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Abstract

Despite the clear prescription from economic theory that a firm should set price based

only on variable costs, firms routinely factor fixed costs into pricing decisions. We show that

full-cost pricing (FCP) can help firms uncover their optimal price from economic theory.

FCP marks up variable cost with the contribution margin per unit, which in equilibrium

includes the fixed cost. This requires some knowledge of the firm’s equilibrium return,

though this is arguably easier a lower informational burden than knowing one’s demand

curve, which is required for optimal economic pricing. We characterize when FCP can

implement the optimal price in a static game, a dynamic game, with multiple products,

and under a satisficing objective.
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1 Introduction

Economic theory provides an unambiguous prediction on how a profit maximizing firm should

set its price for a product: the firm includes only marginal (or variable) costs. It should

not factor fixed costs into the pricing decision. Yet a wealth of survey evidence (Shim and

Sudit [1995]; Noreen and Burgstahler [1997]; Shim [1993]; Govindarajan and Anthony [1983])

indicates that more than 60 percent of American manufacturing companies do include fixed

costs in prices, a practice called full-cost pricing (FCP). We seek to resolve this puzzle between

economic theory and real accounting practices with the following observation: optimal pricing

by a firm requires accurate knowledge of their residual demand curve, even though firms rarely

have such knowledge, and certainly not to the extent and precision needed for ascertaining

the optimal price. FCP, on the other hand, may be based on a less stringent informational

requirement, such as some knowledge of equilibrium income, and still lead to the optimal

price. This lessens the apparent paradox, and full-cost pricing may simply be a concrete way

to implement optimal pricing.

We provide a specific algorithm by which the firm can formulate its full-cost price and

achieve the optimal price. This may be achieved even when knowledge of equilibrium income

is imperfect, such as for a multiproduct firm with complementarities between products, as well

as in a firm that chooses to satisfice rather than optimize.

In the classical economic textbook solution, the firm maximizes profits by equalizing

marginal revenue and marginal cost, thereby marking up variable cost in a manner related

to the elasticity of demand. Fixed costs vanish from the firm’s optimization problem and

therefore do not factor into the optimal price. Instead, they only affect the firm’s decision on

whether to enter the market. For the firm to pick the price correctly, it must know its demand

curve, since the optimal price (via marginal revenue) is a function of the demand curve’s shape

and parameters. But even a slight bit of uncertainty regarding demand parameters can lead

the firm to misprice its product. The economic model of the profit-maximizing firm works if

the firm does, in fact, have all the necessary information on its market environment, including

the demand coefficients. However, if these strong informational requirements are not met,

pricing resulting from erroneous estimates of demand will be suboptimal, which may explain

why firms don’t actually price according to economic theory.1

1The classic defense of the economic model comes from Milton Friedman, who argued that firms behave “as

if” they are solving an explicit optimization problem (Friedman [1953]). We are explicitly concerned with the

actual pricing practice of firms, i.e. a “what exactly” explanation, rather than an “as if” explanation. Indeed,

one can interpret our results as supporting Friedman’s argument: full-cost pricing may be the practical method

by which firms achieve optimal pricing. Friedman’s “as if” argument begs the question of what the actual

method is, and full-cost pricing may provide the answer.
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In contrast, the firm could also set a “full-cost” price that includes its fixed costs. Rather

than maximizing profits explicitly and arriving at optimal price through first order conditions,

the full-cost price emerges from an equilibrium condition. Income of the firm at the equilibrium

price equals, by definition, equilibrium income. Rearranging this identity, equilibrium price

equals variable cost plus equilibrium contribution margin per unit (the latter term being the

fixed cost plus equilibrium income, all divided by quantity). Therefore, if the firm can measure

its equilibrium income, it can “back out” an estimate of equilibrium price. This yields a

candidate full-cost price, which can then be used to estimate, or iterate to, the optimal price.

In order to achieve the optimal price using FCP, the firm must have some knowledge or

estimate of optimal (equilibrium) income. We perceive this to be a less burdensome informa-

tional requirement than knowing their entire demand curve. Knowledge of equilibrium income

may be based on accounting measures such as return on investment (ROI) or return on assets

(ROA). A variety of market data and studies suggest firms have better knowledge of an equilib-

rium rate of return than of the demand curve necessary for optimal pricing through economic

theory. In surveys, firms often base price on some measure of “desired” profit or return. All

of this suggests firms use some measure of equilibrium income (or return) to set price. Our

formulation of the full-cost price formalizes this heuristic.

We consider full-cost pricing in both static and dynamic contexts. In the static model, the

firm sets a single price and FCP achieves the optimal price if and only if the firm’s estimate of

equilibrium income is exact, and it knows equilibrium quantity.2 This latter condition shows

that the information requirements for FCP to achieve optimal price in a static environment are

stringent. Indeed, conditional on knowing equilibrium income, knowing equilibrium quantity

is informationally equivalent to knowing optimal price. However, full-cost pricing, as we will

show, can achieve the optimal pricing in a dynamic setting when the firm has no knowledge

of its equilibrium quantity, and only has an estimate of equilibrium income. We provide an

algorithm by which the firm prices over time, setting the initial price equal to its variable cost

and revising the price upwards by the equilibrium contribution margin per unit, taking the

number of units to be the quantity the market purchases at the price in the prior stage. In

this algorithm, the full-cost price converges to the optimal price. Variable cost is a natural

starting value since the competitive benchmark sets price equal to the marginal (variable) cost,

however firms may use other starting values with slight modification to the algorithm as we

discuss later. This convergence works both when the firm knows equilibrium income exactly,

and when the firm does not know income exactly, but has a consistent estimate of it. This

form of price experimentation may seem ad hoc, but it is documented in surveys of company

practice has theoretic foundations. We provide several examples based on linear demand curves

2Its estimate of optimal price is unbiased if the estimate of equilibrium income is unbiased.
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and constant elasticity demand curves to illustrate convergence.

The model is robust to a number of extensions. First, FCP achieves the optimal price

even in a multiproduct firm. Such firms often have complementarities between products, such

as an auto manufacturer who makes multiple cars and trucks. With such complementarities,

the price of one product may affect the demand for another. But because the full-cost price is

based on equilibrium income and not on any first order condition, these cross-price externalities

do not interfere with the convergence properties of the full-cost price. The algorithm is more

complex since the full-cost price at each stage is a vector rather than a scalar, but it converges

nonetheless. A second extension is that FCP still “converges” if the firm decides not to optimize

but to satisfice, i.e. achieve a minimum level of profit. We provide conditions under which the

full-cost price meets this more relaxed criteria: namely that its forecast of equilibrium quantity

must be biased downward.

Accounting research has developed a large volume of survey evidence to show that full-

cost pricing dominates managerial practices (Shim and Sudit [1995]; Emore and Ness [1991];

Cooper [1990]; Govindarajan and Anthony [1983]; Gordon et al. [1981]; Drury and Tayles

[2000]; Bright et al. [1992]). This debate between real accounting practices and economic

theory has persisted for quite some time (as early as Friedman [1953]; and as recently as Lucas

[2003]). Yet formal theoretical models of this debate have appeared only recently. Al-Najjar

et al. [2005] consider a case of a Bertrand oligopoly and find that firms which follow a naive

adaptive learning process to adjust prices will eventually include fixed cost into their pricing

(a phenomenon they call the sunk-cost bias). Their adaptive learning algorithm is similar to

ours in the sense that the firm prices dynamically over time, though their emphasis is slightly

different, focusing on strategic interaction between firms.3 The sunk-cost bias (FCP) persists

because firms do not optimize in their models, but instead adopt a behavioral strategy of

adaptive learning. In contrast, we do not assume at the outset that firms fail to optimize, but

rather examine the informational environment in which they do so. Nonetheless, Al-Najjar

et al. [2005] is a recent paper in economic literature that investigates the same puzzle we do,

even though they arrive at different conclusions and justifications for full-cost pricing.

