation-based estimator proposed in

Oh and Patton (2013). In a supplemental appendix to this paper we verify that this estimator, and

its associated asymptotic distribution theory, has good �nite-sample properties even in dimensions

as high as 100, which is the relevant size given our empirical analysis. We also consider the use of

�scree�plots, based on eigenvalues of the variables�rank correlation matrix, to aid the choice of

the number of factors in the factor copula model.

The second contribution of this paper is a study of the dependence structure of all 100 con-

stituent �rms of the Standard and Poor�s 100 index, using daily data over the period 2008-2010.

This is one of the highest dimension applications of copula theory in the econometrics literature.

We �nd signi�cant evidence in favor of a fat-tailed common factor for these stocks (indicative of

non-zero tail dependence), implying that the Normal (or Gaussian) copula is not suitable for these

assets. Moreover, we �nd signi�cant evidence that the common factor is asymmetrically distrib-

uted, with crashes being more highly correlated than booms. Our empirical results suggest that

risk management decisions made using the Normal copula may be based on too benign a view of

these assets, and derivative securities based on baskets of these assets, e.g. CDOs, may be mispriced

if based on a Normal copula. The fact that large negative shocks may originate from a fat-tailed

common factor, and thus a¤ect all stocks at once, makes the diversi�cation bene�ts of investing in

these stocks lower than under Normality. In an application to estimating systemic risk, we show

that our factor copula model provides superior estimates of two measures of systemic risk.

Certain types of factor copulas have already appeared in the literature. The models we consider

are extensions of Hull and White (2004), in that we retain a simple linear, additive factor structure,

but allow for the variables in the structure to have �exibly speci�ed distributions. Other variations

on factor copulas are presented in Andersen and Sidenius (2004) and van der Voort (2005), who

consider certain non-linear factor structures, and in Laurent and Gregory (2005) and Rogge and

Schönbucher (2003), who present factor copulas for modelling times-to-default. See McNeil et al.

(2005, Chapter 9) for further discussion on similar applications. Krupskii and Joe (2013) also

propose a class of factor-vine copulas, where the factor structure is implied by the choice of copula
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linking each variable to the latent factor(s). With the exception of McNeil et al. (2005) and Krupskii

and Joe (2013), the papers to date have not considered estimation of the unknown parameters of

these copulas, instead examining calibration and derivatives pricing using these copulas. Our formal

analysis of the estimation of copulas of dimension as high as 100 is new to the literature.

Some methods for modelling high dimension copulas have previously been proposed in the

literature, though few consider dimensions greater than twenty.2 The Normal copula, see Li (2000)

amongst many others, is simple to implement but imposes the strong assumption of zero tail

dependence, and symmetric dependence between booms and crashes. The Student�s t copula and

variants are discussed in Demarta and McNeil (2005). The �grouped t�copula is proposed by Daul

et al. (2003), who apply this copula in analyses involving up to 100 variables. This copula allows

for heterogeneous tail dependence between pairs of variables, but imposes that upper and lower tail

dependence are equal, a �nding we strongly reject for equity returns. Smith et al. (2012) extract

the copula implied by a multivariate skew t distribution, and Christo¤ersen et al. (2012) combine

a skew t copula with a DCC model for conditional correlations in their study of 33 developed and

emerging equity market indices, and Christo¤ersen, et al. (2013) use the same model to study

233 equity returns and credit default swap spreads. Creal and Tsay (2014) propose a stochastic

copula model based on a factor structure, and use Bayesian estimation methods to apply it to an

unbalanced panel of CDS spreads and equity returns on 100 �rms. Archimedean copulas such as the

Clayton or Gumbel allow for tail dependence and particular forms of asymmetry, but usually have

only a one or two parameter(s) to characterize the dependence between all variables, and are thus

very restrictive in higher-dimension applications. �Vine� copulas are constructed by sequentially

applying bivariate copulas to build up a higher-dimension copula, see Aas et al. (2009), Min and

Czado (2010) and Almeida et al. (2012), for example, however vine copulas are almost invariably

based on an assumption that is hard to interpret and to test, see Acar et al. (2012) for a critique. In

our empirical application we compare our proposed factor models with several alternative existing

models, and show that our model outperforms them all in terms of goodness-of-�t and in an

application to measuring systemic risk.

The remainder of the paper is structured as follows. Section 2 presents the class of factor

copulas, derives their limiting tail properties, and considers some extensions and the use of �scree�

plots to guide the choice of the number of factors. Section 3 describes the simulated method

2For general reviews of copulas in economics and �nance see Cherubini, et al. (2004) and Patton (2012).
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of moments (SMM) estimation method we use. Section 4 presents an empirical study of daily

returns on individual constituents of the S&P 100 equity index over the period 2008-2010. An

appendix contains a discussion of the dependence measures used in estimation, and a supplemental

web appendix contains all proofs, and details of simulations used to study SMM estimation for

applications with dimensions as large as ours.

2 Factor copulas

For simplicity of exposition we focus on unconditional distributions in this section, and discuss the

extension to conditional distributions in the next section. Consider a vector of N variables, Y;

with some joint distribution Fy; marginal distributions Fi; and copula C :

[Y1; :::; YN ]
0 � Y s Fy= C (F1; :::; FN ) (1)

The copula completely describes the dependence between the variables Y1; :::; YN : We will use

existing models to estimate the marginal distributions Fi (which may be parametric, semiparametric

or nonparametric), and focus on constructing useful new models for the dependence between these

variables, C.3 Decomposing the joint distribution in this way has two important advantages over

considering the joint distribution Fy directly. First, it facilitates multi-stage estimation, which

is particularly useful in high dimension applications, where the sparseness of the data and the

potential proliferation of parameters can cause problems. Second, it allows the researcher to draw

on the large literature on models for univariate distributions, leaving �only�the task of constructing

a model for the copula, which is a simpler problem.

2.1 The copula of a latent factor structure

The class of copulas we consider are those that can be generated by the following factor structure,

based on a set of N +K latent variables:
3Although we treat estimation of the marginal distributions as separate from copula estimation, the inference

methods we consider do take estimation error from the marginal distributions into account.
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Let Xi =

KX
k=1

�ikZk + "i, i = 1; 2; :::; N

so [X1; :::; XN ]
0 � X = BZ+ " (2)

where "i s iid F" (
") ,

Zk s inid Fzk (
k) , Zk??"i 8 i; k:

Then X s Fx= C (G1 (�) ; :::; GN (�) ;�)

where � �
�
vec (B)0 ;
 0";


0
1; :::;


0
K

�0
: The copula of the latent variables X; denoted C (�) ; is used

as the model for the copula of the observable variables Y:4 An important point about the above

construction is that the marginal distributions of Xi may be di¤erent from those of the original

variables Yi; so Fi 6= Gi in general; we use the structure for the vector X only for its copula, and

completely discard the resulting marginal distributions. This is motivated by our desire to use

the dimension-reduction technique of imposing a factor structure only in the component of the

joint distribution that is di¢ cult to estimate in high dimensions, namely the copula. Marginal

distributions, on the other hand, are usually able to be estimated �exibly, given the amount of

time series data that is available in most �nancial applications. In our empirical application, for

example, we employ semiparametric models for the marginal distributions, thus allowing for great

�exibility, but impose a factor structure on the copula to avoid the �curse of dimensionality.�

The copula implied by equation (2) is generally not known in closed form. The leading case

where it is known is when fF"; Fz1 ; :::; FzKg are all Gaussian distributions, in which case the variable

X is multivariate Gaussian, implying a Gaussian copula. For other choices of fF"; Fz1 ; :::; FzKg the

joint distribution of X; and thus the copula of X; is generally not known in closed form. However,

it is simple to simulate from fF"; Fz1 ; :::; FzKg for many classes of distributions, and from simulated

data we can extract properties of the copula, such as rank correlation, Kendall�s tau, and quantile

4This method for constructing a copula model resembles the use of mixture models, e.g. the Normal-inverse

Gaussian or generalized hyperbolic distributions, where the distribution of interest is obtained by considering a

function of a collection of latent variables, see Barndor¤-Nielsen (1978, 1997), and McNeil, et al. (2005). It can

also be interpreted as a special case of the �conditional independence structure� of McNeil, et al. (2005), which is

used to describe a set of variables that are independent conditional on some smaller set of variables, X and Z in our

notation. The variables Z are sometimes known as the �frailty�, in the survival analysis and credit default literature,

see Du¢ e, et al. (2009) for example.
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dependence. These simulated rank dependence measures can then be used in the SMM estimation

method of Oh and Patton (2013), which is brie�y described in Section 3 below.

