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Abstract

This paper exploits variation in the number of bidders to separately identify

the valuation distribution and the bidders’ belief about the valuation distri-

bution in first-price auctions with independent private values. By exploiting

variation in auction volume, the result is extended to environments with risk

averse bidders. In an illustrative application we fail to reject the null hypothesis

of correct beliefs.
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1 Introduction

Estimation of games assumes that players have correct beliefs about the distribution

of rival actions, so they coincide with the distribution of rival actions observed by the

econometrician and are therefore identified. Identification of preferences then exploits

that players best respond to these beliefs. In the context of first-price auctions with

independent private values this was demonstrated by Guerre, Perrigne, and Vuong

(2000).

The assumption of correct beliefs is plausible in environments where the players

have access to similar information as the econometrician.1 In environments where

this is not the case however, it remains an empirical question whether players have

correct beliefs and if not, how biased beliefs affect their behavior. Biased beliefs can

have important policy implications in first-price auctions. If biased beliefs lead to

aggressive bidding the seller has no incentive to reveal more information about bids

in previous auctions which could help the bidders to correct their belief. Biased beliefs

can also affect the optimal reserve price policy. If biased beliefs lead to aggressive

bidding the seller does not have to encourage aggressive bidding with a high reserve

price.

This paper studies the identification of the first-price auction model with indepen-

dent private values without assuming that bidders have correct beliefs. We maintain

all assumptions made in the theoretical analysis of first-price auctions as Bayesian

Games. Bidders share a common belief about the distribution of valuations which is

common knowledge and play the unique symmetric monotone Bayesian Nash Equi-

1For first-price auctions this intuition was formalized by Esponda (2008) using the concept of
a self-confirming equilibrium. In a self-confirming equilibrium beliefs must be consistent with the
distribution of outcomes players can observe. Self-confirming equilibria can therefore be interpreted
as the outcome of a learning dynamic. Esponda showed that in a private value environment it is
sufficient if bidders observe the two highest bids to ensure that they have correct beliefs.
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librium. The observable bid distribution is generated by the valuation distribution

and the equilibrium bid function, which depends on the belief.2

Without imposing further restrictions the model is not identified because different

combinations of the belief and the valuation distribution can generate the same bid

distribution. To separately identify the valuation distribution and the belief we exploit

variation in the number of bidders. Variation in the number of bidders is useful

because the effect of the belief on bidding depends on the number of opponents a

bidder is facing. We show that the valuation distribution and the belief can both be

non-parametrically point-identified if they have a common support and do not vary

with the number of bidders.3 The assumption can be relaxed if an instrument for the

number of bidders is available.

In an extension we consider risk averse bidders because risk aversion can have

similar effects on bidding as biased beliefs and Guerre, Perrigne, and Vuong (2009)

use variation in the number of bidders to identify a model with risk-averse bidders

and correct beliefs. Assuming that bidders have constant relative risk aversion the

main identification result can be extended under a support restriction. Variation in

the volume or the number of units of the good at sale can be exploited to separately

identify the utility function non-parametrically under the additional restriction that

valuations are proportional to volume.

We also show that the valuation distribution can be bounded if bidders have

“pessimistic beliefs” about the highest rival bid which leads to aggressive bidding.

2For a discussion of the common prior assumption see Morris (1995). See also Harsanyi (1968) and
Harsanyi (1995). In an extension we relax the assumption of a common belief about the valuation
distribution and equilibrium play and instead assume that bidders have “pessimistic beliefs” about
rival bids.

3This assumption is common in the structural auction literature and often called exogenous
participation (e.g. Guerre, Perrigne, and Vuong (2009) and Aradillas-López, Gandhi, and Quint
(2013)). Footnote 10 discusses that exogenous participation holds in entry models where bidders
receive independent signals before their entry decision.
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This result does not rely on an exclusion restriction and allows for heterogeneity of

beliefs and risk preferences. The bounds can be tightened if the valuation distribution

is stochastically increasing in the number of bidders.

In an illustrative application we study US Forest Service timber auctions in the

Pacific Northwest. After the National Forest Management Act of 1976 the Forest

Service switched from ascending auctions to first-price auctions as the main sale

method in this region. As less than two percent of the sales before the end of 1976

were first-price auctions, the period after the policy change is a suitable environment

to relax the assumption of correct beliefs.4

We propose a simulated method of moments estimator based on Bierens and Song

(2012) which allows us to efficiently combine auctions with various numbers of bidders

and to incorporate an unobserved auction characteristic. Moreover, we develop a test

of the null hypothesis that bidders have correct beliefs. Our point estimates suggest

that bidders with low valuations and therefore a low objective probability of winning

have optimistic beliefs while bidders with high valuations and a high probability of

winning have pessimistic beliefs but we cannot reject the null hypothesis of correct

beliefs.

This paper is related to Aguirregabiria and Magesan (2012) (AM) who relax the as-

sumption of equilibrium beliefs in the estimation of dynamic discrete games.5 While

4Knowledge of the bid distribution in ascending auctions would allow the bidders to uncover
the true valuation distribution under the button auction model where every bidder bids her value.
Under the milder restrictions in Haile and Tamer (2003) however the bidders could only bound the
valuation distribution which could then give rise to a multiple prior model. In section 2 we show
that bidding under a multiple prior model with maxmin preferences (Gilboa and Schmeidler (1989))
is observationally equivalent to a model with an appropriately chosen single prior.

5AM achieve point identification of heterogeneous beliefs about rival actions and payoff functions
for all periods in two player games under the following two assumptions. First, there is a special
state variable which enters the payoff of one player but not her rivals. Second, the belief about the
distribution of rival actions is known at some points in the support of the special state variable.

The identification argument starts in the last period when the continuation value is zero. Exploit-
ing that the belief is assumed to be known at some points in the state space the last period payoff
function can be identified because the player best responds to the known belief. Once the payoff
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AM are motivated by strategic uncertainty where players are uncertain about the

strategies of their opponents, this paper is mostly concerned with structural uncer-

tainty where players are uncertain about a primitive of the game but beliefs about

strategies are in equilibrium.6 Therefore AM consider identification of heterogeneous

beliefs about the distribution of rival actions whereas our main identification result

considers the belief about the valuation distribution which is common knowledge

among bidders. For this result we exploit that the belief about the distribution of

rival actions is endogenously determined which allows us to link data from auctions

with different numbers of bidders where bidders have different beliefs about the bid

distribution. As the belief about rival actions is endogenously determined we can

consider counterfactual policies which affect the belief about rival actions such as

changes of the reserve price.

In an extension we show how the valuation distribution can be bounded if the

bidders have “pessimistic”, possibly heterogenous beliefs about rival actions. This

approach is similar in spirit to Haile and Tamer (2003) who show that the valuation

distribution can be bounded from bid data in ascending auctions with independent

private values under mild restrictions. We believe that robustness concerns are equally

important in in the estimation of first-price auctions where optimal bidding depends

function is identified best response behavior can be used to identify the last period belief at other
points where it is potentially biased. Therefore the continuation value for the penultimate period is
known and the identification argument proceeds backwards in the same fashion.

An analogous approach could be used to achieve point identification of the valuation distribution
and heterogeneous beliefs about the bid distribution in first-price auctions. We believe that this
would be impractical in the context of our application. First, it is difficult to find a variable which
can take the role of the special state variable. Second, we would have to find a subset of auctions for
which the beliefs are known or for which the bidders have correct beliefs. Third, in our application
we observe only few bids for each bidder but hundreds of bidders. Therefore it would not be feasible
to estimate the belief of each bidder.

6Strategic uncertainty is an important issue in dynamic games because they often have multiple
equally plausible equilibria. In first-price auctions however, there is a unique symmetric monotone
equilibrium in pure strategies under fairly weak restrictions. Therefore the equilibrium strategy can
be found by “introspection” without learning through repeated play. Hence, strategic uncertainty
might be less important in first-price auctions with high stakes.
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on the beliefs of players and their risk preferences.

Ambiguity aversion is one important reason why bidders could have “biased be-

liefs”. Biased beliefs are observationally equivalent to a model where bidders have

a set of belief distributions and are ambiguity averse with maxmin expected utility

preferences (MEU). As briefly laid out in section 2, bidding in the MEU model de-

pends only on the lower contour of the prior set and is therefore identical to a model

with an appropriately chosen single belief distribution. Identification and estimation

of the MEU model is considered in Aryal and Kim (2014) and Grundl and Zhu (2013).

In contrast to Aryal and Kim (2014) this paper illustrates the identification result in

an application to field data and also considers non-parametric identification of the

utility function and partial identification under “pessimistic beliefs” about rival bids.

While Aryal and Kim (2014) develop a bayesian estimator we consider estimation and

testing in a frequentist framework.

