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1 Introduction

Over the past few years, there has been a great deal of financial innovation in volatil-

ity trading markets. A new collection of volatility derivatives, such as VIX futures,

options, and exchange-traded products, have been introduced, making volatility trad-

ing more accessible to a broad range of investors.1 The increasing volume of trading

in those products is largely due to the fact that they can be used as a so-called tail

risk hedging strategy against stock market downturns. That is, because changes in

market volatility are negatively correlated with stock market returns, investors can

limit the loss of an equity portfolio by taking a long position in VIX futures or call

options. Given the explosive growth in volatility trading, the objective of this paper

is to understand the effects of asymmetric volatility of and jumps in the VIX on the

pricing of VIX futures and options.

We use the term “asymmetric volatility” to refer to the fact that the volatility

of the VIX is not merely stochastic but also varies asymmetrically in response to

changes in the VIX. Such asymmetry can be seen, for example, by looking at the

dynamic relation between the VIX and the VVIX of the CBOE (Chicago Board

Options Exchange). The VIX is a risk-neutral, forward-looking measure of market

volatility implied by a cross section of S&P 500 index options, while the VVIX is a risk-

neutral, forward-looking measure of market volatility of volatility implied by a cross

section of VIX options.2 The scatter plot in Figure 1 shows that there is a positive

relation between changes in the VVIX and in the VIX. That is, the volatility of the

VIX, as measured by the VVIX, tends to increase (decrease) as the VIX increases

(decreases).

An important implication of this empirical regularity is that the stochastic volatil-

ity factor implicit in the VIX options comprises two components—one that can be

spanned by VIX futures and another that cannot. In other words, the VIX options

market is nonredundant with the VIX futures market. To gauge the extent to which

the options market can be spanned by the futures market, we run a regression of

VVIX returns onto VIX returns, and find that the VIX changes can explain only 51

percent of the variation in the VVIX based on the adjusted R2 of the regression.

1 See, for example, Whaley (2013) and Alexander and Korovilas (2012) as references on exchange-
traded volatility products linked to the VIX.

2 The VVIX is computed by applying the VIX formula to the VIX options market.
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Contrary to the empirical fact just discussed, the existing VIX option papers

generally assume that the volatility of the VIX is either completely spanned or com-

pletely unspanned. For example, some authors, such as Grünbichler and Longstaff

(1996), Detemple and Osakwe (2000), and Goard and Mazur (2013), apply fully

spanned volatility models in which VIX options are completely hedgeable by VIX

futures, whereas others, such as Menćıa and Sentana (2012), introduce a completely

unspanned volatility model in which innovations in the VIX index are uncorrelated

with those in the volatility of the VIX index. It is evident that all of those models

are unable to accommodate the important feature of the data that we have found—

namely, asymmetric volatility. Hence, the chief goal of this paper is to contribute to

the literature by studying the effects of asymmetric volatility on the pricing of VIX

derivatives.

Intuitively, a model that allows for asymmetry in volatility may have great po-

tential to improve the pricing of VIX options because it is capable of explaining the

positive skewness implicit in the options.3 The VIX options market shows a per-

sistent deviation from a geometric Brownian motion regardless of time to maturity.

In particular, out-of-the-money (OTM) VIX calls tend to have higher Black-Scholes

implied volatility than OTM VIX puts, a tendency that is sometimes referred to as

a volatility smile, implying that the option-implied VIX return distributions are pos-

itively skewed. This positive skewness may be in part attributable to asymmetric

volatility.

On top of asymmetric volatility, we also look at the impact of jumps in the VIX

on the valuation of VIX futures and options because they can be another channel for

explaining the positive skewness implied by VIX options. Good and bad surprises

may arrive with different rates and sizes and investors may react differently to them.4

Hence, our models assume that upward and downward jumps occur independently

with different frequencies and magnitudes. In this respect, our jump treatment is

close in spirit to the currency option pricing model of Carr and Wu (2007), which

separately models upward and downward jumps using time-changed Levy processes.

3 This echoes a well-known finding that the negative skewness implicit in stock index options is
partly associated with the leverage or volatility feedback effect, which indicates a negative correlation
between stock index returns and volatility changes.

4 The market’s asymmetric response to shocks or news announcements has been documented by
Andersen, Bollerslev, Diebold, and Vega (2007) and Bakshi, Carr, and Wu (2008), among others.
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Building on the affine jump-diffusion framework of Duffie, Pan, and Singleton

(2000), we introduce a new family of dynamic models for the VIX with and without

the features of asymmetric volatility and jumps and derive quasi-analytic solutions

to the prices of futures and options. The models are characterized by three dynamic

factors: one observed VIX index and two latent factors to capture time variations

in the stochastic volatility and central tendency of the VIX. To reflect asymmetric

volatility, we allow for a nonzero correlation between innovations in the VIX and

in its stochastic volatility. Upward and downward jumps are both assumed to follow

independent compound Poisson processes with each having its own jump intensity and

exponential jump-size distribution. The models are then tested on the VIX futures

and options data covering July 2006 through January 2013, via an unscented Kalman

filter.

Turning to the empirical results, we first evaluate the effects of asymmetric

volatility on the pricing of VIX derivatives. By comparing the model with sym-

metric volatility and no jumps (SVV) with the model with asymmetric volatility and

no jumps (AVV), we find that the latter is strongly preferred to the former in both

in-sample and out-of-sample tests. The performance difference is statistically signif-

icant at the 1 percent level based on the Diebold and Mariano (2002) test. That is,

allowing for asymmetry in volatility can make large improvements in fitting the prices

of VIX futures and options.

We next look at the effects of including upward jumps on top of asymmetric

volatility by comparing the AVV model with the AVV-UJ model, the model with

asymmetric volatility and upward jumps. The comparison shows decisive evidence in

favor of the AVV-UJ model over the AVV model, except for in-sample futures pricing.

The results are statistically significant at the 1 percent level according to the Diebold

and Mariano (2002) test. That is, including upward jumps in the AVV model can

make considerable improvements in VIX derivatives pricing.

Lastly, we investigate whether downward jumps can have an incremental effect

on the pricing of VIX derivatives by comparing the AVV-UJ model with the model

with asymmetric volatility and asymmetric upward and downward jumps (AVV-AJ).

The comparison does not result in any significant ranking of one model over the other.

Including downward jumps makes little, if any, improvement in the pricing of both

futures and options as long as asymmetric volatility and upward jumps are accounted
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for. However, because we consider finite-activity jumps in this paper, we do not

interpret our finding as implying that downward jumps are of no use in explaining

VIX derivatives prices; rather, we argue that upward jumps play a far more important

role in the pricing of VIX derivatives than downward jumps do.

Aside from the VIX option pricing literature, this paper also adds to the litera-

ture on unspanned stochastic volatility. Unspanned volatility has been found to be

important in many other asset classes. For example, unspanned volatility in the in-

terest rate market has been reported by Collin-Dufresne and Goldstein (2002), Li and

Zhao (2006), and Bikbov and Chernov (2009), among others. Trolle and Schwartz

(2009b) emphasize the importance of including unspanned volatility in pricing com-

modity options.

This paper is also related to the literature on the structure of jumps in the VIX.

For example, Todorov and Tauchen (2011) and Wu (2011) both find that jumps in the

VIX are more likely to have infinite activity, although they rely on different sources of

information and estimation. More recently, Todorov, Tauchen, and Grynkiv (2014)

examine asymmetry in upward and downward jumps in VIX dynamics and find that

upward and downward jumps are approximately symmetric, although the former are

slightly more active than the latter. In more loosely related papers, Eraker (2005) and

Broadie, Chernov, and Johannes (2007) study the impact of volatility jumps in joint

analyses of stock index returns and options data. Our paper is distinct from all of

these papers in that our application takes a direct look at VIX options and futures,

which may offer a better environment in which to scrutinize the characteristic of

volatility jumps.

The rest of the paper is organized as follows. Section 2 develops the models

and methods used in this paper. The VIX options and futures data are described in

Section 3. Section 4 shows the parameter estimates and some preliminary analysis,

while Section 5 provides the main empirical results on pricing performance across the

different model specifications. Section 6 concludes.

2 Models and Methods

The affine jump-diffusion framework of Duffie, Pan, and Singleton (2000) has been

widely used in the term structure modeling of interest rates and the valuation of
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derivatives because it allows for analytic tractability. Dai and Singleton (2000); He-

ston (1993); Bakshi, Cao, and Chen (1997); and Bates (2000) are well-known exam-

ples. In this section, we introduce a new family of affine jump-diffusion models for the

dynamics of the logarithm of the VIX and derive semi-closed-form solutions to the

prices of futures and options. In addition, we provide a description of our estimation

method and introduce a competing model from Menćıa and Sentana (2012), which

will be used as a benchmark.

2.1 VIX dynamics

We assume that the logarithm of the VIX follows an affine jump-diffusion process.

This assumption is motivated by a well-known empirical finding that a logarithmic

model does a better job of describing the volatility dynamics of a stock index than

the square root model of Heston (1993) (see, for example, Aı̈t-Sahalia and Kimmel

(2007), Jones (2003), and Durham (2013)). More importantly, Menćıa and Sentana

(2012) compare logarithmic and square root models with respect to the pricing of VIX

futures and options and find that the former is preferred to the latter. Furthermore, an

affine modeling of the logarithm of the VIX is important because it permits negative

jumps as well as positive ones, whereas an affine modeling of the VIX itself leaves no

room for modeling negative jumps.

As stated earlier, the objective of this paper is to understand the effects of asym-

metric volatility of and jumps in the VIX on the pricing of VIX derivatives. Toward

this end, it is desirable to start with a fairly realistic baseline model upon which new

model characteristics are built. Our baseline model contains two latent factors in ad-

dition to the logarithmic VIX index, denoted by vt = log(VIXt). Specifically, a latent

factor, ut, is introduced to reflect time variation in the long-run mean of the VIX,

which greatly helps to match VIX future prices along increasing times to maturity.5

The volatility of the VIX is also allowed to vary over time, driven by another latent

factor, wt.

Given a risk-neutral probability space (Ω,F ,Q) and information filtration {Ft},
5 See Gallant, Hsu, and Tauchen (1999), Christoffersen, Heston, and Jacobs (2009), and Aı̈t-

Sahalia, Amengual, and Manresa (2015), among others, for the importance of a long-run volatility
factor.
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we assume that the (logarithmic) VIX dynamics take the following form:

dvt = κv(ut − vt)dt+
√
wtdB

Q
1t + JQ

1 dN
Q
1t + JQ

2 dN
Q
2t − λ+δ+dt− λ−δ−dt

dut = κu(u− ut)dt+ σudB
Q
2t

dwt = κw(w − wt)dt+ σw
√
wtdB

Q
3t,

(1)

where κv, κu, and κw capture the persistence of vt, ut, and wt, respectively; σu and

σw control for the volatility of ut and wt, respectively; u and w capture the long-

run means of ut and wt, respectively; and BQ
1t, B

Q
2t, and BQ

3t are standard Brownian

motions under the risk-neutral Q measure.

To capture the asymmetric behavior of volatility, we allow for a nonzero correla-

tion, denoted by ρ, between dBQ
1t and dBQ

3t. Although we expect ρ to be positive, we

do not restrict the sign of ρ, letting the data speak as to its direction.

