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Abstract

Factor models have been successfully employed in summarizing large datasets with few un-
derlying latent factors and in building time series forecasting models for economic variables.
When the objective is to forecast a target variable y with a large set of predictors x, the con-
struction of the summary of the xs should be driven by how informative on y it is. Most existing
methods first reduce the predictors and then forecast y in independent phases of the modeling
process. In this paper we present an alternative and potentially more attractive alternative:
summarizing x as it relates to y, so that all the information in the conditional distribution of
y|x is preserved. These y-targeted reductions of the predictors are obtained using Suffi cient Di-
mension Reduction techniques. We show in simulations and real data analysis that forecasting
models based on suffi cient reductions have the potential of significantly improved performance.

JEL Classification Number: C32, C53, C55, E17
Keywords: Forecasting, Factor Models, Principal Components, Partial Least Squares, Di-

mension Reduction, Diffusion Index.

1 Introduction

Methods able to identify and estimate a condensed latent structure that summarizes a large set of
variables with few “factors”attracted attention early on in Statistics (Hotelling, 1933 [40]). The
Economics and Econometrics literature caught on with investigations ranging from the estimation
of the underlying factors that drive the economy, as in Geweke (1977) [34] and Sargent and Sims
(1977) [51], to the description of asset prices as in Chamberlain and Rothschild (1983) [16], to
applications in labor markets as in Engle and Watson (1981) [31]. In this body of work, the
common thread is the usage of factor models and the focus is on identifying the common latent
sources of correlation of a set of given variables without explicit reference to a target variable.

In part due to the availability of richer datasets and also to the seminal work of Stock andWatson
(2002a) [54], factor models under the form of Dynamic Factor Models (DFM) have resurfaced in
the Econometric literature in the past 15 years and are now a standard tool for both measuring
comovement and forecasting time series. In contrast to the early applications of factor models
and their use to measure comovement, a distinctive feature of applying DFM in forecasting is
the inherent targeted nature of the process. Departing from being simply a tool to identify and
estimate a latent structure in multivariate data, DFMs aim to 1) reduce the dimension of a large
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panel of data to a suffi ciently “lean” factor structure and 2) exploit such structure to forecast a
target variable y.

Targeting comes into the picture only after a condensed latent structure is estimated and is
resolved by postulating a linear relationship between the target variable y and the factors. The
reduction step has so far been largely disconnected from the targeting step, likely a legacy of the
origin of factor models.

Suffi cient Dimension Reduction (SDR), a parallel, yet so far unrelated, collection of novel tools
for reducing the dimension of multivariate data in regression problems without losing inferential
information on the distribution of a target variable y, has emerged over the last twenty five years
in Statistics. SDR focuses on finding suffi cient (in a statistical sense) reductions of a potentially
large set of explanatory variables with the aim of modeling a given target response y. In SDR,
the reduction and the targeting are obtained simultaneously by exploiting the concept of statistical
suffi ciency. SDR aims to identify and estimate a suffi cient function of the regressors, R(x), that
preserves the information in the conditional distribution of y|x. SDR also offers a powerful toolbox
to analyze the link between the target y and the panel of regressors x in contrast to the potentially
unjustified assumption that y depends linearly on some factors as in the DFM literature.

Since SDR methods preserve the information of the conditional distribution of y|x it should
prove superior to current practice in producing density forecasts although we do not explore this
aspect in this paper.

SDR is not the only approach that allows for simultaneous reduction and targeting, and the
potential gains that can be obtained from linking the two modeling steps have been already ac-
knowledged in the Econometrics literature. Bai and Ng (2008) [4] and De Mol, Giannone and
Reichlin (2008) [25] explore the effectiveness of RIDGE regression, a penalty based regression, and
other shrinkage estimators including the LASSO and execute their papers on the canvas laid out
by Stock and Watson (2002b and 2002b) [54] [55]. In more recent contributions, Kelly and Pruit
(2014)[43] and Groen and Kapetanios (2014) [35] explore variants of partial least squares (PLS)
in order to obtain simultaneous reduction and targeting. In contrast to the innovative (in the
Econometrics literature) statistical learning tools explored by these authors, SDR methods ensure
the preservation of all the statistical information contained in the data as encapsulated in the con-
ditional distribution of y|x. SDR methods also allow to selectively preserve targeted statistical
information regarding the conditional distribution of y|x, such as the conditional mean, the con-
ditional variance, or both, and clearly specify the assumptions required for the proper extraction
of such information. In contrast, RIDGE regression is constrained by the forecasting functional
form of the model, whereas PLS builds predictors that are little understood and their reliability
ultimately depends on the particular application at hand using, quite arbitrarily, the covariance of
the response and the original predictors.

Although the SDR methodology offers a potentially powerful source of new methods for the
econometrician, several hurdles need be overcome. SDR has been developed and tested with statis-
tical modeling in mind and its effectiveness has not been tested and proven in macro-forecasting.
Most importantly, SDR has been developed for cross-sectional applications and adaptations are
necessary for a successful application in forecasting and econometrics, analogously to the contri-
butions of Stock and Watson (2002a and 2012b)[54] [55], Bai and Ng (2003) [2] and Forni, Hallin,
Lippi and Reichlin (2005) [32] that enabled the application of principal components to a time series
setting.

This paper takes a first stab at introducing SDR techniques to macro-forecasting by establishing
a connection between the SDR and DFM bodies of literature, by extending some key SDR results
to a time series setting and by offering a first assessment of the effectiveness of SDR methods in a
real-world forecasting application. In order to draw analogies and highlight differences with results
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in the DFM literature we conduct our real-world forecasting experiment with a large panel of macro
variables as in Stock and Watson (2002a) [54] and Stock and Watson (2002b) [55] although our
data source is the novel repository FRED-MD maintained by the St. Louis Fed and documented by
McCracken and Ng (2015) [49]. The task of conducting extensive Monte-Carlo simulations drawing
from Stock and Watson (2002a) [54] and Doz et al. (2012) [28] in order to compare the performance
of competing methods is deferred to a companion paper (see Barbarino and Bura (2015) [7]).

In Section 2 we list the challenges of macro-forecasting in a data rich environment and describing
the specific solution adopted in the DFM framework. We next propose an alternative forecasting
framework based on SDR methods and contrast it with the DFM framework providing a connection
between the two. In Section 3 we review shrinkage estimators that have been proposed within the
DFM literature and that are tested in the empirical application. Section 4 contains the conceptual
motivation for targeted reductions. Section 5 is a detailed exposition of the principles of SDR
and our proposal for an SDR-based forecasting framework, including extensions to a time-series
setting of sliced inverse regression (SIR), the SDR method we choose to present and apply in the
empirical Section. Finally, as in Stock and Watson (2002a and 2002b) [54] [55] Section 6 contains
the description and results of a horserace between the estimators reviewed in the paper on a large
panel of macro variables in which the focus is on forecasting accuracy in predicting inflation and
industrial production in an out-of-sample forecasting experiment. We find that SIR has similar or
superior performance to PCR and always superior to PLS. The last Section concludes. Coverage of
likelihood-based SDR methods is outside the scope of this exploratory paper and deferred to future
work.

2 Forecasting with a Large Set of Explanatory Variables

A large set of p explanatory variables xt
(p×1)

is available to forecast a single variable yt
(1×1)

using a

sample of size T . The most immediate approach to the problem, as described, for instance, in the
survey of Stock and Watson (2006) [57], is to consider all regressors to be potentially useful in
modeling yt and use OLS to estimate the model

yt+h = β′xt + γ ′wt + εt+h (2.1)

where wt may contain additional regressors such as lags of yt1. Notice that although in this set-
up all regressors are potentially useful in forecasting, they enter the model through just one linear
combination namely β′xt+γ ′wt. More than one linear combinations or projections of the regressors
may instead be necessary to model yt in order to preserve all the information that the covariates
xt and wt carry about yt+h. We will revisit this point later on in the paper.

Estimation in (2.1) via OLS can be problematic when p is large relative to T , or variables in xt
are nearly collinear, as is the case in the macro forecasting literature (see, e.g., Stock and Watson
(2006) [57]). The variance of the prediction is of order p/T, so when p is large other estimation
methods may dominate OLS, even under assumptions that guarantee that the OLS estimator is
unbiased. Moreover, when p > 3, the OLS estimator is not even admissible under the mean square
error (MSE) criterion,2 a striking result by James and Stein (1961) that inaugurated research in
shrinkage estimation.

1The assumed linearity of E (yt+h) in the linear combinations β′xt and γ′wt and the presumed lack of dependence
of the latter from the error εt+h are important assumptions that lead to ordinary least squares (OLS) as the estimator
of choice for the parameters β and γ. The presence of the lags of yt is meant to capture the dynamics in yt and to
avoid that such dynamics might impart non-orthogonality between the error and the regressors.

2Although among unbiased estimators the OLS estimator θ̂OLS has minimum mean squared error, other estimators
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When the number of predictors exceeds the number of observations (p > T ), the OLS parameter
estimates are not identifiable and multiple estimators of the parameter vector are solutions to the
OLS problem. In this case, different shrinkage estimators, such as RIDGE and LASSO, can be
viewed as specific criteria-based choices in the space of OLS-consistent solutions.

Furthermore, for typical datasets encountered in macro and finance forecasting, even if p << T ,
collinearity or ill-conditioning of the Xt

(T×p)
matrix, which collects all the observations on the vector

xt, makes OLS predictions very unstable. This is likely to occur if the set of explanatory variables
contains an index and several sub-indexes, e.g. industrial production (IP) along with its sub-
indexes such as manufacturing IP or mining IP, or when variables are linked by identities or tight
relationships, such as the inclusion of assets linked by arbitrage conditions.

2.1 The DFM Forecasting Framework

Pioneering results in Stock and Watson in a series of papers (1999, 2002a, 2002b) [53][54][55], re-
launched the idea of working around the impossibility and/or lack of desirability of using OLS for
estimation when p is large by:

(i) Positing that the set of explanatory variables xt is, up to idiosyncratic noise, driven by a
small r < p set of latent factors ft

(r×1)
with

xt = Λft + ut (2.2)

where ft and ut are independent although ut can be serially and cross-sectionally correlated.
This setup generalizes the case of a classic factor structure.

(ii) Assuming that the forecasting model is

yt+h = λ′ft + γ ′wt + εt+h (2.3)

The primary goal of considering the factors ft is to introduce structure that reduces the high-
dimensionality of the problem. The linear factor structure implies that although p is potentially
large, the information content of the regressors is drastically reduced to r. However the factors
are latent variables hence they need to be estimated. The complexity induced by the high dimen-
sionality of the problem is traded off with the need of estimating additional fictional unobserved
variables ft. Stock and Watson [54] provide conditions under which the factors are estimated via
Principal Component Analysis (PCA) of the variance-covariance matrix of the observed predictors.

In fact, most estimators of the factors proposed in the literature turn out to be linear functions
of the explanatory variables, v′xt, where the matrix v of coeffi cients or weights corresponds to the
particular method, e.g. PCR, RIDGE or PLS. The rank of the column space of v is the dimension
of the problem detected by that particular estimation method. In this sense there is no unique
dimension of the information contained in the explanatory variables. Rather the dimension of the
problem is estimator-dependent.

When the factors are estimated via PCA, as in Stock and Watson (2002a) [54], v is a matrix
whose columns are the leading principal components of Σ = (XT − X̄T )′(XT − X̄T )/T . If the

θ̂, some also linear, have uniformly smaller mean square error, by trading off bias for variance :

MSE
(
θ̂, θ
)
≤MSE

(
θ̂OLS , θ

)
for all θ with strict inequality for some θ. Hence the OLS estimator is not admissible under the MSE criterion.
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dynamic principal components of Forni, Lippi Hallin and Reichlin (2005) [32] are used, v also
captures a summary of the dynamics in xt as it contains the eigenvectors of the autocovariances
Σ(k) = (XT−k − X̄T−k)

′(XT − X̄T )/(T − k). In (Quasi-) Maximum Likelihoods methods as in Doz
et al. (2012) [28] or Banbura and Modugno (2014) [6], the algorithm used to compute the likelihood
heavily exploits the linearity of the underlying system and v is derived from the Kalman Filter. A
main theoretical objective in the DFM literature has been to show that asymptotically, for both T
and p →∞, the chosen v, is such that v′xt consistently estimates the factors.

The forecasting equation (2.3) is secondary since attention is shifted to reducing the dimension
of the set of explanatory variables, a process assumed to unveil the data generating process driving
xt. The practical goal of forecasting the target yt via link equation (2.3) relies on the assumption
that the same factors that determine the marginal distribution of xt also determine the conditional
distribution of yt and in the same functional form; that is, linearly.