Netzer and Thepot [2008] also seek to understand the paradox, but work within a leader-

follower game of a two-tier organization, namely an upstream unit that produces capacity and a

downstream unit that chooses output level. They find full-cost pricing dominates other pricing

rules in a Cournot oligopoly case, stemming from the two-tiered structure of their organization.

Finally, Noreen and Burgstahler [1997] arrive at a negative result of full-cost pricing, namely

that in a multiproduct firm with fixed costs, full-cost pricing does not necessarily lead to a

3Our model is general enough to handle such interactions, though the interactions add little insight into our

central question so we abstract from them.
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satisfactory profit. They consider firms that satisfice rather than optimize. However, they take

a more narrow definition of FCP and do not base it on any measure of equilibrium income

as we do. This is why our FCP does achieve satisfactory profits, while their FCP does not.

Other papers within accounting and economic literature examine absorption costing practices

(such as full-cost pricing) in a strategic environment (Alles and Datar [1998]; Narayanan and

Smith [2000]; and Hughes and Kao [1998]). We focus on a non-strategic environment - a given

residual demand curve for the firm - in order to distill the mechanism in which we are most

interested.

The paper proceeds as follows. Section 2 reviews the benchmark of the economic model,

delivering the optimal price and discussing impediments to achieving the optimal price. Section

3 introduces full-cost pricing and gives necessary and sufficient conditions for FCP to achieve

optimal pricing in a static model. Section 4 explores dynamic FCP both when equilibrium

income is known and unknown. Section 5 provides extensions of the model to a multiproduct

firm and a satisficing firm. Section 6 concludes.

2 First Best Benchmark: The Optimal Price

Consider a firm who sells a single product in a market. The firm sets the price p > 0 and

demand is q(p) > 0. Assume throughout that demand is decreasing, so q′(p) < 0 for all p.4 The

firm’s cost of producing q units of the product is C(q) = F + vq. Observe that the marginal

cost C ′(q) = v is the constant variable cost of production.5 The fixed cost F includes fixed

manufacturing overhead, fixed SG&A, and any other fixed costs of the firm.

The classical textbook analysis solves the inverse problem of a firm choosing quantity

against inverse demand p(q). Because our focus is on pricing, we will consider the more

intuitive (though slightly more algebraically involved) formulation of the firm choosing price

directly.6 The firm chooses price to maximize income y(p), where

y(p) = pq(p)− C(q(p)) = (p− v)q(p)− F

We further assume the regularity condition that the firm’s income function is strictly concave,

4Throughout the paper, “demand” means the residual demand curve facing the firm. It may be a market

wide-demand curve in the case of a monopolist, or a residual demand curve in an oligopolistic setting, but it

must be downward sloping. Perfectly competitive firms (with perfectly elastic demand curves) do not face a

pricing decision, so the central question of this paper is ill-posed.
5Our exposition uses constant marginal cost, but results hold with any cost structure that results in a concave

income function, y′′(p) < 0.
6All results on price maximization can be reformulated to results on quantity to more easily compare the

results of the economic model with those from accounting practices.
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so y′′(p) < 0 for all p.7 This second order sufficient condition guarantees a unique solution p∗

to the firm’s problem. The first order condition for the firm’s problem gives the optimal price:

p∗ = v − q(p∗)

q′(p∗)
(1)

This condition implicitly delivers the optimal price as a function of the demand curve.

Optimal quantity is simply q∗ = q(p∗).8 Since demand slopes down, q′(p) < 0, so the optimal

price is a positive markup from the firm’s variable cost. In particular, this markup is a function

of the elasticity of demand. Elasticity of demand is ε = pq′(p)/q(p), and so rewriting this into

the optimal price, p∗ = v− p∗/ε, or p∗ = v/(1 + 1/ε), a rearrangement of the Lerner equation.

The firm bases its markup purely on conditions of demand, charging higher markups when

consumers are willing to pay more (less elastic demand).9 Importantly, the optimal price is

not a function of F .10

The benchmark model does not consider fixed costs in the pricing decision because it falls

out of the firm’s optimization problem. The firm chooses its price on the margin, considering

the marginal cost of production against the marginal revenue from selling additional products

in the market, which the demand curve determines. The only decision which is affected by

fixed costs is the entry decision. Firms with sufficiently low fixed costs to make positive

economic profit will enter the market, namely, those with fixed costs less than the equilibrium

contribution margin over all units (F < (p∗ − v)q∗). For those firms that do enter the market,

they will make non-negative profits in equilibrium, and fixed cost only affects the entry decision,

not the pricing decision of the firm.11

7This second order sufficient condition is equivalent to assuming that the firm’s demand is not “too convex.”

A more intuitive and primitive condition would be that the firm’s demand is weakly concave, q′′(p) ≤ 0, meaning

a demand curve that is linear or more concave than linear. However, that would be a more restrictive assumption

than the one we make, which allows for some convexity in the demand curve, such as the function q(p) = 1
p
− a.

8In the textbook model under linear inverse demand p(q) = a − bq, demand is q(p) = a−p
b

, yielding the

familiar p∗ = a+v
2

and q∗ = a−v
2b

. At the optimal quantity, marginal revenue equals marginal cost.
9ε is a negative number.

10To see the relation to FCP, let y∗ be the equilibrium income (or profit) for the firm at the optimal price

p∗, so y∗ = y(p∗). A useful identity is that y∗ + F = (p∗ − v) · q∗. Thus, the equilibrium profit plus the fixed

cost equals the equilibrium contribution margin. Note that while this relation holds at every price, it is most

relevant at the optimal price p∗.
11These results on entry and economic profit are true whether the environment is monopoly, oligopoly, or

perfect competition. While it is often assumed that monopolists earn more than oligopolists (who, in turn, earn

more than perfectly competitive firms) this is not always the case in equilibrium. Monopolists may earn just

enough to just cover F so they earn zero economic profit, while oligopolistic firms may earn greater than zero

economic profit due to indivisibilities in firm entry or product differentiation.
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2.1 Impediments to First Best

It is clear from (1) above that the firm must know the demand curve in order to correctly set

the optimal price. Without this knowledge, the firm cannot properly markup from variable

cost.

To gain traction on this issue, consider linear demand, q(p) = a− bp,12 where a > 0 is the

intercept of the demand curve, and b > 0 is a coefficient on the slope. Under linear demand,

the optimal price and quantity are:

p∗ =
a+ bv

2b
and q∗ =

a− bv
2

(2)

Even if the firm does not know the demand parameters a and b precisely, it can use signals

of these parameters to approximate the price and quantity. The firm may use the signals to

estimate p∗ directly, or to estimate p∗ through an estimate of q∗. The latter case is perhaps less

likely, so we consider it first to dispense with it. If the firm has available unbiased estimators

â and b̂ of a and b, respectively, then it can approximate q̂ = (â − b̂v)/2 as a forecast for the

quantity consumers will purchase. Because the estimators are unbiased and the expectation

operator is linear, expected quantity is also unbiased:

E[q̂] = E[
â− b̂v

2
] =

a− bv
2

= q∗, (3)

Even if the firm has â and b̂, leading to an unbiased estimate of q∗, p∗ is more elusive. The

firm cannot construct an unbiased estimate of p∗, regardless of whether it uses its unbiased

estimator q̂ of q∗, or the demand primitive estimates (â and b̂) themselves.

Let p̃ = â − b̂q̂ be the estimated price based on the forecasted quantity and forecasted

demand. Observe that the random variables b̂ and q̂ are not independent. Their covariance is

non-zero (it is negative, see (3)). Therefore, p̃ is a biased estimate of p∗, as

E[p̃] = E[(â− b̂q̂)] 6= a− bq∗ = p∗, (4)

Thus, even if the firm has independent unbiased estimates of the parameters of the demand

function, this does not lead to an unbiased estimate of the optimal price through an estimate

of (unbiased) q∗.

