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Abstract

We develop a framework for measuring and monitoring business cycles in real time. Following
a long tradition in macroeconometrics, inference is based on a variety of indicators of economic
activity, treated as imperfect measures of an underlying index of business cycle conditions. We
extend existing approaches by permitting for heterogenous lead-lag patterns of the various indicators
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economic conditions in real time - nowcasting - since inference can be conducted in presence of mixed
frequency data and irregular patterns of data availability. Our assessment of the underlying index
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1 Introduction

Macroeconomic and financial variables are characterized by a strong correlation, which is possible only if the bulk of

their fluctuations is driven by few common sources. Dynamic factor models (DFM) build on this basic fact to provide

a parsimonious and, yet, suitable representation of macroeconomic and financial dynamics. The model assumes that a

few unobserved dynamic factors drive the comovement of many observed variables, while the features that are specific to

individual series, such as measurement error, are captured by idiosyncratic disturbances.

Dynamic factor models were initially proposed by Geweke (1977) and Sargent and Sims (1977) as a time series extension

of the factor models previously developed for cross-sectional data in psychometrics (see Lawley and Maxwell, 1963, for a

comprehensive analysis of factor models for serially uncorrelated data). Over the years, factor models have been success-

fully used in macroeconometrics for structural analysis and forecasting (see Stock and Watson, 2011, for a comprehensive

survey). Dynamic factor models have been intensively used in many contexts, ranging from forecasting (Stock and Wat-

son, 2002) and nowcasting (Giannone et al., 2008) to the empirical validation of Dynamic Stochastic General Equilibrium

models (Boivin and Giannoni, 2006; Giannone et al., 2006), and provide a reliable statistical framework for the estimation

of synthetic indexes of business cycle conditions (Stock and Watson, 1992).

The main feature of business cycle fluctuations is their pervasiveness across the economy.1 Hence, variables measuring

different aspects of the economy can be considered as imperfect measures of a latent common business cycle factor.

Formally, the dynamic factor model representation for a set of stationary variables, xi,t, i = 1, ..., n, is written as follows:

xi,t =
s∑

h=0

λi,hft−h + ei,t i = 1, ..., n (1)

where ft is the common factor summarizing the state of the economy and ei,t, 1 = 1, ..., n are the idiosyncratic disturbances.

The model is identified by assuming that comovement among variables arises only from a single source, the common factor.

This amounts at assuming that e1t, . . . , ent, ft are orthogonal at all leads and lags.

Following Stock and Watson (1992), we will refer to ft as the synthetic index of business cycle conditions. Summarizing

business cycle condition using a synthetic index rather than observable measures can enhance timeliness and precision.

For example, GDP provides a very comprehensive measure of economic activity and summarizes well the business cycle

fluctuations, as shown by the fact that recessions roughly correspond to its decline for two consecutive quarters (see

Harding and Pagan, 2002). However, GDP is released with a delay, it is subject to revisions and it is characterized by

measurement error. Aggregating the information provided by different variables represents a sort of insurance against the

measurement error2 and, in the assessment of the business cycle conditions, it allows to exploit the different sampling

1In their pioneering work, Burns and Mitchell (1946, p.3) define the business cycles as the “type of fluctuation found
in the aggregate economic activity of nations that organize their work mainly in business enterprises: a cycle consists
of expansions occurring at about the same time in many economic activities, followed by similarly general recessions
[...].” Pervasiveness is central also in the definition of the NBER dating committee: “During a recession, a significant
decline in economic activity spreads across the economy and can last from a few months to more than a year. Similarly,
during an expansion, economic activity rises substantially, spreads across the economy, and usually lasts for several years”
(www.nber.org/cycles/general_statement.html).

2See, for example, the statement of the CEPR dating committee: “To reduce the chance that data revisions might lead
the Committee to reconsider its choice of turning points in the future, the Committee examines a wide array of economic
data in addition to GDP, such as the individual components of output and labor market data.”
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frequency and the different timeliness of macroeconomic data releases.3

The dynamic factor model is typically specified by assuming s = 0 in equation (1).4 We refer to this set of restrictions as

dynamic homogeneity. This assumption can represent a straightjacket since it imposes that different indicators have the

the same lead-lag pattern along the business cycles and proportional impulse response functions to a common shock, i.e.,

to an exogenous shock to the synthetic index. For these reasons, inference is typically performed on pre-selected economic

indicators that are judged to be coincident along the business cycle, i.e., indicators that “have been tolerably consistent in

their timing in relation to business cycle revivals and that at the same time are of sufficiently general interest to warrant

some attention by students of current economic conditions” (see Mitchell and Burns, 1938; Moore, 1983).