Key choices in specifying a factor copula include the following. Firstly, the distributions to

use for the common and idiosyncratic variables must be chosen. If simulation-based estimation

methods are to be used, then these distributions should be such that random draws from these are

easy to obtain. (This is true for most commonly-used distributions.) Secondly, as discussed in more

detail below, these distributions should be such that tail dependence and asymmetric dependence

(here taken to mean that �booms� have a di¤erent dependence structure to �crashes�) can be

captured. Finally, the number of factors to consider (K) must be speci�ed. Allowing for more than

a single factor adds much �exibility to the model, at a cost of a substantial increase in the number

of parameters. We discuss these choices empirically in Section 4.

2.2 Tail dependence properties of factor copulas

Although most factor copulas will not have a closed-form expression, using results from extreme

value theory it is possible to obtain analytically results on the tail dependence implied by a given

factor copula model. These results are relatively easy to obtain, given the simple linear structure

generating the factor copula. Recall the de�nition of tail dependence for two variables Xi; Xj with

marginal distributions Gi, Gj :

�Lij � lim
q!0

Pr
h
Xi � G�1i (q) ; Xj � G�1j (q)

i
q

(3)

�Uij � lim
q!1

Pr
h
Xi > G�1i (q) ; Xj > G�1j (q)

i
1� q

That is, lower tail dependence measures the probability of both variables lying below their q quan-

tile, for q limiting to zero, scaled by the probability of one of these variables lying below their q

quantile. Upper tail dependence is de�ned analogously. In Proposition 1 below we present results

for a general single factor copula model:

Proposition 1 (Tail dependence for a factor copula) Consider the factor copula generated

by equation (2) with K = 1: Assume Fz and F" have regularly varying tails with a common tail
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index � > 0, i.e.,

Pr [Z > s] s AUz s
�� and Pr ["i > s] s AU" s

��, as s!1 (4)

Pr [Z < �s] s ALz s
�� and Pr ["i < �s] s AL" s

�� as s!1

where ALZ ; A
U
Z ; A

L
" and A

U
" are positive constants, and we write xs s ys if xs=ys ! 1 as s ! 1:

Then (a) if �i; �j > 0 the lower and upper tail dependence coe¢ cients are:

�Lij =
min

�
�i; �j

��
ALz

min
�
�i; �j

��
ALz +A

L
"

, �Uij =
min

�
�i; �j

��
AUz

min
�
�i; �j

��
AUz +A

U
"

(5)

(b) if �i; �j < 0 the lower and upper tail dependence coe¢ cients are:

�Lij =
min

�
j�ij ;

���j����AUz
min

�
j�ij ;

���j����AUz +AL" , �Uij =
min

�
j�ij ;

���j����ALz
min

�
j�ij ;

���j����ALz +AU" (6)

(c) if �i�j = 0 or (d) if �i�j < 0; the lower and upper tail dependence coe¢ cients are zero.

All proofs are presented in the supplemental appendix. This proposition shows that when the

coe¢ cients on the common factor have the same sign, and the common factor and idiosyncratic

variables have the same tail index, the factor copula generates upper and lower tail dependence. If

either Z or " is asymmetrically distributed, then the upper and lower tail dependence coe¢ cients

can di¤er, which provides this model with the ability to capture di¤erences in the probabilities of

joint crashes and joint booms. If Z has a thinner upper (for example) tail than lower tail, while

" is symmetric with the same tail index as Z�s lower tail, then upper tail dependence will be zero

while the lower tail dependence will generally be positive. When either of the coe¢ cients on the

common factor are zero, or if they have di¤ering signs, then the upper and lower tail dependence

coe¢ cients are both zero.

The above proposition considers the case that the common factor and idiosyncratic variables

have the same tail index; when these indices di¤er we obtain a boundary result: if the tail index of

Z is strictly greater than that of " and �i�j > 0 then tail dependence is one, while if the tail index

of Z is strictly less than that of " then tail dependence is zero.

In our empirical analysis in Section 4, we will focus on the Skew t distribution of Hansen (1994)

as a model for the common factor and the standardized t distribution for the idiosyncratic shocks.

Proposition 2 below presents the analytical tail dependence coe¢ cients for a factor copula based

on these distributions.
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Proposition 2 (Tail dependence for a Skew t-t factor copula) Consider the factor copula

generated by equation (2) with K = 1: If Fz = Skew t (�; �) and F" = t (�) ; then the tail in-

dices of Z and "i equal �; and the constants ALz ; A
U
z ; A

L
" and A

U
" from Proposition 1 are given

by:

ALz =
bc

�

�
b2

(� � 2) (1� �)2

��(�+1)=2
(7)

AUz =
bc

�

�
b2

(� � 2) (1 + �)2

��(�+1)=2
AL" = AU" =

c

�

�
1

� � 2

��(�+1)=2
where a = 4�c (� � 2) = (� � 1), b =

p
1 + 3�2 � a2, c = �

�
�+1
2

�
=
�
�
�
�
2

�p
� (� � 2)

�
: Given

Proposition 1 and the expressions for ALz ; A
U
z ; A

L
" and A

U
" above, we then obtain the tail dependence

coe¢ cients for this copula.

We next generalize Proposition 1 to consider a multi-factor copula model, which will prove

useful in our empirical application in Section 4.

Proposition 3 (Tail dependence for a multi-factor copula) Consider the factor copula gen-

erated by equation (2). Assume F", Fz1 ; :::; FzK have regularly varying tails with a common tail index

� > 0, and upper and lower tail coe¢ cients AU" ; A
U
1 ; ::; A

U
K and AL" ; A

L
1 ; ::; A

L
K : Then if �ik � 0 8

i; k, the lower and upper tail dependence coe¢ cients are:

�Lij =

XK

k=1
1
�
�ik�jk > 0

	
ALk�

�
ik�

�
L;ijk

AL" +
XK

k=1
ALk�

�
ik

(8)

�Uij =

XK

k=1
1
�
�ik�jk > 0

	
AUk �

�
ik�

�
U;ijk

AU" +
XK

k=1
AUk �

�
ik

where

��1Q;ijk �

8<: max
�
1; 
Q;ij�ik=�jk

	
; if �ik�jk > 0

1; if �ik�jk = 0
, for Q 2 fL;Ug (9)


Q;ij �

0@AQ" +XK

k=1
AQk �

�
jk

AQ" +
XK

k=1
AQk �

�
ik

1A1=�

, for Q 2 fL;Ug (10)
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The extensions to consider the case that some have opposite signs to the others can be accom-

modated using the same methods as in the proof of Proposition 1. In the one-factor copula model

the variables �L;ijk and �U;ijk can be obtained directly and are determined by min
�
�i; �j

	
; in the

multi-factor copula model these variables can be determined using equation (9) above, but do not

generally have a simple expression.