We allow for jumps in vt. Specifically, as one of our main research goals is to

understand the differential pricing implications of upward and downward jumps, we

assume that they are driven by independent compound Poisson processes, with each

having its own jump intensity and jump-size distribution. NQ
1t and NQ

2t denote risk-

neutral Poisson processes driving upward and downward jumps with jump intensities

λ+ and λ−, respectively. Upward jump magnitudes, JQ
1 , are assumed to follow an

independent exponential distribution with a positive mean, δ+ > 0, with the prob-

ability density function taking 1
δ+

exp(−x/δ+) if x > 0 and 0 otherwise. Similarly,

downward jump magnitudes, JQ
2 , are assumed to follow an independent exponential

distribution with a negative mean, δ− < 0, with the probability density function

taking 1
|δ−| exp(−x/δ−) if x < 0 and 0 otherwise.

An affine jump-diffusion model is a Markov process whose drift vector, variance

matrix, and jump intensities all have affine dependence on the state vector (see Duffie,

Pan, and Singleton (2000)). To satisfy this condition, we assume zero correlations

between dBQ
1t and dBQ

2t and between dBQ
2t and dBQ

3t.
6

The general form described in Equation (1) nests a range of model specifications

with different features. Among those, we select four different specifications depending

on whether there are restrictions on ρ, λ+, or λ−. The model specifications considered

in this paper are summarized in Table 1.

6 Otherwise the conditional variance matrix of the model in Equation (1) will lose affine depen-
dence on the state vector.
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2.2 Characteristic function

The virtue of affine models is that various transforms, such as a characteristic function,

can be quasi-analytically calculated by solving a system of Riccati ordinary differential

equations (ODEs). Specifically, given the model in Equation (1), we consider the

characteristic function of vT at time t under the Q measure, which is denoted by

g(vt, ut, wt, t, T ;φ):

g(vt, ut, wt, t, T ;φ) = EQ
t [exp(iφvT )], (2)

where EQ
t denotes the conditional expectation using the information up to time t

under the Q measure and i =
√
−1.

Proposition 1. Under some regularity conditions, the characteristic function takes

an exponentially affine form of (vt, ut, wt):

g(vt, ut, wt, t, T ;φ) = exp [α(s) + βv(s)vt + βu(s)ut + βw(s)wt] , (3)

where s = T − t and the coefficients, α(s), βv(s), βu(s), and βw(s), satisfy the system

of ODEs:

α̇(s) = κuuβu(s) + κwwβw(s) +
1

2
σ2
uβu(s)2

− [λ+δ+ + λ−δ−]βv(s) + λ+

[
1

1− δ+βv(s)
− 1

]
+ λ−

[
1

1− δ−βv(s)
− 1

]
β̇v(s) = −κvβv(s)

β̇u(s) = κvβv(s)− κuβu(s)

β̇w(s) = −κwβw(s) +
1

2
βv(s)

2 +
1

2
σ2
wβw(s)2 + ρσwβv(s)βw(s),

(4)

where the boundary conditions are given as α(0) = 0, βv(0) = iφ, βu(0) = 0, and

βw(0) = 0.

Proof. See Appendix A.

The system of ODEs in Equation (4) can be solved by numerical solvers such

as the Runge-Kutta method. Using this method, however, raises a numerical issue.

When ODEs are stiff, a numerical solver requires a smaller step size in order to achieve

absolute stability, impairing computational efficiency (see, for example, Huang and

Yu (2007)). The stiffness of a system of ODEs is associated with how much the
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eigenvalues of the system differ in orders of magnitude; the larger the difference,

the stiffer the system. The eigenvalues of our system of ODEs are equal to the

persistence parameters, κv, κu, and κw. Among the parameters, κv and κu have a

wide discrepancy in orders of magnitude, as can be seen in Table 3. Specifically, κv

is roughly 20 to 25 times as large as κu. Because of this stiffness in our system, it is

desirable to use an implicit method instead of an explicit method, and we find that

the Matlab ode15s solver works well in our application.7

2.3 Valuation of VIX futures and options

Once the characteristic function has been calculated, it is straightforward to compute

the prices of futures and options. Let F (t, T ) denote the time-t price of a futures

contract with a maturity of T . F (t, T ) represents the risk-neutral expectation of the

time-T VIX index given the information at time t.

Proposition 2. F (t, T ) is given by

F (t, T ) = g(vt, ut, wt, t, T ;φ = −i). (5)

Proof. See Appendix A.

Let C(t, T,K) and P (t, T,K) denote the time-t prices of call and put options,

respectively, with a maturity of T and a strike price of K. These prices are determined

by

C(t, T,K) = exp(−rtτ)EQ
t [max(F (T, T )−K, 0)]

P (t, T,K) = exp(−rtτ)EQ
t [max(K − F (T, T ), 0)],

(6)

where rt is the risk-free rate at time t and τ = T − t is the time to maturity. Note

that the value of a futures contract should be equal to the VIX on its expiration date:

F (T, T ) = VIXT . Because of this relation, the prices of call and put options can be

determined by the characteristic function of vt.

7 Note that the ODEs are state-independent so we do not need to repeat running a numerical
ODE solver on every date for a given parameter set. In other words, given a parameter set, we
numerically solve the ODEs just once and save them in a storage space. The stored ODE solution
can be repeatedly used to compute the characteristic function on each date throughout the sample
period.
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Proposition 3. C(t, T,K) and P (t, T,K) are given by

C(t, T,K) = exp(−rtτ) [g(vt, ut, wt, t, T ;φ = −i)Π1(t, T,K)−KΠ2(t, T,K)]

P (t, T,K) = exp(−rtτ) [K(1−Π2(t, T,K))− g(vt, ut, wt, t, T ;φ = −i)(1−Π1(t, T,K))] ,

(7)

where the complementary distribution functions, Π1(t, T,K) and Π2(t, T,K), may be

expressed as

Π1(t, T,K) =
1

2
+

1

π

∫ ∞
0
<
[

exp(−iφ log(K))h(vt, ut, wt, t, T ;φ)

iφ

]
dφ

Π2(t, T,K) =
1

2
+

1

π

∫ ∞
0
<
[

exp(−iφ log(K))g(vt, ut, wt, t, T ;φ)

iφ

]
dφ,

(8)

where h(vt, ut, wt, t, T ;φ) = g(vt, ut, wt, t, T ;φ−i)/g(vt, ut, wt, t, T ;−i) and < indicates

the real part of a complex number.8

Proof. See Appendix A.

Π2(t, T,K) indicates the probability that a call option with a maturity of T and a

strike price of K ends up in the money on its expiration date. Among different kinds

of numerical integration, we choose to use the Gauss-Laguerre quadrature method

with an order of 20 in our application.

2.4 Estimation

The option pricing literature often estimates the models using a quasi maximum like-

lihood estimation based on a variant of Kalman filtering (see, for example, Carr and

Wu (2003, 2007), Trolle and Schwartz (2009a,b), and Menćıa and Sentana (2012)).

Christoffersen, Dorion, Jacobs, and Karoui (2014) show that unscented Kalman fil-

tering is superior to extended Kalman filtering in the application of interest rate

derivatives and comparable to particle filtering, which is computationally far more

8 One may want to replace the term g(vt, ut, wt, t, T ;φ = −i) with the observed futures prices
(see, for example, the footnote 10 of Menćıa and Sentana (2012)). However, we do not take this
approach for several reasons. First, we find that the observed VIX future prices have often departed
from those implied by the put-call parity condition to a large extent, although this departure is not
reported in this paper. Second, when the term g(vt, ut, wt, t, T ;φ = −i) is replaced with the observed
prices, we face the numerical issue that the correlation parameter is estimated to be virtually one.
Lastly, using the observed future prices in lieu of g(vt, ut, wt, t, T ;−i) cannot guarantee the positivity
of the option pricing formula in Equation (7).
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expensive. Hence, in this paper, we apply a quasi maximum likelihood method via

an unscented Kalman filter.9 The Kalman filter requires us to recast the models into

a state space form that comprises state equations and observation equations. First,

it is necessary to introduce state equations for (ut, wt) for the physical P measure. To

do so, we assume that ut and wt take the following physical dynamics:

dut = κu(u− ut)dt+ ηuutdt+ σudB
P
2t

dwt = κw(w − wt)dt+ ηwwtdt+ σw
√
wtdB

P
3t,

(9)

where BP
2t and BP

3t are independent standard Brownian motions under the physical P
measure and ηuut and ηwwt capture the risk premiums for the ut and wt processes,

respectively. Note that we do not need the physical dynamics for vt because our

observation equations involve only the risk-neutral dynamics. For this reason, we are

unable to pin down jump risk premiums.

By applying an Euler approximation to Equation (9), we are able to define

discrete-time state equations:

ut+∆ = ut + κu(u− ut)∆ + ηuut∆ + σu
√

∆ε2,t+∆

wt+∆ = wt + κw(w − wt)∆ + ηwwt∆ + σw
√
wt∆ε3,t+∆,

(10)

where ∆ is the time interval and ε2,t+∆ and ε3,t+∆ are independent standard normal

random variables.

With respect to observation equations, we assume that VIX futures and options

are observed with measurement errors. Specifically, following Trolle and Schwartz

(2009b), we assume that measurement errors in log future prices are constant and

that measurement errors in options prices are proportional to their market vegas,

denoted by ν̂(t, T,K). That is,

log(F̂ (t, T )) = log(F (t, T )) + σF ξ1,t

Ĉ(t, T,K) = C(t, T,K) + ν̂(t, T,K)σEξ2,t

P̂ (t, T,K) = P (t, T,K) + ν̂(t, T,K)σEξ3,t,

(11)

where the hat symbol indicates the market price; σF and σE capture the sizes of

measurement errors for futures and options, respectively; and ξ1,t, ξ2,t, and ξ3,t are in-

9 We also implement an extended Kalman filter and find that the results are robust to the type
of a Kalman filter.
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dependent standard normal random variables. Details on unscented Kalman filtering

are described in Appendix C.

2.5 Menćıa and Sentana (2012) model

Recently, Menćıa and Sentana (2012) studied the impact of stochastic volatility on

the valuation of VIX derivatives. Although ours is not the first paper to address

the importance of this subject, we take a different approach to modeling stochastic

volatility than Menćıa and Sentana (2012) do. That is, stochastic volatility is diffusion

driven in our models, whereas it is jump driven in the Menćıa and Sentana (2012)

model. To compare the diffusion-driven model to the jump-driven model, we estimate

one of the extended models of Menćıa and Sentana (2012), which is hereafter referred

to as the MS model. The MS model is specified under the risk-neutral measure as

dvt = κv(ut − vt)dt+
√
ztdB

Q
1t

dut = κu(u− ut)dt+ σudB
Q
2t

dzt = −λzztdt+ dqQt ,

(12)

where zt is a volatility factor and qQt is assumed to follow a compound Poisson process

with intensity λz and an exponential jump distribution with a positive mean of δz.

Note that the dynamics of zt in Equation (12) belong to a class of the non-Gaussian

Ornstein-Uhlenbeck process of Barndorff-Nielsen and Shephard (2001).