Alternatively, the firm may try to estimate the optimal price directly using its signals on the

parameters of the demand function. A natural estimator would be p̂ = (â+ b̂v)/2b̂. Again, even

though the signals are unbiased estimates of their true parameters, this composite estimator

of p∗, is not, since:

12Note, these are slightly inverted parameters relative to footnote 8. This eases exposition here.

7



E[p̂] = E

[
â+ b̂v

2b̂

]
>
a+ bv

2b
= p∗, (5)

where the inequality follows from Jensen’s inequality.13 Thus, the firm will overestimate its

price if it seeks to estimate price directly. Once again, the firm fails to set the optimal price

based on signals of the parameters of the demand function.

There is an even larger problem at stake, however. In the above discussion, we have assumed

that the firm knows that demand is linear (but does not know the parameters of that linear

function). In reality, the firm likely does not even know the shape of the demand curve. In

particular, suppose that the actual demand is CES, so q(p) = ap−b. In that case, the FOC for

constant elasticity demand delivers an optimal price and quantity

p∗ =
v

1− 1/b
and q∗ = a

(
v

1− 1/b

)−b
.

Optimal prices under differently shaped demand curves can be quite different, so if even

the “type,” or shape, of the demand curve is unknown, the firm will have more difficulty

establishing optimal p∗. Estimating the parameters of a misspecified model will only produce

erroneous estimates.14

In sum, the textbook model of optimal pricing provides a clear and unambiguous solution

to the optimal price. However, this clarity comes at a cost: to avoid blind experimentation,

the firm must have a tremendous amount of detail about the demand it faces. It must know

the “shape” of its demand curve, as well as unbiased estimates of the parameters of the

the shape, which are both exceedingly strong and unrealistic assumptions, and still lead to

biased estimates of optimal price. Because firms having nothing like this information in real

environments, it is no wonder that firms may rely on accounting practices. These do not

require estimates of a demand curve, and instead require only knowledge of returns, a metric

about which firms are more likely to have some information.

3 Static FCP

The survey evidence reviewed in the introduction suggests firms routinely include fixed costs

into their pricing decisions. This method of full-cost pricing directly conflicts with the bench-

mark model above, where the optimal price relies only on variable cost and demand. There

13For a random variable Y , the function 1/Y is convex, so E[1/Y ] > 1/E[Y ] through Jensen’s inequality. If

X and Y are independent, then E[X/Y ] = E(X · 1
Y

) = E(X)E( 1
Y

) > E(X)/E(Y ).
14Nor are real demand curves not likely to even conform to specific functional forms, or “types”, in the first

place.
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are informational requirements (discussed below) for FCP to achieve optimal pricing, but FCP

does not require knowledge of the demand curve. It only requires knowledge (or an estimate)

of equilibrium returns, and can still lead to the optimal price (albeit in a different way than

the textbook model does).

First, we show a limited case for illustration: if the firm knows (or can estimate) its

equilibrium income, then FCP immediately achieves (or estimates) optimal pricing if and

only if the firm knows its equilibrium quantity. This necessary and sufficient condition entirely

characterizes when static full price costing can immediately - without experimentation - achieve

(or estimate) optimal pricing. In the next sections, we will discuss dynamic FCP, which requires

firms to only know returns, not quantities.

To fix ideas, recall that the firm faces demand q(p) and optimizes income y(p) over price,

delivering an optimal price p∗, an optimal quantity q∗ = q(p∗), and optimal (equilibrium)

income y∗ = y(p∗). The optimal price, quantity, and income all follow from the demand curve,

which the firm takes as given. The firm does not know the demand curve, but instead has

estimates of income and quantity with unbiased estimators ŷ and q̂ respectively (so Eŷ = y∗

and Eq̂ = q∗). The signal q̂ is a forecast of quantity, which the firm uses to plan production

and sales, while the signal ŷ is the firm’s estimate of its equilibrium income, based on historical

information or other priors. Observe that, by construction, y(p∗) = y∗. Solving for p∗ at this

y∗ delivers:

p∗ = v +
F + y∗

q∗
.

This is simply the price that maximizes income. It is also a rewriting of the identity that

price equals variable cost plus contribution margin per unit, since contribution margin per unit

is precisely price minus variable cost. Thinking of the pricing function in this formula - as the

sum of variable cost and contribution margin per unit - will be a constant theme throughout

the paper. Since the income function is strictly concave in price, this price p∗ is unique. Of

course, the firm cannot simply pick this p∗ since it does not know q∗ = q(p∗). But it does have

an estimate of q∗, as well as an estimate of y∗. Therefore, consider the candidate estimator of

optimal price

p̂ = v +
F + ŷ

q̂
, (6)

where the estimators q̂ and ŷ replace their equilibrium counterparts.

Observe that p̂ is a markup on variable cost, but unlike the markup from the benchmark

model, which is based on the elasticity of demand, this markup contains the fixed cost plus

equilibrium income and is thus FCP. More specifically, the price is a function of the unit cost
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under absorption costing, v + F
q̂ . Absorption costing includes fixed manufacturing overhead

per unit in the unit cost, and is both required by U.S. Generally Accepted Accounting Prin-

ciples (GAAP, a standard set by the Financial Accounting Standards Board) and also taught

extensively in managerial accounting textbooks. This full-cost price p̂ immediately achieves

the optimal price p∗ under the following condition (all proofs in Appendix):

Proposition 1. The static full cost price immediately achieves (or unbiasedly estimates) the

optimal price (Ep̂ = p∗) if and only if the firm knows equilibrium quantity exactly (q̂ = q∗),

and has an unbiased estimator of equilibrium income (Eŷ = y∗).

This proposition shows that the firm’s knowledge of its equilibrium quantity completely

characterizes whether FCP can immediately achieve (or unbiasedly estimate) optimal pricing.

Of course, if the firm knows its equilibrium quantity q∗, it’s clear from the equations for p̂ and

p∗ above that the two will coincide on average, since ŷ is unbiased. More surprising is that

anytime FCP achieves optimal pricing (E(p̂) = p∗), it must be the case that the firm knows its

equilibrium quantity, q̂ = q∗. The proof relies on a simple application of Jensen’s inequality.

3.1 Discussion

The analysis so far rests on two assumptions: (1) the firm can estimate its equilibrium profits

and (2) the firm knows its equilibrium quantity. We discuss each of these assumptions in turn.

The first assumption is that the firm knows or can estimate its equilibrium income. An

equivalent and slightly more palatable version of this assumption is that the firm knows the

equilibrium return on investment. Return on investment r = y/A, where y is income and A is

a measure of the assets of the firm. Then y∗ = r∗A. It is conceivable that the firm knows the

equilibrium r∗ for similarly situated firms within an industry. For example, a railroad company

can consider past data on the railroad industry to learn that railroad firms earn on average a

7% return (on income, assets, or net assets). This could be obtained through historical data

on the market performance of past firms in this industry, or some a priori knowledge of the

equilibrium rate of return.

The second assumption, that the firm knows its equilibrium quantity, is much stronger. For

FCP to immediately achieve optimal pricing, it is not enough that the firm has an unbiased

estimator q̂. Instead, this estimator must be exact at every realization q̂ , so q̂ = q∗ everywhere.

Indeed, knowing the equilibrium quantity at any informational level, even an estimate, is almost

as stringent an informational requirement as knowing the full demand curve, which would allow

the firm to simply do textbook optimization. Thus, at an information level, the requirements

for immediate FCP in the static model are no weaker than the requirements for optimal pricing

in the benchmark model.
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Accounting textbooks have noted this stringent requirement for static optimality. For

instance Garrison et al. [2010], discussing the very same candidate optimal price, p̂, in equation

(6), recognize the informational demands: “some managers believe the absorption costing

approach to pricing is safe. This is an illusion. The absorption costing approach is safe only if

customers choose to buy as many units as managers forecasted they would buy.” (page 769).