The remainder of this paper is organized as follows. Section 2 introduces the

model and presents the identification results. Section 3 is an illustrative application

to timber auctions held by the US Forest Service. Section 4 concludes. Omitted

proofs and a discussion of estimation and inference can be found in the Appendix.

2 Identification

Consider a first-price auction with independent private values and I bidders. The

bidders share a common prior belief F b which describes the distribution of valuations

and is common knowledge. The density f b is bounded away from zero on the support[
vb, vb

]
in <+. The bid strategy s in the unique, symmetric, monotone equilibrium is

characterized by the first order condition
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s′ (v) = (v − s(v)) (I − 1)
f b(v)

F b(v)
(1)

for v ∈
(
vb, vb

]
and the boundary condition s

(
vb
)

= vb.7

Valuations are iid draws from the distribution F with density f which is bounded

away from zero on the support [v, v] ⊆
[
vb, vb

]
in <+. The support restriction ensures

that bidders do not rule out any possible valuations. The bid distribution is G (b) =

F (s−1(b)), where s−1 is the inverse bid function.

In a closely related model the belief is a closed and convex set of distribution

functions ∆ and the bidders have maxmin expected utility preferences (Gilboa and

Schmeidler (1989)) which was first studied by Lo (1998). Bidders choose b to maximize

min
F∆∈∆

(v − b)F∆ (s−1 (b))
I−1

. If F b coincides with the lower contour of ∆ (F b (v) =

min
F∆∈∆

F∆ (v)) both models generate the same bid functions.8

Under the assumption that the bidders know the valuation distribution (F b = F )

the classic identification result in Guerre, Perrigne, and Vuong (2000) applies. The

key to their identification argument is that the bidders bid as if they best respond to

the bid distribution observed by the econometrician.9 Therefore the inverse bidding

strategy is identified and can be used to uncover the unobservable valuations from

observed bids. This identification strategy is no longer valid if F 6= F b, because the

bidders might not best respond to the bid distribution observed by the econometrician.

Indeed the model cannot be identified without imposing further restrictions.

Theorem 1 (Nonidentification). Let G be any bid distribution with a density which

7The equilibrium is unique up to bids made by a measure zero set of types. See McAdams (2007)
Theorem 1 and footnote 3. See also Athey and Haile (2007) Theorem 2.1 (ii) and footnote 12.

8Bose, Ozdenoren, and Pape (2006) and Bodoh-Creed (2012) study the mechanism design problem
in this environment. See also Aryal and Kim (2014) and Grundl and Zhu (2013) for more detailed
discussions.

9Importantly the identification strategy does not require that the bidders understand the equi-
librium. It is sufficient that the bidders know the bid distribution and best respond to it.
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is bounded away from zero and infinity on the support
[
b, b
]
. Then G can be generated

by a model where F b is the uniform distribution on

[
b, b+

I(b−b)
I−1

]
so the bid function

is s (v) = b+ I−1
I

(v − b) and F (v) = G
(
b+ I−1

I
(v − b)

)
.

This result is not surprising as we cannot hope to uncover the valuation distribu-

tion and the belief distribution from a single bid distribution.

In light of this nonidentification result we exploit variation in the number of bid-

ders to identify both distributions. Variation in the number of bidders can provide

additional information because the effect of beliefs on bid shading depends on the

number of opponents a bidder is facing. To use this identification strategy we rely on

an exclusion restriction.

Assumption 1. F and F b do not depend on I.

If in addition F = F b this assumption reduces to the standard form used in the

literature which is often called exogenous participation (e.g. Guerre, Perrigne, and

Vuong (2009) and Aradillas-López, Gandhi, and Quint (2013)).10

Under Assumption 1 the two first order conditions from auctions with different

numbers of bidders define a system of two functional equations involving F and F b. If

this system has a unique solution F and F b are point identified. Showing uniqueness

10Exogenous participation holds in entry models with independent signals. Suppose N potential
bidders observe some signal si which is iid across bidders but might be informative about their value
before they enter. In equilibrium a bidder’s entry decision is determined by a cutoff s̄ such that the
expected payoff from entry is zero for the cutoff bidder. For any number of entering bidders the
valuation distribution is then simply the valuation distribution of a potential bidder conditional on
si ≥ s. If this is reflected in the bidders’ beliefs Assumption 1 is satisfied. See Grundl and Zhu
(2015) for a formal exposition of this argument.

The equilibrium cutoff signal depends on N . If N varies across auctions and is not observed the
identification strategy is no longer valid. An, Hu, and Shum (2010) discuss the case where N is an
unobservable auction characteristic.

Variation in the number of actual bidders created by the entry stage is useful for identification if
the bidders know the number of actual bidders at the bidding stage. This is a common assumption
in the literature (e.g. Athey, Levin, and Seira (2011) and Krasnokutskaya and Seim (2011)). For an
alternative approach relying on variation in the number of potential bidders see Gentry, Li, and Lu
(2015).

8



in a system of functional equations is a difficult problem in general. In this particular

case we can exploit the form of the first order conditions to show that F and F b are

identified. Moreover the identification proof is constructive and leads to a closed form

for the inverse bid function.

Let sI be the bid function in an I bidder auction and GI the corresponding bid

distribution with density gI .First use the monotonicity of the bid function to write

GI (sI (v)) = F (v). Differentiating this with respect to v yields gI (sI (v)) s′I (v) =

f (v) . Therefore the first order condition can be rewritten as follows

(v − sI(v))
f b(v)

F b(v)

F (v)

f (v)
=

GI (sI (v))

gI (sI (v)) (I − 1)
, v ∈ (v, v] . (2)

If the bidders know the valuation distribution (F b = F ) they best respond to

the bid distribution and the right hand side is the bid shading of the bidder with

valuation v (Guerre, Perrigne, and Vuong (2000)). If the bidders have biased beliefs

the right hand side has to be adjusted by the ratio of the reverse hazard rates f(v)
F (v)

and

fb(v)
F b(v)

to obtain the bid shading. Our identification strategy exploits the fact that this

adjustment factor does not vary across auctions with different numbers of bidders.

Take the ratio of the two first order conditions (2) with I1 and I2 bidders and solve

for the underlying valuation as

v =
s2(v) (I2 − 1) g2 (s2(v))− s1(v) (I1 − 1) g1 (s1(v))

(I2 − 1) g2 (s2(v))− (I1 − 1) g1 (s1(v))
, v ∈ [v, v̄] . (3)

We use the subscripts 1 and 2 to index the strategies and bid distributions instead of

I1 and I2. Corresponding bids with same underlying valuation can be coupled through

G2 (s2(v)) = F (v) = G1 (s1(v)), because the bid function is strictly increasing. As a

result, the inverse bid function in the I1 bidder auction is identified as follows

9



s−1
1 (b) =

b2(b) (I2 − 1) g2 (b2(b))− b (I1 − 1) g1 (b)

(I2 − 1) g2 (b2(b))− (I1 − 1) g1 (b)
, b ∈ [s1 (v) , s1 (v̄)] , (4)

where b2(b) = G−1
2 (G1 (b)). This immediately implies that F is identified.

The first order condition can now be solved for

F b (v|v ≤ v) = exp

(
−
∫ v̄

v

f (u)

(u− s1(u)) g1 (s1 (u)) (I1 − 1)
du

)
= exp

(
−EV

[
1{V > v}

(V − s1 (V )) g1 (s1 (V )) (I1 − 1)

])
, v ∈ (v, v̄] , (5)

where the expectation is taken with respect to F .

Theorem 2 (Point Identification). Under Assumption 1 F and F b (·|v ≤ v) are point

identified on [v, v]. If in addition vb = v, F b is identified on [v, v].

Remark 1. Notice that the bid function can be expressed in terms of F b (·|v ≤ v) on

[v, v]. On the one hand this implies that without the support condition vb = v we

can only identify the “conditional belief distribution”F b (·|v ≤ v) rather than F b. On

the other hand knowledge of F b (·|v ≤ v) is sufficient for most counterfactuals. As

F b (·|v ≤ v) bounds F b from above we can detect if bidders have overly pessimistic

beliefs without the support condition.