The assumption of a factor structure and the ancillary role of the forecasting equation in Stock
and Watson (2002a) [54] was adopted in the ensuing literature. For instance, Doz et al. (2012) [28]
focus on the performance of different estimators in identifying the factors and show no interest in
the forecasting accuracy of their estimators.

The assumption that the underlying DGP has a linear factor structure, while convenient, im-
poses restrictions on the conditional distribution of y given x, which are diffi cult to pin down.
In a follow-up to this paper (Barbarino and Bura (2015) [7]), we show by means of Monte-Carlo
simulations and formally by exploiting recent results in Leeb (2013) [44] and, more importantly,
the extension in Steinberger and Leeb (2015) [52] that a linear factor structure underlying the
generation of both y and x coupled with the assumption of joint normality of the factors implies
that a linear model is the correct specification for the conditional mean of y given x, which is a
rather restrictive model.

The formal result is stated in the following proposition.

Proposition 1 Let y denote a response random variable and x a random p-vector of explanatory
variables. Suppose that the response can be written as y = α′f where α ∈ Rr is unknown and that
the set of explanatory variables can be written as x = βf where β

(p×r)
is such that:

(i) for each α, the conditional mean of α′f given β′f = x is linear in x ∈ Rp;

(ii) for each α the conditional variance of α′f given β′f = x is constant in x ∈ Rp.
Then, y can be decomposed into the sum of a linear function of x and a remainder or error
term, as follows,

y = c′x + u (2.4)

where c = βα ∈ Rp is an unknown parameter, E(u|x) = 0 and var(u|x) is constant.

Proof. See Barbarino and Bura (2015) [7].

A key point to note is that conditions (i) and (ii) in Proposition 1 are satisfied for any β,
if f is normally distributed, the assumption made in practice in the DFM literature especially
likelihood-based but also non-parametric. Moreover, the implied model (2.4) is a standard linear
model with the error term uncorrelated with the predictors so that the solution to the normal
equations in the population is the OLS, cOLS = (x′x)−1x′y. For a random sample, regressing

y
(T×1)

on X
(T×p)

using OLS yields ĉOLS = (X′X)−1X′Y, which is optimal, in terms of statistical
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effi ciency, provided the sample size is larger than the number of predictors, i.e. p < T . Therefore
the DFM model assumptions (2.2) and (2.3) imply that the forecasting model is approximately
linear in the explanatory variables with errors uncorrelated with the predictors. As a consequence
it should not come as a surprise that shrinkage methods such as RIDGE perform well in our
simulations. Although ([52]) is valid when (yt,xt) is a random sample for t = 1, . . . , T , on the
basis of our simulations, we conjecture that the results in Proposition 1 are approximately true in
a factor model, under the set of assumptions commonly made in the DFM literature where both
the response and the predictors are potentially autocorrelated time series.

2.2 The SDR Forecasting Framework

In contrast to DFM, suffi cient dimension reduction (SDR) methods depart from the pervasive linear
factor assumption. As we show in greater detail in a companion paper (Barbarino and Bura (2015)
[7]) and summarize in the following paragraph, SDR methods thrive when the relationship between
the response and the predictors contains non-linearities whereas they do not have comparative
advantage when a linear factor structure is the true DGP.

SDR works directly with observables and sidestep the assumption of a factor structure. Thus,
instead of imposing an artificial latent factor structure on the panel xt, SDR methods directly
seek to identify how many and which functions of the explanatory variables are needed to fully
describe the conditional distribution function F (yt+h|xt), or its features, such as the conditional
mean. SDR aims to identify and estimate functions of the predictors, R (xt) , that are called
reductions because they preserve all the information that xt carries about yt+h in the sense that
F (yt+h|xt) = F (yt+h|R(xt)). Obviously only if such functions are fewer than p do they represent
proper reductions.

The reductions can be either linear or nonlinear functions. In this paper we focus on moment-
based and linear SDR methods that obtain linear reductions in order to draw a more pertinent
comparison with the DFM literature. Linear SDR methods lay down conditions under which it is
possible to identify the number of and the linear combinations of the explanatory variables needed
to “adequately”model yt. They also provide estimation algorithms. More formally, linear SDR
methods provide the means to estimate a matrix v : p× d, 0 ≤ d ≤ p, such that R (xt) = v′xt.

Our proposed SDR-based forecasting framework is based on the following two conditions:

(i) The linearity condition
E
[
xt|v′xt

]
= Av′xt (2.5)

for any invertible matrix A and a p× d full rank matrix v with 0 ≤ d ≤ p3

(ii) The forward model
yt+h = g(v′xt, εt+h) (2.6)

Moment-based SDR methods place conditions on the marginal distribution of xt, such as the
linearity assumption (2.5), which is a first moment condition and analogous to the linear factor
structure (2.2) of DFM.4 However, in contrast with the DFM setup, no dependence on underlying
factors is postulated.

3The rank of v is the structural dimension of the regression and the case d = 0 signifies that yt+h is independent
of xt.

4Within the SDR literature the term “moment-based” catalogues estimators conceptually distinct from SDR
“likelihood-based”methods that require assumptions on the distribution of xt|yt+h. Likelihood-based SDR methods
can be compared to likelihood based estimation methods for DFM however we do not pursue such comparison in this
paper for clarity purposes.
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The second equation (2.6) specifies the forward model and is analogous to the link equation
in DFM, although the SDR framework allows more flexibility admitting a general g(·) instead
of a linear function. Linear SDR methods are powerful tools that can determine the number of
linear combinations of the explanatory variables xt needed to model the response yt and provide
consistent estimators without the need to specify the functional form of the forward model; that
is, without specifying the exact relationship between yt and v′xt. Linear SDR replaces a large
number of explanatory variables by a few of their linear combinations without loss of inferential
information; their number d(= rank(v)) indicates the dimension of the regression problem. In our
experience, fewer than the number of PCs are needed in order to generate a comparable MSFE,
which is expected as the SDR estimator is targeted to y. As a result, the forecaster can concentrate
on the estimation of g(·) with the option of also using non-parametric regression since the number
of predictors is significantly reduced.

How restrictive is the linearity condition? —The linearity condition is satisfied for any v by
any elliptically contoured vector of predictors. Importantly, Hall and Li (1993) [36] showed that, as
the cross-section gets large and p→∞, such condition is ever more likely to be satisfied provided
that the dimension of the problem d remains small relative to p. More recently, Steinberger and
Leeb (2015) [52] showed that as d/ log p becomes smaller, the discrepancy between E [xt|v′xt] and
Av′xt in (2.5) goes to zero and the linearity condition holds approximately.

Comparison of SDR and DFM Assumptions —As outlined in Proposition 1, the assumption of
a linear factorial structure along with normality imply that a linear model is the correctly specified
model. By contrast moment-based SDR requires the linearity condition (2.5) hold for the linear
projections v′x that satisfy the general forward regression model F (y|x) = F (y|v′x). Therefore,
DFM assumes more restrictive conditions than SDR on the marginal distribution of x.

Dimension of the Regression —The SDR framework allows for more general models to describe
the relationship between y and x. As a consequence, for example, the finding that on the same
dataset four PCA-estimated factors produce the same MSFE as two SDR predictors is not contra-
dictory. The PC-based DFM framework ignores non-linearities in the DGP so that a larger number
of factors is required to approximate non-linearities in an incorrectly specified forward regression.
This is analogous to the effect of dynamic misspecification as shown in Bai and Ng (2007) [3] where
one needs a larger set of static factors in order to approximate a given set of (true) dynamic fac-
tors. In their setting a larger set of static factors approximate a polynomial in the lag operator.
In our setting, a larger number of static factors is needed to approximate non-linearities which are
captured by SDR methods.

Remark 1 When SDR finds that two or more linear combinations are needed (d ≥ 2) in the
forward model (2.6) it means that the forward regression function contains non-linear functions
of the linear combinations v′xt. Thus, a correct specification of the forward regression entails
non-linearities that the DFM framework misses.

Robustness to Model Misspecification —SDR techniques frequently yield very few derived pre-
dictors, which allows non-parametric estimation of the relationship between the response yt and
the (linear combinations of) the explanatory variables xt. As a result, the prohibitive curse of
dimensionality problem in non-parametric regression is circumvented .

Issues in Large p Problems —SDR techniques are data intensive relative to shrinkage estimators
such as Principal Components (PC), RIDGE or Partial Least Squares (PLS). As we will see, when
the number of predictors p is larger than the sample size, direct application of SIR is not possible
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since rank(Σ) ≤ min(T − 1, p) and Σ is not invertible. Moreover, when T and p are of the
same order, or when the columns of X are highly correlated, Σ is ill-conditioned and its inverse
is numerically unstable resulting in non-robust estimation. In this sense SDR methods suffer from
the same limitations as OLS. Therefore we also evaluate a regularized version of our estimators,
following Chiaromonte and Martinelli (2002) [22] and Li and Li (2004) [46] who used principal
components as an intermediate step in order to eliminate PC directions in which the random
vector x is degenerate. Bernard-Michel et al. (2011) show that preprocessing the data with PC
in order to eliminate degenerate projections of x and then applying SIR is a special case of their
Gaussian Regularized SIR, where a Gaussian prior is introduced on the unknown parameters of
the inverse regression. In a companion paper (Barbarino and Bura (2015) [7]), we show that even
though regularization can be a useful approach in large p settings, a more appealing work-around
to the ill-conditioning or non-invertibility of Σ is the extension of SDR methods using Krylov
subspaces.

Diffi culties in Estimating the Forward Model —SDR approaches obtain optimal results in an
interactive modeling setting. That is, the sequence of modeling steps in SDR is to (1) reduce and
estimate the d(< p) SDR-derived predictors, and (2) obtain visual assessments via scatterplots of
the response versus the SDR-predictors to form a forward regression model g(·) that best describes
the data at hand. This process cannot be carried out in an automatic fashion so that g(·) be
recursively estimated prior to the computation of the out-of-sample forecast. Instead, we simply
use the linear SDR predictors, which are linear combinations of xt, with no further transformations
as input to a linear forward model for the response. As a result, when the estimated dimension
of the problem turns out to be greater than one, the forecasting horserace will penalize the SDR
estimator by means of misspecification of g(·). Such diffi culty is not faced by the applied forecaster
as they only need SDR predictors for one-shot forecast (even when repeated over time) in which
case they can easily evaluate the presence of non-linearities and decide on the appropriate modeling
of g(·).

3 Dimension Reduction via Linear Combinations

Several estimators in the literature form linear combinations of the explanatory variables v′xt as a
data reduction step before fitting the model used for prediction. In this Section, we provide a brief
review of some such widely used estimators that are also used in the empirical Section. We start
with OLS, move on to principal component regression (PCR), which is the prevalent method in
dynamic factor analysis, and RIDGE regression. The last leg of our tour provides the fundamentals
of the partial least squares (PLS) algorithm. We cast these methods in a shared framework of
minimization of an objective function, which is what distinguishes individual methods, and discuss
how the resulting estimators exploit the eigen-structure of the data matrix X. A more in-depth
treatment under a common unifying framework is discussed in Barbarino and Bura (2015) [7].
To motivate the discussion about the features and relative drawbacks and advantages of different
methods, we start off from a simple data generating model, the multivariate normal distribution.

The Normal Data Generating Process —The simplest DGP that implies 1-dimensional linear
reduction is a Normal DGP where the predictors and the response are jointly normal:(

x
y

)
∼ N

((
µx

µy

)
,

(
Σ σxy
σ′xy σ2y

))
Under this assumption the best predictor under quadratic loss is the linear regression function,

E (y|x) = µy + β′ (x− µx)
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with β = Σ−1σxy. Therefore, in a Normal DGP the relationship between x and y is entirely
and exhaustively encapsulated in one linear combination of the predictors. We note that even a
small departure from this model may result in linear reductions of the predictors no longer being
exhaustive (see Bura and Forzani (2015) [14]). Importantly, as shown in Proposition 1, the same
DGP is implied by a normal and linear factor structure.

We consider various competing ways of estimating the population parameter β next.