The authors are careful to note that the optimality of the full-cost price p̂ rests on accurate

estimates of equilibrium income (ŷ) and equilibrium quantity (q̂). They go further and argue

that the full-cost price p̂ looks deceptively simple, but will misestimate the optimal price p∗ if

either of the estimates of q̂ or ŷ are incorrect. Proposition 1 refines this claim, showing it is not

enough for the firm to only have an estimate of its equilibrium quantity, but it must know its

equilibrium quantity precisely. Thus, the informational requirements for FCP are even more

stringent than these textbook authors characterize.

This is precisely why we discuss FCP with “experimentation” in the next section. This dy-

namic process allows FCP to converge to p∗ with only an estimate (ŷ) of y∗ and no information

on q∗. If the firm seeks to achieve the optimal price in a single stage, either by the canonical

economics model or by FCP, the information requirements are quite strong. But if the firm

is willing to experiment with prices over time, then FCP converges to the optimal price even

when the firm does not know its equilibrium quantity. Furthermore, FCP provides information

and structure for directing a firm’s experimentation. We now turn to this dynamic case.

4 Dynamic FCP

While static FCP requires strong informational assumptions to achieve optimal pricing, this

is not the case for dynamic pricing. Dynamic pricing refers to a process of experimentation

in which firms may engage to search for the optimal price. Indeed, firms often change prices

over time, and while some initial changes may occur in focus groups and labs with sample

populations, many of the changes occur in real markets over time. Here, we show that if the

firm sets full-cost prices over time, then these prices will converge towards the optimal price.

This is a defense of the practice of FCP, namely, that it allows firms to eventually reach their

optimal price. And the firm can do this without any knowledge of its equilibrium quantity q∗,

using only knowledge of y∗.

To gain traction on the dynamic pricing problem, we first suppose that the firm knows its

equilibrium income. This will lay bare the intuition behind the convergence algorithm. After

that, we consider the more general case, when the firm does not know its equilibrium income

precisely, but has an estimate of it. We view this later case as a realistic and plausible scenario.

11



4.1 Convergence When Income Is Known

Suppose the firm knows its equilibrium income y∗. Recall that at the optimal price y(p∗) = y∗,

or (p∗ − v∗)q∗ − F = y∗. This is simply the identity for equilibrium income. In other words,

equilibrium income is simply income evaluated at the optimal price p∗. Solving this equation

for price shows that

p∗ = v +
F + y∗

q∗
(7)

Consider a candidate convergence algorithm that simply replaces q∗ with q(pt) and p∗ with

pt+1. It is natural to suppose this price might converge to the optimal price, since the optimal

price is the unique price that satisfies the identity in equation (7) above. Below we define this

algorithm and explore its convergence properties.

The convergence algorithm operates as follows. First, let p0 = v be the starting price.15

Then, set

pt+1 = v +
F + y∗

q(pt)
for each t ≥ 0. (8)

This defines an algorithm that delivers a price path. The initial value is the firm’s marginal

cost (variable cost), which the firm knows. The more competition, the closer equilibrium price

is to v. Also, since demand slopes down, the price path is an increasing sequence. Starting

below optimal price (p0 = v < p∗) assumes convergence from below.16 We can rewrite the

equation above as

Price = Marginal Cost + Equilibrium Contribution Margin per Unit (9)

where the “per unit” is evaluated at q(pt), the quantity demand based on the price in the prior

stage.

Observe that each price in the price path in (8) is a full-cost price. The “new” price pt+1

is a function of the “old” price, pt. In particular, it is a markup on variable cost, but the

markup itself, unlike the classical model, relies not on the elasticity of demand, but instead

on the fixed cost and equilibrium income. Furthermore, v + F/q(pt) is the unit cost under

absorption costing. The pricing algorithm sets the new price equal to the unit cost plus unit

profit, where the number of units is determined by demand at the old price, pt. The market

then demands q(pt) and the firm sets its new price pt+1, based on the formula for pt+1 above.

15We discuss other starting values in the proof, and the footnote below.
16In the proof of the next proposition, we show it is straightforward to “correct from above,” as well. Iterative

prices will accelerate away (upwards) from p∗ if firms (outside of equilibrium strategy) iterate above p∗. This

indicates to firms that they have experimented with prices that are too high, and they can correct downwards.
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The firm then iterates in this manner in every subsequent stage. The next proposition shows

that this converges to the optimal price.

Proposition 2. If firms know y∗, the full cost price pt converges to the optimal price p∗.

The pricing algorithm thus has the attractive property that it converges to p∗. It is also

based on real accounting practice: GAAP accounting standards require absorption costing.

The proof of the proposition gives conditions under which the full-cost price pt converges to

the optimal price p∗. The price path is a nonlinear first order difference equation. It is nonlinear

because of the nonlinear demand curve q(pt), and it is first order because it connects pt+1 to

pt.

4.2 Example with CES Demand

To see an example of convergence, consider constant elasticity demand, given by q(p) = ap−b.

Observe that the elasticity of demand ε = pq′(p)/q(p) = −b. Using this demand curve,

p∗ =
v

1− 1/b
and q∗ = a(p∗)−b. (10)

Observe that price is a constant markup over marginal (variable) cost, with the amount of

the markup depending on the elasticity of demand. As demand becomes more inelastic, the firm

optimally charges a higher price, extracting more rent from the consumer. The convergence

algorithm starts with an initial price p0, and for each of the following stages t ≥ 1, the price

path is given by

pt+1 = v +
F + y∗

q(pt)
= v +

(
F + y∗

a

)
pbt (11)

In steady-state pt+1 = pt = p. Inserting into (11) and rearranging,

(y∗ + F )pb − ap+ av = 0. (12)

The steady-state equilibrium solves this equation. Note this is a polynomial of order b,

with coefficients consisting of y∗ + F , a, v. Observe y∗ = y(p∗) = (p∗ − v)q∗ − F . Combining

this with (10) gives

y∗ + F = (p∗ − v)q∗ =
a

4v
. (13)

This allows us to write the equilibrium profit plus the fixed cost (and the solution to the

polynomial in (12)) in terms of the exogenous parameters of the model, a and v. In general,
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high-order polynomials have difficult solutions. For tractability, consider a quadratic, so b = 2.

Merging (12) and (13) and simplifying,

p2 − 4vp+ 4v2 = 0.

Apply the quadratic formula, so

p =
4v ±

√
16v2 − 4 · 4v2

2v
= 2v = p∗.

Indeed, the determinant of this polynomial conveniently equals 0. While polynomials of

order two have two solutions, the zero determinant shows that the polynomial in (13) has only

a single solution. That solution is exactly the optimal price p∗. Using (11) and (13), observe

that

pt+1 = f(pt) = v + p2
t /4v.

Figure 1 plots convergence, both with a simulated price path (left figure) and the phase

diagram (right figure). We simulated convergence under CES demand and plot the evolution

of price as a function of t in the lefthand figure. The convergence is quite fast, as the full-cost

price achieves 95% of the optimal price in five iterations. In the phase diagram on the right,

the price path graphs the new price pt+1 as a function of the old price pt. To see convergence,

apply the usual phase diagram logic: start at p0 = v and evaluate the function at p0 to generate

p1 = f(p0). Then draw a line horizontally to the 45◦ line to determine where p1 sits on the x-

axis. Then, locate p2 = f(p1) on the graph to find the new price. Draw another line horizontal

to the 45◦ line to find where p2 sits on the x-axis. Then, evaluate the function to discover

p3 = f(p2). Continuing in this fashion shows convergence to the equilibrium point p∗ = 2v.