Remark 2. The identification result can be extended to allow for an unobserved auc-

tion characteristic if multiple bids from the same auction are observed. Accounting

for an unobserved characteristic is always important in the estimation of first-price

auctions because otherwise variation in bids across auctions due to variation in the

unobservable characteristic will be wrongly attributed to private information. Ac-

counting for an unobserved characteristic is however particularly important if vari-

ation in the number of bidders is exploited for identification as in this paper. As
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explained in footnote 10 Assumption 1 is satisfied in entry models with independent

signals. However it is important to apply Theorem (2) to the bid distributions condi-

tional on the unobserved characteristic and to let the distribution of the unobserved

characteristic vary with the number of bidders. Otherwise, differences in the bid dis-

tribution across auctions with different numbers of bidders due to selective entry will

be wrongly attributed to the bidders’ belief.11

If the unobserved characteristic enters additively or multiplicatively as in Kras-

nokutskaya (2011) observing two bids per auction is sufficient. If the unobserved

characteristic enters in a nonseparable way as in Hu, McAdams, and Shum (2013) at

least three bids are required. These papers show how to identify the bid distribution

conditional on the unobserved characteristic. The identification result in Theorem

(2) can then be applied to the conditional bid distributions.12

Remark 3. If Assumption 1 is violated, point identification requires a different exclu-

sion restriction. If an instrument for the number of bidders is available identification

follows from a similar result as Guerre, Perrigne, and Vuong (2009, Corollary 2). For

details see Appendix A.1.

Remark 4. With a binding reserve price r, F and F b (·|v ≤ v) can only be identified

on [r, v̄]. For details, please refer to Appendix A.2.

Remark 5. So far we maintained all the assumptions embedded in the Bayesian Nash

Equilibrium concept. Bidders share a common knowledge belief about the valuation

distribution and the belief about rival actions is endogenously determined. This is

exploited in the identification argument because it allows us to link auctions with

different numbers of bidders where bidders have different beliefs about rival actions.

It also enables us to consider counterfactuals which affect the belief about rival actions

11This is explained in more detail in Grundl and Zhu (2015).
12Grundl and Zhu (2013) discusses the separable case in more detail.
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such as changes in the reserve price.

In some environments the researcher might not be willing to maintain the assump-

tion of Bayesian Nash Equilibrium. Theorem 4 in Appendix A.3 considers identifi-

cation under fairly mild restrictions. The valuation distribution can be bounded if

bidders have “pessimistic” beliefs about the highest rival bid. We show that bidders

with pessimistic beliefs bid more aggressively than with correct beliefs, which allows

us to bound the valuation underlying some observed bid from above. As the underly-

ing valuation is also bounded from below by the bid itself the valuation distribution

can be bounded from both sides. More generally these bounds are robust to all devia-

tions from the standard model which lead to more aggressive bidding, for example risk

aversion. The bounds can be tightened if the valuation distribution is stochastically

increasing in the number of bidders. This approach allows for heterogeneous beliefs

and does not require equilibrium play.

2.1 Risk Aversion

In this section we consider risk averse bidders because risk aversion and biased beliefs

can have similar effects on bidding. Moreover Guerre, Perrigne, and Vuong (2009)

use variation in the number of bidders to identify a model with risk-averse bidders

and correct beliefs.

Unlike risk aversion biased beliefs do not always lead to more aggressive bidding.

Moreover bid distributions generated by a model with biased beliefs and risk neutral

bidders cannot always be rationalized by a model with correct beliefs and risk averse

bidders.13

13Both of these claims can be shown with an example adapted from Bodoh-Creed (2012) where
I = 2, F is the standard uniform distribution and F b (v) = 1

2

(
3v − v2

)
on [0, 1]. In this case

s (v) =
(

3
2v −

2
3v

2
)
/ (3− v) < v

2 for v ∈ (0, 1] so biased beliefs lead to less aggressive bidding.
A sufficient condition to ensure that biased beliefs lead to more aggressive bidding is that beliefs
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In the remainder of this section we ask whether risk aversion can be separately

identified from the other primitives of the model.

Constant Relative Risk Aversion Let γ ∈ [0, 1) be the coefficient of relative risk

aversion. The first order condition becomes

s′ (v) =


(v − s(v)) (I−1)

1−γ
fb(v)
F b(v)

v ∈
(
vb, vb

]
I−1
I−γ v = vb

(6)

The form of the derivative at the lower bound is the limit of s′ (v) as v goes to vb and

has first been derived in Guerre, Perrigne, and Vuong (2009, Theorem 1).

The inverse bid function 4 remains unchanged because γ cancels out when we take

the ratio of the two first order conditions. Therefore F is identified.

Assumption 2. vb = v.

This restriction allows us to exploit the form of the first order condition at the

lower bound, where it does not depend on the belief, to identify γ. Take the ratio of

two first order conditions 6 at v:

I2 − γ
I2 − 1

I1 − 1

I1 − γ
=
s′1 (v)

s′2 (v)
=

g2 (v)

g1 (v)
⇐⇒ γ =

(I2 − 1) I1g2 (v)− (I1 − 1) I2g1 (v)

(I2 − 1) g2 (v)− (I1 − 1) g1 (v)
(7)

Identification of the conditional belief distribution follows from analogous arguments

as in the risk neutral case. Integrating the first order condition yields:

are “pessimistic” in the sense of Reverse Hazard Rate Dominance relative to the true valuation
distribution (F b (v) /f b(v) ≤ F (v) /f (v) for all v). See Appendix A.3.

Furthermore, the bid distributions generated by this example cannot be rationalized by a model
with correct beliefs and risk averse bidders. If we would follow the identification strategy in Guerre,
Perrigne, and Vuong (2009) we would recover a utility function which is not concave. Matlab code
to illustrate this is available from the authors.
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F b (v|v ≤ v)
1

1−γ = exp

(
−EV

[
1{V > v}

(V − s1 (V )) g1 (s1 (V )) (I1 − 1)

])
v ∈ (v, v̄]

Corollary 1 (Constant Relative Risk Aversion). Under Assumptions 1 and 2 γ is

identified and F , F b (·|v ≤ v) are identified on [v, v̄].

Nonparametric Utility Function In many applications there is variation in the

volume of the auctioned good or the number of auctioned units x which can be

exploited to achieve nonparametric identification of the utilty function. Intuitively

variation in the auction volume allows us to distinguish decreasing, constant and

increasing relative risk aversion.

Assumption 3. F (·|x) = F (·) and F b (·|x) = F b (·) for all x.

Let U be a von Neumann-Morgenstern utility function with U (0) = 0, U (1) = 1,

U ′ (·) > 0 and U ′′ (·) ≤ 0.

Assumption 4.

∣∣∣∣sup
z

U(z)
U ′(z)z

∣∣∣∣ ≤M <∞.

Theorem 3 (Nonparametric Risk Aversion). Suppose Assumptions 1, 2, 3 and 4

hold and there is sufficient variation in x then F and F b (·|v ≤ v) are identified on

[v, v̄] and U is identified on some interval which depends on the observed range of x.

The proof can be found in Appendix B. The exclusion restriction in Assumption 3

requires that the distribution of values per unit of the auctioned good does not depend

the auction volume and this is reflected in the bidders’ belief. This is an important

restriction. For example, it rules out higher per-unit valuations for larger x because

of scale economies. Alternatively we could try to use other restrictions on how some

observable enters F and F b to nonparametrically identify the utility function (see
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Campo, Guerre, Perrigne, and Vuong (2011)). We focus on Assumption 3 as it has a

natural interpretation and there is variation in auction volume in many auction data

sets.

Assumption 4 is a technical restriction to ensure that the per-unit bid shading is

bounded away from zero. Loosely speaking, if the per-unit bid shading is zero bidders

do not care about how many units they win and we can therefore not make use of

variation in the auction volume.

Theorem 3 is an extension of Theorem 2 under additional restrictions. An interest-

ing question left for future research is whether the model primitives can be identified

if only one of the exclusion restrictions, either for the number of bidders or the auction

volume is imposed.

3 Empirical Application

This section presents an illustrative application in an environment where bidders had

very little prior experience with first-price auctions. We study US Forest Service

timber auctions in the Pacific Northwest from December 1976 to December 1978.

Prior to the National Forest Management Act of 1976 the Forest Service relied almost

exclusively on ascending auctions in the Pacific Northwest. Less than two percent of

the sales were first-price sealed bid auctions during that time. Due to concerns that

ascending auctions raise less revenue this policy was changed and starting in December

1976 almost all sales were first-price sealed bid auctions.14 Many bidders opposed this

change and the Forest Service gradually returned to using ascending auctions. In the

years after 1978 less than five percent of the sales were sealed bid auctions. Figure I

shows the number of first-price auctions every month between 1973 and 1979.

14One concern was that ascending auctions are vulnerable to collusion, see Baldwin, Marshall,
and Richard (1997).
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Figure I: Number of first-price auctions in the Pacific Northwest region of the US
Forest Service from 1973 to 1979. Data Sources: US Forest Service timber auction
data, accessible from http://www.econ.yale.edu/ pah29/timber/timber.htm.