3 Data

Our application looks at the valuation of VIX futures and options, among other

volatility derivatives. The markets for these derivatives have seen explosive growth

in trading activity in recent years, as can be seen in Figure 2. The top panel of the

figure shows that the number of VIX futures contracts traded increased dramatically

from about 1 million in 2007 to about 24 million in 2012, and that most of the growth

occurred after 2009, likely provoked by the recent financial crisis. The bottom panel

of the figure shows that the dollar trading volume for the VIX options also increased

substantially from around $3.3 billion in 2007 to around $16.1 billion in 2012. Note

that VIX call options are more actively traded than VIX put options, which may be
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associated with the fact that the former can be used as a means of hedging a stock

market crash unlike the latter.

Our data set comprises the daily prices of VIX futures and options. The futures

data come from Thomson Reuters, Datastream, while the options data are from

OptionMetrics, Ivy DB. The VIX futures market started on March 26, 2004, and

the VIX options market opened about two years later on February 24, 2006. As we

decided to include only the dates for which data on both VIX futures and options

are available, our sample starts on July 1, 2006, and ends on January 31, 2013, with

a total of 1,657 trading days.10 There are no early exercise premiums because VIX

options are European.

In general, VIX futures are available for a wider range of maturities than VIX

options. We delete VIX futures for which there are no paired VIX options with the

same maturity. This leaves us a total of 9,330 futures contracts.

Option prices are taken from the bid–ask midpoint at each day’s close of the

options market (3:15 p.m). A filtering scheme is applied to eliminate inaccurate or

illiquid options. Specifically, we delete VIX options for which the mid price is less than

0.1, the time to maturity is less than eight days, the Black-Scholes implied volatility

is null, or the relative bid–ask spread (defined as the bid–ask spread divided by the

mid price) is larger than 0.3. We also discard the VIX options that violate the lower

bound constraints:

Ĉ(t, T,K) ≥ max(0, exp(−rtτ)(F̂ (t, T )−K))

P̂ (t, T,K) ≥ max(0, exp(−rtτ)(K − F̂ (t, T ))),
(13)

where the risk-free rates are obtained from OptionMetrics, Ivy DB. Option prices

comprise intrinsic and time values, and only the time value portion is subject to

model specifications. Moreover, OTM options tend to be more liquid than in-the-

money ones. For this reason, we use only OTM call and put options in our empirical

tests. Finally, a total of 102,525 options are included in our sample.

Table 2 shows summary statistics such as the number of observations and the

average price for VIX futures and options. In this table, the data are divided into

two categories depending on time to maturity τ : short-term contracts with τ ≤
10 Because the trading of VIX options was inactive in the very first few months, we exclude those

months.
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three months and long-term contracts with τ > three months. For options, we further

break down the data into four categories according to their moneyness: deep OTM

puts with d < 0.85, moderate OTM puts with 0.85 < d < 1.0, moderate OTM calls

with 1.0 < d < 1.3, and deep OTM calls with d > 1.3, where moneyness is defined

as d = K/F (t, T ). Note that call options have a larger number of observations and

higher levels of Black-Scholes implied volatility than put options.

Figure 3 shows the time series of the VIX, the VVIX, and the option-implied

skewness. The VIX and the VVIX are provided by the CBOE, while the one-month

option-implied skewness is computed using a modified version of the model-free ap-

proach of Bakshi, Kapadia, and Madan (2003). The detailed procedure is provided

in Appendix D. Two features are worth noting. First, the VIX and the VVIX share

some pronounced spikes, such as the bankruptcy of Lehman Brothers, which is as-

sociated with asymmetric volatility. Second, the implied skewness takes a positive

value most of the time, implying that a nonnormal stochastic mechanism is essential

for describing the return distribution implied by VIX options.

4 Parameter estimates and preliminary analysis

This section starts by looking at two sets of parameter estimates. The first set is

obtained using the entire data set from July 2006 through January 2013, whereas the

second set is obtained using a subsample of four years from July 2006 through June

2010. The second set is used to test different model specifications for an out-of-sample

period from July 2010 through January 2013. In addition, we will examine whether

asymmetric volatility and jumps help to match the observed term structure of the

implied volatility and skewness, on average, which will give us a hint as to the pricing

performance results discussed in the section that follows.

4.1 Parameter estimates

Table 3 presents in-sample parameter estimates across various model specifications.

The models with asymmetry in volatility yield very different volatility dynamics than

the model without it. To see this, let us compare the SVV model with the AVV-type

models (AVV, AVV-UJ, and AVV-AJ). First, we observe that the volatility process is
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not very persistent in the SVV model (κw = 5.506), whereas it is more persistent in the

AVV-type models (0.847 ≤ κw ≤ 1.553). Second, the SVV model (σw = 7.271) has far

higher volatility of volatility than the AVV-type models (1.976 ≤ σw ≤ 2.610). Third,

we define the long-run mean of volatility under the physical measure as wP = κww
κw−ηw

and find that the SVV model (wP = 0.262) has a lower level of the long-run mean

than the AVV-type models (0.553 ≤ wP ≤ 0.677). Overall, allowing for asymmetric

volatility makes a large difference in the estimation of the volatility dynamics of the

VIX, which in turn will have a large effect on the pricing of VIX derivatives.

The degree of asymmetry in volatility differs depending on whether upward and

downward jumps are included. The asymmetry parameter is highest in the AVV

model (ρ = 0.870) and lowest in the AVV-UJ model (ρ = 0.422). The AVV-AJ

model (ρ = 0.794) falls in between. Because of this result, a jump process would have

an impact on the pricing of VIX derivatives not only per se but also through different

degrees of asymmetric volatility.

Interestingly, the variance risk premium parameter, ηw, takes a negative value

for each of the models considered, implying that the market volatility of volatility is

negatively priced. A similar discovery is also made by Song (2012) and Park (2015)

in a non-parametric fashion. This negative pricing is not surprising because a market

volatility of volatility asset can be used as a hedge against stock market downturns

as it has a negative exposure (or beta) to the stock market index.

Now let us look at the frequencies and sizes of upward and downward jumps in

the AVV-UJ and AVV-AJ models. The table shows that upward jumps take place

about 2.7 times per annum with an average size of about 0.27, regardless of whether

downward jumps are included. As expected, in the AVV-AJ model, upward jumps

have a higher occurrence rate and a larger size than downward jumps; that is, λ+ > λ−

and δ+ > |δ−|.

Table 3 also contains two model comparison metrics: Akaike (AIC) and Schwarz

(SIC) information criteria. These are based on some penalty scores, which depend on

the number of free parameters, less log likelihood values. The lower the information

criteria, the better the model. Both information criteria offer decisive rankings of the

models: AVV-AJ > AVV-UJ > AVV > SVV > MS. In short, asymmetric volatility,

upward jumps, and downward jumps are all critical modeling features, and the SVV

model is preferred to the MS model.
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Each panel of Figure 4 shows a time series of the filtered volatility states that

are obtained using the in-sample parameter estimates. The filtered volatility states

in the SVV model tend to be higher and more volatile than those in the AVV model.

In addition, the filtered volatility states are substantially higher in the models with

no jumps (SVV and AVV) than in the models with jumps (AVV-UJ and AVV-AJ),

although all models have similar evolutions over time.

Table 4 presents out-of-sample parameter estimates across various model specifi-

cations. This table also indicates that the decision to allow for asymmetry in volatility

has a large effect on the volatility dynamics and the decision to include jumps affects

the extent of asymmetry in volatility.

4.2 Fitting the term structure of the implied volatility

Here, we investigate the ability of the models to fit the average term structure of the

option-implied volatility. The option-implied volatility is computed by applying the

model-free approach of Bakshi, Kapadia, and Madan (2003) to a cross section of VIX

options, with little modification. The detailed procedure is provided in Appendix D.

The top panel of Figure 5 shows the scatter plot and kernel regression (solid line)

of the implied volatility against months to maturity; the kernel regression is applied

to capture the average term structure of the implied volatility. An interesting fact is

that the term structure of the implied volatility is downward sloping, with the short

end being nearly twice as high as the long end. This decreasing pattern is associated

with the mean-reverting behavior of the VIX; the stronger the mean reversion of the

VIX, the steeper the slope.

To see whether the models under consideration can capture the decreasing pat-

tern in the implied volatility, we compute the average term structure of volatility

implied by each model. The model-implied volatility, denoted by IV(t, T ), can be

computed by differentiating the cumulant generating function for each model:

IV(t, T ) =

√
1

i2
∂2Ψ(t, T ;φ)/∂φ2|φ=0

(T − t)
, (14)

where the cumulant generating function is defined as Ψ(t, T ;φ) = log(g(vt, ut, wt, t, T ;φ)).

Note that IV(t, T ) is annualized. The model-implied volatility is computed on each
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day and for each time to maturity throughout the sample period using the in-sample

parameter estimates in Table 3. We then run a kernel regression of the model-implied

volatility onto months to maturity for each model.

The bottom panel of Figure 5 shows that all of the four models—SVV (solid

line), AVV (dashed line), AVV-UJ (dotted line), and AVV-AJ (dashed-dotted line)—

do a good job of capturing the decreasing pattern in the observed implied volatility,

although there are some minor discrepancies across the models. In particular, the

SVV model tends to slightly overestimate the term structure of volatility, whereas the

AVV-type models tend to slightly underestimate it. Overall, the models considered

in this paper are all good at capturing the average term structure of the implied

volatility, and the decision whether to allow for asymmetric volatility and jumps does

not make a notable difference in this regard.

4.3 Fitting the term structure of the implied skewness

This subsection addresses whether asymmetric volatility and jumps can help explain

the average term structure of the implied skewness. As for the option-implied volatil-

ity, the option-implied skewness is computed by applying the model-free approach

of Bakshi, Kapadia, and Madan (2003) to a cross section of VIX options, with little

modification.

The top panel of Figure 6 shows the scatter plot and kernel regression (solid line)

of the implied skewness against months to maturity; the kernel regression is applied

to capture the average term structure of the implied skewness. This figure reveals a

surprising stylized fact: the average term structure of the implied skewness is nearly

flat up to a one-year horizon.11 Put simply, the short-term skewness is approximately

as high as the long-term skewness.

To examine whether the models under consideration can produce such a flat pat-

tern, we compute the model-implied skewness. Similar to the model-implied volatility,

the model-implied skewness, denoted by SKEW(t, T ), can be computed by differen-

11 This finding echoes Carr and Wu (2003), who find that the stock index options market has the
almost same slope of the implied volatility smile across different times to maturity. To imitate this
pattern, they propose a finite moment log stable process.
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tiating the cumulant generating function:

SKEW(t, T ) =
1

i3

∂3Ψ(t, T ;φ)/∂φ3
∣∣
φ=0

(T − t)3/2IV(t, T )3
. (15)

The bottom panel of Figure 6 shows that the AVV (dashed line) and AVV-UJ

(dotted line) models both do a fairly good job of capturing the flat term structure of

skewness. The AVV-UJ model tends to generate more of a positive skewness for short

horizons than the AVV model, implying that upward jumps have a greater effect for

short horizons than for long ones. In contrast, the AVV-AJ model (dashed-dotted

line) does a poorer job of fitting the term structure of the implied skewness than

the AVV and AVV-UJ models. Finally, the SVV model (solid line) has no ability to

produce a positive skewness at all, (although it is capable of generating a positive

excess kurtosis).