Ordinary Least Squares —The OLS coeffi cient is the solution to the following maximization
problem:

max
{β}

Corr2
(
y,x′β

)
(3.1)

OLS selects one and only one linear combination with the property that it maximizes the correlation
between the response and x′β. Assuming that Σ is full rank, the unique solution to (3.1) is

βOLS = Σ−1σxy (3.2)

and the OLS prediction of the response yt0 at an observed xt0 is

yOLS = x′t0βOLS

Principal Component Regression (PCR) —PCR operates in two steps. First, the linear combi-
nations that maximize the variance of x and that are mutually orthogonal are the solution to the
following maximization problem

max
{ck}

β′kβk=1

{β′kΣβi=0}k−1i=1

V ar(x′βk) (3.3)

A maximum of p such linear combinations, called principal components, can be extracted. Secondly,
y is regressed on the first M ≤ p PCs. The number of PCs, M , is a meta parameter chosen by the
user. The solution to (3.3) is

βPCR (M) = Σ−PCR(M)σxy (3.4)

If M = p, then βPCR (M) = βOLS . The pseudo-inverse Σ−PCR(M) used to compute the solution,
which can be shown to be a Moore-Penrose inverse, will depend on M . Notice that Σ−PCR(M) is
an estimate of a truncated Σ−1 by retaining only the first M components that explain a specified
amount of variance in the predictors. Therefore, PCA reduces the dimension of the input predictor
vector x by finding orthogonal linear combinations that maximize var (a′x). Such operation entirely
disregards the response y, so that although the x principal components contain as much information
as the entire predictor vector, they are ordered in relevance to x and not to y. Targeting enters
only in the second stage through the term σxy in (3.4). The PCR prediction is

yPCR = x′t0βPCR

RIDGE Regression —RIDGE regression has been reviewed in the macro-forecasting literature
by De Mol et al. (2008) [25] in connection to Bayesian regression. The RIDGE estimator picks one
and only one linear combination of the data as it can be shown that RIDGE regression minimizes
the least squares criterion on the sphere with radius a:
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max
{β}

Corr2
(
y,x′β

)
subject to

p∑
j=1

β2j ≤ a (3.5)

The solution to (3.6) is
βRR (λ) = (Σ + λI)−1 σxy (3.6)

where λ denotes the Lagrange multiplier in the constrained maximization (3.5) and is a function of
a. It is also a meta parameter playing a role similar toM in PCR. When λ = 0 the maximization is
the same as in OLS. As λ > 0, the solution deviates from the OLS solution and it can be shown that
the penalization works to shrink more those directions with smallest variance although RIDGE does
not truncate directions in such draconian way as PCR. The relationship with the OLS coeffi cient
(3.2) is

βRR (λ) =
(
I + λΣ−1

)−1
Σ−1σxy =

(
I + λΣ−1

)−1
βOLS

The RIDGE prediction at xt0 is
yRR = x′t0βRR (λ)

Partial Least Squares —PLS, an increasingly popular method of dimension reduction, followed
a peculiar trajectory in Econometrics. Originally developed by H. Wold [63] in the mid 70s, it did
not gain much traction in Econometrics and swiftly fell into oblivion. By contrast, it garnered a lot
of attention in Chemometrics, a field that produced a large volume of PLS studies in the late 80s
and early 90s (see, for example, the instructive work of Helland (1988) [38]). Only recently has the
method resurfaced in Econometrics with the work of Kelly and Pruitt (2014) [43] and Groen and
Kapetanios [35] within macro-forecasting applications as PLS handles well cases in which p > T .

The PLS algorithm induces a simultaneous bi-linear decomposition of both the target variable
and the panel of regressors5. That is, factors fi

(T×1)
and loadings qi

(p×1)
and pi

(1×1)
are generated

at each step so that the factors are orthogonal and the following decompositions are carried out
concurrently

x = q′1f1 + q′2f2 + . . .+ q′ufu + Eu

y = p′1f1 + p′2f2 + ...+ p′ufu + eu

The suffi x u denotes the last step of the procedure. The algorithm always converges in the sense
that after p steps the factors will be identically zero. Using the recursive formulas for the factors
and the loadings, one can show that PLS prediction admits a linear form similar to the predictions
of the other estimators at xt0 :

yPLS = x′t0βPLS (u)

where
βPLS (u) = Wu

(
W′

uΣWu

)−1
W′

uσxy (3.7)

The matrix Wu = (w1, . . . ,wu) is obtained after u recursions of the algorithm by stacking the
weights generated at each step. Such weights are initialized with w1 = σxy, and, for u > 1,

wu = σxy −ΣWu−1
(
W′

u−1ΣWu−1
)−1

W′
uσxy

generates the subsequent weights. Notice that the weights are “weighted”covariances of the pre-
dictors and the response.

5 In the appendix we show how the decomposition naturally leads to the factorial structure.
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4 Reductions as Eigen-Decompositions

In order to set the stage for the sequel, we now focus on the different targets of the eigen-
decompositions the methods in Section 3 entail.

Eigen-Decompositions Underpinning PCR and PLS —PCR targets the extraction of derived
inputs that maximize the variance of the explanatory variables. The PCs are left eigenvectors from
the eigen-decomposition of var (x). PLS has (initial) target cov (x, y), which reveals its targeted
nature and that, by focusing on the principal directions of cov (x, y), it is hard-wired to extract
linear signals.6

Eigen-Decomposition Underpinning SDR —SDR methods that will be introduced in the next
Section carry out an eigen-decomposition of a target, called the seed or kernel, in order to isolate
directions of principal variation in relevance to y.

The SDR method used in the empirical applications, sliced inverse regression (SIR), is based on
the eigen-decomposition of var [E (x|y)]. To gain intuition of why such target works, we resort to
a classical probabilistic identity satisfied by any random vector x with finite second moment and
conditioning random variable or vector y,

var (x)︸ ︷︷ ︸
identified by PCA

= var [E (x|y)]︸ ︷︷ ︸
identified by linear SDR

+ E [var(x|y)]︸ ︷︷ ︸
noise

(4.1)

Suppose the range of y is sliced in non-overlapping bins and x|y is the restriction of x in the bins
defined by the slices of y. The right hand side of (4.1) obtains that the variance of x can be split
into two parts:

• var [E (x|y)] or between slice variation in x, and

• E [var(x|y)] or within slice variation.

In ANOVA, the first summand is the signal that y carries about x since it represents variation
of the average value of x associated with different values of y from the overall x mean. The second
element represents noise, i.e. deviations of x from its overall average across bins, hence unrelated
to y.

From this perspective, since PCA performs an eigenanalysis of var (x), noise in E [var(x|y)]
may attenuate or suppress the signal in var [E (x|y)] and result in PCs that are little related to y.
PLS targets cov (x, y) and can potentially suppress non-linear signal. By contrast, a method that
focuses on the eigen-analysis of var [E (x|y)] produces derived inputs ordered according to their
importance with respect to y and has the capacity to preserve non-linear signals. As we will see
next, centering on the signal and ignoring the noise is what suffi cient dimension reduction in general
and, in particular, sliced inverse regression is designed to do.

4.1 Suffi ciency and Inverse Reductions

Definition 2 A reduction R : Rp → Rq, where q ≤ p, is suffi cient if it satisfies y|x ∼ y|R (x) or
equivalently

F (y|x) = F (y|R (x)) (4.2)

6To be precise, when y is a scalar, cov (x, y) is a vector and its eigen-decomposition returns the vector itself. How-
ever it is useful to think of the PLS algorithm as a sequence of eigen-decompositions when comparing the methodology
with PCA. When y is multivariate the PLS algorithm entails eigen-decomposition of the matrix cov (x, y).
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A consequence of the definition of suffi ciency is that, since (4.2) can be written as F (y|x,R (x)) =
F (y|R (x)) we have

y ⊥⊥ x|R
Consequently, R (x) is called a forward reduction. Although the term “suffi cient”was originally
coined to highlight the information preserving role of R (x), it turns out that there is a specific link
with the Fisherian concept of statistical suffi ciency (see Cook (2007)) [19] as we will see shortly.
Before doing so, we introduce the concept of inverse reduction.

Definition 3 A function R : Rp → Rq, where q ≤ p, is an inverse reduction if

x| (R (x) , y)
d
= x|R (x) (4.3)

If one treats y as a parameter, (4.3) states that R (x) is a suffi cient statistic for y and it contains
all information x contains about y. Thus, it is a suffi cient reduction for the forward regression of
y on x. Proposition 2 provides the formal statement and proof of this fact.

Proposition 2 Assume that the random vector
(
y,x

′
)′
has a joint distribution and let R (x) be

a measurable function of the predictor vector. Then,

F (y|x) = F (y|R (x)) iff x| (R (x) , y)
d
= x|R (x)

Proof. Denote R (x) with R. Assume F (y|x) = F (y|R (x)) so that y ⊥⊥ x|R and F (y,x|R) =
F (x|R)F (y|R). Therefore,

F (x|R) =
F (y,x|R)

F (y|R)
=

F (y,x,R)

F (y|R)F (R)
=
F (y,x,R)

F (y,R)
= F (x|y,R)

To prove the reverse statement we start with the definition of conditional distribution of y| (x,R)

F (y|x,R) =
F (y,x,R)

F (x,R)
=
F (x|y,R)F (y,R)

F (x|R)F (R)

Using the condition x| (R (x) , y)
d
= x|R (x) , which is equivalent to F (x|y,R) = F (x|R) and sim-

plifying, one obtains F (y|x,R) = F (y|R).

Proposition 2 sheds light on why inverse regression is a powerful tool for the identification of
suffi cient reductions of the predictors: if a function R (x) is a suffi cient statistic for the inverse
regression, it is also a suffi cient reduction for the forward regression. This implies that the econo-
metrician is free to choose the most convenient way to determine a suffi cient reduction, either from
the forward or inverse regression. An immediate advantage of inverse regression is that it treats
each predictor separately instead of treating the panel as a block. That is, a large p-dimensional for-
ward regression (potentially non-linear) problem is split in p univariate regression problems, which
are easily modeled if y is univariate (or has a small dimension) even if p is large. Furthermore,
inverse regression allows a plethora of estimation methods, also non-parametric, where the curse of
dimensionality would make modeling of the forward regression practically impossible. Therefore,
the method can result in significantly more accurate estimation than a linear forward regression
model.

Most importantly, inverse regression accomplishes another goal in connecting suffi cient reduc-
tions with the classical concept of a suffi cient statistic: the “parameter” to be estimated and
predicted is the whole time-series yt.
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4.2 Linear Reductions and Moment-Based SDR

Even though suffi cient reductions need not be linear, moment-based SDR was developed under
the requirement that R (xt) be linear. In linear SDR, R (xt) is a projection PSxt onto a lower-
dimensional subspace S of Rp that incurs no loss of information about the conditional distribution
F (yt+h|xt) or selected features thereof. If the mean squared error loss is used to evaluate the
accuracy of the forecast, the conditional mean E(yt+h|xt) is of interest and the goal is to find a re-
duction R (xt) such that E(yt+h|xt) =E(yt+h|R (xt)). In density forecasting, the whole conditional
distribution is the target and a reduction R (xt) such that F (yt+h|xt) = F (yt+h|R (xt)) is sought.
In the rest of this Section we suppress subscripts keeping in mind that y is used in place of yt+h
and x in place of xt.

In this Section we focus the discussion on the identification (and peripherally to existence and
uniqueness) of linear suffi cient reductions and show how to exploit inverse regression to identify
them. We require at the very outset the reduction be linear:

Condition 1 Suppose the reduction R (x) is suffi cient and a linear function of x; that is, it satisfies

F (y|x) = F (y|R (x)) (4.4)

and
R (x) = a′x

for some p× d matrix a.

Notice that the definition of suffi ciency implies that we can only identify the subspace spanned
by a linear reduction, span(a), rather than a per se, since F (y|a′x) = F (y|b′x) for all matrices
a and b such that span (a) = span (b). A subspace spanned by the columns of a matrix a with
F (y|x) = F (y|a′x) is called a dimension reduction subspace (DRS).

Existence and Uniqueness —A linear reduction, although a trivial one, always exists, since one
can always set R (x) = x = Ipx. For the same reason a DRS is not generally unique. SDR’s
objective is to identify a minimal reduction, that is a DRS with minimum dimension as well as
conditions that insure existence and uniqueness. Uniqueness and minimality are jointly guaranteed
by focusing on the intersection of all DRS; such intersection, if it is itself a DRS, is called the central
subspace. The latter exists under reasonably mild conditions on the marginal distribution of x,
such as convexity of its support. We refer to Cook (1998)[17] for more details and henceforth
restrict attention to those regressions for which a central subspace exists.

The identification of a minimal suffi cient reduction or, equivalently, the identification of a basis
for the central subspace requires moment conditions on the marginal distribution of the predictor
vector x.

Condition 2 (Linear Design Condition) There exists a full rank p× d matrix v such that

E
[
x|v′x

]
= Av′x (4.5)

for an invertible matrix A.