As the figure shows, this is exactly the tangency point where the hyperbola given by f(pt) is

tangent to the 45◦ line. This is no accident. For any choice of parameters a, b, and v, the

price path will always be tangent at the unique point p∗. This follows because there is a single

solution to the polynomial given in (12), which determines the steady-state equilibrium. This

coincides exactly with the optimal price p∗.

4.3 Convergence When Income Is Unknown (Consistency)

Suppose the firm does not know its equilibrium income precisely, but must estimate it based

on historical market data and internal cost information. Assume the firm has an estimate ŷ

of its equilibrium quantity y∗. We consider the case where this estimator is consistent for y∗.
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Figure 1: Convergence under CES demand. The price path is pt+1 = v+p2
t /4v. The left figure

plots the price path and right figure plots the phase diagram.

We will treat the case of unbiasedness next.17

The convergence algorithm will be similar, though not identical, to before. Rather than

using equilibrium income y∗, the firm will use its estimate ŷ in its place. The convergence

algorithm works as follows. First, the firm picks price p0 = v. Then, for each t ≥ 0, the firm

selects the new price as

pt+1 = v +
F + ŷ

q(pt)

Just as before, this is FCP because it includes the fixed cost in the pricing algorithm. Also,

as before, the price is simply the unit price under absorption costing plus the estimated profit

per unit. The firm need not know its equilibrium quantity q∗, since it endogenously generates

demand through the prices pt it offers in the market place. This price path now has additional

uncertainty because it relies on an estimate of income, rather than its true value. Nonetheless,

provided that this estimate is consistent, we still arrive at convergence.

17ŷ being consistent for y∗ means plim ŷ = y, where the probability limit is taken over many IID draws of

the estimator ŷ. This is opposed to the natural case where ŷ would be unbiased for y∗ (E(ŷ) = y∗). It may be

more intuitive to think of each firm as having a single, unbiased estimate of y∗, rather than every firm having

an estimate that incorporates enough IID estimates as to converge to y∗. However, as we’ll argue, there is much

information accessible to firms regarding y∗. Furthermore, if there were a wedge between ŷ and y∗ (whether ŷ

were biased or consistent), the firms would detect this experimentation and be able to correct. The consistent

case is more tractable than the unbiased case, though both will converge under even more general assumptions

with extra (but uninstructive) iterative machinery.
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Proposition 3. If ŷ is a consistent estimator of y∗, then the full-cost price pt converges to

the optimal price p∗.

The proof of Proposition 3 mirrors the one from the earlier section, with the only difference

in the nature of convergence. Instead of relying on the true value y∗, the proof uses convergence

in probability, since the estimator ŷ is a consistent estimator of y∗. The logic is similar. The firm

forms the sample price path as before, now using the estimator ŷ in place of equilibrium income

y∗. The steady-state equilibrium of the dynamic model satisfies y(p) = ŷ, which converges in

probability to the optimal income y∗. And because the income function is strictly concave and

has a unique solution, the steady-state converges to the optimal price as the number of draws

of the estimator tends towards infinity. Note there are two relevant dimensions here. The

first is time, or pricing iterations, which indexes the price path as the firm experiments with

different prices. The second is the number of draws of the estimator ŷ. The probability limit

refers to the behavior of the estimator as the number of draws becomes large. Proposition 2

shows that the price path pt converges to the optimal price p∗ as the number of draws tends

towards infinity. This is a theoretical property describing the accuracy of the price path pt

based on the accuracy (consistency) of the estimator ŷ.

Thus, the firm need not know its equilibrium income exactly, but can estimate it based

on market data or other priors. As discussed earlier, this estimate of equilibrium income is

equivalent to an estimate of equilibrium return on investment. Having an informed estimate

of your expected income is more plausible than knowing it before it’s realization.

4.4 Non-Convergence when Income is Unknown (Unbiasedness)

The criteria chosen for the estimator above, consistency, was deliberately strong. A weaker

criteria does not lead to convergence. If ŷ is unbiased so (E(ŷ) = y∗), then the full-cost price

will not converge to the optimal price.

Proposition 4. If ŷ is an unbiased estimator of y∗, the full-cost price pt does not converge to

the optimal price.

Lack of bias is too weak of a criteria because expectation is a linear operator, whereas

the profit function is strictly concave. Because of this, the expectations operator cannot pass

inside of the profit function, and this disrupts the convergence proof. The strict concavity of

the profit function combined with Jensen’s inequality delivers a contradiction, which prevents

convergence. This was not a problem when the criteria for the estimator was consistency

because probability limits can pass seamlessly between non-linear functions. Below, we provide

an explicit calculation under linear demand, which shows convergence when the estimator is

consistent, but not if it is unbiased.
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4.5 Example with Linear Demand

To gain traction on convergence, consider linear demand q(p) = a−bp for a, b > 0. The optimal

price and quantity pair are

p∗ =
a+ bv

2b
and q∗ = q(p∗) =

a− bv
2

.

Start with some initial estimate of price p0. Form the candidate price pt+1 for each t ≥ 0

as

pt+1 = v +
F + ŷ

a− bpt
.

In the steady state, pt+1 = pt = p. Replacing pt+1 and pt with the steady state value p in

the equation above and rearranging gives the quadratic equation

bp2 − p(a+ bv) + av + (F + ŷ) = 0

By the quadratic formula, the solution to this polynomial is

p =
a+ bv ±

√
D

2b
(14)

where the determinant

D = (a+ bv)2 − 4b(av + F + ŷ). (15)

Recall y(p∗) = y∗, so y∗ + F = (p∗ − v)q∗. Plugging in the optimal prices p∗ and q∗ from

above,

y∗ + F =
(a− bv)2

bv
(16)

Since ŷ is a consistent estimator of y∗, plim ŷ = y∗, where the probability limit is taken over

many draws of ŷ. To ease exposition, we suppress notation that indexes the actual draws.18

Then

plimD = (a+ bv)2 − 4b(av + F + y∗) = 0

by inserting (16) and simplifying. Combining with (14),

18An estimator ŷn is consistent if plimn→∞ ŷn = y∗. The subscript n is implicit, and hence, we suppress it.

Note that the limit is not taken with respect to t, the stages of convergence, but rather with respect to n, the

draws of the estimator.
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plim p = plim
a+ bv ±

√
D

2b
=
a+ bv

2b
= p∗

by the laws of the probability limit operator. Thus, the estimated price pt converges to a

quantity that is a consistent estimator of the optimal price p∗. Thus, even if the firm does

not know equilibrium income y∗ exactly, as long as its estimator is consistent, FCP will still

converge to the optimal price in probability. Indeed, the flexibility of the probability limit is

what guarantees that if ŷ converges to y∗, pt converges to p∗.

Consistency is a stronger criteria than lack of bias. Indeed, lack of bias is too weak of a

criteria for the signal to guarantee convergence. To see this, suppose ŷ is unbiased, so Eŷ = y∗.

The firm will still run its convergence algorithm as before, and the steady-state solution is given

by (14). The steady-state p is the solution to a quadratic polynomial, which has two roots.

By the quadratic formula, this p contains the determinant D given in (15). The expectation

of this determinant is

ED = (a+ bv)2 − 4b(av + F + y∗) = 0

by inserting (16) and simplifying, just as before. Indeed, the determinant is a linear function

of the estimator ŷ, and because the expectation operates linearly (as do probability limits),

the expected determinant is zero.

Let p∗1 and p∗2 be the two roots of the steady-state equation, given in (14). Since the function

f(x) =
√
x is concave, by Jensen’s inequality E[

√
D] ≤

√
E[D] = 0. Therefore, writing out

the root of the polynomial given in (14) explicitly and taking expectations,

Ep∗1 = E

(
a+ bv +

√
D

2b

)
≤ a+ bv

2b
= p∗

and

Ep∗2 = E

(
a+ bv −

√
D

2b

)
≥ a+ bv

2b
= p∗.