In this paper, we relax the assumption of dynamic homogeneity and accommodate for heterogeneous dynamics by including

a large number of lags (s >> 0) in equation (1). The more general structure reduces the risk of model miss-specification,

enabling to extract more efficiently the information from economic indicators characterized by a significant degree of

dynamic heterogeneity. However, the high level of generality comes at the cost of parameters proliferation. This could

increase estimation uncertainty and induce overfitting, which, in turn, could offset the potential benefits of reduced

misspecification, and jeopardize the real-time performance of the model. In order to counterbalance these perverse effects,

we combine sample information with a prior belief that lagged effects of the common factor are less important the longer

the delay.5

We conduct inference using data on real GDP and popular US coincident indices of business cycles. Following a fast

growing literature on Bayesian factor models, we estimate the full set of posterior densities for the model’s parameters

and for the unobserved index of business cycle conditions using Montecarlo Markov Chain techniques (MCMC).6

Our framework encompasses the traditional approaches to the construction of business cycle indicators. In particular,

principal components are proportional to the posterior mode of the unobserved factor associated to a static factor model

(s = 0 and serially uncorrelated factors ft and idiosyncratic components ei,t, i = 1, . . . , n) with homogenous signal-to-

noise ratio and a flat prior. If the factor loadings are also assumed to be the same (λi(L) = λ̄) principal components

become simple cross-sectional averages. Allowing for serial correlation, but keeping the model dynamically homogenous

(s = 0), we obtain the Index of Coincident Economic Indicators of Stock and Watson (1992).

In-sample inference, based on the most recent available data, shows that the factor provides an accurate characterization

of the business cycle dynamics in the United States and suggests that dynamic heterogeneity is an important feature

of the data. Indeed, the posterior distribution of the common synthetic index provides a more timely account of peaks

and troughs when compared with alternative indicators based on dynamic factor models, like the Chicago FED National

Activity Index. In addition, the impulse responses of different indicators to a common shock display a relevant degree of

heterogeneity.

3The dynamic factor model can be cast in a state space form, which provides a natural environment to deal with
missing data and mixed frequencies; it is then a suitable tool for the assessment of economic conditions in real time. See
Giannone et al. (2008); Aruoba et al. (2009); Camacho and Perez-Quiros (2010); Jungbacker et al. (2011); Bańbura and
Modugno (2014), and for surveys Bańbura et al. (2011, 2013).

4See, for example, Stock and Watson (1992); Kim and Nelson (1999); Mariano and Murasawa (2003); Aruoba et al.
(2009); Camacho and Perez-Quiros (2010); Bańbura et al. (2013).

5This is the same logic of the prior beliefs popularized by Litterman (1979) for Bayesian Vector Autoregressions.
6See Kim and Nelson (1999); Del Negro (2002); Kose et al. (2003); Justiniano (2004); Bernanke et al. (2005); Del Negro

and Otrok (2008); Mackowiak et al. (2009); Moench (2012).
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As stressed above, factor models have proved to be successful not only in the extraction of synthetic indicators, but

also for nowcasting in real time. We evaluate the accuracy of our model also along this dimension. This is important

also because it reveals whether the in-sample properties we just described are genuine features of the data and not only

an artifact due to overfitting. More in details, we study the properties of the model-based predictive distributions for

GDP growth and compare them with the consensus probability assessments of the Survey of Professional Forecasters

(SPF). In order to meaningfully compare the two sets of nowcasts, we take a fully real-time perspective, i.e., we collect

the real-time vintages for our variables, which were available at the time the SPF was conducted. Results indicate that

the predictive densities are correctly specified - well calibrated - since they cannot be statistically distinguished from

the true unconditional data densities. Predictive scores reveal that the predictions of the model are, on average, more

accurate than those obtained using a univariate autoregressive benchmark and compare well with the SPF. Overall, the

out-of-sample evaluation indicates that dynamic heterogeneity is a genuine and salient feature of the data, and not just

the result of overfitting.

The rest of the paper is structured as follows. Section 2 describes the model and the real-time database. Section 3 studies

the in-sample properties of our index of business cycle conditions. Section 4 carries out a formal out-of-sample evaluation

of the density nowcasts of our model. Section 5 concludes.

2 The model and the database

2.1 The dynamic factor model

We assume that a set of variables xi,t, with i = 1, ..., n, is characterized by the following equations:7

xi,t = λi(L)ft + ei,t, i = 1, ..., n (2)

where λi(L) = λi,0 + λi,1L + ... + λi,sL
s. The process for the common factor ft and the idiosyncratic components ei,t,

i = 1, ..., n are approximated by finite autoregressive (AR) models:

- a(L)ft = ut, ut ∼ i.i.d.N (0, 1);

- φi(L)ei,t = vi,t, vi,t ∼ i.i.d.N (0, σ2
i ), i = 1, ..., n,

where a(L) = 1− a1L− ...− apfL
pf and φi(L) = 1− φi,1L− ...− φi,peLpe .