5 Pricing performance

Our performance analysis focuses on four main comparisons. First, we compare the

diffusion-driven SVV model with the jump-driven MS model. Second, we compare the

AVV model with the SVV model to test the importance of allowing for asymmetry in

volatility. The third comparison is made between the AVV-UJ model and the AVV

model in order to examine the effects of including upward jumps on top of asymmetric

volatility. Lastly, we compare the AVV-AJ model with the AVV-UJ model to investi-

gate whether the addition of downward jumps can make an incremental improvement

once asymmetric volatility and upward jumps are included.

To facilitate our analysis, we compute a performance metric, a root mean squared

error (RMSE), which is separately defined for futures and options as

RMSEFi =

√√√√ 1

NF

NF∑
n=1

(
log(F̂ (tn, Tn))− log(F (tn, Tn))

)2

RMSEOi =

√√√√ 1

NO

NO∑
n=1

(Ô(tn, Tn,Kn)−O(tn, Tn,Kn)

ν̂(tn, Tn,Kn)

)2
,

(16)

where RMSEF
i and RMSEO

i denote the RMSEs implied by a model i for futures and
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options, respectively; NF and NO indicate the total numbers of futures and options

included in the sample, respectively; and Ôi and Oi denote the market-implied and

model-implied option prices, respectively. Hereafter, RMSEi is used to denote either

RMSEF
i or RMSEO

i according to the context of analysis. Note that the performance

metric is consistent with the assumption that we make about measurement errors in

the observation equations.

To measure the extent to which one model is better or worse than another, we

compute pricing differences between two models. Let ∆RMSEi|j denote the pricing

difference of a model i over a model j. ∆RMSEi|j is defined as

∆RMSEi|j = 100× log(RMSEi/RMSEj), (17)

where RMSEi and RMSEj denotes the RMSEs implied by models i and j, respectively.

A negative (positive) value of ∆RMSEi|j means that model i yields lower (higher)

pricing errors than model j, implying that the pricing performance of the former is

better (worse) than that of the latter by a percentage of that value.

Tables 5 and 6 show in-sample and out-of-sample pricing performance, respec-

tively, across the different models. From left to right, the groups of columns show the

pricing errors as measured by RMSEi; the pricing improvements relative to the SVV

model as measured by ∆RMSEi|SVV; the pricing improvements relative to the AVV

model as measured by ∆RMSEi|AVV; and the pricing improvements relative to the

AVV-UJ model as measured by ∆RMSEi|AVV-UJ, respectively. The main results for

all futures and options are shown in the top two panels, and the options are broken

down into calls and puts and by moneyness levels in the lower panels.

To assess the statistical significance of a pricing performance difference, we make

pairwise model comparisons based on the Diebold and Mariano (2002) test. To do

so, we compute a time series of RMSEs for each model, {RMSEi,t}Dt=1, where D is the

total number of evaluation days and RMSEi,t is the date-t RMSE implied by a model

i. Note that {RMSEi,t}Dt=1 is separately obtained for in-sample and out-of-sample

tests.

Next, we obtain a series of the differences in RMSEs between every pair of the

models, di,j,t = RMSEi,t − RMSEj,t, t = 1, . . . , D, and define a test statistic between
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models i and j as

zi,j =
di,j,t

σ(di,j,t)
, (18)

where di,j,t is a sample mean of the differences and σ(di,j,t) is a heteroskedasticity-

and autocorrelation-consistent estimate of the sample standard deviation of the dif-

ferences.12 Diebold and Mariano (2002) show that the test statistic in Equation (18)

follows a standard normal distribution under the null hypothesis that there is no

statistically significant difference between models i and j.

Tables 7 and 8 display in-sample and out-of-sample test statistics, respectively.

A negative (positive) statistic in a cell (i, j) indicates that model i outperforms (un-

derperforms) model j. Panels A and B correspond to VIX futures and options,

respectively. The symbols *, **, and *** represent statistical significance at the 10,

5, and 1 percent levels, respectively.

5.1 Diffusion-driven versus jump-driven volatility

This subsection focuses on investigating whether the SVV model can price VIX futures

and options better than the MS model. With respect to futures, the pricing errors

and pairwise model comparisons are shown in Panel A of Tables 5–8. The SVV model

has an in-sample RMSE of 0.1842 and an out-of-sample RMSE of 0.2252, while the

MS model has an in-sample RMSE of 0.1853 and an out-of-sample RMSE of 0.2332.

The ∆RMSEi|SVV metrics indicate that the futures pricing performance of the SVV

model is better than that of the MS model by 1.18 percent in the in-sample test

and by 7.02 percent in the out-of-sample test. The pricing difference is statistically

significant at the 1 percent level only in the out-of-sample test, with a z statistic of

±7.58 .

With respect to options, the pricing errors and pairwise model comparisons are

shown in Panel B of Tables 5–8. The SVV model has an in-sample RMSE of 0.0939

and an out-of-sample RMSE of 0.1199, while the MS model has an in-sample RMSE

of 0.1037 and an out-of-sample RMSE of 0.1475. The ∆RMSEi|SVV metrics indicate

that the options pricing performance of the SVV model is better than that of the

MS model by 10.00 percent in the in-sample test and by 20.71 percent in the out-of-

12 To control for autocorrelations, we use an optimal number of lags following Newey and West
(1994).
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sample test. The performance difference is statistically significant at the 1 percent

level with a z statistic of ±6.44 in the in-sample test and at the 1 percent level with

a z statistic of ±12.26 in the out-of-sample test.

To summarize, the SVV model outperforms the MS model except for the in-

sample futures pricing. The superiority of the SVV model over the MS model implies

that the volatility of the VIX is better described by a diffusive process rather than by

a finite-activity jump process.13 For this reason, the SVV model is preferred over the

MS model as a baseline model upon which to add asymmetric volatility and jumps.

5.2 Effects of asymmetric volatility

This subsection focuses on discussing the effects of allowing for asymmetry in volatility

on the pricing of futures and options by comparing the AVV model with the SVV

model. With respect to futures, the AVV model has an in-sample RMSE of 0.1804 and

an out-of-sample RMSE of 0.2201. Based on the ∆RMSEi|SVV metrics, the futures

pricing performance of the AVV model is better than that of the SVV model by 4.22

percent in the in-sample test and by 4.58 percent in the out-of-sample test. The

pricing difference is statistically significant at the 5 percent level with a z statistic

of ±2.52 in the in-sample test and at the 1 percent level with a z statistic of ±8.17

in the out-of-sample test. Furthermore, the futures pricing improvements vary by

time to maturity. Specifically, the AVV model generates better futures pricing than

the SVV model for short-term horizons both in-sample and out-of-sample but not for

long-term horizons.

With respect to options, the AVV model has an in-sample RMSE of 0.0885

and an out-of-sample RMSE of 0.1154. The ∆RMSEi|SVV metrics suggest that the

options pricing performance of the AVV model is better than that of the SVV model

by 5.87 percent in the in-sample test and by 3.87 percent in the out-of-sample test.

The performance difference is statistically significant at the 1 percent level with a z

statistic of ±7.08 in the in-sample test and at the 1 percent level with a z statistic of

±6.49 in the out-of-sample test. Furthermore, we find that allowing for asymmetry

in volatility reduces option pricing errors for all horizons in both in-sample and out-

13 This paper considers only two specifications of stochastic volatility of the VIX: the MS and SVV
models. A further analysis of other specifications, such as infinite-activity jumps or a combination
of diffusive and jump processes, would be an interesting topic for future research.
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of-sample tests.

Taking our analysis one step further, we break down option pricing errors into

puts and calls. Panels C and D of Table 5 show the in-sample RMSEs for OTM puts

and calls, respectively. Compared to the SVV model, the AVV model substantially

improves the pricing of put options by 14.60 percent but improves the pricing of call

options only by 1.02 percent. Similarly, Panels C and D of Table 6 show the out-

of-sample RMSEs for OTM puts and calls, respectively. Again, compared with the

SVV model, the AVV model makes a large improvement in the pricing of put options

by 11.45 percent, but only a very small improvement in the pricing of call options by

1.86 percent.

To sum up, we find decisive evidence that asymmetry in volatility has an enor-

mous and statistically significant effect on the valuation of VIX futures and options.

The AVV model is strongly preferred to the SVV model in both in-sample and out-

of-sample tests. Especially, asymmetry in volatility plays a crucial role in fitting the

prices of puts and short-term futures. Given the fact that OTM put prices are usually

found to be cheaper than OTM call prices with an equivalent moneyness, our result

implies that the underpricing of VIX puts is more likely to be driven by asymmetric

volatility rather than upward jumps.

5.3 Effects of upward jumps

We now investigate the effects of including upward jumps on top of asymmetric volatil-

ity on the pricing of futures and options by comparing the AVV-UJ model with the

AVV model. With respect to futures, the AVV-UJ model has an in-sample RMSE

of 0.1799 and an out-of-sample RMSE of 0.2163. The ∆RMSEi|AVV metrics indicate

that the futures pricing performance of the AVV-UJ model is better than that of the

AVV model by 0.53 percent in the in-sample test and by 3.51 percent in the out-of-

sample test. Hence, the statistical significance is obtained only for the out-of-sample

test at the 1 percent level with a z statistic of ±6.50.

Furthermore, the futures pricing improvement depends on time to maturity in

both in-sample and out-of-sample tests. Incorporating upward jumps improves the

pricing of long-term futures but worsens the pricing of short-term futures. This

finding can be contrasted with the previous finding that allowing for asymmetry in
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volatility helps to improve the pricing of short-term contracts only. Taken together,

asymmetric volatility and upward jumps have opposing yet complementary influences

on futures pricing performance.

With respect to options, the AVV-UJ model has an in-sample RMSE of 0.0817

and an out-of-sample RMSE of 0.1094. The ∆RMSEi|AVV metrics suggest that the

options pricing performance of the AVV-UJ model is better than that of the AVV

model by 7.96 percent in the in-sample test and by 5.33 percent in the out-of-sample

test. The performance difference is statistically significant at the 1 percent level with

a z statistic of ±8.16 in the in-sample test and at the 1 percent level with a z statistic

of ±11.71 in the out-of-sample test. Furthermore, we find that including upward

jumps is effective regardless of option maturities in both in-sample and out-of-sample

tests, although the improvement is greater for long-term options than for short-term

ones.

We now break down option pricing errors into puts and calls. Panels C and D

of Tables 5 and 6 show the in-sample and out-of-sample RMSEs for OTM puts and

calls, respectively. The AVV-UJ model greatly improves the pricing of cal in both in-

sample and out-of-sample tests, but there is no significant pricing difference between

the two models with respect to the pricing of put options.

Based on the empirical results above, we conclude that upward jumps have a

sizable and statistically significant impact on the valuation of VIX futures and options.

The AVV-UJ model is strongly preferred to the AVV model in both in-sample and

out-of-sample tests, except for the in-sample futures pricing. Especially, upward

jumps play a pivotal role in pricing calls and long-term futures. Given the fact that

OTM call prices are usually more expensive than OTM put prices with an equivalent

moneyness, our result implies that high levels of call prices are more likely to be

driven by upward jumps rather than by asymmetric volatility.