Jensen’s inequality shows each of the steady-states will be bounded away from the optimal

price p∗. The two roots are equidistant from p∗. This occurs precisely because the steady-state

equation (14) is a non-linear function of the estimator ŷ (because of the square root of the

determinant). This nonlinearity prevents the expectations operator from passing inside the

square root function, which leads to our application of Jensen’s inequality. This is not the

case with probability limits, since a plim can pass easily between nonlinear functions, whereas

expectation is a linear operator. In words, this means the full-cost price pt will converge to

either p∗1 or p∗2, but both will be bounded away from p∗. Their distance from p∗ is precisely
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Figure 2: Convergence under linear demand. The left figure plots the simulated price path

and right figure plots the phase diagram. The full-cost price pt converges to p∗ in probability,

but to p∗1 in expectation.

√
D/2b. Expanding this expression generates a comparative static with respect to D, the slope

of the demand curve. We state this comparative static as a corollary.

Corollary 1. As the demand curve becomes steeper, the steady state price p∗1 is closer to the

optimal price p∗.

Figure 2 shows a simulated price path and the phase diagram under linear demand. We

simulated convergence under linear demand and plot the evolution of price as a function of t

in the lefthand figure. The convergence is quite fast, as the full-cost price achieves 90% of the

optimal price in five iterations. The upper curve in the righthand figure is the phase diagram

that the full cost price pt converges to in probability, while the lower curve is the phase diagram

that the full cost price converges to in expectation. Observe that the upper curve has a single

tangency at p∗, and the price path converges to this unique p∗ when starting at an initial price

p0 = v. This is identical logic to the earlier case when equilibrium income was known exactly.

The lower curve, however, lies strictly below, and is the phase diagram to which the full-cost

converges in expectation after many draws of the estimator ŷ. This phase diagram has two

roots, p∗1 and p∗2, which intersect the 45◦ line. Furthermore, it is clear from the shape of the

phase diagram that the price path pt converges to p∗1 < p∗. Thus, averaging over all possible

signals ŷ, the price path will not converge to p∗, but will instead converge to a price below

the optimal price. As the demand curve becomes more steep, the lower curve moves upward

towards the upper curve, and therefore, p∗1 approaches p∗. The slope of the demand curve

determines the distance between the two curves. Thus, as demand becomes more elastic, not
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only does the optimal price rise (since price is a markup over variable cost depending on the

elasticity of demand), but the two steady-states p∗1 and p∗ also move closer together.

In conclusion, dynamic FCP has informational benefits relative to economic pricing, and

converges to optimal pricing, but does require a strong criteria for the estimator of income

(consistency rather than lack of bias).

5 Extensions

5.1 The Multiproduct Firm

The dynamic full-cost pricing algorithm in the prior section generalizes and applies to a mul-

tiproduct firm. This shows full-cost pricing is a robust pricing method.19 The results hold

even when the demand between different products is dependent, i.e. that there are comple-

mentarities between products. Indeed, any complementarity inside the firm does not affect the

convergence property of full-cost pricing. Moreover, the firm must include a cost allocation

method in order to share its common fixed cost across multiple products. As long as the cost

allocation rule allocates all the fixed costs, the firm can implement optimal pricing through

full-cost pricing.

Suppose the firm produces n products. It charges a price pi for each product i = 1 . . . n.

Let p = (pi) be the price vector, and let qi(p) be the demand for product i. Observe that each

product’s demand is a function of the entire price vector, not only of its own price. This allows

for complementarity across products.20 Each product has a variable cost vi and the firm has

a common fixed cost, F . The income function is

y(p) =
n∑

i=1

(pi − vi)qi(p)− F

The firm maximizes income over the price vector.21 The first order condition from this

problem delivers the optimal price vector, p∗, which satisfies for each i

n∑
j=1

(p∗j − vj)
∂qj(p

∗)

∂pi
+ qi(p

∗) = 0 (17)

19We show the case when the firm knows its equilibrium income y∗. The results when the firm estimates y∗

with ŷ are analogous and we omit them for brevity.
20Products i and j are substitutes if the cross-partial ∂qi(p)

∂pj
> 0, and they are complements if this cross-partial

is negative.
21We assume prices are set centrally rather than allowing the individual divisions to set prices. This is a

reasonable assumption if there are significant complementarities between products, since divisional income may

not capture the relevant externalities from other divisions.
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Assume the second order conditions hold, so the Hessian matrix of the income function

y(p) is negative semi-definite.22 This guarantees solution p∗ is unique.

Because multiple divisions in the firms share a common fixed cost, define a cost allocation

rule that distributes this fixed cost throughout the firm. Let the vector s = (si) represent

such an allocation, where each 0 < si < 1 is product i’s share of fixed cost F . Assume the

allocation is “tidy” in that
∑
si = 1. A tidy allocation rule allocates all of the fixed cost to the

multiple products.23 There are many ways to allocate costs. One common method (Garrison

et al. [2010]) is to pick a cost allocation basis bi (such as direct labor) that drives overhead

costs, and to allocate the fixed cost based on the proportional consumption of the allocation

basis, so si = bi/
∑
bj . The central office of the firm can use the cost allocation rule to define

divisional income and to write contracts for divisional managers based on divisional income.24

A full-cost price, as before, includes the fixed cost. A dynamic full-cost price is a price

sequence pt, where each pt is a full-cost price vector in stage t. Let pi,t denote the ith component

of the vector pt. As before, select the initial starting value as pi,0 = vi for each product. For a

given cost-allocation rule s = (si), the full-cost pricing algorithm sets

pi,t+1 = vi +
si(y

∗ + F )

q(pt)

This full-cost price has several features. First, it is a mark-up on variable cost based on

allocated fixed cost, where the allocation share is given by si. Second, because demand is a

function of the entire price vector pt, the new price for product i (pi,t+1) is a function of the

entire old price vector pt. Because the price path consists of a sequence of vectors, rather

than a simple sequence of numbers, the convergence is more intricate than before, but full-cost

pricing still does converge.

Proposition 5. The full-cost price vector pt converges to the optimal price p∗.

While the nature of the convergence is slightly more complex because of the multi-dimensional

22Recall that the Hessian of the income function y(p) is the second derivative matrix consisting of the cross

partials ∂2y
∂pi∂pj

. The second order condition is that the matrix is semi-definite, so the n principle minors are

positive and they alternate in sign.
23A “tidy” cost allocation has a long history in both the accounting and economic literatures. It is the same

requirement that the transfers in a mechanism design problem be budget balanced. Most cost allocation rules

used in practice and taught in textbooks are tidy, such as the proportional usage of some cost-driver. See Ray

and Goldmanis [2012] for an extensive examination of the incentive effects of tidy cost allocation rules, and in

particular under what conditions they can achieve efficiency.
24To focus the analysis on pricing, we do not consider the incentive or agency effects of different cost allocation

rules. See Zimmerman [1979] and Ray and Goldmanis [2012] for extensive treatment of the incentive effects of

cost allocation rules. Of course, different rules will create different incentives for divisional managers, which will

affect production. Including an elaborate agency model would only distract from the pricing problem here.

21



price vector, the logic is similar to before. The algorithm starts by setting every initial price

equal to each product’s variable cost, and then updates the price by marking up variable cost

by each division’s share of target income plus fixed-cost per unit. The markup is simply the

contribution margin per unit, since each product’s contribution margin is its share of target

income plus fixed costs. Each iteration of the algorithm defines a price path for each product,

which then enters the demand curve to generate the new price for each product. The steady-

state vector p sets the total contribution margin equal to the allocated profit plus allocated

cost: (pi − vi)q(p) = si(y
∗ + F ). Since the shares sum to 1, aggregating these contribution

margins across all products shows that the income at the steady-state equals income at the

optimal price. And because the optimal price is unique, the steady-state value p must coincide

exactly with the optimal price p∗. Showing that the price path pt actually converges to p∗

involves the same argument as before on the shape of the phase diagram. Please see the proof

for further details.