The common shocks ut are assumed to be orthogonal to the idiosyncratic shocks vi,t, i = 1..., n, at all leads and lags. In

addition, the idiosyncratic shocks are assumed to be mutually orthogonal at all leads and lags. Under this assumption,

the model is known as “exact” since it implies that the cross-correlations among observables are only due to the common

factor. Although this assumption may be very restrictive, Doz et al. (2012) have shown that the model is robust to

7We assume, without loss of generality, that the variables are demeaned and standardized. In practice, we will estimate
the model on demeaned and standardized data and we will re-attribute mean and standard deviation after estimation, as
it is common practice in the factor model literature.
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non Gaussianity and to weak correlation among idiosyncratic components, provided that estimation is carried out with a

sufficiently large number of highly collinear variables.

Thanks to the rich dynamics allowed by the polynomials λi(L) =
∑q
s=0 λisL

s, the model can account for complex

heterogeneity in the dynamic effects of the common factors on the observable variables. However, the generality of the

model is obtained at the cost of the proliferation in the number of parameters to be estimated. This is the reason why

the model is typically estimated with s = 0. The most commonly used synthetic indexes are obtained as posterior modes

of the following constrained models, when a flat prior is used:

• Principal components: static factor model (s = pe = pf = 0) with spherical idiosyncratic component, (σ2
i = σ̄2);

• Cross-sectional averages: static factor model (s = pe = pf = 0) with spherical idiosyncratic component (σ2
i = σ̄2)

and homogenous loadings: λi(L) = λ̄0;

• Index of Coincident Economic Indicators of Stock and Watson (1992): Homogenous (s = 0) dynamic (pe = pf = 2)

factor model. We will define this model as DFM.

The restriction s = 0 implies strong homogeneity on the propagation of the common shocks on the variables. In particular,

an implication of this assumption is that the fluctuations of all variables are perfectly coincident over the business cycles.8

We retain the flexibility of the model, relaxing the homogeneity restriction, and we control for the over-fitting due to

parameters proliferation by shrinking the model parameters towards those of a simple näıve model, through the imposition

of priors. The prior distributions for all the coefficients are centered on zero, with stronger tightness for higher-order lags,

so that posterior coefficients of high-order lags of the factors are sufficiently away from zero only if the data strongly favor

non-zero values. Formal bayesian inference allows us to combine the information from the data and the prior.

An equivalent representation of the model is obtained by pre-multiplying both sides of equation (2) by φi(L):

φi(L)xi,t = θi(L)ft + vi,t, vi,t ∼ i.i.d.N (0, σ2
i ), i = 1, ..., n,

a(L)ft = ut, ut ∼ i.i.d.N (0, 1),

where θi(L) = φi(L)λi(L). Since λi(L) and φi(L) are unrestricted, we can estimate the model reparameterized in θi(L)

and φi(L).9 The dynamic effects of the common shocks on xi,t can be retrieved by taking the ratio λi(L) =
θi(L)
φi(L)

. Our

priors specified as follows:

• σ2
i ∼ IG(1, 3),

• θi,h ∼ N(0, τ 1
(h+1)2

),

• φi,h ∼ N(0, τ 1
h2 ),

• ah ∼ N(0, τ 1
h2 ).

8Dynamic heterogeneity can be taken into account in the context of principal components by including additional
new factors, without modeling explicitly that they are lagged versions of each other (see Stock and Watson, 2002). This
approach is suitable for forecasting but not for measuring business cycles conditions since it delivers estimated factors
that are linear combinations of contemporaneous and lagged values of the index of economic activity.

9Quah and Sargent (1993) follow the same strategy.
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where h indicates the lag of the factor or the variable to which the coefficient is associated. The prior covariance among

coefficients associated to different variables and different lags is set to zero. Notice that the variance of the prior is lower

for the coefficients associated with more distant lags. The hyperparameter τ controls the scale of all the variances and

effectively governs the overall level of shrinkage. We fix this parameter to the conventional value of 0.2.10 These priors,

including the choice of the degree of overall shrinkage, are similar to those proposed by Litterman (1979) in the context

of Bayesian Vector Autoregressive models.11 Our dynamic factor model with unrestricted dynamics is shortly defined

as Heterogenous Dynamic Factor Model (HDFM ). In order to be able to capture very general dynamics, we specify the

model in order to include twelve lags of the observables, the contemporaneous value and twelve lags of the factors in the

equations of the observables and twelve lags of the factors in the equations describing the dynamics of the factors.

As stressed in the introduction, we conduct inference using Gibbs sampling techniques. If all data and also the common

factor were observed, drawing from the posterior of the parameters is simple since the prior is conjugate. Conditionally

on the parameters and the observable data, then the common factors and the missing data can be drawn using simulation

smoothers (Carter and Kohn, 1994; de Jong and Shephard, 1995; Durbin and Koopman, 2002).12 In other words, the

Gibbs sampler consists in alternating the following two steps:

• given a draw of the parameters, draw the missing data and the latent factor conditional on the observations using

the simulation smoother;

• given a draw of the the full data and the latent factors, draw the parameters from their posterior.