2.3 Illustration of some factor copulas

To illustrate the �exibility of the class of factor copulas, Figure 1 presents 1000 random draws from

bivariate distributions constructed using four di¤erent factor copulas. In all cases the marginal

distributions, Fi; are set to N (0; 1) ; and the variances of the latent variables in the factor copula

are set to �2z = �2" = 1; so that the common factor accounts for one-half of the variance of each Xi:

The �rst copula is generated from a factor structure with Fz = F" = N (0; 1) ; implying that the

copula is Normal. The second sets Fz = F" = t (4) ; generating a symmetric copula with positive

tail dependence. The third copula sets F" = N (0; 1) and Fz = Skew t (1;�0:25) ; corresponding

to a skewed Normal distribution. This copula exhibits asymmetric dependence, with crashes being

more correlated than booms, but zero tail dependence. The fourth copula sets F" = t (4) and

Fz = Skew t (4;�0:25) ; which generates asymmetric dependence and positive tail dependence.

Figure 1 shows that when the distributions in the factor structure are Normal or skewed Normal,

tail events tend to be uncorrelated across the two variables. When the degrees of freedom is set to 4,

on the other hand, we observe several draws in the joint upper and lower tails. When the skewness

parameter is negative, as in the lower two panels of Figure 1, we observe stronger clustering of

observations in the joint negative quadrant compared with the joint positive quadrant.

Figure 2 illustrates the di¤erences between copulas using a multivariate approach related to our

study of systemic risk below. Conditional on observing j out of 100 stocks crashing, we present

the expected number, or proportion, of the remaining (100 � j) stocks that will crash, a measure

based on Geluk et al. (2007) and Hartmann et al. (2006). De�ne:

N�
q �

XN

i=1
1 fUi � qg

and �q (j) = E
�
N�
q jN�

q � j
�
� j (11)

�q (j) � �q (j)

N � j

For this illustration we de�ne a �crash� as a realization in the lower 1/66 tail, corresponding to
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a once-in-a-quarter event for daily asset returns. We consider four copulas: the familiar Normal,

Student�s t (4) and Clayton copula, as well as the Skew t (4)-t (4) factor copula, all with parameters

chosen so that linear correlation of 1/2 is implied. The upper panel shows that as we condition

on more variables crashing, the expected number of other variables that will crash, �q (j) ; initially

increases, and peaks at around j = 30: At that point, the Skew t (4)-t (4) factor copula predicts that

around another 38 variables will crash, while under the Normal copula we expect only around 12

more variables to crash. As we condition on even more variables having crashed the plot converges

inevitably to zero (since conditioning on having observed more crashes, there are fewer variables

left to crash). The lower panel of Figure 2 shows that the expected proportion of remaining stocks

that will crash, �q (j) ; generally increases all the way to j = 99:5 This �gure illustrates some of

the features of dependence that are unique to high dimension applications, and further motivates

our proposal for a class of �exible, parsimonious models for such applications.

[ INSERT FIGURES 1 AND 2 ABOUT HERE ]

2.4 Guidance on choosing the number of factors

In this section we consider a graphical tool to obtain guidance on the choice of the number of factors

to include in a factor copula model, namely the famous �scree�plot of Cattell (1966). Given that

factor copula models are parametric, formal tests for the correct number of factors should exploit

that parametric structure, and in our empirical analysis below we use model speci�cation tests

described in the next section for this purpose. However, it is still of interest to have some prior

guidance on just how many common factors might reasonably be needed to describe the dependence.

A �scree� plot shows the eigenvalues of a covariance or correlation matrix from largest to

smallest, and it is commonly found that the number of factors is equal to the number of �large�

eigenvalues: Employing scree plots for factor copulas is made di¢ cult by the fact that we want to

apply them to the rank correlation matrix of the data, not the covariance matrix, and results for

the latter do not generally carry over to the former. Furthermore, the sampling variability of rank

correlations di¤ers from those of correlations, as the latter are (ratios of) moments while the former

are rank statistics.
5For the Normal copula this is not the case, however this is likely due to simulation error: even with the 10 million

simulations used to obtain this �gure, joint 1/66 tail crashes are so rare under a Normal copula that there is a fair

degree of simulation error in this plot for j � 80:
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In the proposition below we provide conditions under which scree plots can aid in the identi�-

cation of the number of factors in a factor copula. We discuss the assumptions below.

Proposition 4 Assume (1) Yt siid Fy, Fy and Fx from equations (1) and (2) are continuous, and

every bivariate marginal copula Cij of C has continuous partial derivatives with respect to ui and

uj ; (2) R̂LT = R̂T + op (1) ; where R̂LT and R̂T are the sample linear and rank correlation matrices

of fXgTt=1 ; and (3) the eigenvalues of BB0 are �large,� in the sense that they imply gK (R) > 1:

Let

K̂T = max
n
k : gk(R̂

y
T ) > 1

o
(12)

where R̂yT is the sample rank correlation matrix of fYtg
T
t=1 ; and gk (A) returns the kth-largest

eigenvalue of the matrix A:

(i) Under assumptions (1)�(2), Pr[K̂T � K]! 1 as T !1:

(ii) Under assumptions (1)�(3), Pr[K̂T = K]! 1 as T !1:

The �rst assumption above simply requires that the distributions and copulas are continuous,

and the iid part of this assumption can be relaxed by invoking assumption 2 of Oh and Patton

(2013) and then analyzing estimated standardized residuals rather than the original data. The

second assumption is stronger, requiring rank correlations and linear correlations to be �close.�

A su¢ cient condition for this is that the marginal distributions of X are Uniform, and in other

cases it may or may not be a reasonable approximation. In the supplemental appendix we present

evidence that this assumption holds very well for a variety of factor copula models based on t or

skew t distributions. If other distributions are considered, in particular those that are far from �bell

shaped,� it is possible that this assumption will not be plausible. If the copula is elliptical, then

Klüppelberg and Kuhn (2009) suggest using Kendall�s tau rather than Spearman�s rank correlation,

as the former is a known monotonic function of linear correlation for such copulas (see Fang, et

al. 2002), and assumption (2) is not needed. Elliptical copulas cannot accommodate asymmetric

dependence, which we �nd to be important in our empirical application, consistent with several

existing papers, and so we do not attempt to exploit that result.

With assumptions (1)�(2) we �nd that K̂T provides, asymptotically, a lower bound on the true

number of factors; it will miss factors that are such that gk(R) �1 for k 2 [1;K] : If N diverges

with T then this cannot happen and assumption (3) will hold automatically (see Chamberlain and

Rothschild, 1983, and Bai and Ng, 2002), while in our setting of �nite N this assumption may not
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hold. In such cases using a threshold of one provides a lower bound on the true number of factors.

In the web appendix we undertake a simulation study of K̂T based on realistic parameter values,

and we �nd that it correctly estimates the number of factors in 90% to 99% of simulations.

In Figure 3 we present four examples of scree plots for a single simulation from a factor copula

described in detail in the web appendix. In all cases we set N = 100 and T = 1000; and we vary the

number of factors, K:We see similar shapes to these plots in other applications, and we clearly see

how this sort of �gure might provide guidance on the choice of the number of factors: the �rst K

eigenvalues are large, and the remaining N �K eigenvalues gradually tail o¤. In two of these cases

(K = 2 and 4) the bound of one clearly �works�in the sense that it correctly separates the �rst K

from the remaining eigenvalues. In this simulation of the K = 1 case, the second eigenvalue is just

above one, due to sampling variability in the eigenvalue, and in this case K̂T would overestimate

the true number of factors. In the K = 8 case, we see that the bound of one almost �cuts o¤�the

eighth eigenvalue, which would lead to the underestimation of the true number of factors.