Note that the demand curve allows for dependence between products, and this does not

affect the convergence. Indeed, this occurs precisely because the full-cost price does not emerge

from any first order condition. The FOC in Proposition 5 can be quite complex since there may

be many cross-partial terms
∂qj
∂pi

. But this is irrelevant for the full-cost pricing algorithm, since

each iteration of the algorithm simply evaluates demand at the price vector without needing

to calculate any marginal effects. This shows yet another benefit of full-cost pricing, namely,

that it need not require any knowledge of the shape of the demand curve or its rate of change,

but simply requires the firm to set a price and observe the quantity demanded at that price.

The proposition extends to the case when the firm doesn’t know y∗ exactly but estimates it

with a consistent estimator ŷ. The logic and framework is similar. And finally, this result is

robust to a wide variety of cost allocation rules, so long as they allocate F completely.

Our results stand in contrast to Noreen and Burgstahler [1997], who find that full-cost

pricing in a multiproduct firm prevents the firm from reaching “satisfactory” profits. However,

they do not look at optimal profits, but rather, at profits that clear a minimal threshold. They

also look at a more narrow class of full-cost pricing schemes, and in particular do not base

the dynamic full-cost price on an estimate of equilibrium income as we do. This is why their

full-cost pricing line never intersects their satisficing region. In the next section, we will discuss

satisficing as an alternative criteria to optimality.

5.2 Satisficing

The focus of this paper is on optimality, where optimal is defined as the solution to the classical

economic model. An alternative criteria is satisficing, first introduced by economist Herbert

Simon. Satisficing is the practice of choosing the least costly or most readily available alter-
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native that satisfies a minimal payoff. Here, firms may not know or even be able to estimate

equilibrium income y∗, but simply seek some minimum income threshold ȳ. Surveys of com-

pany practice (Shim and Sudit [1995]; Govindarajan and Anthony [1983]) find that managers

routinely refer to some “desired” profit level. We can interpret this either as equilibrium profit,

or more loosely as a minimum profit.

To fix ideas, suppose the firm has in mind a minimum income level ȳ. A satisfactory price

is any price, which generates income that clears this threshold:

Definition 1. A price p is satisfactory at ȳ if y(p) > ȳ.

Since the income function y is concave, the set of satisfactory prices will be a closed interval.

Rather than aiming to pick the exact optimal price, the firm now seeks to pick a satisfactory

price, which can be any price within that set.25 Form the static full-cost price as:

p̂ = v +
F + ȳ

q̂

This is a variation on the static full-cost price where q̂ is an estimate of quantity and the

firm sets its income forecast to ŷ = ȳ. We make no assumption that the firm knows or can

estimate y∗, but instead assume it only knows ȳ. If so, then:

Proposition 6. The full-cost price p̂ is satisfactory at ȳ if and only if q(p̂) > q̂.

The proposition gives a condition on the forecasted quantity q̂ to achieve satisficing: the

forecast must be biased downward. The firm first estimates q̂ and then selects p̂ based on

this q̂. When the firm offers p̂ to the market, the market demand is q(p̂), which must exceed

q̂ in order to achieve satisficing. The firm effectively sets a low forecast, which inflates the

fixed-cost per unit in the full-cost price. This raises the full-cost price, and because demand

slopes down, lowers demand q(p̂). As long as the generated demand based on the full-cost

price q(p̂) exceeds the initial forecast, the full-cost price is indeed satisfactory.

5.3 Satisficing: Example With Linear Demand

Suppose that q(p) = a− bp for demand coefficients a and b. Then

q(p̂) = a− b(v +
F + ȳ

q̂
)

This is a function of q̂. We seek to find the set of forecasted quantities q̂ such that q(p̂) > q̂.

Using the expression from q(p̂) above and comparing it to q̂, we see that q(p̂) > q̂ iff

25Of course, the optimal price is satisfactory, though every satisfactory price is not optimal. Hence, satisficing

is a much weaker criteria than optimality.
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q̂2 + q̂(bv − a) + b(F + ȳ) < 0

The set of all q̂, which satisfy this inequality, is given by [q1, q2], where q1 and q2 are the

two roots of the quadratic polynomial above. By the quadratic formula:

qi =
(

(a− bv)±
√

(a− bv)2 − 4b(F + ȳ)
)
/2 (18)

This interval relies on the demand coefficients a and b, which the firm may not know.

Therefore, it my replace these coefficients with consistent estimates â and b̂ to generate an

estimate of the interval [q1, q2]. To see a concrete example, suppose a = 5, b = v = F = 1.

Then the optimal price is p∗ = a+b
2 = 3, and the optimal quantity is q∗ = a−v

2b = 2. The

equilibrium income is y∗ = (p∗ − v)q∗ − F = 3. If the firm doesn’t know equilibrium income,

but only seeks income above ȳ = 2, inserting this into the expression for qi above gives q1 = 1

and q2 = 3. Thus, provided for any estimate q̂ in [1,3], the full-cost price p̂ = 1 + 3/q̂ will

generate income above ȳ = 2.

Satisficing is a natural relaxation of optimality, both in terms of its benefits as well as

its requirements. Rather than requiring knowledge of equilibrium income, it only requires

knowledge of a minimal threshold ȳ, and this allows for a range of possible prices that are

satisfactory. And rather than requiring an accurate point estimate of equilibrium quantity,

Proposition 6 shows it only requires a conservative forecast of quantity. Under linear demand,

this condition takes the form of an interval, so the forecasted quantity must lie within some

range [q1, q2].

It remains an open question as to whether firms actually estimate equilibrium income, or

whether they simply satisfice according to some minimum income level. Indeed, when firms

talk of “desired profit,” they could be talking about either one. But the main message is that

full-cost pricing behaves well in either case. The analysis gives precise conditions when the

full-cost price can achieve this income level, whether that level is equilibrium income or some

other lower target. The firm can therefore choose to satisfice or optimize, and the results here

provide the conditions for the full-cost price to achieve whichever objective it chooses.

6 Conclusion

Economics and accounting offer different views of optimal pricing. In the canonical economic

model, fixed costs need not and should not be involved in pricing decisions. In accounting texts,

as well as in standard industry practice, fixed costs are incorporated into pricing decisions. We

attempt to resolve this tension by noting that firms are unlikely to have the information about

their demand curves that is required for optimal economic pricing. They are more likely
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to have information regarding their equilibrium income which may be used, along with full

cost pricing techniques, to find their optimal price. We propose a full-cost pricing algorithm

which converges to the optimal price. This may provide guidance for managers or insight for

researchers regarding the correspondence between the two approaches.

In a static setting, the informational requirements for FCP and economic pricing to yield

the optimal price are identical: the firm needs to know its demand curve. But in a dynamic

setting, with iteration of full cost prices, FCP can converge to optimal pricing with only an

estimate of equilibrium income. Experimentation towards the optimal price is directed by the

ROA estimate, and will converge to the optimal price if the estimate of ROA is consistent (not

just unbiased). Our results on satisficing indicate that less stringent informational requirements

may also allow the firm to achieve some level of optimality.

Future research in this area may further explore theories of actual, rather than “ as if,”

firm behavior, drawing on observations of industry practice and using both accounting and

economic quantities.
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7 Appendix

Proof of Proposition 1. The firm knows its equilibrium quantity if the estimator q̂ = q∗

for all possible realizations of q̂. The proposition states that q̂ = q∗ is a necessary and sufficient

condition for E(p̂) = p∗.