The algorithm is initialized by using the parameters associated to principal components computed by fitting missing data

by a spline function.

2.2 Data

We study the in-sample properties of the HDFM model and its accuracy in a real-time forecast evaluation by using a

relatively small dataset for the US economy, including the most popular coincident indicators: real GDP (GDP), real

disposable income (DSPI), employment (EMP), industrial production (IP), and real retail sales (RRS).13 In addition, we

include the purchasing manager index (PMI) because, due to the timeliness of its release, it provides an extremely useful

information.14

The variables are transformed in order to achieve stationarity. Real GDP enters in the model in terms of quarter-on-

quarter growth rates, while real income, employment, industrial production, and real retail sales enter the model in terms

10We leave for future research the task of conducting inference on the degree of prior tightness, which could be done
following the lines of Giannone et al. (2012).

11We do not need to rescale the variances of the priors to adjust for the different scale of the variables, as it is customary
in BVAR applications, since we perform inference using standardized data.

12For a general discussion about the formulation of the state space in presence of missing data, see Bańbura et al.
(2014).

13These are also the most relevant indicators constantly monitored by the NBER to detect and date peaks and throughs
in the business cycle.

14The importance of survey data for nowcasting has been documented by Giannone et al. (2008), Giannone et al. (2009),
Angelini et al. (2011), Lahiri and Monokroussos (2013). For a survey, see Bańbura et al. (2011, 2013).
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of month-on-month growth rates. The PMI is stationary by construction, therefore it enters the model without being

transformed.15

This dataset is characterized by mixed frequencies because real GDP is sampled quarterly, while all the other variables

are sampled monthly. In order to deal with this issue, we treat real GDP as observable in the last month of the quarter.

The first two months of the quarter are treated as missing observations. This approach is convenient since, as explained

in section 2.1, the algorithm used for inference can easily deal with missing data.

The main benchmark in our forecasting evaluation is the Survey of Professional Forecasters (SPF). For the sake of

comparability, we exactly replicate the information set available to the professional forecasters at the time they produced

their own forecasts.16 Specifically, the forecasts are generated every quarter with the information available on the 14th of

the second month in the quarter, which is roughly in line with the deadline for the submission of the SPF questionnaires.

The forecasting evaluation is carried out using eleven years of vintages, ranging from Q1-2003 to Q4-2013. For each real-

time data vintage the sample starts in January 1993. We start the evaluation in 2003 in order to have a first estimation

sample of ten years. 17

The real-time exercise introduces an additional source of missing data due to the different availabilities of the data at

the time forecasts are generated. In fact, on the 14th of each second month of the quarter, real GDP is available for the

previous quarter (e.g., in February real GDP is available up to Q4 of the previous year), employment and PMI are available

up to the previous month (e.g., in February they are available up to January), real retail sales, and real disposable income

are available up to two months before (e.g., in February they are available up to December). Industrial production is

usually released at mid month (between the 13th and the 17th of each month) and, hence, depending on the vintage, it

can have either the same availability of employment and PMI or the same availability of disposable income and retail

sales.

3 The synthetic business cycle indicator and dynamic hetero-

geneity

In this Section we perform in-sample inference using data from the last vintage in our dataset (February 2014). The

real-time evaluation is conducted in the next Section.

Figure 1 plots the real GDP growth rate against the other variables included in the database.

INSERT FIGURE 1 HERE

Some features stand out. First, all variables tend to comove with GDP, especially during periods of downturn. Second,

15Each month, survey respondents are asked to assess their organizations’ performance based on a comparison of the
current month to the previous month, see http://www.ism.ws/files/ISMReport/ROBBroch08.pdf.

16Real time vintages are downloaded from the Federal Reserve Bank of St. Louis http://alfred.stlouisfed.org/.
17We use a recursive updating scheme in our out-of-sample forecasting evaluation, i.e., for every vintage the estimation

sample always starts in January 1993.
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real disposable income, industrial production and real retail sales display very noisy short-run fluctuations, which tend

to hide the lower-frequency fluctuations. Third, the variables exhibit a different lead-lag pattern, which is particularly

visible around the great recession. PMI and employment growth tend to lag GDP growth; RRS has a more coincident

pattern, whereas DSPI and IP display leading dynamics, providing an early signal of the recession.

Figure 2 plots the six variables versus the HDFM business cycle indicator (median, 16th and 84th quantiles of the

distribution), which is explicitly devised to account for heterogeneous lead-lag structure of the variables.