5.4 Effects of downward jumps

Lastly, we evaluate the incremental effect of downward jumps on the pricing of futures

and option by comparing the AVV-AJ model with the AVV-UJ model. Based on

the ∆RMSEi|AVV-UJ metrics, including downward jumps makes little improvement

in the pricing of futures and options to the extent that asymmetric volatility and
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upward jumps are already accounted for. The statistical significance is obtained

only for in-sample futures pricing but the size of improvement is quite small with

∆RMSEi|AVV-UJ = −0.86.

To see if the inefficacy of downward jumps relies on our particular choice of jump

specifications, we also consider an alternative specification of upward and downward

jumps. In particular, we estimate the AVV model with double exponential jumps

as in Kou (2002) and Kou and Wang (2004), where upward and downward jumps

are driven by a single compound Poisson process (see Appendix E for details on the

model specification). Once again, we fail to find evidence that the AVV model with

double exponential jumps is better at pricing the VIX derivatives than the AVV-UJ

model, although the results are not reported in this paper.

6 Conclusion

Given the growing interest in volatility trading, this paper suggests a class of affine

jump-diffusion models for the pricing of VIX derivatives. The models have two inno-

vative features. First, to assess the effects of asymmetric volatility on the pricing of

VIX derivatives, we allow for a positive correlation between changes in the VIX and

in its stochastic volatility. Second, we separate out the roles of upward and downward

jumps to better consider the reality that investors react differently to good and bad

shocks, which may arrive independently with different rates and sizes.

Our empirical analysis shows decisive evidence for the benefits of including both

asymmetric volatility and upward jumps in pricing models of VIX futures and options.

In particular, we find that asymmetric volatility is essential for pricing put options

and short-term futures, whereas upward jumps are crucial for pricing call options and

long-term futures. That is, low levels of put prices are associated with asymmetric

volatility, whereas high levels of call prices are likely to be driven by the possibility

of upward jumps. In sum, asymmetric volatility and upward jumps both are required

to price VIX derivatives, having opposing yet complementary effects on them.

However, we fail to find consistent evidence for the benefit of including down-

ward jumps in the pricing of the VIX futures and options. Given that all the jump

specifications that we consider are of finite activity, we do not interpret our results

as implying that downward jumps are of no use in explaining the VIX derivative
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prices. Indeed, authors such as Todorov and Tauchen (2011) and Wu (2011) show

that volatility jumps may be better described by an infinite-activity jump process

than a finite-activity one. Therefore, it would be interesting to extend our research

to models with infinite-activity jump processes (on top of asymmetric volatility).

Lastly, we report some interesting features of the term structures of the implied

volatility and skewness. Specifically, the term structure of the implied volatility has

a downward slope, whereas the term structure of the implied skewness is nearly flat.

Although all of the models considered do a nice job of capturing the decreasing pattern

in the implied volatility, only the AVV and AVV-UJ models successfully match the flat

pattern in the implied skewness, consistent with the result that asymmetric volatility

and upward jumps are both crucial for pricing the VIX options.
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A Derivation of the VIX derivative prices

We start by deriving the characteristic function, g(vt, ut, wt, t, T ;φ) = EQ
t [exp(iφvT )],

as in Heston (1993). Given the model in Equation (1), Ito’s lemma leads to

dg =
[
gt + gv(κv(u− v)− λ+δ+ − λ−δ−) + guκu(u− u) + gwκw(w − w)

]
dt

+
[

1
2gvvw + 1

2guuσ
2
u + 1

2gwwσ
2
ww + gvwρσww

]
dt+ gv

√
wdBQ

1t + guσudB
Q
2t + gwσw

√
wdBQ

3t

+ [g(v + JQ
1 , u, w, t, T ;φ)− g(v, u, w, t, T ;φ)]dNQ

1t

+ [g(v + JQ
2 , u, w, t, T ;φ)− g(v, u, w, t, T ;φ)]dNQ

2t.

(A.1)

If a Markov process is affine, its cumulant generating function has affine dependence

on the state vector:

g(vt, ut, wt, t, T ;φ) = exp [α(s) + βv(s)vt + βu(s)ut + βw(s)wt] . (A.2)

Substituting Equation (A.2) into Equation (A.1), we obtain

Et[dg/g]

dt
= −[α̇(s) + β̇v(s)v + β̇u(s)u+ β̇w(s)w] + [κv(u− v)− λ+δ+ − λ−δ−]βv(s)

+ κu(u− u)βu(s) + κw(w − w)βw(s)

+ 1
2wβv(s)

2 + 1
2σ

2
uβu(s)2 + 1

2σ
2
wwβw(s)2 + ρσwwβv(s)βw(s)

+ λ+

(
E[exp(βv(s)J

Q
1 )]− 1

)
+ λ−

(
E[exp(βv(s)J

Q
2 )]− 1

)
,

(A.3)

where
E[exp(βv(s)J

Q
1 )] = 1

1−δ+βv(s)

E[exp(βv(s)J
Q
2 )] = 1

1−δ−βv(s) .
(A.4)

Note that g is a martingale by the law of iterated expectations. Rearranging

Equation (A.3) as an affine form of (v, u, w) and using the fact that Et[dg] = 0, we
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obtain the system of the following ODEs:

α̇(s) = κuuβu(s) + κwwβw(s) +
1

2
σ2
uβu(s)2

− [λ+δ+ + λ−δ−]βv(s) + λ+

[
1

1− δ+βv(s)
− 1

]
+ λ−

[
1

1− δ−βv(s)
− 1

]
β̇v(s) = −κvβv(s)

β̇u(s) = κvβv(s)− κuβu(s)

β̇w(s) = −κwβw(s) +
1

2
βv(s)

2 +
1

2
σ2
wβw(s)2 + ρσwβv(s)βw(s),

(A.5)

where the boundary conditions are given as α(0) = 0, βv(0) = iφ, βu(0) = 0, and

βw(0) = 0.

Let F (t, T ) denote the time-t price of a futures contract with a maturity of T .

F (t, T ) is equal to the characteristic function evaluated at φ = −i:

F (t, T ) = EQ
t [VIXT ]

= EQ
t [exp(vT )]

= g(vt, ut, wt, t, T ;φ = −i).

(A.6)

To derive the pricing formula for C(t, T,K), let us introduce a change of measure from

Q to Q̃ by a Radon-Nikodym derivative dQ̃
dQ = exp (vT )

EQ
t [exp (vT )]

. Let us denote the charac-

teristic function of vT under the Q̃ measure by h(vt, ut, wt, t, T ;φ). h(vt, ut, wt, t, T ;φ)

is given by

h(vt, ut, wt, t, T ;φ) = EQ̃
t [exp (iφvT )]

= EQ
t

[
exp (vT )

EQ
t [exp (vT )]

exp (iφvT )

]

= EQ
t

[
exp (i(φ− i)vT )

EQ
t [exp (vT )]

]

=
g(vt, ut, wt, t, T ;φ− i)

g(vt, ut, wt, t, T ;−i)
.

(A.7)
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C(t, T,K) is calculated using g(vt, ut, wt, t, T ;φ) and h(vt, ut, wt, t, T ;φ):

C(t, T,K) = exp(−rtτ)EQ
t [max(VIXT −K, 0)]

= exp(−rtτ)EQ
t [exp(vT )1(vT≥log(K)) −K1(vT≥log(K))]

= exp(−rtτ)
[
EQ
t [exp (vT )]EQ̃

t [1(vT≥log(K))]−KEQ
t [1(vT≥log(K))]

]
= exp(−rtτ) [g(vt, ut, wt, t, T ;φ = −i)Π1(t, T,K)−KΠ2(t, T,K)] ,

(A.8)

where Π1(t, T,K) and Π2(t, T,K) are given by the Levy inversion formula (see Ap-

pendix B):

Π1(t, T,K) =
1

2
+

1

π

∫ ∞
0
<
[

exp(−iφ log(K))h(vt, ut, wt, t, T ;φ)

iφ

]
dφ

Π2(t, T,K) =
1

2
+

1

π

∫ ∞
0
<
[

exp(−iφ log(K))g(vt, ut, wt, t, T ;φ)

iφ

]
dφ,

(A.9)

where < indicates the real part of a complex number. A similar procedure can be

applied to derive the price of a put option.

B Levy inversion formula

Let F (x) be the distribution function of a random variable. The Levy inversion for-

mula involves computing F (x) given the characteristic function, g(φ) =
∫∞
−∞ exp(iφx)dF (x).

To begin with, let us bring the following mathematical results:

sin(x) =
exp(ix)− exp(−ix)

2i

g(−φ) = g(φ)

sgn(x) =
2

π

∫ ∞
0

sin(ux)

u
du,

(B.1)
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where sgn(x) = −1 if x < 0; 0 if x = 0; and 1 if x > 0. Let us derive the following

relation:

1− 2F (x) = −F (x) + (1− F (x))

= −
∫ x

−∞
dF (u) +

∫ ∞
x

dF (u)

=

∫ ∞
−∞

sgn(u− x)dF (u)

=
2

π

∫ ∞
−∞

∫ ∞
0

sin((u− x)φ)

φ
dφdF (u)

= − i

π

∫ ∞
0

∫ ∞
−∞

exp(i(u− x)φ)− exp(−i(u− x)φ)

φ
dF (u)dφ

= − i

π

∫ ∞
0

exp(−ixφ)g(φ)− exp(ixφ)g(−φ)

φ
dφ

= − i

π

∫ ∞
0

exp(−ixφ)g(φ)− exp(−ixφ)g(φ)

φ
dφ

=
2

π

∫ ∞
0
=
[

exp(−ixφ)g(φ)

φ

]
dφ

=
2

π

∫ ∞
0
<
[

exp(−ixφ)g(φ)

iφ

]
dφ,

(B.2)

where < and = denote the real and imaginary parts of a complex number, respectively.

The distribution function is thus given by

F (x) =
1

2
− 1

π

∫ ∞
0
<
[

exp(−ixφ)g(φ)

iφ

]
dφ. (B.3)

The option pricing formula calls for the complementary distribution function, Π(x):

Π(x) = 1− F (x)

=
1

2
+

1

π

∫ ∞
0
<
[

exp(−ixφ)g(φ)

iφ

]
dφ.