Sufficiency: Suppose q̂ = q∗. Then the static full-cost price is p̂ = v + F+ŷ
q∗ . Taking

expectations over both sides,

E(p̂) = v +
F + Eŷ

q∗
= v +

F + y∗

q∗
= p∗.

Necessity: We prove the contrapositive. Suppose q̂ 6= q∗ for some realization of the random

variable q̂. So q̂ has a nontrivial distribution. Therefore,

E(p̂) = v + E[
F + ŷ

q̂
] > v +

F + y∗

E(q̂)
= p∗,

since q̂ is unbiased (E(q̂) = q∗). The inequality follows from Jensen’s inequality since the

function f(x) = 1
x is convex. Thus, E(p̂) 6= p∗. �

Proof of Proposition 2. Here, we prove the more general claim that pt converges to p∗ iff

p0 < p∗. This stronger statement implies Proposition 2, since p0 = v < p∗ by definition of p∗.

The convergence algorithm is given by

f(pt) ≡ pt+1 = v +
F + y∗

q(pt)
for each t ≥ 0 (19)

Observe that

f ′(pt) =
−(F + y∗)q′(pt)

q(pt)2
> 0

For each pt, since q′(pt) < 0. Furthermore, observe that f(0) > v > 0. Thus, the function

f(pt) = pt+1 is the phase diagram for the price path, which starts at a constant above v and

increases. In a steady-state equilibrium, f(p) = p. Plugging this into (19) gives

f(p) = v +
y∗ + F

q(p)
= p

Rearranging this equation,

(p− v)q(p)− F = y(p) = y∗ = y(p∗)
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Since the income function y is strictly concave, it has a unique maximizer. Therefore,

p = p∗. So the optimal price p∗ is the unique steady-state of the price path. Next, we need to

show convergence.

Suppose p0 < p∗. Let g(x) = x be the 45◦ line. Observe that g(p∗) = p∗ = f(p∗). Because

f is increasing, continuous, and because f(0) > v > 0 = g(0), f(p) > g(p) for each p < p∗.

Therefore, for each t ≥ 0,

pt+1 = f(pt) > g(pt) = pt.

So the sequence pt is increasing. Recall that f(0) > v > 0 = g(0) and f(p∗) = p∗ = g(p∗).

Since f and g are both continuous, for any pt and pt−1,

f(pt)− f(pt−1) < g(pt)− g(pt−1).

Substituting in the definitions for f and g, this inequality reduces to

pt+1 − pt < pt − pt−1.

Thus, the differences in the sequence shrinks in t. Hence, pt converges to p∗.

Now suppose p0 > p∗. Observe that

f ′′(p) =
F + y∗

q(p)2

(
2q′(p)2

q(p)
− q′′(p)

)
Thus,

f ′′(p) > 0 iff 2q′(p)2 > q′′(p)q(p) (20)

since q′(p) < 0. The first order condition for p∗ is

p∗ = v − q(p∗)

q′(p∗)
. (21)

Recall that y(p) = (p− v)q(p)− F . The second derivative is

y′′(p) = (p− v)q′′(p) + 2q′(p)

Plugging in (21), the second derivative evaluated at p∗ is

y′′(p∗) = − q(p
∗)

q′(p∗)
q′′(p∗) + 2q′(p∗).

Income is concave, so y′′(p∗) < 0. Rewriting, this means
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2q′(p∗)2 > q(p∗)q′′(p∗).

Referencing (20), this means f ′′(p∗) > 0. Hence, f is convex at p∗, and p∗ is the unique

fixed point of f . Therefore, f does not cross g at any other point, and f(p) > g(p) for all

p > p∗. Therefore,

pt+1 = f(pt) > g(pt) = pt.

Thus, pt is an increasing sequence. Now, because f is convex, and f(p∗) = g(p∗), f ′(p) >

g′(p) for all p > p∗. So, for any pt and pt−1,

pt+1 − pt = f(pt)− f(pt−1) > g(pt)− g(pt−1) = pt − pt−1.

Thus, the differences in pt increase in t. Therefore, this increasing sequence of increasing

differences diverges. �

Proof of Proposition 3. Consider the following convergence algorithm. Pick some initial

value p0. For all t ≥ 0, let

pt+1 = v +
F + ŷ

q(pt)
.

In a steady state solution, pt+1 = pt = p∗ for all t and therefore the equation above becomes

p∗ = v +
F + ŷ

q(p∗)

Rearranging, y(p∗) = ŷ. Taking the limit as the number of draws of ŷ goes to infinity,

y(plim p) = plim y(p) = plim(ŷ) = y∗ = y(p∗).

Because the income function is strictly concave, it has a unique solution. Therefore,

plim p = p∗. The rest of the argument for convergence is identical to the proof of Propo-

sition 2. �

Proof of Proposition 4. Take some initial p0. For each t ≥ 0, let pt+1 = v + F+ŷ
q(pt)

.

Suppose the price pt does converge to some p. In the steady-state equilibrium, pt+1 =

pt = p. Plugging this into the equation above and rearranging we have y(p) = ŷ. Now take

expectations over all realizations of ŷ,
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y(E(p)) > E(y(p)) = E(ŷ) = y∗ = y(p∗),

where the inequality follows from Jensen’s inequality since the firm’s income function is strictly

concave. But p∗ maximizes y, so y(p∗) ≥ y(z) for all z, and in particular for z = Ep. Contra-

diction.

�

Proof of Corollary 1. Let p∗i be the root given in (14) for i = 1, 2. Observe that

|p∗ − p∗i | =
√
D/2b

Rewriting D and simplifying,

|p∗ − p∗i |2 = (
a

2b
+
v

2
)2 − av + F + ŷ

b
,

which is decreasing in b. �

Proof of Proposition 5. The full-cost pricing sets pi,0 = vi for each i. Let pt = (pi,t) be

the price vector in each stage. Then,

fi(pt) = pi,t+1 = vi +
si(y

∗ + F )

qi(pt)

This generates a phase diagram fi(pt) for each product i. In steady state, pi,t = pi for each

i and t. Therefore, plugging in the steady state into the equation above gives

pi = vi +
si(y

∗ + F )

qi(p)
for each i.

Rearranging this gives (pi − vi)qi(p) = si(y
∗ + F ), for each i. Summing up both sides over

i and observing that
∑
si = 1 gives

n∑
i=1

(pi − vi)qi(p) =
n∑

i=1

si(y
∗ + F ) = y∗ + F (22)

Subtracting F from both sides and recalling the definition y(p), we have y(p) = y∗ = y(p∗).

By the second order sufficient condition, p∗ is the unique maximum, therefore p = p∗. Thus,

the steady state is the optimal price.

To show convergence, let g(x) = x be the identity function for a vector x. Let gi(x) = xi

be the ith component of x. Since the steady-state is p∗, we have fi(p
∗) = p∗i = gi(p

∗). And
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fi(0) > vi > 0 = gi(0). Because f is strictly increasing and continuous, the sequence pi,t

increases in t. Now, for any pt and pt−1,

pi,t − pi,t−1 = fi(pt)− fi(pt−1) < gi(pt)− gi(pt−1) = pi,t − pi,t−1 (23)

Hence the differences in the sequences pi,t decrease in t for each i. So, pi,t converges to p∗i

for each i, and pt converges to p∗.

�

Proof of Proposition 6. Let P = {p : y(p) > ȳ} be the set of all satisfactory prices at ȳ.

Recall that p̂ = v + F+ȳ
q̂ . Thus,

y(p̂) = (p̂− v)q(p̂)− F =
F + ȳ

q̂
q(p̂)− F.

Now p̂ ∈ P if y(p̂) > ȳ. Plugging into the equation above and rearranging, this occurs if

and only if q(p̂) > q̂.

�
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