INSERT FIGURE 2 HERE

In general, the HDFM indicator tracks our variables very well. This validates the strategy of estimating a dynamic

factor model to capture the comovement among the variables. In addition, the indicator is smoother than the individual

variables, suggesting that a large part of their high-frequency fluctuations are of idiosyncratic nature. More in details, the

indicator is roughly coincident with DSPI, IP and RRS (first three sub-plots) and it clearly leads EMP, PMI and GDP

(last three sub-plots), hence it provides an “average” of the variables whose dynamic heterogeneity is properly taken into

account. On the other hand, traditional methods for factor extraction would assign most of the weights to the variables

with the most persistent dynamics and less volatility (EMP and PMI in our case), and the underlying estimated indicator

would be heavily shaped by these series. To illustrate this point, Figure 3 compares the indicator extracted by employing

the HDFM in Section 2.1 with four of the most common methods for factor extraction: the average of the monthly

variables included in the panel, the first principal component (PC) of the monthly variables, the Chicago Fed National

Activity Index (CFNAI) and the factor extracted from a model that imposes dynamic homogeneity. The latter is the

posterior mode of the common factor in our model, estimated under the restriction of complete dynamic homogeneity

(DFM).18

INSERT FIGURE 3 HERE

The HDFM indicator, which is designed to exploit the dynamic heterogeneity of the variables, leads all the other indicators

which do not take into account this important feature of the data. It is worth stressing that this is a pure modeling issue,

not related at all with the dimension of the information set; indeed, the CFNAI index, which is extracted from a panel of

85 monthly series, also lags the dynamics of our indicator.19

These results have also non trivial implications on the traditional simulation exercises, which are performed to assess

the system dynamics after some exogenous shock. To clarify this point, Figure 4 reports the impulse response functions

(IRFs) of the (log-)levels of the six variables to a common shock, that is an exogenous shock to the synthetic business

cycle index. The red line refers to the median IRF estimated by means of the DFM model, which imposes dynamic

18Notice that with flat prior the posterior mode of the model parameters corresponds to the Maximum Likelihood
estimates. Following Doz et al. (2012) Maximum Likelihood estimation is performed by using the EM algorithm initialized
by principal components. The algorithm is modified to account for arbitrary patterns of missing data following the
procedure of Bańbura and Modugno (2014). The algorithm has been shown to be computationally efficient and feasible
even with high-dimensional data. Recent results by Jungbacker et al. (2011) and Jungbacker and Koopman (2015) show
how computational efficiency can be further improved.

19See https://www.chicagofed.org/publications/cfnai/index
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homogeneity in the effects of the exogenous shock to the synthetic business cycle indicator. The blue lines refer to the

IRFs (median, 16th and 84th quantiles of the distribution) of the HDFM. For all variables, the IRFs of the log-levels are

obtained by cumulating the IRFs of the growth rates, with the exception of PMI, which is not transformed, and for which

the model produces directly the IRFs of the levels.

INSERT FIGURE 4 HERE

The most important difference between the two approaches is that, when dynamic heterogeneity is excluded by assumption,

the IRFs have essentially the same dynamics, up to a re-scaling factor given by the factor loadings. Indeed, the cumulated

IRFs for a model with dynamic homogeneity is:

∂xi,t+h

∂ut
= λi,0

h∑
j=0

bj (3)

where bj are the coefficients of the polynomial b(L) = a(L)−1, and where a(L) is the polynomial that captures the

dynamics of the common factor as described in Section 2.1. As noticed above, the only difference among the IRFs of

different variables is their loadings λi,0. Instead, accounting for the dynamic heterogeneity, the IRFs are allowed to differ:

∂xi,t+h

∂ut
=

h∑
j=0

ci,j (4)

where ci,j are the coefficients of the polynomial c(L) = θi(L)φi(L)−1a(L)−1. In this case, the IRFs for a specific variable

will differ not only by a re-scaling factor, but also by the potentially different importance that lags of the variable itself

and of the factors have in explaining the fluctuations. This is evident in Figure 4, where the dynamics captured by the

red lines are alike among variables. Instead, when a different lead-lag structure among the variables is allowed, the IRFs

may have different dynamics. In fact, the blue lines in the figures show that the variables have heterogeneous patterns

after the shock. The most striking example is PMI, that displays a clear hump-shaped reaction to a shock to the common

component in the HDFM, while this is not the case for the DFM.

4 Evaluation of the density nowcasts

Dynamic factor models are known to perform very well as forecasting tools (see Stock and Watson, 2011, for a survey).

However, the specification we advocate in this paper is richly parameterized, hence parameters estimation uncertainty

and overfitting are an important concern. For this reason, we evaluate the out-of-sample (real-time) predictive ability of

the model.

Bayesian estimation methods allow us to rigorously account for all sources of uncertainty and, hence, we put particular

emphasis on density forecast evaluation. We test the density nowcast accuracy of our HDFM against two popular

benchmarks: the GDP nowcasts from the Survey of Professional Forecasters and those from a näıve autoregressive model.

9



To our knowledge, this is the first paper that compares probabilistic forecasts of models and institutions in a fully real-time

perspective.