In general, the linearity condition (4.5) on the marginal distribution of the predictors is diffi cult
to verify as it requires knowledge of v. Nevertheless, it is satisfied for all v ∈ Rp×d if the predictors
have an elliptically contoured distribution [See Eaton (1986)[30]]. The elliptically contoured family
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of distributions includes the multivariate normal and Student’s t distributions. Moreover, Stein-
berger and Leeb (2015) [52] showed that under comparatively mild conditions on the distribution
of x the condition (4.5) is likely to be satisfied as p grows and the cross-section becomes large.
Specifically, they showed that if a random p-vector x has a Lebesgue density, the mean of certain
functions of x is bounded and that certain moments of x are close to what they would be in the
Gaussian case [see the bounds (b1) and (b2) in Th. 2.1, Steinberger and Leeb (2015)[52]], then the
conditional mean of x given v′x is linear in v′x for a p × d matrix v, as p → ∞ and d is either
fixed or grows very slowly at the rate d/ log p → 0. An appealing feature of these results is that
they rely on bounds that can be estimated from data.

Steinberger and Leeb’s result is of fundamental importance in SDR since it ascertains that the
linearity condition (4.5) is satisfied by a large class of predictor distributions. Thus, first-moment
SDR estimators, such as SIR in the ensuing Section 4.3, can be widely used to estimate basis
elements of the column space of v in the reduction R(xt) = v′xt.

The following lemma links the linearity condition with inverse regression and points to a means
to find the reduction.

Lemma 1 Assume R(x) = v′x satisfies (4.4), that is, it is a suffi cient reduction, and the linearity
condition (4.5) is satisfied for v. Then

Σ−1 [E (x|y)− E (x)] ∈ span (v)

where Σ = cov (x). Equivalently,

span
(
Σ−1 [E (x|y)− E (x)]

)
⊆ span (v)

Proof. See Corollary 10.1 in Cook (1998)[17] and Theorem 3.1 in Li (1991)[45].
Lemma 1 obtains that the centered and scaled inverse regression function “lives”in a subspace,

the inverse regression subspace, spanned by the columns of v. That is, as y varies in R, the
random vector Σ−1 [E (x|y)− E (x)] is contained in a subspace that is spanned by the columns of
v. Therefore, in order to identify the suffi cient reduction we need to identify a basis that generates
the subspace that contains Σ−1 [E (x|y)− E (x)] as y varies. The following proposition provides
the answer.

Proposition 3 The column space of the matrix Σ−1var (E (x|y)) spans the same subspace as the
subspace spanned by Σ−1 [E (x|y)− E (x)]. That is,

span
(
Σ−1Var(E(x|y)

)
) = span

(
Σ−1 [E(x|y)− E(x)]

)
⊆ span (v)

Proof. See Proposition 11.1 in Cook (1998)[17], an extension of Proposition 2.7 in Eaton (1983)[29],
and Lemma 1.

Lemma 1 and Proposition 3 draw a link between the distribution of the data and the subspace
that we wish to identify. Notice that in general the column space of Σ−1var (E(x|y)) provides only
partial coverage of the central subspace since the inverse regression subspace can be a proper subset
of the central subspace.

Under additional conditions one can show that more exhaustive capturing of the central subspace
is possible. Other inverse regression moments, such as E (Σ−Var(E(x|y))2 , also live in the central
subspace under additional conditions on the marginal distribution of the predictors (Cook and
Weisberg (1991) [23]). In order not to clutter the present exposition, we focus only on the first
inverse regression moment E(X|Y ) in order to introduce SDR methodology to the econometrics
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literature via the simple and widely used Sliced Inverse Ression (SIR, Li (1991)[45]).7 In general,
linear moment-based SDR methods provide a way of identifying the number and coeffi cients (up
to rotations, as in the DFM literature) of the linear combinations of the predictors in the forward
forecasting equation. A feature of SDR methods, which can be viewed both as an advantage
and a downside, is that they are silent regarding the functional form of the forward regression.
They obtain the linear combinations of xt that are needed in the forecasting equation in order to
adequately reduce xt. When the number of SDR directions is 1 or 2, a plot of the response versus
the reduction(s) can visually inform forward regression modeling. Dimension 2 or larger indicates
that the forward model involves non-linear functions of the reductions. It is important to note that
SDR methods do not remove the need to model the response but rather reduce significantly the
complexity of modeling and uncover the structural dimension of the forward regression problem,
i.e. how many derived linear combinations of the original predictors suffi ce to completely explain
y.

4.3 Sliced Inverse Regression

Several estimators have been proposed in order to estimate the central subspace. We focus on the
first and most widely used: Sliced Inverse Regression (SIR) proposed by Li (1991)[45]. SIR is a
semiparametric method for finding dimension reduction subspaces in regression. It is based on the
results of Section 4.3 and uses a sample counterpart8 to Σ−1Var (E (x|y)), the population object
that lives in the subspace generated by the coeffi cient matrix of the reduction. The name derives
from using the inverse regression of x on the sliced response y to estimate the reduction. For a
univariate y, the method is particularly easy to implement, SIR’s step functions being a very simple
nonparametric approximation to E(x|y).

Implementation of SIR —In order to estimate M = var(E(x|y)), the range of the observed re-
sponsesY = (y1, . . . , yT )′ is divided in J disjoint slices S1, . . . , SJ whose union is the range ofY. We
denote the overall sample mean of the sample predictor matrixX by X̄ = (

∑T
t=1 xt1/T, . . . ,

∑T
t=1 xtp/T )′,

and for j = 1, . . . , J , we let X̄j =
∑

yt∈Sj Xt/nj , where nj is the number of yt’s in slice Sj . The co-

variance matrix of x is estimated by the sample covariance matrix Σ̂ =
∑T

t=1(Xt−X̄)(Xt−X̄)′/T ,
and the SIR seed M with

M̂ =

J∑
j=1

nj
T

(X̄j − X̄)(X̄j − X̄)′

The spectral value decomposition of M̂ yields its d left eigenvectors û1, . . . , ûd that correspond

to its d largest eigenvalues, λ̂1 > λ̂2 > . . . > λ̂d. The matrix B̂ = Σ̂
−1

(û1, . . . , ûd) = (b1, ..., bd)
estimates v in R(x) = v′x of Lemma 1. The SIR predictors to replace X in the forward regression
are the columns of the T × d matrix XB̂ = (Xb1, ...,Xbd). The number of SIR directions, d, is
typically estimated using asymptotic weighted chi-square tests (Bura and Cook (2001a)[12], Bura
and Yang (2011)[15]), information criteria such as AIC and BIC, or permutation tests (Yin and
Cook (2001)[24]. We note that these tests are valid under the assumption of iid draws from the
joint distribution of (y,x), which is typically not the case for econometric data.

How SIR works: SIR finds the directions of maximum variance between slices, with T data
points collapsed in J slice means clustered according to y labels (slices). In the extreme case of

7For instance, although SIR may not exhaustively identify the central subspace, it can be shown that SIR is
exhaustive when x|y is multivariate normal with constant variance-covariance matrix (See Cook (2007)[19]).

8Stricly speaking, SIR, through slicing, forces a discretization of y rather than the actual realizations of y, however
it is possible to show that the space spanned by the slices is a subset of the central subspace.
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J = T , i.e. when each slice corresponds to a single y observation, M becomes Σ, the sample
covariance of x, and SIR is identical to PCA. However, for J < T , the variance (noise) of the
components within the same slice is suppressed in favor of their signal, which makes SIR much
more effi cient in identifying x components (projections) targeted to y.

4.3.1 Statistical Properties

In Proposition 4,we show that the SIR directions are consistent estimators of directions in the
central subspace for all xt satisfying the linear design condition (4.5) and conditional distributions
of xt|yt+h, h = 1, 2, ... with finite second moments.

Proposition 4 Assume that the time series xt and xt|(yt+h = s), s = 1, . . . , J , t = 1, . . ., h =
0, 1, . . ., are both covariance-statonary with absolutely summable autocovariances, i.e.

∑∞
l=−∞ |σjj(l)| <

∞,
∑∞

l=−∞ |σjj|yt+h(l)| < ∞, j = 1, ..., p. Then, the SIR directions are consistent estimators of di-
rections in the central subspace for all xt satisfying the linear design condition (4.5).

Proof. SIR is based on the covariance matrix Mh = cov(E(xt|yt+h)), t = 1, . . . , T . If yt is discrete
and finite, we can assume yt ∈ {1, 2, . . . , J} without loss of generality. Let ps = Prob(yt+h = s)
and ms = E(xt|yt+h = s), s = 1, . . . , J . Then,

cov(E(xt|yt+h)) =

J∑
s=1

ps(ms − µ)(ms − µ)′

As a result of the second order stationarity with absolutely summable autocovariances of xt and
xt|(yt+h = s), s = 1, . . . , J , t = 1, . . ., h = 0, 1, . . ., the sample moments X̄ and m̂s = X̄s =∑

yt+h=s
Xt/ns, where ns is the number of yt’s equal to s, are both consistent as T, ns →∞. Also,

p̂s = ns/T → ps. Therefore,

M̂h =
J∑
s=1

p̂s(m̂s − X̄)(m̂s − X̄)′
p→Mh

as it is a continuous function of consistent estimators. Consequently, the eigenvectors of M̂h,
ûk, k = 1, . . . , p, converge to the corresponding eigenvectors of Mh. Moreover, since the sample

covariance matrix Σ̂ is consistent for Σ, the SIR predictors Σ̂
−1

ûk, k = 1, . . . , d are consistent for
the d columns of v in the suffi cient reduction R(xt) = v′xt. Notation and results for stationary
and ergodic time series that we use are provided in Appendix D.

When y is continuous, it is replaced with a discrete version ỹ based on partitioning the observed
range of Y into J fixed, non-overlapping slices. Since y ⊥⊥ x|v′x yields that ỹ ⊥⊥ x|v′x, we have
SỸ |x ⊆ SY |x. In particular, provided that J is suffi ciently large, Sỹ|x ≈ Sy|x, and there is no loss of
information when y is replaced by ỹ.

Under more restrictive assumptions on the processes xt and xt|(yt+h = s), s = 1, . . . , J , t =
1, . . ., h = 0, 1, . . ., it can also be shown that their sample means are approximately normally
distributed for large T (see Appendix D). Under the same assumptions we can then obtain that
M̂h is asymptotically normal following similar arguments as Bura and Yang (2011)[15] who obtained
the asymptotic distribution of M̂ when the data are iid draws from the joint distribution of (y,x).
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4.3.2 Inverse Regression as Extraction of Targeted Factors

Most SDR methodology is based on inverse regression. In general, inverse regression focuses atten-
tion on the set of p inverse regressions

x = a + Bf (y) + e (4.6)

where y is substituted with f (y) that contains functions of y whose choice reflects different inverse
regression based SDR methods. Such functions play the role of “observed factors”and in practice,
in addition to contemporaneous and lagged values of y, may contain various functions of y such
as polynomials. For example, SIR effectively approximates f (y) with step functions; parametric
inverse regression (PIR) (Bura and Cook (2001b) [13]) and principal fitted components (PFC, Cook
and Forzani (2008)[20]) approximate f (y) with continuous functions of the response. These three
SDR methods essentially analyze and extract the first few PCs of the space of the fitted values
in (4.6). The term f (y) plays the role of a factor structure, but, in contrast with the DFM, it is
observable. Intuitively the inverse regression approach replaces x with its projection on f (y) and
in so doing it extracts its “targeted”factor structure.

5 Empirical Application

5.1 Data and Out-of-Sample Forecasting Exercise

Next we want to put our estimators to work comparing them in a classical pseudo out-of-sample
macro-forecasting horserace against the parsimonious AR(4). We pick inflation (CPIAUCSL) and
industrial production as our targets (INDPRO). Then we look for a large set of regressors in order
to feed into our models as much information on the macroeconomy as possible. We would like to
adopt a “standard”dataset containing a large number of US macro variables however the various
forecasting studies that use large panels of US macro variables, aside from a core set of agreed upon
macro variables, is quite inhomogenous regarding the specific set of non-core variables to be used
in forming the initial dataset from which to choose or combine the variables. Given that one of
the tasks of the forecasting exercise is choosing the most useful variables to forecast a given target
variable, the choice of the initial dataset seems indeed crucial. The next paragraphs highlights
the rugged landscape of data sources used in some of the most important studies in the DFM
macro-forecasting literature and our final choice.