[ INSERT FIGURE 3 ABOUT HERE ]

2.5 Non-linear factor copula models

The class of factor copula models proposed in equation (2) can be generalized to more �exible factor

structures, by considering �link�functions that are not linear and additive. Consider the following

general one-factor structure:

Xi = h (Z; "i) , i = 1; 2; :::; N

Z s Fz, "i s iid F", Z??"i 8 i (13)

[X1; :::; XN ]
0 � X s Fx= C (G1; :::; GN )

for some function h : R2 ! R. This general structure allows us to nest a variety of well-known

copulas in the literature. Examples of copula models that �t in this framework are summarized

below:
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Copula h (Z; ") FZ F"

Normal Z + " N
�
0; �2z

�
N
�
0; �2"

�
Student�s t Z1=2" Ig (�=2; �=2) N

�
0; �2"

�
Skew t �Z + Z1=2" Ig (�=2; �=2) N

�
0; �2"

�
Gen hyperbolic 
Z + Z1=2" GIG (�; �;  ) N

�
0; �2"

�
Clayton (1 + "=Z)�� � (�; 1) Exp (1)

Gumbel � (logZ=")� Stable (1=�; 1; 1; 0) Exp (1)

where Ig represents the inverse gamma distribution, GIG is the generalized inverse Gaussian dis-

tribution, and � is the gamma distribution. The skew t and Generalized hyperbolic copulas listed

here are from McNeil et al. (2005, Chapter 5), the representation of a Clayton copula in this form

is from Cook and Johnson (1981) and the representation of the Gumbel copula is from Marshall

and Olkin (1988).

The above copulas all have closed-form densities via judicious combinations of the �link�func-

tion h and the distributions Fz and F": By removing this requirement and employing simulation-

based estimation methods to overcome the lack of closed-form likelihood, one can obtain a much

wider variety of models for the dependence structure. In this paper we will focus on linear, additive

factor copulas, and generate �exible models by �exibly specifying the distribution of the common

factor(s).

3 Simulation-based estimation of factor copulas

Factor copula models do not generally have a closed-form likelihood, making maximum likelihood

estimation di¢ cult. Oh and Patton (2013) propose an estimation method similar to the simulated

method of moments (SMM) which is readily applied in such cases. We adopt that estimation method

here, and brie�y describe it below. An extensive simulation study of this estimation method for

applications involving up to 100 variables is presented in the supplemental appendix.

The class of data generating processes (DGPs) covered by Oh and Patton (2013) is the same as

Chen and Fan (2006) and Rémillard (2010). This class allows each variable to have time-varying

conditional mean and variance, each governed by parametric models, with an unknown marginal dis-

tribution. The marginal distributions are estimated using empirical distribution function, making

14



the complete marginal distribution models dynamic and semiparametric. The conditional copula of

the data is assumed to belong to a parametric family and is assumed constant. The combination of

time-varying conditional means and variance and a constant conditional copula makes this model

similar in spirit to the �CCC�model of Bollerslev (1990). The DGP is then:

Yt = �t (�) + �t (�)�t

where �t (�) � [�1t (�) ; : : : ; �Nt (�)]
0 (14)

�t (�) � diag f�1t (�) ; : : : ; �Nt (�)g

�t � [�1t; : : : ; �Nt]
0 � iid F� = C (F1; : : : ; FN ;�)

where �t and �t are Ft�1-measurable and independent of �t. Ft�1 is the sigma-�eld generated by

fYt�1;Yt�2; : : :g. The r � 1 vector of parameters governing the dynamics of the variables, �; is

assumed to be
p
T -consistently estimable in a stage prior to copula estimation. If �0 is known, or

if �t and �t are constant, then the model becomes one for iid data. The copula is parameterized

by a p� 1 vector of parameters, �; which is estimated using the following approach.

The estimation method of Oh and Patton (2013) is closely related to SMM estimation, though it

is not strictly SMM, as the �moments�that are used in estimation are functions of rank statistics.

They propose estimating � based on the standardized residual
n
�̂t � ��1t (�̂)

h
Yt � �t(�̂)

ioT
t=1

and simulations from some parametric joint distribution, Fx (�) ; with implied copula C (�) : Let

~mS (�) be an m � 1 vector of dependence measures computed using S simulations from Fx (�),

fXsgSs=1 ; and let m̂T be the corresponding vector of dependence measures computed using the

standardized residuals f�̂tgTt=1. We discuss the empirical choice of which dependence measures to

match in the appendix.

The SMM estimator is then de�ned as:

�̂T;S � argmin
�2�

QT;S (�)

where QT;S (�) � g0T;S (�)ŴTgT;S (�) (15)

gT;S (�) � m̂T � ~mS (�)

and ŴT is some positive de�nite weight matrix, which may depend on the data. Under regularity

conditions, Oh and Patton (2013) show that if S=T ! 1 as T ! 1; the SMM estimator is
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consistent and asymptotically normal:
p
T
�
�̂T;S � �0

�
d! N (0;
0) as T; S !1 (16)

where 
0 =
�
G0
0W0G0

��1
G0
0W0�0W0G0

�
G0
0W0G0

��1
�0 � avar [m̂T ], G0 � r�g0 (�0) ; g0 (�) =p-limT;S!1 gT;S (�) and W0 =p-limT!1 ŴT : The

asymptotic variance of the estimator has the same form as in standard GMM applications, however

the components �0 and G0 require di¤erent estimation methods than in standard applications.

Oh and Patton (2013) also present the distribution of a test of the over-identifying restrictions (the

�J� test), which we will use for speci�cation testing in our empirical application.

Our empirical application below involves 100 variables, and it is well known that properties of

estimators can deteriorate as the dimension grows; Oh and Patton (2013) verify that their asymp-

totic theory provides a good approximation to �nite-sample behavior for applications involving only

up to ten variables. In the supplemental appendix we undertake an extensive simulation study of

this estimator in applications involving up to 100 variables. In brief, these simulations show that

the SMM estimator and its associated distribution theory continue to have satisfactory properties

in even in high-dimension applications: �nite-sample bias is small, con�dence intervals have good

coverage rates, and the J test has reasonable �nite-sample size. This provides reassurance for using

this estimator in our empirical application below.

4 High-dimension copula models for S&P 100 returns

Having proposed a new class of models for copulas in high dimensions and discussed their estimation,

we now apply these models to a di¢ cult empirical problem. We study of the dependence between

all 100 stocks that were constituents of the S&P 100 index in December 2010. Our sample period

is April 2008 to December 2010, a total of T = 696 trade days. The starting point for our sample

period was determined by the date of the latest addition to the S&P 100 index (Philip Morris Inc.),

which has had no additions or deletions since April 2008. The stocks in our study are listed in

Table 1, along with their 3-digit SIC codes, which we will use in part of our analysis below.

[ INSERT TABLE 1 ABOUT HERE]

Table 2 presents some summary statistics of the data used in this analysis. The top panel

presents sample moments of the daily returns for each stock. The means and standard deviations
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are comparable to those observed in other studies. The skewness and kurtosis coe¢ cients reveal a

substantial degree of heterogeneity in the shape of the distribution of these asset returns, motivating

our use of a nonparametric estimate (the empirical distribution function, EDF) in our analysis.

In the second panel of Table 2 we present information on the parameters of the AR(1)�GJR-

GARCH models, augmented with lagged market return information, that are used to �lter each of

the individual return series6:

rit = �0i + �1iri;t�1 + �mirm;t�1 + "it (17)

�2it = !i + �i�
2
i;t�1 + �i"

2
i;t�1 + 
i"

2
i;t�11 f"i;t�1 � 0g

+�mi"
2
m;t�1 + 
mi"

2
m;t�11 f"m;t�1 � 0g

We estimate the parameters of the mean and variance models using quasi maximum likelihood,

and we estimate the distribution of the standardized residuals using the EDF, which allows us to

nonparametrically capture skewness and excess kurtosis in the residuals, if present, and importantly

it allows these characteristics to di¤er across the 100 variables.