A potential concern with estimating a static model in this environment is that

beliefs could evolve as bidders gain more experience with first-price auctions during

the sample period. To investigate this we regress bids on bidder experience with

fixed effects for auctions and bidders. Bidder experience is defined as the number

of first-price auctions a bidder has entered before participating in the auction under

consideration.15 The median experience level in our sample is two which reflects the

small size of most bidding firms. We find no significant effect of experience on bidding

and conclude that estimating a static model is appropriate.16

15This includes experience from first-price auctions before the beginning of the sample period.
16The regression includes all first-price auctions during the sample period with 2-11 bidders.

The sample contains 2957 bids from 1068 auctions submitted by 595 bidders. We regress
log(bid) on log(1+experience) with bidder and auction fixed effects. The estimated coefficient on
log(1+experience) is 0.002 with a standard error of 0.017. The point estimate suggests that a 1% in-
crease in 1+experience corresponds to a 0.002% increase in bids; the 95% confidence interval ranges
from -0.031% to 0.035%. In light of the limited experience which bidders acquire during the sample
period (the median experience level at the time of bidding is 2 auctions, the 75 percentile 7 auctions
and the 90th percentile 16 auctions) we conclude that the effect of bidder experience is economically
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While the bidders had very limited experience in first-price auctions they could

rely on their experience in ascending auctions to form their beliefs about the distribu-

tion of valuations. Knowledge of the bid distribution in ascending auctions however

only allows the bidders to bound the valuation distribution without imposing strong

assumptions (Haile and Tamer (2003)). This could then give rise to a multiple prior

model where the bidders consider all distributions in the identified set to be rea-

sonable. This model is observationally equivalent to a model with a single belief

distribution which equals the lower contour of the prior set as briefly explained in

section 2.

Specification, Estimation and Results We illustrate how to implement the iden-

tification result in Theorem 2. We allow for an unobserved auction characteristic

u which enters valuations in a multiplicative way vi = uv∗i as in Krasnokutskaya

(2011).17 From now on we let F and F b denote the distribution of the private in-

formation component v∗i and the corresponding belief. We assume that the bidders

know the support of f so the results can be interpreted as estimates of F b rather than

of F b (·|v ≤ v∗).

To estimate f , f b and the density of u fuI we adapt the estimator in Bierens and

Song (2012) which matches the joint characteristic functions of log bids from the

negligible. We have also tried specifications where experience is binned and found that the coeffi-
cients frequently change signs as the experience level increases and the effect of experience is not
statistically significant.

One explanation for this finding is simply that the bidders have correct beliefs without prior
experience in first-price auctions and therefore do not need to learn as they gain experience. An
alternative explanation is that learning through experience is slow in this environment because the
auctioned timber tracts differ in many of their characteristics (e.g. appraisal value, timber volume,
acreage, timber density, species composition etc.) and the bidders do not acquire sufficient experience
during the sample period to change their initial beliefs significantly.

17Several papers stress the importance of allowing for unobserved characteristics in USFS timber
data (e.g. Athey, Levin, and Seira (2011), Aradillas-López, Gandhi, and Quint (2013) or Roberts
and Sweeting (2013)). We find that the multiplicative form fits the data well: While log bids from
the same auction remain highly correlated after controlling for many observables, the differences
between two log bids are essentially uncorrelated.
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same auction.18 The unknown densities are approximated with 5-th order Legendre

polynomials. We also provide a testing procedure for the hypothesis that bidders

have correct beliefs F = F b. Details are provided in Appendix C.

It is difficult to use all auctions in estimation because we have to estimate a

separate fuI for every I. Identification comes from the difference in competitiveness

for auctions with different numbers of bidders. Therefore combining two and four

bidder auctions yields more precise estimates than combining two and three bidder

auctions for example. Moreover adding an additional bidder to a two bidder auction

doubles the number of competitors a bidder is facing whereas adding an additional

bidder to a five bidder auction increases the number of competitors by only one

quarter. In light of these considerations we combine auctions with two, four and five

bidders to estimate the model.19

In a first step we regress the log of the bids on the log of observable timber tract

characteristics and apply the identification strategy to the exponential of the residual

of this regression. This approch is valid if the the observable characteristics enter

the valuations multiplicatively because then they also enter the bids multiplicatively

(Krasnokutskaya (2011)). We include the two observables we found to be most im-

portant, the appraisal value and the timber volume.20

18As the identification argument yields a closed form for the inverse bid function a two step
estimator in the spirit of Guerre, Perrigne, and Vuong (2000) is a natural alternative. However if
there is an unobserved auction characteristic we can no longer directly invert the observed bids to
uncover the underlying valuations. Moreover, a two step estimator does not allow us to combine
auctions with various numbers of bidders in an efficient manner. Grundl and Zhu (2013) discusses the
asymptotic properties of a two step estimator to implement the point identification result in Theorem
2. They also propose a matching estimator for the CRRA coefficient to implement Corollary 1 which
does not suffer from the curse of dimensionality as the number of observable covariates increases.
The convergence rate of the estimator for the CRRA coefficient approaches the parametric rate as
the smoothness of the model primitives increases.

19Grundl and Zhu (2013) contains a Monte Carlo study illustrating that combining 2 and 4 bidder
auctions yields more precise estimates than combining 2 and 3 bidder auctions or 3 and 4 bidder
auctions.

20The regression results are available from the authors.
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Figure II shows the estimates of F and F b.21 These point estimates suggest that

bidders with low valuations and therefore a low probability of winning have optimistic

beliefs while bidders with high valuations and a high probability of winning have

pessimistic beliefs. This leads to underbidding for bidders with low valuations and

overbidding for bidders with high valuations. If bidders do have biased beliefs this

can have important policy implications for the seller’s information policy which could

help bidders to correct their beliefs and the optimal reserve price policy. However we

do not analyze the policy implications of the point estimates as we fail to reject that

the bidders have correct beliefs (test statistic = 0.1227 and p-value = 0.27). For the

same reason we also do not consider the extensions to risk averse bidders in Corollary

1 and Theorem 3 or the partial identification result in Theorem 4.

2.5 3 3.5 4 4.5 5 5.5 6 6.5
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Valuation

Figure II: Estimates of F (solid blue line) and F b (dashed red line). On the horizontal
axis is the bidder’s private information v∗i .

21The estimates for the distributions of the unobservable characteristic are not reported. We find
that these distributions are fairly similar for auctions with different numbers of bidders. This is
consistent with the distribution of observable characteristics which are also similar for auctions with
different numbers of bidders.
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4 Conclusion

This paper considers environments where the bidders do not have access to similar

information as the econometrician at the time of bidding. We argue that in such an

environment it is an empirical question whether bidders have correct beliefs.

We exploit variation in the number of bidders to separately identify the valuation

distribution and the bidders’ belief about the valuation distribution. We also show

how to exploit variation in auction volume to separately identify the bidders’ utility

function. In an application we illustrate how to estimate the model and how to test

the assumption of correct beliefs.

Relaxing some of the maintained assumptions such as symmetric bidders and

independent private valuations are challenging avenues for future research.

20



A Remarks about Theorem 2

A.1 Instrument for the Number of Bidders

Suppose F and F b vary with the number of bidders. In this case we can use a different

exclusion restriction to achieve identification. We require an instrument which affects

participation, but does not affect the the valuation distribution or the belief.

Formally, let F and F b depend on an unobservable ε and a vector of observable

auction characteristics, which we partition into Z1 and Z2, where Z2 will take the role

of the instrument. The following result mirrors Guerre, Perrigne, and Vuong (2009,

Corollary 2).

Corollary 2. Suppose I = I (Z1, Z2, ε), F (·|Z1, Z2, ε) = F (·|Z1, ε) and F b (Z1, Z2, ε) =

F b (Z1, ε). Let [v (Z1, ε) , v (Z1, ε)] be the support of f (·|Z1, ε). If either of the following

conditions hold

(i). ε = I − E [I|Z1, Z2]

(ii). Z2 = m (X, ε) where m (·, ·) is strictly increasing in ε with X⊥ε and X * Z1.

F (·|Z1, ε) and F b (·|Z1, ε, v ≤ v (Z1, ε)) are identified on [v (Z1, ε) , v (Z1, ε)] for each

Z1, ε.

In case (i) ε is the residual of the nonparametric regression of I on Z1, Z2. For

case (ii), Matzkin (2003) shows how to recover ε under a normalization, exploiting

the monotonicity of m. Hence, ε can be treated like an observable. Using the two

bid distributions G1 (·|Z1, ε) and G2 (·|Z1, ε) for I1 < I2, identification follows as in

Theorem 2.
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A.2 Identification With a Reserve Price

With a binding reserve price r > v, only bidders who draw valuations above r become

active and place a bid. Suppose Assumption 1 holds and we observe the number of

active bidders I∗1 , I∗2 and the truncated bid distributions G∗1, G∗2 from auctions with

two different numbers of potential bidders 1 < I1 < I2. I∗1 and I∗2 follow a binomial

distribution with parameters [I1, 1− F (r)] and [I2, 1− F (r)]. Consequently, I1, I2

and F (r) are identified. The bid function with I1 potential bidders can be inverted

using equation (3), where the bid densities are replaced with their truncated coun-

terparts. Since G∗1 (s1 (v, r)) = F (v)−F (r)
1−F (r)

F is identified on [r, v̄]. We can also identify

F b (·|v ≤ v) on [r, v̄] using equation (5).