Settling on a Shared Data Source —A problem faced by any researcher in the macro-forecasting
field is the lack of comparability across studies due to the multitude of data sources and data
vintages used in the literature, a phenomenon that has been pervasive until recently. Luckily an
initiative spearheaded by McCracken and Ng and documented in McCracken and Ng (2015) [49]
has set out on the project to impose some discipline in the current and future production of macro-
forecasting studies. One outcome of the project has been the creation of a dataset of 132 macro
variables called FRED-MD and updated in real time by the same staff that maintains the popular
FRED database.9 We embraced their initiative and adopted FRED-MD as our dataset of choice
although the dataset comes with some limitations that we discuss to some extent below and more
in detail in the appendix.

Alternative Data Sources in Other DFM Studies —FRED-MD has fewer variables than the
quarterly dataset of 144 variables used by Stock and Watson in [58], apparently the most exploited

9The data can be dowloaded from Michael McCracken’s website at the St. Louis Fed at the address:
https://research.stlouisfed.org/econ/mccracken/fred-databases/
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dataset in quarterly studies. It has also fewer variables than the dataset of 143 variables used by
Stock and Watson in [60]. The latter is a quarterly study but the dataset posted by Mark Watson
contains monthly variables. Finally our dataset contains fewer variables than the 149 regressors
used by Stock and Watson in [54] or the 215 series used by Stock and Watson in [55].10 In turn,
both studies draw upon the work in the seminal NBER working paper [53] by Stock and Watson.
The recently published quarterly study [60] by Stock and Watson on shrinkage methods uses 143
series but in the dataset posted online by Mark Watson one can find only 108 monthly variables
and 79 quarterly variables. Although we have chosen the most up-to-date dataset available online
at the cost of omitting some variables given the data intensity of our statistical techniques we also
tried to run our pseudo-out-of-sample forecasts using some of the richer datasets mentioned above,
and we have noticed a slight deterioration of forecasting performance when using our dataset of
choice signalling that either some of the variables that we do not include might be marginally
helpful in improving the forecast or that data revisions played a role.11 Definitely the inclusion of
the great recession and the subsequent recovery, a period not covered by the mentioned studies,
appears to impart a substantive deterioration in the forecasting performance of the estimators that
we review. The following table summarizes several relevant studies and the salient characteristics of
their dataset and statistical methods used and McCracken and Ng (2015) [49] have an informative
chronology of the evolution of the large panel of macro datasets.

Table 1: Summary of Datasets Characteristics of Several Relevant Studies in the
DFM literature

Study # Var. Freq. Online Data Span Meth.
Stock and Watson (1998) [53] 224 m no 1959-1997 PCR, VAR
Stock and Watson (2002) [54] 149 m no 1959-1999 PCR, VAR
Stock and Watson (2002) [55] 215 m no 1959-1999 PCR, VAR
Bai and Ng (2008) [4] 132 m no 1959-2003 SPC, EN
Stock and Watson (2005) [56] 132 m yes 1959-2003 VAR, SVAR, PCR
Boivin and Ng (2006) [10] 147 m no 1960-1998 WPCR
Stock and Watson (2008) [58] 144 q yes 1959-2006 Split-Sample PCR

Stock and Watson (2012) [60] 108 m, q yes 1960-2008
PCR, IC, PT
BMA, EB, B

Jurado et al. (2015) [42] 135 m yes 1959-2010 PCR

FRED-MD —The dataset is called FRED-MD (where MD stands for monthly dataset) and it
contains a balanced panel with monthly data from 1960m1 to 2014m12, covering 54 years totaling
648 monthly observations.. We choose to work with monthly data since the companion quarterly
dataset FRED-QD is not available yet. Moreover, our SDR forecasting procedure is quite data
intensive and monthly data seem to be a better workbench to test our estimators at this juncture.
The dataset is described in McCracken and Ng (2015) [49] along with a discussion of some data
adjustments needed to construct the panel. We note that a major shortcoming of the dataset is
that core CPI and non-farm payroll employment, two of the most watched series by forecasters and
FED offi cials have not been included so far. FRED-MD contain very limited real-time vintages
making real-time forecasting unfeasible at the moment.
10The series in this study came from the DRI/McGraw-Hill Basic Economics database, formerly named

Citibase.
11We are currently working on retrieving an updated dataset with real-time vintages with about 150 regressors as

used by Stock and Watson in some of their work.
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Manipulation of FRED-MD —Some variables in the dataset have a large number of missing
data. Rather than running an EM algorithm to fill in the missing data and achieve a balanced
panel as done by McCraken and Ng (2015) [49], who in turn follow Stock and Watson (2002b) [55],
we exclude them. The five excluded variables are: ACOGNO=“New Orders for Consumer Goods”,
ANDENOx=“New Orders for Nondefense Capital Goods”, OILPRICE=“Crude Oil, spliced WTI
and Cushing”, TWEXMMTH=“Trade Weighted U.S. Dollar Index: Major Currencies”and UM-
CSENT=“Consumer Sentiment Index”. We do not apply any cleaning of outliers.

Data Transformations and Forecast Targets —We adopt the transformations suggested by Mc-
Cracken and Ng (2015) [49] and coded in the second row of the original downloaded dataset. We opt
to present our results for a “nominal”forecast target, CPI inflation with mnemonics CPIAUCSL,
and a “real” target, total industrial production with mnemonics INDPRO. We follow the litera-
ture and instead of forecasting the chosen target variables h months ahead we forecast the average
realization of the variable in the h months ahead period. Hence the transformation of the target
variable dictates the forecast target. For instance in the case of inflation, a variable marked as I(2)
and transformed as

yt = ∆2 log (CPIt)

we generate the target

yhh+t =
1200

h
ln

(
CIPt+h
CIPt

)
− 1200 ln

(
CPIt
CPIt−1

)
Industrial production is a variable marked as I(1) and tranformed by

yt = ∆ log (IPt)

and the resulting target will be

yhh+t =
1200

h
ln

(
IPt+h
IPt

)

The Pseudo Out-of-Sample Forecasting Scheme —We align the data as shown in the following
Figure by placing the target on the same line of the regressors in an ideal h-step ahead OLS scheme.
The transformed and aligned data are available on request. We conduct our forecasting exercise
at horizons h = 1, 3, 6, 12, 24. Both these are relevant horizons in practice and they are enough to
allow exploration of possible variation across horizons within each forecasting method. For practical
reasons, as common in the literature, we adopt h-step ahead regression rather than iterated in order
to avoid the simulation and feeding of exogenous regressors. As indicated in Figure 1, an advantage
of PCR, a non-supervised method, is that the principal components can be re-computed as soon
as a new line of obervations becomes available in the recursive scheme. The superscript of the PC
component in the table highlights this point: for instance when estimating PCR to forecast 3-steps
ahead, a 3-step ahead regression is run in t = 1984m01 regressing y3t+3 on the PCs for 1984m01
but computed using data through t + 1 = 1984m02. Then new data through 1982m02 is used to
forecast y3t+3+1 and prediction is formed

ŷ3t+3+1 = α3 + γ3 (L) yt + β3 (L) P̂C
t+3+1

(t)

and compared with the realized data (the comparison involving the two yellow cells in Figure 1).
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Figure 1: Data Alignement and Out-of-Sample Forecasting Scheme

Row Date t yh=3(t+h) yh=1(t+h) y(t) y(t­1) X(t) PC(t) PLS(t) yh3hat yh1hat
1 1959m01 NA NA y(1959m01) NA X(1959m01) NA NA
2 1959m02 yh=3(1959m05) yh=1(1959m03) y(1959m02) y(1959m01) X(1959m02) NA NA
3 1959m03 yh=3(1959m06) NA NA
… … … … … … … NA NA
… … … … … … … NA NA

13 1960m01 yh(1960m04) yh=1(1960m02) y(1960m01) y(1959m12) X(1960m01) NA NA
… … … … … … … NA NA
… … … … … … … NA NA
… … … … … … … NA NA
… … … … … … … NA NA
… … … … … … … NA NA

301 1984m01 yh=3(1984m04) yh=1(1984m02) y(1984m01) y(1983m12) X(1984m01) PC1984m02(1984m01) PLS1984m01(1984m01) NA NA
302 1984m02 yh=3(1984m05) yh=1(1984m03) y(1984m02) y(1984m01) X(1984m02) yhath=3(1984m05) yhath=1(1984m03)

303 1984m03 yh=3(1984m06) yh=1(1984m04) y(1984m03) y(1984m02) X(1984m03) yhath=3(1984m06) yhath=1(1984m04)
y(1984m04) y(1984m03) X(1984m04)

… … … … … … … … …
… … … … … … … … …
… … yh=3(2015m05) yh=1(2015m03) y(2015m02) y(2015m01) X(2015m02) … …

675 2015m03 yh=3(2015m06) yh=1(2015m04) y(2015m03) … … yhath=3(2015m06) yhath=1(2015m04)
676 2015m04 NA yh=1(2015m05) y(2015m04) … … NA yhath=1(2015m05)
677 2015m05 NA yh=1(2015m06) y(2015m05) … … NA yhath=1(2015m06)
678 2015m06 NA NA y(2015m06) … … NA NA

We report results for different sub-samples however our out-of-sample forecasting exercise uses
a recursive window rather then a moving one.

5.2 Estimation Details and Results on the Number of Components

The practical implementation of the estimators summarized in an earlier Section necessitates the
choice of several details. In this Section we present these choices by estimation procedure and some
sensitivity analysis of the results.

RIDGE —In order to implement RIDGE we used the R package glmnet by Friedman et al.
(2015) [33]. The shrinkage parameter λ needs to be chosen prior to the estimation. DeMol et al.
(2008) [25] resorted to fit a grid of values and report MSFE for all. We tried some of the values of
their grid and we discuss their forecast performance below. However we also opted to fully exploit
the full functionalities of glmnet and let the data suggest a value for lambda using nfold cross-
validation (where n = 8). As a result of the cross-validation we obtain sequences for λs at each
forecasting step that we plot in Figure 2. In the top plot are the values of λmin that minimize the
cross-validation error. The bottom plot contains the values of λ1se corresponding to a 1 standard
deviation of the cross-validation sequence (the default). A striking pattern is revealed in the plot:
it appears that forecasting at any horizon becomes increasingly diffi cult after the great recession
with a sudden surge both in the volatility and average level of λ, a sign of RIDGE attempting to
shrink more as a reaction in the increase diffi culty in prediction. The discouraging results in terms
of MSFE that we report in the next Section appear to be the flip side of this feature.
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Figure 2: CPIAUCSL: λmin and λ1se Selected by Cross-Validated RIDGE over the
Recursive Forecasting Window.

PCR —We estimate many different versions of PCR in order to cover a wide menu of choices of
the truncation meta-parameterM . First of all we follow Stock and Watson (2002) [55] and estimate
a series of PCRs (in this context known as diffusion indexes with acronym DIAR) with a constant
M throughout the forecasting experiment. We looked at values for M = 1, 2, 3, 4, 5, 6, 8, 10, 20, 30
generating models PCRn1 through PCRn30. When forecasting inflation we find that 8 components
explain about 45% of the variance of the panel matching the findings in McCracken and Ng (2015)
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[49]. We note that simulations from an approximate factor model in Barbarino and Bura (2015)
[7] in which the true number of factors is 8 result in at least 75% of explained variance on average
across simulations.

We use the R-package pls by Mevik et al. (2013) [50] which also implements PCR where the
number of components M is selected via cross validation.. The cross-validation in-sample MSFE
has an interesting contour over the number of components with one or two local minima and a
global minimum all of them depending on the forecast horizon. The global minimum on average is
achieved only with a rather large number of components especially toward the end of the sample
as shown in the first panel in Figure 3. That is a striking feature considering that in simulations
reported in our companion paper Barbarino and Bura (2015) [7] cross-validation tends to gravitate
around a number of components close to the number of true factors. The results in our empirical
investigations in this paper suggest that either the true number of factors generating FRED-MD is
indeed very large or that some non-linearities (such as change in regime) or other features of the
data disrupt somewhat the effectiveness of cross-validation after the early 2000s. Cross-validation
appears to generate a quite volatile choice for the number of components over the experiment at all
forecast horizons. The evolution of the first local minimum is shown in the second panel of Figure 3
(model PCRmin1), which although may be less volatile it is still quite unstable. Another possibility
is implementing best subset selection (BSS) in the choice of the components: model PCRbss is
allowed to pick any component and PCRbss30 only in the first 30.To implement BSS, we use the
leaps R-package by Thomas Lumley (2009) [47]. BSS does not impose a hierarchical ordering of
the components (in which if component #3 is used also component #2 is used). Rather it uses
a backward search running very many regressions from larger models to smaller ones eliminating
regressors using the BIC criterion. The last two panels of Figure 3 highlight that forecasting at
longer horizons seems more diffi cult and requires more components. Also for these models it appears
that forecasting in the last part of the window requires more components on balance.
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Figure 3: CPIAUCSL: Number of Components Selected by Cross-Validated and Best
Subset PCR over the Recursive Forecasting Window.