Our estimates of the parameters of these models are consistent with those reported in numerous

other studies, with a small negative AR(1) coe¢ cient found for most though not all stocks, and

with the lagged market return entering signi�cantly in 37 out of the 100 stocks. The estimated

GJR-GARCH parameters are strongly indicative of persistence in volatility, and the asymmetry

parameter, 
; in this model is positive for all but three of the 100 stocks in our sample, supporting

the wide-spread �nding of a �leverage e¤ect� in the conditional volatility of equity returns. The

lagged market residual is also found to be important for volatility in many cases, with the null that

�mi = 
mi = 0 being rejected at the 5% level for 32 stocks.

In the lower panel of Table 2 we present summary statistics for four measures of dependence

between pairs of standardized residuals: linear correlation, rank correlation, average upper and

lower 1% tail dependence (equal to (�0:99 + �0:01) =2), and the di¤erence in upper and lower 10%

tail dependence (equal to �0:90��0:10). The two correlation statistics measure the sign and strength

of dependence, the third and fourth statistics measure the strength and symmetry of dependence

in the tails. The two correlation measures are similar, and are 0.42 and 0.44 on average. Across all

6We considered GARCH (Bollerslev, 1986), EGARCH (Nelson, 1991), and GJR-GARCH (Glosten, et al., 1993)

models for the conditional variance of these returns, and for almost all stocks the GJR-GARCH model was preferred

according to the BIC.
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4950 pairs of assets the rank correlation varies from 0.37 to 0.50 from the 25th and 75th percentiles

of the cross-sectional distribution, indicating the presence of mild heterogeneity in the correlation

coe¢ cients. The 1% tail dependence measure is 0.06 on average, and varies from 0.00 to 0.07

across the inter-quartile range. The di¤erence in the 10% tail dependence measures is negative on

average, and indeed is negative for over 75% of the pairs of stocks, strongly indicating asymmetric

dependence between these stocks.

In Figure 4 we present the �scree� plot of eigenvalues of the rank correlation matrix of the

standardized residuals, motivated by the discussion in Section 2.4. This plot shows that the �rst

three eigenvalues are very large, all greater than four, indicating the presence of multiple common

factors in the copula. The next �ve eigenvalues are all appreciably above one, while the ninth

and tenth eigenvalues are just above one. Thus the estimator proposed in Proposition 4 would

suggest that 10 common factors are required, although taking estimation error into account we

might suspect that only eight are needed. We investigate these suggestions more formally below.

[ INSERT TABLE 2 AND FIGURE 4 ABOUT HERE]

4.1 Results from equidependence copula speci�cations

We now present our �rst empirical results on the dependence structure of these 100 stock returns:

the estimated parameters of eight di¤erent models for the copula. In this section we consider an

�equidependence�model, similar to the equicorrelation model of Engle and Kelly (2012), where we

assume a single common factor and impose that all assets have the same coe¢ cient on the common

factor. This is clearly a restrictive model, and we test whether it is rejected by the data below.

We consider four existing copulas: the Clayton copula, the Normal copula, the Student�s t cop-

ula, and the Skew t copula, with equicorrelation imposed on the latter three models (the Clayton

copula implies equicorrelation by construction), and four factor copulas, described by the distribu-

tions assumed for the common factor and the idiosyncractic shock: t-Normal, Skew t-Normal, t-t,

Skew t-t. All models are estimated using the SMM-type method described in Section 3. The value

of the SMM objective function at the estimated parameters, QSMM ; is presented for each model,

along with the p-value from the J-test of the over-identifying restrictions. Standard errors are based

on 1000 bootstraps to estimate �T;S ; and step size "T = 0:1 to compute Ĝ: The rank dependence

measures that are used in the SMM estimation of this model are presented in the appendix.
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Table 3 reveals that the coe¢ cient on the common factor, �; is estimated by all models to

be around 0:95, implying an average correlation coe¢ cient of around 0.47. The estimated inverse

degrees of freedom parameter in these models is around 1/25, and the standard errors on ��1 reveal

that this parameter is signi�cant7 at the 10% level for the three models that allow for asymmetric

dependence, but not signi�cant for the three models that impose symmetric dependence. The

asymmetry parameter, �; is signi�cantly negative in all models in which it is estimated, with t-

statistics ranging from -2.1 to -4.4. This implies that the dependence structure between these

stock returns is signi�cantly asymmetric, with large crashes being more likely than large booms.

Other papers have considered equicorrelation models for the dependence between large collections

of stocks, see Engle and Kelly (2012) for example, but empirically showing the importance of

allowing the implied common factor to be fat tailed and asymmetric is novel.

[ INSERT TABLE 3 ABOUT HERE ]

Figure 5 exploits the high-dimensional nature of our analysis, and plots the expected proportion

of �crashes� in the remaining (100� j) stocks, conditional on observing a crash in j stocks. We

consider a �crash� de�ned as a once-in-a-month (1/22, around 4.6%) event and as a once-in-a-

quarter (1/66, around 1.5%) event. We obtain pointwise (in j) 90% bootstrap con�dence intervals

for these estimates based on the theory in Rémillard (2010), see Patton (2012) for discussion. For

once-in-a-month crashes, the observed proportions track the Skew t-t factor copula well for j up

to around 25 crashes, and again for j of around 70. For j in between 30 and 65 the Normal

copula appears to �t quite well. For once-in-a-quarter crashes, displayed in the lower panel of

Figure 5, the empirical plot tracks that for the Normal copula well for j up to around 30, but for

j = 35 the empirical plot jumps and follows the Skew t-t factor copula. Thus it appears that the

Normal copula may be adequate for modeling moderate tail events, but a copula with greater tail

dependence (such as the Skew t-t factor copula) is needed for more extreme tail events. It is worth

noting, however, that we have few observations in our sample for these extreme tail events, and

7Note that the case of zero tail dependence corresponds to ��1z = 0; which is on the boundary of the parameter

space, implying that a standard t test is strictly not applicable. In such cases the squared t statistic no longer has

an asymptotic �21 distribution under the null, rather it is distributed as an equal-weighted mixture of a �
2
1 and �

2
0;

see Gourieroux and Monfort (1996, Ch 21). The 90% and 95% critical values for this distribution are 1.64 and 2.71,

which correspond to t-statistics of 1.28 and 1.65.
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thus the con�dence intervals are quite wide, making it di¢ cult to make precise statements about

relative �t.

[ INSERT FIGURE 5 ABOUT HERE ]

The last two columns of Table 3 report the value of the objective function (QSMM ) and the

p-value from a test of the over-identifying restrictions. The QSMM values reveal that the three

models that allow for asymmetry (Skew t copula, and the two Skew t factor copulas) out-perform

all the other models, and reinforce the above conclusion that allowing for a skewed common factor

is important for this collection of assets. The p-values, however, are near zero for all models,

indicating that none of them pass this speci�cation test. Two likely sources of these rejections

are the assumption of equidependence, which was shown in the summary statistics in Table 2 to

be questionable for this large set of stock returns, and the assumption of a single common factor,

which is not consistent with the �scree�plot in Figure 4. We relax both of these assumptions in

the next section.