For the sake of comparability, our out-of-sample exercise is designed to replicate the features of the SPF. Specifically,

we ask what the model would predict if used in “real time” to answer the SPF questionnaire for GDP growth. More

in details, we collected 44 vintages of data which were available, in real time, to the forecasters in the quarters between

2003Q1 and 2013Q4 and, at each point in time, we use the model to derive a nowcast of the GDP growth rate in the

current calendar year. For example, by using the data vintage available in the first quarter of 2003, we nowcast GDP

growth in that quarter and we forecast GDP growth in the subsequent quarters of 2003 to derive the annual growth rate

for 2003.

The annual growth rate gt for GDP in the calendar year ty is defined as the growth rate in the average level of GDP over

the four quarters in year ty , compared to the average annual level over the four quarters in year ty − 1:

gty = 100 ∗
(

GDPQ1,ty +GDPQ2,ty +GDPQ3,ty +GDPQ4,ty

GDPQ1,ty−1 +GDPQ2,ty−1 +GDPQ3,ty−1 +GDPQ4,ty−1
− 1

)
where GDPQj ,ty is the level of GDP in the jth quarter of year ty .

Since GDP enters in terms of quarterly growth in the HDFM, the calendar year growth need to be derived starting from

the quarterly growth profiles. This is achieved in two steps: first we approximate the year-over-year (yoy) growth rates

as a four quarters moving average of annualized quarter-over-quarter (qoq) growth rates; second, we approximate the

calendar year growth as the average of the yoy growth rates within the calendar year.20

Once again, our choice is driven by the fact that the SPF density forecasts are only publicly available for this definition of

the growth rate.21 The näıve benchmark is an autoregressive model of order two. When looking at data in real time, one

issue to address is which data vintage is used to compute the outcome of the target variable. Our choice is to consider

the first vintage in the sample in which the data for the full calendar year are made available.

Figure 5 reports the nowcasts (median, 16th and 84th quantiles, dashed lines) of annual GDP growth for the HDFM and

the autoregressive model (AR).22 The blue solid line in the charts refers to the realizations of the annual GDP. For both

models, we report the nowcasts computed in each quarter of the year.23

INSERT FIGURE 5 HERE

Figure 5 shows that the density nowcasts of the HDFM are generally centered around the outcome, already in the first

quarter of the year, differently from the AR nowcasts. The uncertainty on the growth rate of GDP in the calendar year

decreases and, by consequence, the nowcast densities become narrower.

20Formally, defining tq as the last quarter of the calendar year of interest, the computation is equivalent to (1 + L +
L2 + L3)(1− L4) logGDPtq × 400. For a recent discussion see Richard Crump and Moench (2014).

21The SPF also targets the GDP growth rate in the current quarter, but the density forecasts for this definition are not
available.

22The order of the autoregressive model is set equal to two, as suggested by the Akaike criteria computed in first
estimation sample (1993-2003). Results are similar when using only one lag, when the selection is updated recursively
and when the coefficients of the benchmark are restricted to those of the random walk.

23The density nowcasts of the SPF are not included in the figure because they are available only in terms of histograms.
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Next, we evaluate more formally whether the HDFM density nowcasts are a good approximation of the true data densities,

by testing the uniformity of the probability integral transforms (PITs).24 The PITs are the value of the predictive

cumulative distribution evaluated at the true realized values of the variables and are widely used to assess the calibration

of density forecasts (most recent works include Aastveit et al., 2011; Mitchell and Wallis, 2011; Geweke and Amisano,

2010; Clark, 2011). In fact, Diebold et al. (1998) show that, if the density forecasts approximate well the true density (i.e.,

are “well calibrated”), then the PITs should be uniformly distributed in the interval [0− 1]. Assessing the uniformity of

the PITs is equivalent to checking whether the inverse normal transformation of the PITs is standard normal. We compare

the first fourth sample moments of the PITs inverse normal transformation are different from the first four moments of the

standard normal distribution (zero, one, zero and three respectively). Table 2 reports the four sample moments (columns

two to five) for each of the nowcasts computed in the four quarters of the year (rows two to five). Following Bai and Ng

(2005) we report the heteroskedasticity and autocorrelation consistent (HAC) standard deviation estimator to provide a

rough idea of the statistical significance.25

Table 2: Tests of normality, HDFM nowcasts.

Quarter First moment Second moment Third moment Fourth moment

Q1 -0.47 0.52 -0.56 0.72

(0.58) (0.70) (1.02) (1.42)

Q2 -0.20 0.83 - 0.09 1.60

(0.94) (0.99) (1.97) (2.50)

Q3 0.35 0.92 0.70 2.20

(0.93) (1.22) (2.78) (5.11)

Q4 0.52 0.77 0.89 1.24

(0.74) (0.84) (1.24) (1.68)

Note: Sample moments in the four quarters. Standard deviation in parentheses.

Table 2 shows that all the sample moments are close to the theoretical values for the standard normal distribution,

indicating that the density nowcasts of the HDFM model are well calibrated. We now turn to the analysis of the

“relative” accuracy of the HDFM density nowcasts, comparing their log-scores to those of the alternatives.