We also run PCR with selection of the components according to Bai and Ng (2002) [2] and
pick their favorite PCp2 and the alternative ICp2 criteria. Also in this exercise we find instabilities
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worth of note. We can more or less reproduce the results in McCracken and Ng (2015) [49] in
which it is shown that such criteria select about 8 to 10 components (as remarked above this
number of components explains less than half of the variance in the panel). However especially
PCp2 is very sensitive to the maximum number of allowed components that has to be entered in
their computation (a meta-parameter that we denote with kmax). Setting kmax = 30, a natural
choice since 30 components explain about 90% of the variance of the dataset (model PCRpcp2, top
plot in the Figure below), we obtain that PCp2 selects many more components than with kmax = 15
(model PCRpcp2b, 3rd panel below). For kmax = 50 PCp2 selects way more components, more
than cross validation and very frequently all components, about 120 on average. By contrast ICp2
appears to be more stable when kmax moves from 15 to 30. ICp2 becomes very unstable when kmax
is above 70. The selection of the number of components for these criteria is shown in Figure 4.
Notice that these criteria, being untargeted are not affected by the forecast horizon at hand.

PLS —We implement PLS using the pls package in [50]. We choose the truncation meta-
parameter u with cross-validation. We implement two models. In PLSRcv we include yt and its
lags directly in the X matrix whereas in model PLSRcvd we do not include them and in a second
step we run OLS of the target on yt and its lags and the PLS components. In contrast with PCR,
at short horizons u is not very large. At longer horizons, h = 12 and h = 24 PLS needs a large
number of components, similar to PCR. The great recession appears to require more components
also at shorter horizons.
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Figure 4: CPIAUCSL: Number of Components Selected by PCp2 and ICP2 Criteria
over Recursive Forecasting Window (kmax = 30 in top 2 panels, kmax = 15 in bottom
2 panels).
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Figure 5: CPIAUCSL: Number of Components Selected by Cross-Validation of PLS
over Recursive Forecasting Window.

Table 2 compares PCR and PLS on the basis of explained variance with 10 components. Despite
the much smaller number of components the superior targeting nature of PLS relative to PCR is
evident as 10 components explain about 70% of the variance CPIAUCSL and 60% of the variance

26



in INDPRO. Not only does PLS explains a larger fraction of the variance in the target but also it
explains a fraction of the variance of the panel similar to the fraction explained by PCR.

Table 2: Comparing PCR and PLS on the Basis of Explained Variances by 10 Comp.

CPIAUCSL INDPRO

PCR10
%var(X)
%var(yt+h)

52%
33%

52%
40%

PLS10
%var(X)
%var(yt+h)

50%
70%

46%
60%

Tables 3 and 4 wrap up the results on the average number of components and their volatility
across our estimators.

Table 3: Average of Num. Components Selected (Estimation Sample: 1960m01-
1982m01-2013m01)

CPIAUCSL INDPRO
horizon h=1 h=3 h=6 h=12 h=24 h=1 h=3 h=6 h=12 h=24
RIDGE 1.43 0.91 0.54 0.73 0.47 14.78 9.23 5.43 7.41 3.18

RIDGE1se 69.94 15.19 26.05 6.31 2.70 192.24 70.51 35.10 25.39 12.89
PCRcv 47.90 46.93 46.18 48.39 46.57 117.38 117.06 117.00 117.13 117.11

PCRmin1 11.38 11.57 11.56 11.35 11.21 34.30 35.75 36.21 35.79 36.37
PCRmin2 23.37 23.43 23.68 23.02 23.19 57.72 59.60 60.95 60.26 60.16
PCRpcp2 23.73 23.73 23.73 23.73 23.73 23.53 23.53 23.53 23.53 23.53
PCRpcp2b 10.37 10.37 10.37 10.37 10.37 10.37 10.37 10.37 10.37 10.37
PCRicp2 6.74 6.74 6.74 6.74 6.74 6.74 6.74 6.74 6.74 6.74
PCRicp2b 6.74 6.74 6.74 6.74 6.74 6.74 6.74 6.74 6.74 6.74
PCRbss 9.30 7.06 12.10 22.23 24.61 10.53 12.41 18.49 17.02 17.94

PCRbss30 3.15 2.98 3.53 5.97 7.67 3.88 4.12 4.40 7.28 8.73
PLSRcv 9.01 10.97 27.85 70.86 63.99 1.39 2.37 13.18 2.06 4.17
PLSRcvd 3.23 5.24 8.37 39.31 44.79 1.26 2.47 4.58 2.18 3.94
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Table 4: Standard Deviation of Num. Components Selected (Estimation Sample:
1960m01-1982m01-2013m01)

CPIAUCSL INDPRO
horizon h=1 h=3 h=6 h=12 h=24 h=1 h=3 h=6 h=12 h=24
RIDGE 3.88 3.15 2.95 2.98 2.07 9.86 9.23 5.43 7.41 3.18

RIDGE1se 241.51 115.36 192.18 26.19 16.66 91.86 70.51 35.10 25.39 12.89
PCRcv 20.91 21.15 21.06 20.88 20.80 2.55 117.06 117.00 117.13 117.11

PCRmin1 6.50 6.67 6.36 5.83 6.16 25.76 35.75 36.21 35.79 36.37
PCRmin2 8.18 7.77 7.46 7.41 7.35 27.51 59.60 60.95 60.26 60.16
PCRpcp2 0.95 0.95 0.95 0.95 0.95 0.91 23.53 23.53 23.53 23.53
PCRpcp2b 0.49 0.49 0.49 0.49 0.49 0.48 10.37 10.37 10.37 10.37
PCRicp2 0.96 0.96 0.96 0.96 0.96 0.96 6.74 6.74 6.74 6.74
PCRicp2b 0.96 0.96 0.96 0.96 0.96 0.96 6.74 6.74 6.74 6.74
PCRbss 2.34 2.74 3.27 3.02 1.18 3.96 12.41 18.49 17.02 17.94

PCRbss30 1.18 1.71 1.79 1.26 1.77 1.14 4.12 4.40 7.28 8.73
PLSRcv 6.98 5.78 23.09 37.27 26.39 0.68 2.37 13.18 2.06 4.17
PLSRcvd 3.49 6.27 11.29 36.88 34.18 0.44 2.47 4.58 2.18 3.94

SIR —As mentioned SIR requires a large sample to yield reliable estimates. In our companion
paper Barbarino and Bura (2015) [7] we develop a Krylov subspaces version of SIR that can handle
cases where p > T . However in line with the exploratory nature of this paper we wanted to test
the performance of a standard SIR which necessitated pre-processing of the data over samples
where p > T or p is of order close to T . When we pre-condition the data we use 20 or 30 PCs,
a number suffi cient to preserve between 75% and 90% of the total variance in the panel. The
idea is that by retaining a suffi cient number of components not too much information on the
conditional predictive density of yt+h|xt is lost and the application of SIR on the reduced data can
still identify and estimate a SDR subspace. We describe in detail the algorithm use to compute our
pre-processed SIR in the Appendix. Although we are experimenting with non-parametric regression
techniques in order to model the forward regression at this point we report only results obtained
using a linear forward regression that models the dynamics of yt and includes SIR components.
This solution is suboptimal and likely negatively affects the forecasting accuracy of our estimator
as it omits including non-linear terms which are implied by the higher than one dimension of
the SIR predictors. Despite this fact our results are encouraging. Regarding the choice of the
dimension of the SDR subspace, we tried to apply both the asymptotic weighted-chi square in
Bura and Cook (2001b) [13] and the permutation test in Cook and Yin (2001) [24], however both
proved to be very unstable and unreliable in our time-series settings. While we are working on
the development of a test appropriate for our time-series environment, in this paper we estimate
the dimension to be the number of SIR predictors resulting in the most accurate forecasts under
several scenarios of constructing the SIR predictors and forward forecasting models. We verify that
almost never a dimension larger than two is beneficial in the forecasting exercise. Notice that in the
factor literature the information criteria used to select the number of components are somewhat
cumbersome, involving some “model-mining”(for instance see the preceding discussion on kmax).
Our two-step procedure can be viewed as an alternative way of selecting the PC components
whereby optimal selection is achieved by SDR techniques achieving as we will see shortly extreme
parsimony.12 We will also show that for large samples standard SIR applied to the raw variables
12This might have the flavor of a optimal weighting scheme in the extraction of the factors as suggested by Boivin
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has competitive performance using only one or two SIR predictors.

5.3 Results: Forecasting Performance

We now turn to the analysis of the forecasting performance of the estimators that we have lined up
in this study. We concentrate on the mean square forecast error (MSFE) as a measure of perfor-
mance although broadly similar results are obtained using the mean absolute error criterion. The
forecasting performance can depend on the range of the sample it is based on. This is particularly
true as the “great recession” is covered in our data. To study such effect and also to be able to
draw inference unencumbered by such effect, we consider several sample ranges.

Estimators that Use One Component —AR(4), OLS and RIDGE use only one linear combination
to form their forecast. Also RIDGE does so. In Table 5 we report MSFE for these three methods
at five different horizons. OLS, as expected, is greatly affected by the relatively small sample size.
This said, in simulations conducted in a companion paper [7] we found that OLS are much more
competitive when the data are generated by an exact factor model and only large deviation from
such DGP or extreme paucity of observations disrupt the forecast effi ciency of OLS. We do show
in that paper that indeed an exact factor model implies that OLS is the correct model to use. We
were surprised by the sub-par performance of RIDGE as it performs well very few times. This is in
contrast with results in DeMol et al. (2008) [25]. We did feed into our RIDGE estimator (models
RIDGE141 through RIDGE3532) also the parameters suggested in DeMol et al. (2008) [25] with
little success. Data revisions, sample and estimation procedures may explain the difference.

Table 5: OLS, AR4 and RIDGE: MSFE Relative to AR4 (Estimation Sample: 1960m01-
1982m01-2013m01)

CPIAUCSL INDPRO
horizon h=1 h=3 h=6 h=12 h=24 h=1 h=3 h=6 h=12 h=24
OLS 2.11 6.07 8.92 7.77 1.07 1.73 1.33 4.61 32.47 7.33
AR4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RIDGE 0.92 2.05 5.57 7.66 1.51 0.97 0.87 1.11 6.04 6.99
RIDGE1se 1.00 1.68 5.33 6.66 1.47 0.94 0.95 0.99 1.70 2.55
RIDGE141 1.10 1.56 2.04 2.36 2.73 0.92 0.98 1.00 1.05 1.02
RIDGE288 1.11 1.59 2.09 2.43 2.84 0.96 1.08 1.08 1.05 1.01
RIDGE292 1.11 1.59 2.09 2.43 2.84 0.96 1.08 1.08 1.05 1.01
RIDGE528 1.12 1.60 2.11 2.47 2.89 1.01 1.17 1.15 1.06 1.01
RIDGE582 1.12 1.60 2.12 2.47 2.89 1.01 1.18 1.16 1.07 1.01
RIDGE949 1.12 1.61 2.13 2.49 2.92 1.05 1.24 1.19 1.07 1.01
RIDGE3532 1.12 1.62 2.15 2.52 2.96 1.11 1.34 1.27 1.09 1.01

Principal Components Regression —We now turn to the performance of the diffusion index
models in Table 6. PCR appears to be effective when forecasting one month ahead for both targets
however forecasting inflation with PCR hits a wall at longer horizons. Including enough components
appears to be key in general. Industrial production appears to be an easier to forecast and methods
that select a relatively stable number of components are the most successful, such as fixing 8 or 10
components or using PCp2 or ICp2. Also BSS restricted to 30 components seems to be working

and Ng (2006) [10].
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consistently well across horizons. PCR with 10 PCs has consistently good performance for CPI but
not for industrial production.