4.2 Results from multi-factor copula speci�cations

In response to the rejection of the copula models based on equidependence, we now consider a

generalization to allow for heterogeneous dependence. We propose a multi-factor model that allows

for a common, market-wide, factor, and a set of industry factors. We use the �rst digit of Standard

Industrial Classi�cation (SIC) to form seven groups of stocks, see Table 1. The model we consider

is the copula generated by the following structure:

Xi = �S(i)Z0 + 
S(i)ZS(i) + "i, i = 1; 2; :::; 100

Z0 s Skew t (�; �) (18)

ZS s iid t (�) , S = 1; 2; :::; 7; ZS??Z0 8 S

"i s iid t (�) , i = 1; 2; :::; 100; "i??Zj 8 i; j

where S (i) is the SIC group for stock i: There are eight latent common factors in total in this

model, but any given variable is only a¤ected by two factors, simplifying its structure and reducing

the number of free parameters. Note here we impose that the industry factors and the idiosyncratic

shocks are symmetric, and only allow asymmetry in the market-wide factor, Z0: It is feasible to
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consider allowing the industry factors to have di¤ering levels of asymmetry, but we rule this out in

the interests of parsimony. We impose that all stocks in the same SIC group have the same factor

loadings, but allow stocks in di¤erent groups to have di¤erent factor loadings. This generates a

�block equidependence�model which greatly increases the �exibility of the model, but without

generating too many additional parameters to estimate. In total, this copula model has a total of

16 parameters, providing more �exibility than the 3-parameter equidependence model considered

in the previous section, but still more parsimonious (and tractable) than a completely unstructured

approach to this 100-dimensional problem.8

The results of this model are presented in Table 4. The Clayton copula is not presented here

as it imposes equidependence by construction, and so is not comparable to the other models. The

estimated inverse degrees of freedom parameter, ��1; is around 1/14, which is larger and more

signi�cant than for the equidependence model, indicating stronger evidence of tail dependence.

The asymmetry parameters are also larger (in absolute value) and more signi�cantly negative in

this more �exible model than in the equidependence model. It appears that when we add variables

that control for intra-industry dependence, (i.e., industry-speci�c factors) we �nd the market-wide

common factor is more fat tailed and left skewed than when we impose a single factor structure.

[ INSERT TABLE 4 ABOUT HERE ]

Focusing on our preferred Skew t-t factor copula model, the coe¢ cients on the market factor,

�i; range from 0.88 (for SIC group 2, Manufacturing: Food, apparel, etc.) to 1.25 (SIC group

1, Mining and construction), indicating the varying degrees of inter-industry dependence. The

coe¢ cients on the industry factors, 
i; measure the degree of additional intra-industry dependence,

beyond that coming from the market-wide factor. These range from 0.17 to 1.09 for SIC groups

3 and 1 respectively. Even for the smaller estimates, these are signi�cantly di¤erent from zero,

indicating the presence of industry factors beyond a common market factor. The intra- and inter-

industry rank correlations and tail dependence coe¢ cients implied by this model9 are presented

8We also considered a one-factor model that allowed for di¤erent factor loadings, generalizing the equidependence

model of the previous section but simpler than this multi-factor copula model. That model provided a signi�cantly

better �t than the equidependence model, but was also rejected using the J test of over-identifying restrictions, and

so is not presented here to conserve space.
9Rank correlations from this model are not available in closed form, and we use 50,000 simulations to estimate

these. Upper and lower tail dependence coe¢ cients are based on Propositions 2 and 3.
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in Table 5, and reveal the degree of heterogeneity and asymmetry that this copula captures: rank

correlations range from 0.39 (for pairs of stocks in SIC groups 1 and 5) to 0.72 (for stocks within

SIC group 1). The upper and lower tail dependence coe¢ cients further reinforce the importance of

asymmetry in the dependence structure, with lower tail dependence measures being substantially

larger than upper tail measures: lower tail dependence averages 0.82 and ranges from 0.70 to 0.99,

while upper tail dependence averages 0.07 and ranges from 0.02 to 0.74.

[ INSERT TABLE 5 ABOUT HERE ]

With this more �exible model we can test restrictions on the factor coe¢ cients, to see whether

the additional �exibility is required to �t the data. The p-values from these tests are in the bottom

rows of Table 4. Firstly, we can test whether all of the industry factor coe¢ cients are zero, which

reduces this model to a one-factor model with �exible weights. The p-values from these tests are

zero to four decimal places for all models, providing strong evidence in favor of including industry

factors. We can also test whether the market factor is needed given the inclusion of industry

factors by testing whether all betas are equal to zero, and as expected this restriction is strongly

rejected by the data. We further can test whether the coe¢ cients on the market and industry

factors are common across all industries, reducing this model to an equidependence model, and

this too is strongly rejected. Finally, we use the J test of over-identifying restrictions to check

the speci�cation of these models. Using this test, we see that the models that impose symmetry

are strongly rejected. The Skew t copula has a p-value of 0.04, indicating a marginal rejection,

and the Skew t-t factor copula performs best, passing this test at the 5% level, with a p-value

of 0.07. It is worth noting that even this multi-factor speci�cation is still restrictive, both in the

number of assumed factors, and in that it imposes equidependence within industry groups. If the

computational challenge of allowing for O (N) unknown parameters could be overcome, one would

expect the goodness-of-�t to improve. We leave such an extension for future work.

Thus it appears that a multi-factor model with heterogeneous weights on the factors, and that

allows for positive tail dependence and stronger dependence in crashes than booms, is needed to

�t the dependence structure of these 100 stock returns.
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4.3 Measuring systemic risk: Marginal Expected Shortfall

The recent �nancial crisis has highlighted the need for the management and measurement of sys-

temic risk, see Acharya et al. (2010) for discussion. Brownlees and Engle (2011) propose a measure

of systemic risk they call �marginal expected shortfall�, or MES. It is de�ned as the expected return

on stock i given that the market return is below some (low) threshold:

MESit = �Et�1 [ritjrmt < C] (19)

An appealing feature of this measure of systemic risk is that it can be computed with only a bivariate

model for the conditional distribution of (rit; rmt), and Brownlees and Engle (2011) propose a

semiparametric model based on a bivariate DCC-GARCH model to estimate it. A corresponding

drawback of this measure is that by using a market index to identify periods of crisis, it may overlook

periods with crashes in individual �rms. With a model for the entire set of constituent stocks,

such as the high dimension copula models considered in this paper, combined with standard AR-

GARCH type models for the marginal distributions, we can estimate the MES measure proposed

in Brownlees and Engle (2011), as well as alternative measures that use crashes in individual stocks

as �ags for periods of turmoil.10 For example, one might consider the expected return on stock i

conditional on k stocks in the market having returns below some threshold, a �kES�:

kESit = �Et�1
�
rit

�����XN

j=1
1 frjt < Cg

�
> k

�
(20)

Brownlees and Engle (2011) propose a simple method for ranking estimates of MES:

MSEi =
1

T

TX
t=1

(rit �MESit)
2 1 frmt < Cg (21)

RelMSEi =
1

T

TX
t=1

�
rit �MESit
MESit

�2
1 frmt < Cg

Corresponding metrics immediately follow for estimates of �kES�:

In Table 6 we present the MSE and RelMSE for estimates of MES and kES, for threshold choices

of -2% and -4%. We implement the model proposed by Brownlees and Engle (2011), as well as

their implementations of a model based on the CAPM, and one based purely on rolling historical

10Note that here we study 100 large cap �rms, which are in some ways relatively homogeneous. In the systemic

risk literature, a common question is whether crises in one subgroup of �rms (e.g., large �rms, or �nancial �rms) spill

over to another group (small �rms, or non-�nancial �rms). We do not pursue such a question here.
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information. Along with these, we present results for four copulas: the Normal, Student�s t; Skew t;

and Skew t-t factor copula, all with the multi-factor structure from Section 4.2 above. In the upper

panel of Table 6 we see that the Brownlees-Engle model performs the best for both thresholds under

the MSE performance metric, with the Skew t�t factor copula as the second-best performing model.

Under the Relative MSE metric, the factor copula is best performing model, for both thresholds,

followed by the Skew t copula. Like Brownlees and Engle (2011), we �nd that the worst-performing

methods under both metrics are the Historical and CAPM methods.