(B.4)

C Unscented Kalman filtering

Let Xt = (vt, ut) be the latent state vector. Suppose that the latent state vector is of

the form:

Xt+1 = Φ0 + ΦxXt + εt+1, (C.1)
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where vart[εt+1] = Q(Xt). Kalman filtering comprises two stages: the prediction and

the update stages. The prediction stage involves computing one-step-ahead predictive

mean and variance of Xt given X̂t = Et[Xt] and Pt = vart[Xt]:

X̂t+1|t = Φ0 + ΦxX̂t

Pt+1|t = ΦxPtΦ
′
x +Q(Xt)

(C.2)

The update stage starts by defining a set of sigma points that match the pre-

dictive mean and variance of the latent vector. To be specific, a set of 2L + 1 sigma

points and weights are selected based on the scaled unscented transformation of Julier

(2002), where L is the dimension of the latent vector:

X0 = X̂t+1|t

Xi = X̂t+1|t +
(√

(L+ ξ)Pt+1|t

)
i
, i = 1, . . . , L

Xi = X̂t+1|t −
(√

(L+ ξ)Pt+1|t

)
i−L

, i = L+ 1, . . . , 2L,

(C.3)

whose weights are given by

Wm
0 =

ξ

L+ ξ

W c
0 =

ξ

L+ ξ
+ (1− α2 + β)

Wm
i =

1

2(L+ ξ)
, i = 1, . . . , 2L

W c
i =

1

2(L+ ξ)
, i = 1, . . . , 2L,

(C.4)

where ξ = α2(L+κ)−L and
(√

(L+ ξ)Pt+1|t
)
i

is the ith column of the matrix square

root. In our applications, we set α = 0.01, β = 2, and κ = 0.

Suppose that the observation equations are of the form:

Yt = H(Xt) + Ω, (C.5)

where H(Xt) represents the pricing formula for futures and options and Ω denotes

the measurement errors. The predictive mean and variance of Yt are computed using
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the sigma points and weights:

Ŷt+1|t =

2L∑
i=0

Wm
i H(Xi)

P yt+1|t =
2L∑
i=0

W c
i (H(Xi)− Ŷt+1|t)(H(Xi)− Ŷt+1|t)

′ + Ω,

(C.6)

where Ŷt+1|t = Et[Yt+1] and P y
t+1|t = vart[Yt+1].

Finally, we are able to update the conditional mean and variance of Xt:

X̂t+1 = X̂t+1|t +Kt+1(Yt+1 − Ŷt+1|t)

Pt+1 = Pt+1|t −Kt+1P
y
t+1|tK

′
t+1,

(C.7)

where

Kt+1 =
2L∑
i=0

W c
i (Xi − X̂t+1|t)(H(Xi)− Ŷt+1|t)

′(P yt+1|t)
−1. (C.8)

The log likelihood function is then given by

log(L) = −1

2

T∑
t=1

[
log(2π)Nt + log

(
|det(P yt+1|t)|

)
+ (Yt+1 − Ŷt+1|t)

′(P yt+1|t)
−1(Yt+1 − Ŷt+1|t)

]
,

(C.9)

where Nt is the dimension of the observation equations at time t. The log likelihood

function is optimized via the Berndt, Hall, Hall, and Hausman (1974) algorithm. The

standard errors are computed by inverting the Hessian matrix at the optimal solution.

D Computation of the option-implied volatility and

skewness

The model-free, option-implied moments are obtained with the approach of Bakshi,

Kapadia, and Madan (2003) with light modification. The original formula is based

on the no-arbitrage relation that the underlying asset is tradable and so grows at a

risk-free rate under the risk-neutral measure. That is, EQ
t (ST ) = St exp(rt(T − t)),

where St is the price of an underlying asset at time t. However, this relation no

longer holds in the VIX derivatives market because the underlying VIX index is not

tradable. Instead, we use the fact that a VIX futures price reflects the risk-neutral
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expectation of the VIX, F (t, T ) = EQ
t (VIXT ), where F (t, T ) is the time-t price of a

VIX future with a maturity of T . The computation proceeds as follows.

Let H1(t, T ), H2(t, T ), and H3(t, T ) denote the prices of three hypothetical se-

curities that pay quadratic, cubic, and quartic payoffs, respectively. These prices are

given by

H1(t, T ) =

∫ ∞
VIXt

2
(

1− ln
(

K
VIXt

))
K2

Ĉ(t, T,K)dK

+

∫ VIXt

0

2
(
1 + ln

(
VIXt
K

))
K2

P̂ (t, T,K)dK, (D.1)

H2(t, T ) =

∫ ∞
VIXt

6 ln
(

K
VIXt

)
− 3

(
ln
(

K
VIXt

))2

K2
Ĉ(t, T,K)dK

−
∫ VIXt

0

6 ln
(

VIXt
K

)
+ 3

(
ln
(

VIXt
K

))2
K2

P̂ (t, T,K)dK, (D.2)

and

H3(t, T ) =

∫ ∞
VIXt

12
(

ln
(

K
VIXt

))2
− 4

(
ln
(

K
VIXt

))3

K2
Ĉ(t, T,K)dK

+

∫ VIXt

0

12
(
ln
(

VIXt
K

))2
+ 4

(
ln
(

VIXt
K

))3
K2

P̂ (t, T,K)dK, (D.3)

where Ĉ(t, T,K) and P̂ (t, T,K) are the market prices of OTM VIX call and put

options with a maturity of T and a strike price of K. The implied volatility and

skewness are then computed by

IV(t, T ) =

√
exp(rt(T − t))H1(t, T )− µ(t, T )2

T − t

SKEW(t, T ) =
exp(rt(T − t))H2(t, T )− 3µ(t, T ) exp(rt(T − t))H1(t, T ) + 2µ(t, T )3

(T − t)3/2IV(t, T )3
,

(D.4)

where IV(t, T ) is annualized and

µ(t, T ) =
F (t, T )

VIXt
−1−exp(rt(T − t))

2
H1(t, T )−exp(rt(T − t))

6
H2(t, T )−exp(rt(T − t))

24
H3(t, T ).

(D.5)

In practice, the computation of the implied volatility and skewness is prone to
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truncation and discretization errors, as reported by Jiang and Tian (2007). To reduce

such errors, we interpolate or extrapolate option prices on a fine grid of varying strike

prices following the approach of Carr and Wu (2009). First, for a given date and a

given maturity, we require at least two observations for both puts and calls. We then

generate a grid of strike prices with one-point increments, interpolate Black-Scholes

implied volatility at each point, and translate the interpolated implied volatility into

the option price. In addition, an extrapolation is used for grid points beyond the last

observed strike price.

E AVV model with double exponential jumps

Kou (2002) and Kou and Wang (2004) develop a double exponential jump diffusion

model in which both upward and downward jumps are driven by a single compound

Poisson process. To be specific, we introduce the dynamics for vt as follows:

dvt = κv(ut − vt)dt+
√
wtdB

Q
1t + JQdNQ

t − λ[pδ+ + (1− p)δ−]dt

dut = κu(u− ut)dt+ σudB
Q
2t

dwt = κw(w − wt)dt+ σw
√
wtdB

Q
3t,

(E.1)

where NQ
t denotes a risk-neutral Poisson process driving jumps with the intensity λ

and JQ has a probability density function that takes p
δ+

exp(−x/δ+) if x > 0 and
1−p
|δ−| exp(−x/δ−) if x < 0. The coefficients of the cumulant generating function of this

model satisfy the following system of ODEs:

α̇(s) = κuuβu(s) + κwwβw(s) +
1

2
σ2
uβu(s)2

− λ [pδ+ + (1− p)δ−]βv(s) + λ

[
p

1− δ+βv(s)
+

1− p
1− δ−βv(s)

− 1

]
β̇v(s) = −κvβv(s)

β̇u(s) = κvβv(s)− κuβu(s)

β̇w(s) = −κwβw(s) +
1

2
βv(s)

2 +
1

2
σ2
wβw(s)2 + ρσwβv(s)βw(s),

(E.2)

where the boundary conditions are given as α(0) = 0, βv(0) = iφ, βu(0) = 0, and

βw(0) = 0.

Note that the AVV model with double exponential jumps is different from the
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AVV-AJ model where upward and downward jumps are driven by independent com-

pound Poisson processes with each having its own jump intensity and jump-size distri-

bution. In the AVV-AJ model, upward and downward jumps have distinct jump-size

distributions so a combination of upward and downward jumps cannot collapse to a

single compound Poisson process as in the double exponential jumps.
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Table 1: Summary of model specifications

Model Description Constraints
SVV Symmetric volatility, no jumps ρ = 0, λ+ = 0, and λ− = 0
AVV Asymmetric volatility, no jumps λ+ = 0 and λ− = 0
AVV-UJ Asymmetric volatility, upward jumps only λ− = 0
AVV-AJ Asymmetric volatility, asymmetric jumps Not applicable
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Table 2: Summary statistics for VIX futures and options

The moneyness is defined as d = K/F (t, T ), where K is the strike price and F (t, T ) is the futures
price with a strike price of K and a maturity of T . Short-term contracts are those with no more
than three months to maturity, and long-term contracts are those with more than three months to
maturity. BSIV stands for Black-Scholes implied volatility. The futures data come from Thomson
Reuters, Datastream, while the options data are from OptionMetrics, Ivy DB.

Months to maturity
Short Long Total

All futures No. of futures 4,578 4,752 9,330
Average price 24.55 25.21 24.89

All OTM options No. of options 49,992 52,533 102,525
Average price 1.25 1.86 1.56
Average BSIV 1.05 0.84 0.94
Average vega 2.58 4.60 3.61

OTM puts No. of options 13,758 13,949 27,707
Average price 1.33 1.90 1.62
Average BSIV 0.68 0.52 0.60
Average vega 2.86 5.01 3.94

OTM calls No. of options 36,403 38,696 75,099
Average price 1.23 1.85 1.55
Average BSIV 1.20 0.95 1.07
Average vega 2.47 4.45 3.49

Deep OTM puts No. of options 6,382 7,639 14,021
(d < 0.85) Average price 0.75 1.14 0.96

Average BSIV 0.65 0.48 0.56
Average vega 2.61 4.38 3.58

Moderate OTM puts No. of options 7,384 6,312 13,696
(0.85 < d < 1.0) Average price 1.83 2.82 2.29

Average BSIV 0.70 0.57 0.64
Average vega 3.08 5.76 4.31

Moderate OTM calls No. of options 17,424 17,433 34,857
(1.0 < d < 1.3) Average price 1.77 2.68 2.23

Average BSIV 1.16 0.94 1.05
Average vega 2.85 5.14 4.00

Deep OTM calls No. of options 18,987 21,275 40,262
(d > 1.3) Average price 0.73 1.16 0.96

Average BSIV 1.23 0.96 1.09
Average vega 2.12 3.89 3.06
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Table 3: Parameter estimates: In-sample

This table shows the parameter estimates that are obtained using the full sample period from July
2006 through January 2013. AIC and SIC stand for Akaike and Schwarz information criteria,
respectively. Standard errors are in parentheses.