Table 6: Principal Component Regression: MSFE Relative to AR4 (Estimation Sam-
ple: 1960m01-1982m01-2013m01)

CPIAUCSL INDPRO
horizon h=1 h=3 h=6 h=12 h=24 h=1 h=3 h=6 h=12 h=24
PCRcv 0.97 1.02 0.96 1.31 1.83 1.17 7.67 15.88 7.66 3.77

PCRmin1 0.95 1.07 1.11 1.18 1.37 1.00 1.06 1.04 1.00 0.90
PCRmin2 0.99 1.05 1.06 1.22 1.29 1.02 1.12 1.12 1.03 0.95
PCRpcp2 0.96 1.01 1.02 1.10 1.25 1.04 1.01 0.99 0.93 0.89
PCRicp2 0.95 1.06 1.11 1.19 1.38 0.92 0.89 0.94 0.96 1.06

PCRpcp2b 0.93 1.07 1.12 1.20 1.40 0.94 0.87 0.93 0.92 0.93
PCRicp2b 0.95 1.06 1.11 1.19 1.38 0.92 0.89 0.94 0.96 1.06
PCRbss 0.97 1.09 1.04 1.03 1.10 1.05 1.03 1.05 1.01 0.89

PCRbss30 0.97 1.06 1.06 1.16 1.30 0.96 0.93 0.95 0.91 0.90
PCRn1 1.02 1.05 1.08 1.13 1.34 0.96 0.96 0.98 0.99 1.01
PCRn2 1.03 1.07 1.08 1.11 1.22 0.95 0.94 1.00 1.01 1.08
PCRn3 1.03 1.07 1.09 1.14 1.27 0.94 0.93 0.98 0.99 1.07
PCRn4 0.98 1.07 1.09 1.16 1.33 0.93 0.93 0.98 0.99 1.08
PCRn5 0.97 1.07 1.10 1.18 1.39 0.93 0.94 0.99 1.00 1.07
PCRn6 0.95 1.05 1.10 1.19 1.40 0.93 0.93 1.00 1.01 1.08
PCRn8 0.95 1.06 1.11 1.19 1.38 0.92 0.85 0.92 0.94 1.05
PCRn10 0.93 1.07 1.12 1.21 1.41 0.94 0.87 0.93 0.93 0.94

Partial Least Squares Regression —The general impression from Table 7 is that cross-validation
is very effective when forecasting industrial production at all horizons whereas fixing the number of
components causes a deterioration of the MSFEs. The opposite seems to be true when forecasting
inflation, in which case fixing the number of components to 6 or 8 seems the most appropriate
choice. On balance, PLS comes out of the horserace as one of the best performers especially for
inflation.

Table 7: Partial Least Squares Regression: MSFE Relative to AR4 (Estimation Sam-
ple: 1960m01-1982m01-2013m01)

CPIAUCSL INDPRO
horizon h=1 h=3 h=6 h=12 h=24 h=1 h=3 h=6 h=12 h=24

PLSRcv 1.02 1.09 1.06 1.01 0.87 0.93 0.87 0.95 0.89 0.86
PLSRcvd 0.96 1.00 1.02 1.09 1.09 0.96 0.90 0.97 0.95 0.87
PLSRn2 0.99 0.98 1.00 1.05 1.19 0.94 0.92 0.96 0.92 0.91
PLSRn4 0.90 0.94 0.94 1.00 1.14 1.09 1.08 1.02 0.93 0.85
PLSRn6 0.95 0.96 0.94 0.99 1.11 1.11 1.18 1.12 1.02 0.92
PLSRn8 0.97 0.98 0.95 0.98 1.07 1.08 1.11 1.08 1.00 0.91
PLSRn10 0.98 0.96 0.93 0.95 1.02 1.11 1.14 1.09 1.04 0.93

Sliced Inverse Regression —Table 8 reports SIR MSFE’s relative to AR(4). Pre-conditioned
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SIR (the first 4 lines of the table) on 30 or 20 PCs turns out to deliver some good results. The last
two lines of the table report the results of using principal component regression. SIR is capable of
summarizing in just one or two components the information encapsulated in 20 or 30 PCs. SIR
improves the dismal performance of PCR in forecasting inflation in the medium term. We view the
gain in parsimony and modeling as the major advantage of using SIR in this instance. As mentioned
earlier our results are certainly adversely affected by forward model misspecification given that it
appears that two SIR components capture all relevant information on the conditional distribution
of yht+h|xt. Existing methods in the SDR literature exploit regression graphic devices in this case
which are not easily ported in a pseudo forecasting experiment with estimation repeated hundreds
of times. We are working to effi ciently implement non-parametric methods in order to solve this
problem. Finally we also report estimates for SIR on the raw data, without pre-conditioning. The
sample is already long-enough to deliver a performance that slightly beats the AR(4) at short
horizons although the estimation has been carried out using an inverse regression of the regressors
on yt rather than yht+h in order to preserve as much information as possible in the estimation
algorithm, an additional source of mispecification.

Table 8: Sliced Inverse Regression: MSFE Relative to AR4 (Estimation Sample:
1960m01-1982m01-2013m01)

CPIAUCSL INDPRO
horizon h=1 h=3 h=6 h=12 h=24 h=1 h=3 h=6 h=12 h=24

PC30SIRdr1OLS 0.99 0.97 0.95 1.01 1.13 1.07 1.04 1.12 0.95 0.94
PC30SIRdr2OLS 1.00 0.97 0.95 1.01 1.13 1.03 1.00 1.05 0.93 0.91
PC20SIRdr1OLS 0.99 0.97 1.02 1.07 1.18 0.99 0.97 1.03 0.94 0.94
PC20SIRdr2OLS 0.97 0.99 1.04 1.07 1.20 0.98 0.93 0.97 0.91 0.90

SIRdr1OLS 0.98 1.00 1.01 1.01 1.03 0.97 1.01 1.02 1.02 1.04
SIRdr2OLS 0.97 0.99 1.01 1.00 1.05 0.96 1.00 1.01 1.03 1.04

PCRn20 0.96 1.07 1.11 1.20 1.41 0.99 0.97 0.97 0.92 0.88
PCRn30 0.99 1.03 1.04 1.12 1.26 1.05 1.05 1.02 0.94 0.88

A Sub-Sample Comparison of SIR and PCR —In Tables 10-13, we report relative MSFEs with
respect to AR(4) focusing attention to PCR, as the most widely used dimension reduction method
in macro-economic forecasting, and SIR based forecasting models, whose regularized version also
uses the PCs of the x variables. Because the SIR predictors are driven by the inverse regression of
the predictors on the response, in a time series context, where the contemporaneous target variable
and its lags can be used as predictors, different choices of variables to consider as predictors and
response lead to different SIR models. The four different SIR based models we use are defined in
Table 9 as follows. The second column describes how the SIR predictors are formed. For example,
in SIRa, the SIR predictors are obtained from using all x-predictors and yt and its 4 lags as the
X-predictor matrix and yt+h as the response that is sliced in the SIR algorithm of Section 4.3.
When the PCs are used, then the regularized SIR algorithm in Appendix B is applied. The third
column defines the forward forecasting model. For SIRa, for example, yt+h is regressed on a linear
model with inputs the corresponding SIR predictors from the second column. In Tables 10 and 12,
only the regularized version of SIR is used as the starting sample is small relative to the number
of predictors.
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Table 9: SIR based Forecasting Models

SIR Predictors (inverse regression) Forward Model
SIRa X or PCs and yt + 4 lags on yt+h yt+h on SIR predictors
SIRb X or PCs and yt + 4 lags on yt+h yt+h on yt + 4 lags and SIR predictors
SIRc X or PCs on yt+h yt+h on yt + 4 lags and SIR predictors
SIRd X or PCs on yt yt+h on yt + 4 lags and SIR predictors

For both inflation and industrial production, the general pattern across forecasting windows
and horizons is that SIR, either standard or regularized, has similar performance to PCR. For
the longest horizon of 24 months, SIR with has better performance. The only exception is for
industrial production over the period 2003:01-2014:12 for models SIRa, SIRb and SIRc (see relative
MSFEs in Table 13) where SIR predictors based on all 129 x variables are used. In contrast, over
2010:01-2014:12, the performance is on par with the other methods. This finding confirms that the
sample size has a dramatic impact in SIR performance. Notably, SIRd, where the SIR predictors
are built using only yt, does not appear to be affected by the size of the sample. In effect, for these
econometric series, SIRd exhibits overall the best performance for both PC-based and standard SIR
across periods and horizons. PCR typically needs 10 components to achieve its best performance
across horizons and time windows. In sum, SIR is shown to achieve what it is designed to do; that
is, significantly reduce the dimension of the forecasting problem.

Table 10: Relative MSFE with respect to AR(4) for predicting CPIAUCSL

CPIAUCSL 1971:01-2014:12 1982:01-2014:12
horizon h=1 h=3 h=6 h=12 h=24 h=1 h=3 h=6 h=12 h=24
PCRn4 0.96 0.974 0.95 0.894 0.767 0.97 1.07 1.092 1.153 1.33
PCRn5 0.96 0.98 0.959 0.909 0.791 0.97 1.07 1.102 1.178 1.4
PCRn10 0.94 0.982 0.976 0.913 0.763 0.93 1.07 1.119 1.202 1.41
PCRn20 1 0.996 0.989 0.934 0.779 0.96 1.07 1.117 1.202 1.41

PC20SIRa 0.99 1.008 1.022 1.01 0.805 0.935 1.07 0.935 1.3 1.45
PC20SIRb 0.954 0.983 0.999 0.938 0.763 0.947 1.05 0.947 1.194 1.35
PC20SIRc 0.972 1.001 1.015 0.933 0.768 0.972 1 0.972 1.067 1.2
PC20SIRd 0.984 1.004 0.982 0.953 0.939 0.977 1.01 0.977 0.995 1.05
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Table 11: Relative MSFE with respect to AR(4) for predicting CPIAUCSL

CPIAUCSL 2003:01-2014:12 2010:01-2014:12
horizon h=1 h=3 h=6 h=12 h=24 h=1 h=3 h=6 h=12 h=24
PCRn4 0.967 1.08 1.144 1.229 1.372 0.962 1.091 1.121 1.136 1.124
PCRn5 0.961 1.083 1.161 1.267 1.469 0.963 1.078 1.105 1.188 1.204
PCRn10 0.901 1.079 1.183 1.311 1.516 1.001 1.134 1.185 1.293 1.3
PCRn20 0.918 1.065 1.174 1.311 1.493 1.065 1.134 1.161 1.264 1.221

PC20SIRa 0.921 1.063 1.217 1.414 1.537 1.1 1.136 1.21 1.508 1.406
PC20SIRb 0.935 1.05 1.185 1.291 1.408 1.073 1.102 1.157 1.24 1.192
PC20SIRc 0.963 0.998 1.079 1.068 1.162 1.117 1.023 1.053 1.057 1.314
PC20SIRd 0.968 1.005 0.993 0.99 1 1.045 1.04 0.986 0.973 1.208

SIRa 57.416 30.219 6.788 7.059 8.975 1.597 1.345 1.39 1.339 1.917
SIRb 25.035 18.929 4.659 5.897 8.183 1.209 1.122 1.192 1.238 1.78
SIRc 20.473 25.865 2.388 11.89 1.902 1.057 1.145 1.062 1.378 2.225
SIRd 0.948 0.981 0.991 0.989 1.012 0.982 0.997 1.023 0.999 1.012

Table 12: Relative MSFE with respect to AR(4) for predicting CPIAUCSL

INDPRO 1971:01-2014:12 1982:01-2014:12
horizon h=1 h=3 h=6 h=12 h=24 h=1 h=3 h=6 h=12 h=24
PCRn4 0.904 0.8 0.761 0.717 0.75 0.943 0.947 0.996 0.989 1.078
PCRn5 0.897 0.8 0.769 0.718 0.74 0.937 0.946 0.999 0.996 1.069
PCRn10 0.914 0.83 0.807 0.713 0.65 0.932 0.884 0.94 0.927 0.946
PCRn20 0.954 0.9 0.868 0.741 0.64 0.987 0.986 0.983 0.922 0.882

PC20SIRa 0.946 0.86 0.867 0.742 0.64 0.977 0.93 0.977 0.921 0.91
PC20SIRb 0.94 0.88 0.872 0.741 0.64 0.996 0.95 0.996 0.917 0.901
PC20SIRc 0.914 0.89 0.819 0.693 0.62 0.975 0.95 0.975 0.912 0.907
PC20SIRd 1.008 1.02 1.002 0.973 1 1.035 1.036 1.035 1.002 0.976

Table 13: Relative MSFE with respect to AR(4) for predicting CPIAUCSL

INDPRO 2003:01-2014:12 2010:01-2014:12
horizon h=1 h=3 h=6 h=12 h=24 h=1 h=3 h=6 h=12 h=24
PCRn4 0.972 1.015 1.024 0.942 1.032 1.058 1.449 1.675 2.092 11.594
PCRn5 0.987 1.009 1.022 0.925 0.994 1.043 1.34 1.38 0.875 4.311
PCRn10 0.994 0.946 0.965 0.849 0.814 1.086 1.629 1.937 2.405 4.521
PCRn20 1.038 0.986 0.959 0.783 0.657 1.037 1.619 1.962 2.78 4.701

PC20SIRa 1.008 0.912 0.965 0.77 0.685 0.986 1.423 1.594 1.863 6.566
PC20SIRb 1.02 0.952 0.976 0.768 0.673 1.006 1.517 1.626 1.868 6.835
PC20SIRc 1.019 0.961 0.954 0.774 0.679 1.062 1.597 1.653 1.985 7.596
PC20SIRd 1.027 1.043 1.012 0.973 0.922 1.045 1.183 1.085 1.203 3.425

SIRa 18.339 2.83 9.592 9.422 10.488 1.966 2.729 2.769 3.659 12.07
SIRb 15.967 2.668 9.295 8.723 10.446 1.815 2.652 2.648 3.6 11.782
SIRc 10.115 1.312 7.347 5.717 6.459 1.697 2.37 2.672 4.013 11.232
SIRd 0.93 1.008 1.033 1.044 1.043 0.956 1.125 1.149 1.29 1.378
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Evolution of the MSFE —Inflation appears definitely harder to forecast than industrial produc-
tion, consistent with findings in the forecasting literature. Are there specific periods in which the
forecast performance of our estimators deteriorates? Figure 6 portrays the evolution of the MSFE
in forecasting inflation 12 months ahead for selected estimators (so each point represents the MSFE
up to that point). There are definitely periods in which forecasting inflation is harder, however it
seems that these periods vary by estimator with SIR computed out of 20 PCs being the first to
react negatively to bad data entering the sample through the rolling window. Using asa a metric
the height of the spikes it looks like PC20SIRdr performs at par if not better than other estimators
except in the very last portion of the window.