Corollary 3 (Reserve Price). Suppose we know the truncated bid distributions G∗1

and G∗2 from auctions with two different numbers of potential bidders 1 < I1 < I2

and a binding reserve price r > v. Then under Assumption 1 F and F b (·|v ≤ v) are

identified on [r, v̄].

A.3 Partial Identification With Pessimistic Beliefs

This section shows that type specific valuation distributions can be bounded if bid-

ders have “pessimistic beliefs” about the highest rival bid without relying on exclusion

restrictions or equilibrium play and allowing for heterogeneity of beliefs and risk aver-

sion. Bidder type t believes that her probability of winning if she bids b is Hb
t (b)with

density hbt . Her valuations are drawn from Ft and her utility function is Ut with

U
′
t (·) > 0 and U

′′
t (·) ≤ 0, Ut (0) = 0, Ut (1) = 1 and λt (·) = Ut (·) /U ′t (·). Let Ht be

t’s objective probability of winning. We assume that bidders have pessimistic beliefs

in the following sense.

Assumption 5 (Reverse Hazard Rate Dominance (RHRD)).
Hb
t (b)

hbt(b)
≤ Ht(b)

ht(b)
for all b.
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This assumption is partly motivated by the large experimental literature devoted

to the overbidding puzzle.22 The overbidding puzzle is the finding that bidders in lab-

oratory experiments bid more aggressively than predicted by the risk neutral Bayesian

Nash Equilibrium. As we show below, RHRD implies more aggressive bidding than

under correct beliefs about the highest rival bid.

In the Bayesian Nash Equilibrium with a common belief about the valuation

distribution we have Hb(b)
hb(b)

=
F bI (s−1(b))s′(s−1(b))

fbI (s−1(b))(I−1)
and H(b)

h(b)
=

FI(s−1(b))s′(s−1(b))
fI(s−1(b))(I−1)

. Therefore

a sufficient condition for Assumption (5) is that the common belief about the valuation

distribution satisfies RHRD: F b
I (v) /f bI (v) ≤ FI (v) /fI (v) for all v.

The first order condition for bidder i is

v = λ−1
t

(
Hb
t (b)

hbt (b)

)
+ b ≤ Ht (b)

ht (b)
+ b ≡ ξt (b) (8)

The inequality follows from Assumption 5 and the fact that λ−1
t is increasing with

λ−1
t (z) ≤ z for z ≥ 0.

.

Let Gt be the bid distribution of type t. If we observe many auctions where

bidder type t participates Ht and Gt are identified from bid data and we can bound

the valuation distribution as follows:

Gt

(
ξ−1
t (v)

)
≤ Ft (v) ≤ Gt (v) (9)

The upper bound is given by the bid distribution because no bidder bids more than

her value. The lower bound is given by the distribution of the inverse bid function

assuming risk neutrality and correct beliefs as in Guerre, Perrigne, and Vuong (2000),

because risk aversion and biased beliefs satisfying RHRD lead to more aggressive bid-

22See for example Kagel and Levin (2008) and the references therein.
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ding. More generally the lower bound is valid whenever bidders bid more aggressively

than a bidder who maximizes Ht (b) (vi − b), for example due to loss aversion.

Assumption 6 (Stochastically Increasing Valuations). FI2,t (v) ≤ FI1,t (v) for all v

and I1 < I2 and all i.

This relaxes Assumption 1 and says that valuations are stochastically increasing in

the number of bidders in the sense of first-order stochastic dominance. This restriction

allows us to tighten the bounds of the valuation distribution. We construct ξI,t (b) =

Ht (b|I) /Ht (b|I) + b and let GI,t denote t’s bid distribution in I bidder auctions:

max
J≥I

GJ,t

(
ξ−1
J,t (v)

)
≤ FI,t (v) ≤ min

J≤I
GJ,t (v) (10)

If GI,t

(
ξ−1
I,t (v)

)
is not contained in these tighter bounds we can conclude that

bidder i has biased beliefs or is risk averse.

Theorem 4 (Partial Identification).

(i). Bidder type t’s valuation distribution can be bounded as in (9) under Assumption

(5).

(ii). These bounds can be tightened as in (10) under Assumptions (5) and (6).
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B Proof of Theorem 3

Suppose we observe I1 and I2 bidder auctions with x ∈ [x, x] where x > 0.23 Under

Assumption 3 the first-order condition becomes

∂

∂v
s (v, x) =


(I−1)λ

′
(0)

(I−1)λ′ (0)+1
v = v

(I−1)fb(v)λ(x(v−s(v,x)))
F b(v)x

v > v

(11)

, where x is volume or the number of units of the auctioned good, v is the per-unit

valuation, s is the per-unit bid function F b (·|x) is the per-unit belief distribution

with density f b (·|x)and λ (·) = U (·) /U ′ (·). Let v (α) denote the α-th quantile of

the per-unit valuation distribution and bI (α, x) the corresponding per-unit bid in a

I bidder auction with volume x.

Lemma 1. If Assumption 4 is satisfied there exist β1 (α) and β2 (α) such that 0 <

β1 (α) ≤ v (α)− bI (α, x) ≤ β2 (α) for α ∈ (0, 1].

Proof. First we show that if λ1 (z) ≤ λ2 (z) for z ≥ 0 then the corresponding bid

functions are ordered such that s1 (v, x) ≤ s2 (v, x) for all v. Suppose that s1 (v∗, x) =

s2 (v∗, x) for some v∗ > v then ∂
∂v
s2 (v∗, x) ≥ ∂

∂v
s1 (v∗, x) so s1 (v, x) ≤ s2 (v, x) for all

v ≥ v∗. It remains to rule out that s1 (v, x) > s2 (v, x) for v ∈ (v, v + ε]. This would

require that λ
′
1 (0) > λ

′
2 (0) and therefore λ1 (z) > λ2 (z) for some z sufficiently close

to 0 which is a contradiction.

Now set the lower bound equal to the per-unit bid shading if λ (z) = zM for all z

and the upper bound equal to the per-unit bid shading of a risk neutral bidder with

λ (z) = z:

23If x ∈ (0, x] the identification argument can be considerably simplified but in many applications
we do not observe auctions for x close to zero.
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β1 (α) =

∫ v(α)

v

[
F b (t)

F b (v (α))

]M(I−1)

dt

β2 (α) =

∫ v(α)

v

[
F b (t)

F b (v (α))

]I−1

dt

Differentiate λ (z) to see that u′′ (·) ≤ 0 implies λ (z) ≥ z and by Assumption 4

λ (z) ≤Mz for z ≥ 0. This completes the proof of Lemma 1.

It follows from Lemma 1 that if [x, x] is sufficiently wide and Assumptions 3 and

4 are satisfied then for each quantile α ∈ (0, 1] we can find x1 6= x2 such that

x1 (v (α)− s1 (v (α) , x1)) = x2 (v (α)− s2 (v (α) , x2))

g1 (α|x1) (I1 − 1) /x1 = g2 (α|x2) (I2 − 1) /x2 (12)

, where g1 and g2 are the conditional bid densitites at the α-th quantile for I1 and

I2 < I1 bidder auctions. The first line of equation 12 says that a bidder with value

v (α) is indifferent between winning an I1 bidder auction for x1 units and winning an

I2 bidder auction for x2 units. The second line of equation 12 expresses the condition

solely in terms of observables. We can solve equation 12 for v (α) as follows:

v (α) = [x2b2(α|x2)− x1b1 (α|x1)] / (x2 − x1)

Therefore F is identified.