MS SVV AVV AVV-UJ AVV-AJ

κv 8.956 6.384 7.393 6.488 6.576
(0.008) (0.006) (0.006) (0.005) (0.006)

ρ 0.870 0.422 0.794
(0.004) (0.005) (0.009)

κu 0.386 0.324 0.319 0.256 0.258
(0.001) (0.002) (0.001) (0.001) (0.001)

u 2.979 2.877 2.997 3.073 3.106
(0.001) (0.002) (0.002) (0.002) (0.003)

σu 0.088 0.442 0.419 0.282 0.293
(0.004) (0.001) (0.002) (0.003) (0.003)

ηu -0.039 -0.003 -0.022 -0.019 -0.024
(0.013) (0.013) (0.027) (0.016) (0.017)

κw 5.506 1.553 1.050 0.847
(0.015) (0.008) (0.008) (0.008)

w 1.613 1.629 2.137 1.956
(0.003) (0.012) (0.019) (0.027)

σw 7.271 2.610 2.379 1.976
(0.011) (0.009) (0.013) (0.012)

ηw -28.429 -2.184 -2.926 -2.150
(1.767) (0.642) (1.036) (0.869)

λz 3.358
(0.013)

δz 3.391
(0.007)

λ+ 2.664 2.682
(0.039) (0.036)

δ+ 0.267 0.266
(0.001) (0.001)

λ− 2.042
(0.152)

δ− -0.217
(0.009)

σe 0.080 0.082 0.078 0.072 0.071
(0.000) (0.000) (0.000) (0.000) (0.000)

σf 0.031 0.031 0.030 0.030 0.029
(0.000) (0.000) (0.000) (0.000) (0.000)

log(L) 8,071 8,600 15,803 24,642 24,826
AIC -16,124 -17,177 -31,582 -49,255 -49,620
SIC -16,075 -17,118 -31,517 -49,179 -49,534
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Table 4: Parameter estimates: Out-of-sample

This table shows the parameter estimates that are obtained using a subsample of four years from July
2006 through June 2010. This parameter set is used for an out-of-sample test spanning July 2010
through January 2013. AIC and SIC stand for Akaike and Schwarz information criteria, respectively.
Standard errors are in parentheses.

MS SVV AVV AVV-UJ AVV-AJ

κv 11.512 9.602 10.074 9.458 9.652
(0.014) (0.013) (0.011) (0.010) (0.011)

ρ 0.606 0.381 0.683
(0.006) (0.007) (0.012)

κu 0.495 0.477 0.427 0.399 0.403
(0.001) (0.002) (0.001) (0.001) (0.001)

u 2.751 2.714 2.782 2.785 2.796
(0.001) (0.002) (0.002) (0.002) (0.002)

σu 0.236 0.414 0.402 0.303 0.309
(0.002) (0.002) (0.003) (0.004) (0.004)

ηu 0.025 0.019 0.017 0.016 0.014
(0.021) (0.025) (0.050) (0.014) (0.017)

κw 2.142 1.440 1.087 0.991
(0.014) (0.011) (0.011) (0.011)

w 2.709 2.565 3.464 3.146
(0.021) (0.027) (0.042) (0.047)

σw 6.317 3.574 3.067 2.861
(0.016) (0.022) (0.032) (0.035)

ηw -10.625 -2.589 -3.395 -3.023
(2.050) (1.485) (1.734) (1.721)

λz 2.022
(0.015)

δz 4.482
(0.019)

λ+ 1.759 2.216
(0.076) (0.082)

δ+ 0.283 0.265
(0.005) (0.004)

λ− 9.080
(0.879)

δ− -0.120
(0.006)

σe 0.070 0.073 0.069 0.067 0.067
(0.000) (0.000) (0.000) (0.000) (0.000)

σf 0.026 0.025 0.024 0.024 0.024
(0.000) (0.000) (0.000) (0.000) (0.000)

log(L) 7,086 7,207 10,430 12,129 12,323
AIC -14,155 -14,392 -20,836 -24,231 -24,613
SIC -14,110 -14,338 -20,777 -24,162 -24,535
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Table 5: Pricing performance across different models: In-sample

This table shows the in-sample performance metrics across the different models. The metric RMSEi

stands for the root mean squared error of a model i as given by Equation (16). The metric ∆RMSEi|j
measures the pricing performance difference of a model i relative to a model j, which is defined as
∆RMSEi|j = 100× log(RMSEi/RMSEj). A negative (positive) value of ∆RMSEi|j means that the
pricing performance of the model i is better (worse) than that of the model j by a percentage of
that value. The moneyness is defined as d = K/F (t, T ), where K is the strike price and F (t, T ) is
the futures price with a strike price of K and a maturity of T . Short-term contracts are those with
no more than three months to maturity, and long-term contracts are those with more than three
months to maturity.

RMSEi ∆RMSEi|SVV ∆RMSEi|AVV ∆RMSEi|AVV-UJ

Short long Total Short Long Total Short Long Total Short Long Total

Panel A: All futures
MS 0.1867 0.1839 0.1853 -5.22 8.71 1.18 6.02 4.76 5.39 1.49 10.91 5.93
SVV 0.1916 0.1761 0.1842 0.00 0.00 0.00 11.24 -3.95 4.22 6.71 2.21 4.75
AVV 0.1812 0.1796 0.1804 -11.24 3.95 -4.22 0.00 0.00 0.00 -4.53 6.15 0.53
AVV-UJ 0.1853 0.1741 0.1799 -6.71 -2.21 -4.75 4.53 -6.15 -0.53 0.00 0.00 0.00
AVV-AJ 0.1836 0.1744 0.1791 -8.55 -1.88 -5.60 2.70 -5.83 -1.39 -1.83 0.32 -0.86

Panel B: All options
MS 0.1218 0.0829 0.1037 8.25 13.81 10.00 13.43 21.30 15.87 20.83 30.61 23.83
SVV 0.1122 0.0722 0.0939 0.00 0.00 0.00 5.18 7.48 5.87 12.59 16.80 13.83
AVV 0.1065 0.0670 0.0885 -5.18 -7.48 -5.87 0.00 0.00 0.00 7.41 9.32 7.96
AVV-UJ 0.0989 0.0611 0.0817 -12.59 -16.80 -13.83 -7.41 -9.32 -7.96 0.00 0.00 0.00
AVV-AJ 0.0985 0.0609 0.0814 -13.01 -17.10 -14.21 -7.82 -9.62 -8.35 -0.42 -0.30 -0.38

Panel C: OTM puts
MS 0.1331 0.0785 0.1091 -7.91 0.35 -5.88 7.87 11.20 8.72 5.21 12.98 7.12
SVV 0.1440 0.0782 0.1157 0.00 0.00 0.00 15.78 10.85 14.60 13.12 12.63 13.01
AVV 0.1230 0.0702 0.1000 -15.78 -10.85 -14.60 0.00 0.00 0.00 -2.66 1.78 -1.60
AVV-UJ 0.1263 0.0689 0.1016 -13.12 -12.63 -13.01 2.66 -1.78 1.60 0.00 0.00 0.00
AVV-AJ 0.1245 0.0685 0.1003 -14.61 -13.23 -14.29 1.17 -2.37 0.32 -1.49 -0.60 -1.28

Panel D: OTM calls
MS 0.1183 0.0846 0.1023 18.00 18.93 18.33 16.56 24.92 19.35 30.59 37.72 32.98
SVV 0.0988 0.0700 0.0852 0.00 0.00 0.00 -1.44 5.99 1.02 12.59 18.79 14.66
AVV 0.1002 0.0659 0.0843 1.44 -5.99 -1.02 0.00 0.00 0.00 14.03 12.80 13.64
AVV-UJ 0.0871 0.0580 0.0736 -12.59 -18.79 -14.66 -14.03 -12.80 -13.64 0.00 0.00 0.00
AVV-AJ 0.0874 0.0579 0.0737 -12.22 -18.94 -14.45 -13.66 -12.94 -13.43 0.37 -0.15 0.21

Panel E: Deep OTM puts (d < 0.85)
MS 0.1152 0.0695 0.0932 -7.38 -4.78 -6.61 19.07 9.68 16.03 18.07 10.69 15.72
SVV 0.1241 0.0729 0.0995 0.00 0.00 0.00 26.45 14.46 22.64 25.46 15.48 22.33
AVV 0.0952 0.0631 0.0794 -26.45 -14.46 -22.64 0.00 0.00 0.00 -0.99 1.01 -0.31
AVV-UJ 0.0962 0.0625 0.0796 -25.46 -15.48 -22.33 0.99 -1.01 0.31 0.00 0.00 0.00
AVV-AJ 0.0923 0.0617 0.0772 -29.54 -16.69 -25.43 -3.09 -2.23 -2.79 -4.09 -1.21 -3.10

Panel F: Moderate OTM puts (0.85 < d < 1.0)
MS 0.1467 0.0881 0.1232 -8.19 4.59 -5.46 2.79 12.38 4.89 -0.50 14.77 2.70
SVV 0.1592 0.0842 0.1301 0.00 0.00 0.00 10.98 7.78 10.35 7.69 10.18 8.16
AVV 0.1427 0.0779 0.1173 -10.98 -7.78 -10.35 0.00 0.00 0.00 -3.29 2.39 -2.19
AVV-UJ 0.1475 0.0760 0.1199 -7.69 -10.18 -8.16 3.29 -2.39 2.19 0.00 0.00 0.00
AVV-AJ 0.1466 0.0760 0.1194 -8.25 -10.28 -8.64 2.72 -2.49 1.71 -0.57 -0.10 -0.48

Panel G: Moderate OTM calls (1.0 < d < 1.3)
MS 0.1260 0.1017 0.1145 10.46 24.75 15.62 8.73 30.78 16.32 17.27 45.14 26.50
SVV 0.1135 0.0794 0.0979 0.00 0.00 0.00 -1.73 6.03 0.69 6.81 20.39 10.88
AVV 0.1154 0.0748 0.0972 1.73 -6.03 -0.69 0.00 0.00 0.00 8.54 14.36 10.19
AVV-UJ 0.1060 0.0648 0.0878 -6.81 -20.39 -10.88 -8.54 -14.36 -10.19 0.00 0.00 0.00
AVV-AJ 0.1066 0.0647 0.0882 -6.27 -20.42 -10.50 -8.00 -14.39 -9.81 0.53 -0.03 0.38

Panel H: Deep OTM calls (d > 1.3)
MS 0.1107 0.0674 0.0904 28.76 9.60 22.34 27.82 15.54 23.90 53.14 26.26 43.67
SVV 0.0831 0.0612 0.0723 0.00 0.00 0.00 -0.93 5.94 1.56 24.39 16.66 21.32
AVV 0.0838 0.0577 0.0712 0.93 -5.94 -1.56 0.00 0.00 0.00 25.32 10.72 19.77
AVV-UJ 0.0651 0.0518 0.0584 -24.39 -16.66 -21.32 -25.32 -10.72 -19.77 0.00 0.00 0.00
AVV-AJ 0.0651 0.0516 0.0584 -24.42 -16.96 -21.47 -25.36 -11.02 -19.91 -0.03 -0.30 -0.14
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Table 6: Pricing performance across different models: Out-of-sample

This table shows the out-of-sample performance metrics across the different models. The metric
RMSEi stands for the root mean squared error of a model i as given by Equation (16). The metric
∆RMSEi|j measures the pricing performance difference of a model i relative to a model j, which
is defined as ∆RMSEi|j = 100 × log(RMSEi/RMSEj). A negative (positive) value of ∆RMSEi|j
means that the pricing performance of the model i is better (worse) than that of the model j by a
percentage of that value. The moneyness is defined as d = K/F (t, T ), where K is the strike price
and F (t, T ) is the futures price with a strike price of K and a maturity of T . Short-term contracts
are those with no more than three months to maturity, and long-term contracts are those with more
than three months to maturity.