The lower panel of Table 6 presents the performance of various methods for estimating kES;

with k set to 30.11 This measure requires an estimate of the conditional distribution for the

entire set of 100 stocks, and thus the CAPM and Brownlees-Engle methods cannot be applied. We

evaluate the remaining �ve methods, and �nd that the Skew t�t factor copula performs the best for

both thresholds, under both metrics. Thus our proposed factor copula model for high dimensional

dependence allows us to gain some insights into the structure of the dependence between this large

collection of assets, and also provides improved estimates of measures of systemic risk.

[ INSERT TABLE 6 ABOUT HERE ]

5 Conclusion

While there are numerous bivariate copula speci�cations for applied researchers to use, there are

very few copula models for high dimension applications. This paper proposes new models for the

copula of economic variables based on a latent factor structure, which is particularly attractive for

high dimensional applications. This class of models allows the researcher to increase or decrease

the �exibility of the model according to the amount of data available and the dimension of the

problem, and, importantly, to do so in a manner that is easily interpreted and understood. The

factor copulas presented in this paper do not generally have a closed-form likelihood, but we use

extreme value theory to obtain new analytical results on the their implied tail dependence, and we

verify that simulation-based methods can reliably be used for estimation and speci�cation testing

in applications involving up to 100 variables.

11We choose this value of k so that the number of identi�ed �crisis�days is broadly comparable to the number of

such days for MES. Results for alternative values of k are similar.
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We employ our proposed factor copulas to study daily returns on all 100 constituents of the S&P

100 index over the period 2008-2010, and �nd signi�cant evidence of a skewed, fat-tailed common

factor, which generates asymmetric dependence and tail dependence. Using a multi-factor copula,

we �nd evidence of the importance of industry factors, which generates heterogeneous dependence.

We also consider an application to the estimation of systemic risk, and we show that the proposed

factor copula model provides superior estimates of two measures of systemic risk. An interesting

avenue for future research is to compare the various recently-proposed methods for modelling high-

dimensional dependence, such as Aas et al. (2009), Christo¤ersen, et al. (2013), Krupskii and Joe

(2013), Creal and Tsay (2014), and this paper, in terms of both statistical �t and various economic

measures of �t.
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Appendix: Choice of dependence measures for estimation

To implement the SMM estimator of these copula models we must �rst choose which dependence

measures to use in the SMM estimation. We draw on �pure� measures of dependence, in the

sense that they are solely a¤ected by changes in the copula, and not by changes in the marginal

distributions. For examples of such measures, see Joe (1997, Chapter 2) or Nelsen (2006, Chapter

5). Our preliminary studies of estimation accuracy and identi�cation lead us to use pair-wise rank

correlation, and quantile dependence with q = [0:05; 0:10; 0:90; 0:95] ; giving us �ve dependence

measures for each pair of variables.

Let �ij denote one of the dependence measures (i.e., rank correlation or quantile dependence at

di¤erent levels of q) between variables i and j; and de�ne the �pair-wise dependence matrix�:

D =

26666664
1 �12 � � � �1N

�12 1 � � � �2N
...

...
. . .

...

�1N �2N � � � 1

37777775 (22)

Where applicable, we exploit the (block) equidependence feature of the models in de�ning the

�moments�to match. For the equidependence model in Section 4.1, the model implies equidepen-

dence, and we use as �moments� the average of these �ve dependence measures across all pairs,

reducing the number of moments to match from 5N (N � 1) =2 to just 5:

�� � 2

N (N � 1)

N�1X
i=1

NX
j=i+1

�̂ij (23)

For the multi-factor copula model in Section 4.2, we exploit the fact that (a) all variables in

the same group exhibit equidependence, and (b) any pair of variables (i; j) in groups (r; s) has the

same dependence as any other pair (i0; j0) in the same two groups (r; s) : This allows us to average

all intra- and inter-group dependence measures. Consider the following general design, where we

have N variables, M groups, and km variables per group, where �Mm=1km = N . Then decompose
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the (N �N) matrix D into sub-matrices according to the groups:

D
(N�N)

=

26666664
D11 D0

12 � � � D0
1M

D12 D22 � � � D0
2M

...
...

. . .
...

D1M D2M � � � DMM

37777775 , where Dij is (ki � kj) (24)

Then create a matrix of average values from each of these matrices, taking into account the fact

that the diagonal blocks are symmetric:

D�
(M�M)

=

26666664
��11 ��12 � � � ��1m

��12 ��22 � � � ��2m
...

...
. . .

...

��1m ��2m � � � ��mm

37777775 (25)

where ��ss � 2

ks (ks � 1)
XX

�̂ij , avg of all upper triangle values in Dss

��rs =
1

krks

XX
�̂ij , avg of all elements in matrix Drs; r 6= s

Finally, create the vector of average measures
�
��
�
1; :::;

��
�
M

�
; where

��
�
i �

1

M

MX
j=1

��ij (26)

This gives as a total of M moments for each dependence measure, so 5M in total.
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Table 1: Stocks used in the empirical analysis

Ticker Name SIC Ticker Name SIC Ticker Name SIC
AA Alcoa 333 EXC Exelon 493 NKE Nike 302
AAPL Apple 357 F Ford 371 NOV National Oilwell 353
ABT Abbott Lab. 283 FCX Freeport 104 NSC Norfolk Sth 671
AEP American Elec 491 FDX Fedex 451 NWSA News Corp 271
ALL Allstate Corp 633 GD GeneralDynam 373 NYX NYSE Euronxt 623
AMGN Amgen Inc. 283 GE General Elec 351 ORCL Oracle 737
AMZN Amazon.com 737 GILD GileadScience 283 OXY OccidentalPetrol 131
AVP Avon 284 GOOG Google Inc 737 PEP Pepsi 208
AXP American Ex 671 GS GoldmanSachs 621 PFE P�zer 283
BA Boeing 372 HAL Halliburton 138 PG Procter&Gamble 284
BAC Bank of Am 602 HD Home Depot 525 QCOM Qualcomm Inc 366
BAX Baxter 384 HNZ Heinz 203 RF Regions Fin 602
BHI Baker Hughes 138 HON Honeywell 372 RTN Raytheon 381
BK Bank of NY 602 HPQ HP 357 S Sprint 481
BMY Bristol-Myers 283 IBM IBM 357 SLB Schlumberger 138
BRK Berkshire Hath 633 INTC Intel 367 SLE Sara Lee Corp. 203
C Citi Group 602 JNJ Johnson&J. 283 SO Southern Co. 491
CAT Caterpillar 353 JPM JP Morgan 672 T AT&T 481
CL Colgate 284 KFT Kraft 209 TGT Target 533
CMCSA Comcast 484 KO Coca Cola 208 TWX Time Warner 737
COF Capital One 614 LMT Lock�dMartn 376 TXN Texas Inst 367
COP Conocophillips 291 LOW Lowe�s 521 UNH UnitedHealth 632
COST Costco 533 MA Master card 615 UPS United Parcel 451
CPB Campbell 203 MCD MaDonald 581 USB US Bancorp 602
CSCO Cisco 367 MDT Medtronic 384 UTX United Tech 372
CVS CVS 591 MET Metlife Inc. 671 VZ Verizon 481
CVX Chevron 291 MMM 3M 384 WAG Walgreen 591
DD DuPont 289 MO Altria Group 211 WFC Wells Fargo 602
DELL Dell 357 PM Philip Morris 211 WMB Williams 492
DIS Walt Disney 799 MON Monsanto 287 WMT WalMart 533
DOW Dow Chem 282 MRK Merck 283 WY Weyerhauser 241
DVN Devon Energy 131 MS MorganStanley 671 XOM Exxon 291
EMC EMC 357 MSFT Microsoft 737 XRX Xerox 357
ETR ENTERGY 491