Now fix α0 ∈ (0, 1] . If [x, x] is sufficiently wide then x/x > sup
α>0

[β2 (α) /β1 (α)].24

24Using l’Hı̈¿œpital’s Rule we obtain lim
α→0

β2 (α) /β1 (α) = lim
α→0

β
′

2 (α) /β
′

1 (α) =[
1− s′2 (v)

]
/
[
1− s′1 (v)

]
and we know that 1 > s

′

2 (v) > s
′

1 (v).
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Therefore for all α

x [v (α)− bI (α, x̄)] > x [v (α)− bI (α, x)]

The bid shading goes to zero as α goes to zero so we can recursively define a decreasing

α sequence such that

x [v (αt+1)− bI (αt+1, x̄)] = x [v (αt)− bI (αt, x)]

If [x, x] is sufficiently wide then there is c < 1 such that

v (αt+1)− bI (αt+1, x) < ct+1 (v (α0)− bI (α0, x))

Therefore the per-unit bid shading converges to zero as t becomes large. Define for

z ≥ 0

λt (z) = λ (z)
f b (v (αt))

F b (v (αt)) f (v (αt))

The functions λt (z) are identified for

z ∈
[

min
x∈[x,x]

x (v (αt)− bI (αt, x)) , max
x∈[x,x]

x (v (αt)− bI (αt, x))

]
(13)

, because

λt (x (v (αt)− bI (αt, x))) =
x

g (bI (αt, x) , x) (I − 1)

The two consecutive functions λt and λt+1 differ only by a multiplicative constant and

have overlapping identification regions (13). Therefore the constant can be identified

and the identification region of λt can be extended to the identification region of λt+1.
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By choosing t sufficiently large λ0 is therefore identified on

z ∈
(

0, max
x∈[x,x]

x (v (α0)− bI (α0, x))

]
(14)

As we also know that λ0 (0) = 0 we can uncover λ
′
0 (0). To identify λ we exploit the

form of the first-order condition 11 at the lower bound. As g (v, x) ∂
∂v
s (v, x) = f (v)

we can back out λ′ (0). We can now solve for

f b (v (α0))

F b (v (α0)) f (v (α0))
= λ

′

0 (0) /λ
′
(0)

Hence λ is identified on the region (14). Lastly, choose I = I1 and vary α0 so λ is

identified on

z ∈
[
0, max

x∈[x,x],α∈[0,1]
x (v (α)− b1 (α, x))

]
(15)

As U (1) is normalized to 1 we can solve λ (z) = U (z) /U ′ (z) for U . The assumption

that [x, x] is wide enough ensures that λ (1) is identified.

Identification of F b (·|v ≤ v) follows from the same argument as in the risk neutral

case. The first order condition is a differential equation with boundary condition

F b (v|v ≤ v) = 1 which can be solved for F b (v|v ≤ v) for all v ∈ [v, v̄].

C Estimation and Inference

Let θ =
(
f, f b, {fuI }I∈N

)
where f , f b and fuI are densities of the private values, the

belief and an unobserved characteristic. The true parameter θ0 =
(
f0, f

b
0 ,
{
fu0,n
}
n∈N

)
is assumed to live in a known parameter space Θ. The data available contain LI

I-bidder auctions and L auctions overall. Let I` and b` = (b1,`, b2,`, · · · , bI`,`) denote

the number of bidders and the vector of all the bids in the `-th auction. The econo-
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metrician observes (y`, X`, I`), where y` = (y1,`, y2,`, · · · , yI`,`) and X` is a vector of

observable auction characteristics. From y` and X`, the econometrician can obtain

an estimate of b` denoted by b̂` =
(
b̂1,`, b̂2,`, · · · , b̂I`,`

)
. This formulation allows for

cases in which data are generated in a first-stage estimation. For example, in our

application the bids are generated in a first-stage regression to remove the effect of

observed characteristics. Krasnokutskaya and Seim (2011) showed that if the unob-

served characteristics enters a bidder’s value in a multiplicative fashion it also enters

the bids multiplicatively. A bidder with a value uv∗ bids:

u× s∗I (v∗, θ) = u×

(
v∗ −

∫ v∗

v∗

[
F b (s)

F b (v∗)

]I−1

ds

)
.

C.1 Estimation

Our estimator extends the simulated integrated moments estimator proposed by

Bierens and Song (2012). For a given θ, the model generates joint distributions

of bids. Under the true parameter, the model implied joint distributions should be

close to the data. Therefore, an estimate of θ0 can be obtained by matching the

model implied distributions with the data. Rather than directly matching the joint

bid distributions, we match the joint characteristic functions because they are easier

to compute as we explain later.

It suffices to focus on characteristic functions of two randomly selected log bids

from the same auction (Krasnokutskaya (2011), Kotlarski (1967)). Let t = (t1, t2) ∈

R2 and ΨI (θ, t) be the model implied joint characteristic function in an I-bidder

auction under θ and evaluated at t. Let

ψI` (b`, t) =
1

I` (I` − 1)

∑
i 6=j

exp [it1 log bi,` + it2 log bj,`] .
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E [ψI` (b`, t)| I` = I] is the population joint characteristic function of two log bids in

an auction with I bidders. Notice that ψI` uses all the bids in an auction. The model

restrictions imply the following moment conditions.

ΨI (θ0, t) = E [ψI` (b`, t)| I` = I] ∀I ∈ N, t ∈ T (16)

T is a compact subset of R2 on which we match the model implied characteristic

functions with the data. It contains 0 in its interior. We choose T = [−κ, κ]2 where

κ is some positive constant.

(16) can be written as Q (θ0) = 0 where Q is the population criterion function

defined as

Q (θ) =
∑
I∈N

αI

∫
T

|ΨI (θ, t)−ΨI (θ0, t)|2 dµ (t) . (17)

Here the αIs are positive constants that add up to 1. µ is a known probability

measure on T which weights moment conditions in (16). For our application, any µ

with strictly positive density on T suffices.

Our estimator is based on a sample analogue of (17). To construct it, we first

replace E [ψI` (b`, t)| I` = I] with its sample average

ψ̂I (t) =
1

LI

L∑
`

1 (I` = I)ψI`

(
b̂`, t

)
.

ΨI (θ, t) is a complicated function of θ which does not have a closed form. A natural

way to compute it is by simulation. It is computationally burdensome to simulate

ΨI (θ, ·) directly because it is two-dimensional function. We decompose ΨI (θ, ·) into
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two one-dimensional characteristic functions as follows:

ΨI (θ, t) = E [ψI` (b`, t)| I` = I]

= E exp [it1 log s∗I (v∗1, θ) + it2 log s∗I (v∗2, θ) + i (t1 + t2) log u]

= E {exp [it1 log s∗I (v∗1, θ)] exp [it2 log s∗I (v∗2, θ)] exp [i (t1 + t2) log u]}

= E exp [it1 log s∗I (v∗1, θ)]E exp [it2 log s∗I (v∗2, θ)]E exp [i (t1 + t2) log u] (18)

The second equality of (18) exploits the separable form of the equilibrium bidding

strategy. The last equality holds because v∗1, v∗2 and u are independent. Notice that

E exp [it1 log s∗I (v∗1, θ)] and E exp [it2 log s∗I (v∗2, θ)] are the same characteristic function

evaluated at different points. Therefore, we only need to simulate two one-dimensional

characteristic functions which is much easier. It is worth noting that joint bid dis-

tributions do not allow a similar decomposition and are therefore more difficult to

simulate.

Next, we discuss how to simulate E exp [it log s∗I (v∗, θ)]. E exp [it log u] can be

simulated in a similar fashion.

(i). Randomly draw εi from a standard uniform distribution.

(ii). Compute v∗i = inf {v : F (v) > εi} where F is the CDF of f .

(iii). Compute the corresponding bids using the bidding strategy

s∗I (v∗, θ) = v∗ −
∫ v∗

v∗

[
F b (s)

F b (v∗)

]I−1

ds.

(iv). Repeat 1-3 for DL times and approximate E exp [it log s∗I (v∗, θ)] with

1
DL

∑DL
i=1 exp (its∗I (v∗i , θ)).

Let Ψ̄I be the simulated characteristic function in I-bidder auctions. Define the
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sample criterion as

Q̂L (θ) =
∑
I∈N

αI,L

∫
T

∣∣∣Ψ̄I (θ, t)− ψ̂I (t)
∣∣∣2 dµ (t) . (19)

Here αI,L are some (stochastic) weights with
∑

I∈N αI,L = 1 and αI,L converges in

probability to αI for every I.

Let
{

Θk(L)

}∞
L=1

be a sequence of sieve spaces that approximate Θ as L→∞. Our

estimator is defined as the minimizer of the above sample criterion on the sieve space.

θ̂L = arg max
θ∈Θk(L)

Q̂L (θ) .

C.1.1 Consistency

Define the sup-norm on Θ as ‖θ‖∞ = max
{
‖f‖∞ ,

∥∥f b∥∥∞ , {‖fuI ‖∞}I∈N} with ‖f‖∞ =

maxx |f (x)|

Assumption 7. The parameter space and the sieve space satisfy:

(i). Θ is compact under ‖·‖∞.

(ii). Θ ⊂ F (η)2+|N| where |N| is the cardinality of the set N . F (η) is the set

of continuously differentiable density functions with bounded positive interval

support. The lower bound of the support is no less than η > 0 . In addition, the

density functions in F (η) are bounded by an integrable function E.