In the SPF the forecasters are asked to report, among other things, a density forecast by allocating probabilities to

ranges of possible future outcomes of the annual growth of GDP. The lower bottom interval and the upper interval of

the range are open bins, and the interior bins have equal lengths of 1 percentage points.26 Individual responses are

aggregated by computing average probabilities. For the sake of comparability, we organize the output of the model-based

nowcasts (HDFM and AR) along the same lines of the SPF questionnaire. In other words, for all models, we compute the

percentage (frequency) of the outcomes that fall in the different bins identified in the Survey of Professional Forecasters.

24Notice that our evaluation is more demanding that the traditional residual based diagnostics since the predictive
densities are computed in real time, hence accounting for parameter estimation uncertainty and overfitting.

25The implied t-statistics should be taken with caution since the asymptotic distribution is non standard due to the
recursive estimation of the parameters (see McCracken and Clark, 2013).

26Until the first quarter of 2009 the upper bound of the lower bottom interval is 2%. Starting in the second quarter of
2009 it is 3%.
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Then, we compute the log-scores, for each model and period, defined as the logarithm of the frequency of the bin including

the observed annual GDP growth rate. The higher the mean of the log-scores, the higher the accuracy of the density

nowcasts. In Table 3, column one indicates the quarter in which the nowcast for the calendar year is produced. In the

second column, we report the average HDFM log-scores. For the AR (column three) and SPF (column four), instead,

we report the difference of the average log-scores with the HDFM counterpart: positive values indicate that the average

log-score of the specific model is higher than the average log-score of the HDFM for that specific quarter, and viceversa.

The HAC estimate of its standard deviation are reported in parentheses.27

Table 3: Evaluation of density nowcasts for the calendar year, average log-scores.

Quarter HDFM AR minus HDFM SPF minus HDFM

Q1 -1.27 -0.16 0.15

(0.24) (0.11)

Q2 -1.17 0.22 0.12

(0.13) (0.10)

Q3 -0.68 -0.10 -0.03

(0.12) (0.18)

Q4 -0.18 -0.01 -0.22

(0.03) (0.07)

Note: HDFM (column two), average log-scores. AR (column three) and SPF (column four), average log-scores minus average HDFM log-scores.

Standard deviation in parentheses.

Results in the first columnof Table 3 show that, as expected, the accuracy improves as more information becomes available

during the year. The results in the second column indicate that the HDFM is generally more accurate than the AR model.

The third column indicates that, while the SPF density nowcasts are more accurate than those of the HDFM in the first

two quarters of the year, the opposite is true in the third and fourth quarter of the year. However, the standard deviations

of the sample mean of the difference in log-scores (in parentheses) are quite large compared to the average differences in

log-scores, so the differences are unlikely to be statistically significant. Since the evaluation sample is short, the forecasting

evaluation should not be seen as a horse race, but rather as an assessment of the validity of the model, aiming to ascertain

that the accuracy of the density nowcasts is preserved, in spite of the proliferation of parameters resulting from taking

into account general patterns of dynamic heterogeneity.28

Figures 6 to 8 zoom on three specific calendar years, the 2008, 2009, and 2010. In the three Figures we report the evolution

over the four quarters of 2008, 2009, and 2010 of the density nowcasts, in form of histograms, of the HDFM, the AR, and

the SPF.

INSERT FIGURE 6 to 8 HERE

27See footnote 25.
28Results not reported here show that the HDFM model does not significantly outperform the homogenous model in

terms of real-time out-of-sample forecasting accuracy. This result indicates that dynamic heterogeneity, although it is a
feature of the data, is not so prominent to significantly improve the forecasting performance of the model, at least not in
the short evaluation sample considered here.
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Figures 6 to 8 show that, particularly in the most acute part of the recession, the HDFM outperforms the AR model

and provides very similar outcomes to the SPF. This result shows that accounting for different sources of information is

important (for example, surveys were an important source of information to timely capture the great recession). Moreover,

it highlights how the HDFM, in spite of its mechanical nature, is able to replicate the outcomes of the survey of professional

forecasters that, presumably, incorporates human judgement. These ability of mechanical models to replicate best practice

in nowcasting GDP growth has been extensively documented in the context of point forecasts. The finding above indicate

that this stylized fact also holds for density forecasts.

5 Conclusions

A synthetic indicator of economic activity should condense, in a timely and reliable manner, the information of several

alternative observable measures. The indicator proposed in this paper is based on a dynamic factor model that explicitly

allows for dynamic heterogeneity in the effects of the common factor on the variables. Since the model is richly parame-

terized, we control for overfitting by combining sample information with a prior belief that the effects of lagged factors on

the observed economic indicators are more important the shorter the lag. Empirical results support our modeling strategy

and indicate that it is important and feasible to account for general patterns of dynamic heterogeneity in the context of

dynamic factor models. Indeed, inference based on our framework provides a timely account of the business cycle peaks

and throughs and, in real time, it provides accurate and well-calibrated predictive densities.