RMSEi ∆RMSEi|SVV ∆RMSEi|AVV ∆RMSEi|AVV-UJ

Short long Total Short Long Total Short Long Total Short Long Total

Panel A: All futures
MS 0.2415 0.2242 0.2332 1.12 16.03 7.02 14.62 7.88 11.60 13.26 17.64 15.10
SVV 0.2402 0.2069 0.2252 0.00 0.00 0.00 13.50 -8.15 4.58 12.14 1.61 8.08
AVV 0.2245 0.2155 0.2201 -13.50 8.15 -4.58 0.00 0.00 0.00 -1.36 9.76 3.51
AVV-UJ 0.2261 0.2052 0.2163 -12.14 -1.61 -8.08 1.36 -9.76 -3.51 0.00 0.00 0.00
AVV-AJ 0.2251 0.2073 0.2166 -13.02 0.34 -7.78 0.48 -7.81 -3.21 -0.89 1.95 0.30

Panel B: All options
MS 0.1625 0.1320 0.1475 15.87 28.46 20.71 19.95 31.97 24.58 24.71 38.34 29.91
SVV 0.1386 0.0993 0.1199 0.00 0.00 0.00 4.07 3.51 3.87 8.84 9.88 9.20
AVV 0.1331 0.0959 0.1154 -4.07 -3.51 -3.87 0.00 0.00 0.00 4.76 6.37 5.33
AVV-UJ 0.1269 0.0900 0.1094 -8.84 -9.88 -9.20 -4.76 -6.37 -5.33 0.00 0.00 0.00
AVV-AJ 0.1263 0.0911 0.1095 -9.30 -8.56 -9.04 -5.23 -5.05 -5.16 -0.47 1.32 0.16

Panel C: OTM puts
MS 0.1728 0.0794 0.1342 8.05 -1.02 6.33 20.56 6.49 17.78 21.87 10.24 19.62
SVV 0.1594 0.0802 0.1260 0.00 0.00 0.00 12.51 7.51 11.45 13.82 11.25 13.29
AVV 0.1407 0.0744 0.1123 -12.51 -7.51 -11.45 0.00 0.00 0.00 1.31 3.74 1.84
AVV-UJ 0.1388 0.0716 0.1103 -13.82 -11.25 -13.29 -1.31 -3.74 -1.84 0.00 0.00 0.00
AVV-AJ 0.1361 0.0719 0.1087 -15.78 -10.93 -14.76 -3.27 -3.42 -3.30 -1.96 0.32 -1.47

Panel D: OTM calls
MS 0.1612 0.1440 0.1525 18.53 32.18 24.41 19.77 35.01 26.27 25.69 41.84 32.55
SVV 0.1339 0.1044 0.1194 0.00 0.00 0.00 1.24 2.83 1.86 7.16 9.66 8.14
AVV 0.1323 0.1015 0.1172 -1.24 -2.83 -1.86 0.00 0.00 0.00 5.93 6.83 6.28
AVV-UJ 0.1246 0.0948 0.1101 -7.16 -9.66 -8.14 -5.93 -6.83 -6.28 0.00 0.00 0.00
AVV-AJ 0.1247 0.0962 0.1108 -7.10 -8.17 -7.52 -5.86 -5.35 -5.66 0.06 1.49 0.62

Panel E: Deep OTM puts (d < 0.85)
MS 0.0896 0.0628 0.0754 -13.83 -7.55 -11.41 3.23 0.46 2.11 7.15 2.71 5.33
SVV 0.1029 0.0678 0.0845 0.00 0.00 0.00 17.05 8.01 13.52 20.98 10.25 16.74
AVV 0.0867 0.0626 0.0738 -17.05 -8.01 -13.52 0.00 0.00 0.00 3.92 2.24 3.22
AVV-UJ 0.0834 0.0612 0.0715 -20.98 -10.25 -16.74 -3.92 -2.24 -3.22 0.00 0.00 0.00
AVV-AJ 0.0803 0.0613 0.0700 -24.78 -10.12 -18.84 -7.72 -2.10 -5.33 -3.80 0.14 -2.10

Panel F: Moderate OTM puts (0.85 < d < 1.0)
MS 0.2309 0.1079 0.1924 12.72 4.69 11.66 24.05 11.70 22.36 24.74 16.94 23.71
SVV 0.2033 0.1030 0.1712 0.00 0.00 0.00 11.33 7.01 10.69 12.02 12.25 12.05
AVV 0.1815 0.0960 0.1539 -11.33 -7.01 -10.69 0.00 0.00 0.00 0.69 5.24 1.36
AVV-UJ 0.1803 0.0911 0.1518 -12.02 -12.25 -12.05 -0.69 -5.24 -1.36 0.00 0.00 0.00
AVV-AJ 0.1775 0.0916 0.1499 -13.56 -11.74 -13.30 -2.24 -4.73 -2.61 -1.55 0.51 -1.25

Panel G: Moderate OTM calls (1.0 < d < 1.3)
MS 0.1817 0.1976 0.1897 -0.07 32.47 14.69 0.10 35.70 15.98 4.78 46.37 22.74
SVV 0.1819 0.1428 0.1638 0.00 0.00 0.00 0.16 3.23 1.29 4.85 13.90 8.05
AVV 0.1816 0.1383 0.1617 -0.16 -3.23 -1.29 0.00 0.00 0.00 4.69 10.67 6.76
AVV-UJ 0.1732 0.1243 0.1511 -4.85 -13.90 -8.05 -4.69 -10.67 -6.76 0.00 0.00 0.00
AVV-AJ 0.1733 0.1266 0.1521 -4.85 -12.07 -7.43 -4.68 -8.83 -6.14 0.01 1.84 0.62

Panel H: Deep OTM calls (d > 1.3)
MS 0.1448 0.0996 0.1225 53.73 31.53 44.65 58.67 33.44 48.17 69.36 32.68 53.06
SVV 0.0846 0.0727 0.0784 0.00 0.00 0.00 4.94 1.92 3.52 15.63 1.15 8.40
AVV 0.0805 0.0713 0.0757 -4.94 -1.92 -3.52 0.00 0.00 0.00 10.69 -0.77 4.88
AVV-UJ 0.0724 0.0718 0.0721 -15.63 -1.15 -8.40 -10.69 0.77 -4.88 0.00 0.00 0.00
AVV-AJ 0.0726 0.0724 0.0725 -15.33 -0.28 -7.80 -10.39 1.63 -4.28 0.29 0.86 0.60
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Table 7: Pairwise model comparisons: In-sample

This table shows the Diebold and Mariano (2002) test statistics of the in-sample performance dif-
ferences. A negative (positive) statistic in a cell (i, j) indicates that the model i outperforms (un-
derperforms) the model j. The symbols *, **, and *** represent the statistical significance of the
performance difference at the 10, 5, and 1 percent levels, respectively.

MS SVV AVV AVV-UJ AVV-AJ

Panel A: Futures
MS 0.00 0.35 3.20∗∗∗ 1.96∗ 2.56∗∗

SVV -0.35 0.00 2.52∗∗ 2.18∗∗ 2.79∗∗∗

AVV -3.20∗∗∗ -2.52∗∗ 0.00 -0.50 0.60
AVV-UJ -1.96∗ -2.18∗∗ 0.50 0.00 4.93∗∗∗

AVV-AJ -2.56∗∗ -2.79∗∗∗ -0.60 -4.93∗∗∗ 0.00

Panel B: Options
MS 0.00 6.44∗∗∗ 11.50∗∗∗ 11.82∗∗∗ 11.76∗∗∗

SVV -6.44∗∗∗ 0.00 7.08∗∗∗ 11.22∗∗∗ 10.72∗∗∗

AVV -11.50∗∗∗ -7.08∗∗∗ 0.00 8.16∗∗∗ 8.44∗∗∗

AVV-UJ -11.82∗∗∗ -11.22∗∗∗ -8.16∗∗∗ 0.00 1.45
AVV-AJ -11.76∗∗∗ -10.72∗∗∗ -8.44∗∗∗ -1.45 0.00
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Table 8: Pairwise model comparisons: Out-of-sample

This table shows the Diebold and Mariano (2002) test statistics of the out-of-sample performance
differences. A negative (positive) statistic in a cell (i, j) indicates that the model i outperforms
(underperforms) the model j. The symbols *, **, and *** represent the statistical significance of
the performance difference at the 10, 5, and 1 percent levels, respectively.

MS SVV AVV AVV-UJ AVV-AJ

Panel A: Futures
MS 0.00 7.58∗∗∗ 14.25∗∗∗ 17.46∗∗∗ 17.15∗∗∗

SVV -7.58∗∗∗ 0.00 8.17∗∗∗ 15.77∗∗∗ 15.51∗∗∗

AVV -14.25∗∗∗ -8.17∗∗∗ 0.00 6.50∗∗∗ 8.27∗∗∗

AVV-UJ -17.46∗∗∗ -15.77∗∗∗ -6.50∗∗∗ 0.00 -1.16
AVV-AJ -17.15∗∗∗ -15.51∗∗∗ -8.27∗∗∗ 1.16 0.00

Panel B: Options
MS 0.00 12.26∗∗∗ 14.01∗∗∗ 15.07∗∗∗ 14.96∗∗∗

SVV -12.26∗∗∗ 0.00 6.49∗∗∗ 11.87∗∗∗ 10.79∗∗∗

AVV -14.01∗∗∗ -6.49∗∗∗ 0.00 11.71∗∗∗ 12.10∗∗∗

AVV-UJ -15.07∗∗∗ -11.87∗∗∗ -11.71∗∗∗ 0.00 -1.13
AVV-AJ -14.96∗∗∗ -10.79∗∗∗ -12.10∗∗∗ 1.13 0.00
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Figure 1: Scatter plot of VVIX log returns against VIX log returns.
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Figure 2: Trading volume of VIX futures and options.
The top panel shows the numbers of futures contracts traded over time, and the bottom
panel presents the dollar trading volumes for options contracts over time.
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Figure 3: Time series of the VIX, the VVIX, and the option-implied skewness.
The VIX and the VVIX are provided by the CBOE, and the skewness is computed using
the model-free approach of Bakshi, Kapadia, and Madan (2003) with a modification. The
options data are from OptionMetrics, Ivy DB.

49



Jan08 Jan10 Jan12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

SVV

Jan08 Jan10 Jan12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

AVV

Jan08 Jan10 Jan12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

AVV−UJ

Jan08 Jan10 Jan12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

AVV−AJ

Figure 4: Filtered volatility states across different models.
Each panel displays a time series of the filtered volatility states that are obtained by applying
an extended Kalman filter to the sample data from July 2006 through January 2013.
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Figure 5: Term structure of volatility.
The top panel shows the scatter plot and the average term structure of the market-implied
volatility, and the bottom panel shows the average term structures of the model-implied
volatility.

51



0 2 4 6 8 10 12
−1

0

1

2

3

Months to maturity

Market−implied term structure

O
p
ti
o
n
−

im
p
lie

d
 s

k
e
w

n
e
s
s

0 2 4 6 8 10 12

0

0.5

1

1.5

2

M
o
d
e
l−

im
p
lie

d
 s

k
e
w

n
e
s
s

Model−implied  term structure

 

 

Data

SVV

AVV

AVV−UJ

AVV−AJ

Figure 6: Term structure of skewness.
The top panel shows the scatter plot and the average term structure of the market-implied
skewness, and the bottom panel shows the average term structures of the model-implied
skewness.
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