(iii). There exists θ0,L ∈ Θk(L) such that Q (θ0,L) = o (1) and ‖θ0,L − θ0‖∞ = o (1) as

L→∞.

(iv). sup(θ,t)∈Θk(L)×T
∣∣ΨI (θ, t)− Ψ̄I (θ, t)

∣∣ = op (1) for all I ∈ N as L→∞.

(v). sup`

∥∥∥b̂` − b`

∥∥∥
E

p−→ 0 as L→∞ where ‖·‖E is the Euclidean norm.
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Assumption 7(i) ensures that the parameter space is compact. It rules out the

possibility of inconsistency due to the well-known ill-posed inverse problem. Assump-

tion 7(ii) guarantees that θ0 is point-identified and the population criterion function

Q (θ) is continuous in θ. Assumption 7(iii) states that the sieve space approximates θ0

well enough. Assumption 7(iv) requires that the simulated moments approximate the

true moments well on the sieve space. It is guaranteed if a large number of simulation

draws is used. Assumption 7(v) requires that the error coming from the first-stage

estimation is negligible as the sample size gets large. In our application, it is satisfied

if the covariates have enough variation and are bounded away from 0 and ∞.

Theorem 5. Under Assumption 7,
∥∥∥θ̂L − θ0

∥∥∥
∞

= op (1) as L→∞.

Proof. We first establish several facts.

Fact 1: ΨI (θ, t) is continuous in θ under ‖·‖∞ for every t. To see this, notice

by Lemma F.2 from Grundl and Zhu (2015), s∗I (v, θ) is continuous in θ given v. By

Assumption 7(ii),

E exp [it log s∗I (v∗, θ)] =

∫
exp [it log s∗I (v∗, θ)] f (v∗) dv∗

has an integrand which is continuous in θ and bounded by the integrable function

E (x). The dominance convergence theorem implies that E exp [it log s∗I (v∗, θ)] is con-

tinuous in θ for each t. Similarly, we can establish the continuity of E exp [it log u]

with respect to θ. Therefore, ΨI (θ, t) is continuous in θ for every t.

Fact 2: Let ψ̃I (t) = 1
LI

∑L
` 1 (I` = I)ψI` (b`, t).

sup
t∈T

∣∣∣ψ̂I (t)− ψ̃I (t)
∣∣∣ ≤ C

1

LI

L∑
`

1 (I` = I)
1

I` (I` − 1)

∑
i 6=j

∣∣∣bi,` − b̂i,`∣∣∣ p−→ 0

for some constant C by Assumption 7(v).
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Fact 3: supt∈T

∣∣∣ψ̃I (t)−ΨI (θ0, t)
∣∣∣ = op (1). To see this, notice that

Reψ̃I (t) =
1

LI

L∑
`

1 (I` = I) ReψI` (b`, t)

and ReψI` (b`, t) = 1
I`(I`−1)

∑
i 6=j cos [t1 log bi,` + t2 log bj,`], where Re denotes the real

part. θ0 ∈ Θ implies that private values and the unobserved characteristic are both

bounded from below by η and from above by some constant M <∞. Hence, bi,` are

no smaller than η2 and no larger than M2. There exists a constant C independent of

b` and t, such that

|ReψI` (b`, t1)− ReψI` (b`, t2)| ≤ C max {2 |logM | , 2 |log η|} ‖t1 − t2‖E .

Then by Theorem 2.7.11 from van der Vaart and Wellner (2000), ReψI (b, t) indexed

by t is a Glivenko-Cantelli class. Hence, supt∈T

∣∣∣Reψ̃I (t)− ReΨI (θ0, t)
∣∣∣ = op (1).

Similarly, the imaginary part satisfies the same condition. This establishes Fact 3.

Now we are ready to establish the consistency. By Fact 1, Q (θ) is continuous in

θ. Because θ0 is point identified and Θ is compact, for any ε > 0, there must exist an

δ > 0 such that minθ∈Θ:‖θ−θ0‖∞≥εQ (θ) ≥ δ. By Assumption 7(iv), Fact 2 and Fact 3,

sup
θ∈Θk(L)

∣∣∣Q̂L (θ)−Q (θ)
∣∣∣

≤ sup
θ∈Θk(L)

∑
I∈N

4αI

∫
T

∣∣∣[ΨI (θ, t)− Ψ̄L (θ, t)
]
−
[
ΨI (θ0, t)− ψ̂I (t)

]∣∣∣ dµ (t) + 4
∑
I∈N
|αI,L − αI |

≤ sup
θ∈Θk(L)

∑
I∈N

4αI

∫
T

∣∣[ΨI (θ, t)− Ψ̄L (θ, t)
]∣∣ dµ (t) + op(1) = op (1) . (20)

Because θ̂L is the minimizer of Q̂L (θ) on Θk(L) and θ0,L ∈ Θk(L) , Q̂L

(
θ̂L

)
−Q̂L (θ0,L) <
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0. This fact together with (20) and Assumption 7(iii) implies that

P
(∥∥∥θ̂L − θ0

∥∥∥
∞
≥ ε
)

= P
(∥∥∥θ̂L − θ0

∥∥∥
∞
≥ ε
)
≤ P

(
Q
(
θ̂L

)
≥ δ
)

= P
(
Q
(
θ̂L

)
− Q̂L

(
θ̂L

)
+ Q̂L

(
θ̂L

)
− Q̂L (θ0,L) + Q̂L (θ0,L)−Q (θ0,L) +Q (θ0,L) ≥ δ

)
= P

(
op (1) + Q̂L

(
θ̂L

)
− Q̂L (θ0,L) + op (1) + o (1) ≥ δ

)
= P (op (1) ≥ δ)→ 0

C.2 Inference

We provide a bootstrap procedure to test the hypothesis that bidders have correct

beliefs:

H0 : f b0 = f0 vs H1 : f b0 6= f0.

This procedure adapts the bootstrap statistic proposed in Zhu and Grundl (2014)

to our setup. The key difference is that the null hypothesis is defined by equalities

instead of inequalities as in Zhu and Grundl (2014). Hence, we can construct a

different bootstrap statistic which has less tuning parameters and does not diverge

under the alternative.

The test statistic is the minimum of our sample criterion on the sieve space under

the constraint that f b = f , i.e.

TL = min
θ∈Θk(L)∩R

LQ̂L (θ)

with R =
{
θ ∈ Θ : f b = f

}
. Let the minimizer be θ̃L. Rejection occurs if TL is

large enough. The critical value can be constructed by bootstrap. Suppose we obtain

bootstrap bids b̂∗ from the original sample. Let ψ̂∗I (t) = 1
LI

∑L
` 1 (I` = I)ψI`

(
b̂∗` , t

)
,
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G∗I,L (·) be the law of
√
L
(
ψ̂∗I (·)− ψ̂I (·)

)
under the empirical measures and BσL

(
θ̃L

)
be the σL closed neighborhood of θ̃L. The bootstrap statistic is defined as

T ∗L = min
θ∈Θk(L)∩R∩BσL(θ̃L)

∑
I∈N

αI,L

∫
T

∣∣∣G∗I,L (t)−
√
L
(

Ψ̄I (θ, t)− Ψ̄I

(
θ̃L, t

))∣∣∣2 dµ (t)

The critical value for an α significance level test is the 1−α-th quantile of T ∗L denoted

by c (1− α).

Now we provide a justification of this testing procedure. We begin with introduc-

ing some notation and assumptions. Let GI,L (·) be the law of
√
L
(
ψ̂I (·)−ΨI (θ0, ·)

)
under the true parameter and GI (·) be its limit. Define the directional derivative at

θ1 in the direction of θ2 as

dΨI (θ1, t)

dθ
[θ2 − θ1] =

dΨI (θ1 + τ (θ2 − θ1) , t)

dτ

∣∣∣∣
τ=0

.

Assumption 8. (i). θ0 lives in the interior of Θ.

(ii). G∗I,L (·) converges in law to GI (·) as L→∞ almost surely.

(iii). maxθ1∈Θ minθ2∈Θk(L)
‖θ1 − θ2‖∞ = o

(
1/
√
L
)

.

(iv). sup(θ,t)∈Θk(L)×T
∣∣ΨI (θ, t)− Ψ̄I (θ, t)

∣∣ = op

(
1/
√
L
)

for all I ∈ N.

(v). dΨI(θ1,t)
dθ

[θ2 − θ1] exists and is uniformly bounded for all θ1, θ2 ∈ Θ and t ∈ T.

(vi). There exists ε > 0 such that ∀θ1, θ2, θ3, θ4 ∈ Bε (θ0),

∣∣∣∣dΨI (θ1, t)

dθ
[θ3 − θ4]− dΨI (θ2, t)

dθ
[θ3 − θ4]

∣∣∣∣ ≤ C ‖θ3 − θ4‖∞ ‖θ2 − θ1‖ω∞

for some constant C and ω > 0.