In this paper, we have focused on a relatively small set of indicators that have been pre-classified as coincident on the

basis of a long-established tradition in business cycle analysis. However, the general framework can be used to analyze

more general dataset. Indeed, because of the high level of generality, the dynamic heterogenous factor model allows to

analyze simultaneously a variety of indicators, without the need of pre-testing or expert judgement for the classification

based on lead-lag patterns. This can be particularly important when dealing with datasets characterized by blurred lines

of separation between coincident, leading and lagging indicators, as it tends to be the case when considering additional

indicators and other countries. Evidence in this direction has been provided by Luciani and Ricci (2013) who have

successfully used our methodology to nowcast Norway.
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Figure 1: GDP and other variables
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Note: red line: quarter-on-quarter real GDP growth rate; blue line: month-on-month real disposable income growth rate (DSPI),

month-on-month industrial production growth rate (IP), month-on-month real retail sales growth rate (RRS), month-on-month employment

growth rate (EMP), and level of the purchasing manager index (PMI). Due to the different sampling frequency, GDP growth is reported as

constant in the three months of each quarter. Sources: U.S. Bureau of Economic Analysis (BEA), Gross Domestic Product (GDP), Disposable

Income Growth Rate (DSPI); Board of Governors of the Federal Reserve System, Industrial Production Index (IP); Federal Reserve Bank of St.

Louis, Real Retail Sales Growth Rate (RRS); U.S. Bureau of Labor Statistics, Employment growth rate (EMP); Institute for Supply

Management, Purchasing Managers Index (PMI).
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Figure 2: Common factor and variables
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Factor Variable 68% c.i.

Note: Blue lines: HDFM business cycle indicator (median solid line, 16th and 84th quantiles dashed lines); Red line: month-on-month real

disposable income growth rate (DSPI), month-on-month industrial production growth rate (IP), month-on-month real retail sales growth rate

(RRS), month-on-month employment growth rate (EMP), the level of the purchasing manager index (PMI), and the quarter-on-quarter real

GDP growth rate, reported as a constant in the three months of each quarter. Sources: U.S. Bureau of Economic Analysis (BEA), Gross

Domestic Product (GDP), Disposable Income Growth Rate (DSPI); Board of Governors of the Federal Reserve System, Industrial Production

Index (IP); Federal Reserve Bank of St. Louis, Real Retail Sales Growth Rate (RRS); U.S. Bureau of Labor Statistics, Employment growth rate

(EMP); Institute for Supply Management, Purchasing Managers Index (PMI).
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Figure 3: HDFM and other indicators
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Indicator HDFM 68% c.i.

Note: Blue lines: HDFM business cycle indicator (median solid line, 16th and 84th quantiles dashed lines); Red line: simple average of the

variables (mean), first principal component of the variables (PC), the Chicago Fed national activity index (CFNAI) and the factor extracted

from the homogeneous dynamic factor model (DFM).
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Figure 4: IRFs of all variables to a common shock
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Note: Blue lines: HDFM IRF of the log-levels of the variables (except for PMI, for which we report levels) to a common shock (median solid

line, 16th and 84th quantiles dashed lines); Red line: DFM IRF of the log-levels of the variables (except for PMI, for which we report levels) of

the variables to a common shock (median).
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Figure 5: Nowcasts for the calendar year - 2003 to 2013
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Note: Left panels: HDFM nowcasts (dashed green) and out-turns (solid blue). Right panels: AR nowcasts (dashed red) and out-turns (solid

blue). All panels report median, 16th and 84th quantiles of the density nowcasts. From top to bottom, nowcasts produced in quarter 1, 2, 3 and
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Figure 6: Case study - calendar year 2008
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Actual HDFM SPF AR

Note: Red dashed line: observed calendar year real GDP growth rate; x-axis: SPF bins; Blue bars: probabilities assigned by the HDFM to the

bins; Purple bars: probabilities assigned by the AR to the bins; Green bars: probabilities assigned by the SPF to the bins.
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Figure 7: Case study - calendar year 2009
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Actual HDFM SPF AR

Note: Red dashed line: observed calendar year real GDP growth rate; x-axis: SPF bins; Blue bars: probabilities assigned by the HDFM to the

bins; Purple bars: probabilities assigned by the AR to the bins; Green bars: probabilities assigned by the SPF to the bins.
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Figure 8: Case study - calendar year 2010
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Actual HDFM SPF AR

Note: Red dashed line: observed calendar year real GDP growth rate; x-axis: SPF bins; Blue bars: probabilities assigned by the HDFM to the

bins; Purple bars: probabilities assigned by the AR to the bins; Green bars: probabilities assigned by the SPF to the bins.
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