Description Num Description Num
SIC 1 Mining, construct. 6 SIC 5 Trade 8
SIC 2 Manuf: food, furn. 26 SIC 6 Finance, Ins 18
SIC 3 Manuf: elec, mach 25 SIC 7 Services 6
SIC 4 Transprt, comm�s 11 ALL 100

Notes: This table presents the ticker symbols, names and 3-digit SIC codes of the 100 stocks
used in the empirical analysis of this paper. The lower panel reports the number of stocks in each
1-digit SIC group.
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Table 2: Summary statistics

Cross-sectional distribution

Mean 5% 25% Median 75% 95%

Mean 0.0004 -0.0003 0.0001 0.0003 0.0006 0.0013
Std dev 0.0287 0.0153 0.0203 0.0250 0.0341 0.0532
Skewness 0.3458 -0.4496 -0.0206 0.3382 0.6841 1.2389
Kurtosis 11.3839 5.9073 7.5957 9.1653 11.4489 19.5939

�0 0.0004 -0.0004 0.0001 0.0004 0.0006 0.0013
�1 -0.0345 -0.2045 -0.0932 -0.0238 0.0364 0.0923
�m -0.0572 -0.2476 -0.1468 -0.0719 0.0063 0.1392
! � 1000 0.0126 0.0024 0.0050 0.0084 0.0176 0.0409
� 0.8836 0.7983 0.8639 0.8948 0.9180 0.9436
� 0.0240 0.0000 0.0000 0.0096 0.0354 0.0884

 0.0593 0.0000 0.0017 0.0396 0.0928 0.1628
�m 0.0157 0.0000 0.0000 0.0000 0.0015 0.0646

m 0.1350 0.0000 0.0571 0.0975 0.1577 0.3787

� 0.4155 0.2643 0.3424 0.4070 0.4749 0.5993
�s 0.4376 0.2907 0.3690 0.4292 0.4975 0.6143
(�0:99 + �0:01) =2 0.0572 0.0000 0.0000 0.0718 0.0718 0.1437
(�0:90 � �0:10) -0.0922 -0.2011 -0.1293 -0.0862 -0.0431 0.0144

Notes: This table presents some summary statistics of the daily equity returns data used in the
empirical analysis. The top panel presents simple unconditional moments of the daily return series.
The second panel presents summaries of the estimated AR(1)�GJR-GARCH(1,1) models estimated
on these returns. The lower panel presents linear correlation, rank correlation, average 1% upper
and lower tail dependence, and the di¤erence between the 10% tail dependence measures, computed
using the standardized residuals from the estimated AR�GJR-GARCH model. The columns present
the mean and quantiles from the cross-sectional distribution of the measures listed in the rows. The
top two panels present summaries across the N = 100 marginal distributions, while the lower panel
presents a summary across the N (N � 1) =2 = 4950 distinct pairs of stocks.
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Table 5: Rank correlation and tail dependence implied by a multi-factor copula model

SIC 1 SIC 2 SIC 3 SIC 4 SIC 5 SIC 6 SIC 7

Rank correlation
SIC 1 0:72
SIC 2 0:41 0:44
SIC 3 0:44 0:45 0:51
SIC 4 0:41 0:42 0:45 0:46
SIC 5 0:39 0:40 0:44 0:41 0:53
SIC 6 0:42 0:43 0:47 0:43 0:42 0:58
SIC 7 0:45 0:46 0:50 0:46 0:44 0:47 0:57

Lower n Upper tail dependence
SIC 1 0:99 n 0:74 0:02 0:07 0:02 0:03 0:09 0:13
SIC 2 0:70 0:70 n 0:02 0:02 0:02 0:02 0:02 0:02
SIC 3 0:92 0:70 0:92 n 0:07 0:02 0:03 0:07 0:07
SIC 4 0:75 0:70 0:75 0:75 n 0:02 0:02 0:02 0:02
SIC 5 0:81 0:70 0:81 0:75 0:81 n 0:03 0:03 0:03
SIC 6 0:94 0:70 0:92 0:75 0:81 0:94 n 0:09 0:09
SIC 7 0:96 0:70 0:92 0:75 0:81 0:94 0:96n 0:14

Notes: This table presents the dependence measures implied by the estimated skew t� t factor
copula model reported in Table 9. This model implies a block equidependence structure based on
the industry to which a stock belongs, and the results are presented with intra-industry dependence
in the diagonal elements, and cross-industry dependence in the o¤-diagonal elements. The top panel
present rank correlation coe¢ cients based on 50,000 simulations from the estimated model. The
bottom panel presents the theoretical upper tail depedence coe¢ cients (upper triangle) and lower
tail dependence coe¢ cients (lower triangle) based on Propositions 2 and 3.
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Table 6: Performance of methods for predicting systemic risk

MSE RelMSE

Cut-o¤ -2% -4% -2% -4%

Marginal Expected Shortfall (MES)

Brownlees-Engle 0.9961 1.2023 0.7169 0.3521
Historical 1.1479 1.6230 1.0308 0.4897
CAPM 1.1532 1.5547 0.9107 0.4623
Normal copula 1.0096 1.2521 0.6712 0.3420
t copula 1.0118 1.2580 0.6660 0.3325
Skew t copula 1.0051 1.2553 0.6030 0.3040
Skew t� t factor copula 1.0012 1.2445 0.5885 0.2954

k-Expected Shortfall (kES)

Historical 1.1632 1.6258 1.4467 0.7653
Normal copula 1.0885 1.4855 1.3220 0.5994
t copula 1.0956 1.4921 1.4496 0.6372
Skew t copula 1.0898 1.4923 1.3370 0.5706
Skew t� t factor copula 1.0822 1.4850 1.1922 0.5204

Notes: This table presents the MSE (left panel) and Relative MSE (right panel) for various
methods of estimating measures of systemic risk. The top panel presents results for marginal ex-
pected shortfall (MES ), de�ned in equation (19), and the lower panel presents results for k-expected
shortfall (kES ), de�ned in equation (20), with k set to 30. Two thresholds are considered, C = �2%
and C = �4%: There are 70 and 21 �event�days forMES under these two thresholds, and 116 and
36 �event�days for kES: The best-performing model for each threshold and performance metric is
highlighted in bold.
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Figure 1: Scatter plots from four bivariate distributions, all with N(0,1) margins and linear corre-
lation of 0.5, constructed using four di¤erent factor copulas.
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Figure 2: Conditional on observing j out of 100 stocks crashing, this �gure presents the expected
number (upper panel) and proportion (lower panel) of the remaining (100-j) stocks that will crash.
�Crash�events are de�ned as returns in the lower 1/66 tail.

39



0 10 20
0

1

2

3

K = 1

E
ig

en
va

lu
es

0 10 20
0

1

2

3

K = 2

0 10 20
0

1

2

3

K = 4

E
ig

en
va

lu
es

Largest to smallest

"Scree" plots f or f our simulations

0 10 20
0

1

2

3

K = 8

Largest to smallest

Figure 3: Each panel of this �gure shows the ordered eigenvalues of the sample rank correlation
matrix from a 100-dimensional factor copula with K common factors. In all cases the �rst eigen-
value is much larger than 3 and is cropped from the �gure, and the horizontal axis is truncated at
28 for clarity.
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Figure 4: Plot of the ordered eigenvalues of the sample rank correlation matrix of the estimated
standardized residuals. The largest eigenvalue is much larger than 5 and is truncated, and the
horizontal axis is truncated at 38 for clarity.
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Figure 5: Conditional on observing j out of 100 stocks crashing, this �gure presents the proportion
of the remaining (100-j) stocks that will crash. �Crash� events are de�ned as returns in the lower
1/22 (upper panel) and 1/66 (lower panel) tail. Note that the horizontal axes in these two panels
are di¤erent, due to the limited information in the joint tails.
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