36



Assumption 8(i) requires that the true parameter lies in the interior of the param-

eter space. This is without loss of generality. Section C.3 shows a way to transform

the parameter space to a subset of a linear space. After the transformation, the true

parameter lies in the interior of the transformed parameter space. Assumption 8(ii)

requires that the empirical process based on the bootstrap sample converges in law

to the limiting process GI (·). This is satisfied in our application if we redraw y and

X in pairs and generate bids using the bootstrap sample. Assumption 8(iii) requires

that the sieve spaces approximate the parameter space well enough. This can be

guaranteed by first restricting the parameter space to the set of functions that are

smooth enough and then choosing the sieve space correspondingly, see Newey (1997).

Assumption 8(iv) says that the error coming from simulating the moments is negligi-

ble compared to the sampling error. It is satisfied if the number of simulation draws

is large enough. Assumption 8(v) and Assumption 8(vi) put smoothness restrictions

on the characteristic functions. They guarantee that the difference in characteristic

functions at different θ can be approximated by a first-order expansion.

Theorem 6. Under Assumption 8 and the null hypothesis, if
∥∥∥θ̃L − θ0

∥∥∥
∞

= op

(
1

logL1/2ω

)
and σL = O

(√
logL
L

)
, then lim supL→∞ P (TL > c (1− α)) ≤ α. Under the alterna-

tive, P (Tn > c (1− α))→ 1 as L→∞.

Proof. Under the null, by Lemma 3.1 in Zhu and Grundl (2014) and the fact that θ0

is point identified

TL ≤ min
θ∈BδL (θ0)∩Θk(L)∩R

∑
I∈N

αI,L

∫
T

∣∣∣∣GI (t)−
√
L
dΨI (θ0,L, t)

dθ
[θ − θ0,L]

∣∣∣∣2 dµ (t) + op (1)

where θ0,L is the projection of θ0 onto Θk(L) and δL = o
(
L−1/2(1+ω)

)
is a sequence of

positive numbers such that σL = o (δL). This choice of δL guarantees that we can use
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a first-order expansion around θ0,L to approximate ΨI (θ, t) if θ ∈ BδL (θ0). Similarly,

T ∗L = min
θ∈Θk(L)∩R∩BσL(θ̃L)

∑
I∈N

αI,L

∫
T

∣∣∣∣∣∣GI (t)−
√
L
dΨI

(
θ̃L, t

)
dθ

[
θ − θ̃L

]∣∣∣∣∣∣
2

dµ (t)+op∗ (1) .

Here p∗ denotes the probability under empirical measures. For any θ ∈ Θk(L) ∩ R ∩

BσL

(
θ̃L

)
, θ1 = θ0,L +

(
θ − θ̃L

)
∈ BδL (θ0) ∩ Θk(L) ∩ R. To see this, notice that∥∥∥θ − θ̃L∥∥∥

∞
= O (σL) and ‖θ0,L − θ0‖∞ = o

(
1/
√
L
)

by Assumption 8(iii). There-

fore, ‖θ1 − θ0‖∞ = O (σL) + o
(

1/
√
L
)

= o (δL). For such θ1, Assumption 8(vi),∥∥∥θ̃L − θ0

∥∥∥
∞

= op
(
1/ logL1/2ω

)
and σL = O

(√
logL/L

)
imply

∣∣∣∣∣∣√LdΨI (θ0,L, t)

dθ
[θ1 − θ0,L]−

√
L
dΨI

(
θ̃L, t

)
dθ

[
θ − θ̃L

]∣∣∣∣∣∣ ≤ C√LσL
∥∥∥θ̃L − θ0,L

∥∥∥
∞

= op (1) .

This suggests that for any θ ∈ Θk(L) ∩ R ∩ BσL

(
θ̃L

)
, we can find an θ1 ∈ BδL (θ0) ∩

Θk(L) ∩R such that

∑
I∈N

αI,L

∫
T

∣∣∣∣GI (t)−
√
L
dΨI (θ0,L, t)

dθ
[θ1 − θ0,L]

∣∣∣∣2 dµ (t)

=
∑
I∈N

αI,L

∫
T

∣∣∣∣∣∣GI (t)−
√
L
dΨI

(
θ̃L, t

)
dθ

[
θ − θ̃L

]∣∣∣∣∣∣
2

dµ (t) + op (1) .

Therefore, we must have T ∗L > TL+op (1) which implieslim supL→∞ P (TL > c (1− α)) ≤

α. Under the alternative, the population criterion function is positive on the restric-

tion set R. Hence, TL → ∞ by Lemma 3.1 from Zhu and Grundl (2014). But T ∗ ≤∑
I∈N αI,L

∫
T
|GI (t)|2 dµ (t)+op∗ (1) is bounded. Consequently, P (Tn > c (1− α))→

1 as L→∞.

The additional assumption required for size control is that under the null, θ̃L
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converges to θ0 at a rate faster than logL1/2ω. Under very mild conditions, the

converges rate will be polynomial and therefore faster than the log rate.

The bootstrap critical value is valid if G∗I,L (t) converges in law to GI almost

surely. This condition can be guaranteed by a pairwise bootstrap wherey and X are

treated as pairs. Each time we redraw an auction, we redraw a pair of y and X. The

following is a step-by-step guide.25

(i). Randomly redraw LI I-bidder auctions from the original sample with replace-

ment for each I ∈ N to form a bootstrap sample.

(ii). Generate b̂∗ based on the bootstrap sample using the first-step regression.

(iii). Compute

t∗b = min
θ∈Θk(L)∩R∩BσL(θ̃L)

L
∑
I∈N

αI,L

∫
T

∣∣∣(ψ̂∗I (t)− ψ̂I (t)
)
−
(

Ψ̄I (θ, t)− Ψ̄I

(
θ̃L, t

))∣∣∣2 dµ (t)

(iv). Repeat 1-3 for B times and collect all t∗b the for b = 1, 2, · · · , B. Then the critical

value c (1− α) can be estimated by ĉ (1− α) = inf
{
x : 1

B

∑B
b=1 1 (t∗b > x) < α

}
.

C.3 Implementation

Sieve Spaces We assume that f b0 and f0 share the same support and fu0,I has the

same support for all I. In addition, all the densities have compact interval support

with densities bounded away from 0 on their support. If δ > 0, any densities with

support [0, δ] can be expressed as g (δx) /δ where g is some density function with

support [0, 1]. Notice that there is a unique r (x) ≥ −1 supported on [0, 1] with∫ 1

0
r (x) dx = 0 and

∫ 1

0
r (x)2 dx < ∞ such that g = [1+r(x)]2

1+
∫ 1
0 r(s)

2ds
. We follow Bierens

and Song (2012) to approximate r (x) with Legendre polynomials
∑kL

i=1 φi (x) βi where

25A standard argument can show that G∗I,L (t) converges in law to GI almost surely for the pairwise
bootstrap. Hence, the proof is omitted.
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φi is the i-th order polynomial. We exclude the constant function φ0 to guarantee that∫ 1

0
r (x) dx = 0. The lower bound of the support of fu0,I is normalized to 1. Therefore,

our estimation problem reduces to estimating the coefficients βi, the lower bound of

v∗, the length of the support for f ∗0 and the length of the support for fu0,n. In the

application, we use 5-th order Legendre polynomials for each density function.

Notice that we have transformed the parameter into
(
v, v, ū, r, rb, {rI}I∈N

)
. Here

v, v are the lower and upper bound of v∗, ū is the length of the support of fuI , and

r, rb and rI are all functions defined on [0, 1] which are greater or equal than −1. In

addition, their integrals on [0, 1] are 0. Being in the interior of the parameter space

means that the r functions are strictly greater than −1, v < v and ū > 0. This is

equivalent to requiring that the densities are strictly positive on their support. In

addition, the parameter space after the transformation is a subset of a linear space.

Simulation Draws DL must go to infinity sufficiently fast to make the simulation

error negligible. This can be ensured if DL = L1+a for some a > 0. We choose a = 0.5.

Weights and σL We choose αI,L to be the proportion of bids from auctions with I

bidders and σL =
√

logL/L.

Probability Measure We choose µ to be uniform and T = [−8, 8]2. The integral

is approximated by the average on 1225 evenly spaced points in T.

References

Aguirregabiria, V., and A. Magesan (2012): “Identification and estimation of

dynamic games when players’ beliefs are not in equilibrium,” Available at SSRN

2117055. 4

40



An, Y., Y. Hu, and M. Shum (2010): “Estimating first-price auctions with an un-

known number of bidders: A misclassification approach,” Journal of Econometrics,

157(2), 328–341. 8
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