Figure 6: CPIAUCSL: Rolling MSFE for Selected Estimators

In-Sample Fit —As is evident from Figure 7 there is no obvious relationship between in-sample
fit and the out-of-sample forecasting performance commented above. For instance, OLS thanks to
the very large number of variables, some subcomponents of the target variable itself, produces very
high R-squared and bad forecasting results.
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Figure 7: CPIAUCSL: R-Squared for Selected Estimators over Pseudo Forecasting
Window
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6 Conclusions

7 Summary and Conclusions

In this paper we (1) introduced suffi cient dimension reduction methodology to econometric fore-
casting and focused on linear moment-based SDR, (2) derived properties of the SIR SDR estimator
for covariance stationary series, (3) cast OLS, PCR, RIDGE and PLS in a common framework , and
(4) studied the forecasting performance of these four methods, as well as SIR, using the FRED-MD
data set put together by McCracken and Ng (2015) [49]. The empirical results indicate that PCR,
PLS and SIR do not exhibit drastically different performance. The competitive edge of SIR is its
parsimony: it attains practically the same forecasting accuracy using one or two linear combinations
of the predictors. In contrast, both PLS and PCR require many components, in many cases more
than ten. OLS and RIDGE are not found to be competitive for these data and the time periods
we considered in our forecasting exercise.

There are several issues that impede the performance of SIR and which can be improved upon.
Dimension two or higher in SIR indicates the presence of nonlinear relationships between the
response and the SIR predictors. In such cases, plots of the response versus the SIR predictors
would inform the construction of a more appropriate forward model. As the forecasting experiment
was carried out in an automatic fashion, we could not visually assess the nature of nonlinearities
and nonlinear functions of the SIR predictors were not included in the forecasting model. Gains
in forecasting accuracy can potentially be realized by the inclusion of nonlinear SIR terms in the
forward model.

SDR in general, and SIR in particular, require a large sample size to yield reliable results. The
sample size of the FRED-MD data set is not large enough for SIR to be optimally used. For some
periods in the forecasting exercise, SIR predictors were extremely unstable as the sample covariance
matrix of the raw predictors was close to ill-conditioned. We develop a Krylov subspaces version of
SIR to address this issue in a separate paper. Nevertheless, both these issues amount to limitations
that need to be addressed for SIR, or SDR in general, to be properly applied to such data and
deserve future empirical and theoretical research.

Appendix A: List and Description of Variables

The following set of tables summarizes the variables in FRED-MD. Each table collects variables
by statistical data release imparting an organization of the variables slightly rearranged relative to
the tables in McCracken and Ng (2015) [49]. Grouping by statistical data release report is more
useful both because the timing of the data release is different (although the timing is not exploited
in the present study) and because some variables are aggregates of more detailed information in
any one statistical data release and share the information and possible biases of that statistical
release. Our reordering allows a better bird’s eye view on the sources of information. We briefly
describe each statistical data release below. In addition each table reports, under the column T, the
transformation used13. The G column denotes the grouping chosen by McCracken and Ng (2015)
[49] in turn not too dissimilar from groupings operated in other DFM studies. The FRED-MD
column reports the variable mnemonics in the original FRED-MD datasets. The Description
column permits to identify the series. The remaining two columns denote the Global Insight code
and description; the GSI description allows to map the individual series with datasets in older
papers. In some papers not all variables are used to compute principal components, a strategy

13The transformations closely follow McCracken and Ng (2015) [49] who in turn follow Stock and Watson.
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followed by Stock and Watson (2005) [56], who add an additional column containing a dummy to
denote whether the variable was used in the computation of the PCs. We include all variables when
computing PCs hence we do not need such additional column. Asterisked series are adjusted by
McCracken and Ng (2015) (see [49] for details).

Variables Directly Measuring Output —The most reliable and used data containing measures
of output at a monthly frequency come from the IP system within the statistical release G.17
produced at the Federal Reserve Board and covering industrial production. The IP system contains
information on about 200 sectors at NAICS 4-digits level and covers the manufacturing, mining
and utilities sectors. The last variable is capacity utilization in manufacturing, one of the few
observable measures of slack also from the G.17, computed as manufacturing IP

manufacturing capacity ; manufacturing
capacity is estimated by staff at the FRB using the quarterly survey of capacity (in turn run by the
BLS) and included in the G.17 publication. The G.17 publication contains information on about
94 subaggregates at NAICS 4 digit level whereas the IP system used to produce it is based on 200+
atoms. Apart from the top aggregate INDPRO, the next seven rows represent the splitting and
regrouping of the 200+ atoms in so called “market”groups. The last market group is split in two
subaggregates, durable and non-durable materials. Manufacturing IP is a subaggregate of IP at the
same level as Utilities. Fuels IP is an odd series to be included in this dataset given its idiosyncratic
pattern and its higher level of detail. Notice that 25% of final industrial production data (that is
after all revisions have taken place), are estimated from employment data (in the second table of
this Section), implying that this set of variables and the set in the second tables might be strongly
linked or have a factor in common.

Table 14: Output Variables from the IP System

id T G FRED-MD Description GSI Description
6 5 1 INDPRO IP Index IP: total
7 5 1 IPFPNSS IP: Final Products and Nonindustrial Supplies IP: products
8 5 1 IPFINAL IP: Final Products (Market Group) IP: final prod
9 5 1 IPCONGD IP: Consumer Goods IP: cons gds
10 5 1 IPDCONGD IP: Durable Consumer Goods IP: cons dble
11 5 1 IPNCONGD IP: Nondurable Consumer Goods IP: cons nondble
12 5 1 IPBUSEQ IP: Business Equipment IP: bus eqpt
13 5 1 IPMAT IP: Materials IP: matls
14 5 1 IPDMAT IP: Durable Materials IP: dble matls
15 5 1 IPNMAT IP: Nondurable Materials IP: nondble matls
16 5 1 IPMANSICS IP: Manufacturing (SIC) IP: mfg
17 5 1 IPB51222s IP: Residential Utilities IP: res util
18 5 1 IPFUELS IP: Fuels IP: fuels
20 2 1 CUMFNS Capacity Utilization: Manufacturing Cap util

Variables Measuring Income and Consumption —Personal Income, personal consumption ex-
penditures and PCE deflators are released monthly by the BEA. Retail sales are released by the
Census Bureau.
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Table 15: Variables Helpful in Estimating Consumption

id T G FRED-MD Description GSI Description
1 5 1 RPI Real Personal Income PI
2 5 1 W875RX1 Real personal income ex transfer receipts PI less transfers
3 5 4 DPCERA3M086SBEA Real personal consumption expenditures Real Consumption
4* 5 4 CMRMTSPLx Real Manu. and Trade Industries Sales MT sales
5* 5 4 RETAILx Retail and Food Services Sales Retail sales
123 6 7 PCEPI Personal Cons. Expend.: Chain Price Index PCE defl
124 6 7 DDURRG3M086SBEA Personal Cons. Expend: Durable goods PCE defl: dlbes
125 6 7 DNDGRG3M086SBEA Personal Cons. Expend: Nondurable goods PCE defl: nondble
126 6 7 DSERRG3M086SBEA Personal Cons. Expend: Services PCE defl: service

Variables Measuring Employment and Unemployment —The second table contains information
on variables measuring employment, data produced by the Bureau of Labor Statistcs (BLS). The
first two rows refer to data from the Current Population Survey (CPS). The rest of the table refers to
variables from the Current Employment Statistics (CES) a program run each month that surveys
approximately 143,000 businesses and government agencies, representing approximately 588,000
individual worksites. The last 3 variables contain miscellaneous information on the labor market.
CLAIMS=unemployment claims, is a variable originally released at weekly frequency and comes
from the states unemployment insurance system. HWI=Help-Wanted Index for United States is
assembled by the Conference Board and recently it has been corrected by Barnichon (2010) [8].
Obvious candidates missing in the datasets are labor market indicators part of the FED labor
market dashboard, such as data from the JOLTS survey.

38



Table 16: Employment Variables from Household CPS and Payroll CES Surveys

id T G FRED-MD Description GSI Description
23 5 2 CLF16OV Civilian Labor Force Emp CPS total
24 5 2 CE16OV Civilian Employment Emp CPS nonag
25 2 2 UNRATE Civilian Unemployment Rate U: all
26 2 2 UEMPMEAN Average Duration of Unemployment (Weeks) U: mean duration
27 5 2 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks U < 5 wks
28 5 2 UEMP5TO14 Civilians Unemployed for 5-14 Weeks U 5-14 wks
29 5 2 UEMP15OV Civilians Unemployed - 15 Weeks Over U 15+ wks
30 5 2 UEMP15T26 Civilians Unemployed for 15-26 Weeks U 15-26 wks
31 5 2 UEMP27OV Civilians Unemployed for 27 Weeks and Over U 27+ wks
33 5 2 PAYEMS All Employees: Total nonfarm Emp: total
34 5 2 USGOOD All Employees: Goods-Producing Industries Emp: gds prod
35 5 2 CES1021000001 All Employees: Mining and Logging: Mining Emp: mining
36 5 2 USCONS All Employees: Construction Emp: const
37 5 2 MANEMP All Employees: Manufacturing Emp: mfg
38 5 2 DMANEMP All Employees: Durable goods Emp: dble gds
39 5 2 NDMANEMP All Employees: Nondurable goods Emp: nondbles
40 5 2 SRVPRD All Employees: Service-Providing Industries Emp: services
41 5 2 USTPU All Employees: Trade, Transportation Utilities Emp: TTU
42 5 2 USWTRADE All Employees: Wholesale Trade Emp: wholesale
43 5 2 USTRADE All Employees: Retail Trade Emp: retail
44 5 2 USFIRE All Employees: Financial Activities Emp: FIRE
45 5 2 USGOVT All Employees: Government Emp: Govt
46 1 2 CES0600000007 Avg Weekly Hours : Goods-Producing Avg hrs
47 2 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing Overtime: mfg
48 1 2 AWHMAN Avg Weekly Hours : Manufacturing Avg hrs: mfg
49 1 2 NAPMEI ISM Manufacturing: Employment Index NAPM empl
127 6 2 CES0600000008 Avg Hourly Earnings : Goods-Producing AHE: goods
128 6 2 CES2000000008 Avg Hourly Earnings : Construction AHE: const
129 6 2 CES3000000008 Avg Hourly Earnings : Manufacturing AHE: mfg
32* 5 2 CLAIMSx Initial Claims UI claims
21* 2 2 HWI Help-Wanted Index for United States Help wanted indx
22* 2 2 HWIURATIO Ratio of Help Wanted/No. Unemployed Help wanted/unemp

Variables Measuring Construction Activity —The third table collects the variables that have
leading properties in signaling changes in activity in the construction sector. Permits variables
come from the Census’ building permits monhtly survey of 9,000 selected permit-issuing places
adjusted once a year with an annual census of an additional 11,000 permit places that are not in
the monthly sample. Housing starts come from the Survey of Construction, a multi-stage stratified
random sample that selects approximately 900 building permit-issuing offi ces, and a sample of more
than 70 land areas not covered by building permits. Data from the national association of home
buildiers such as existing home sales were not included oin the dataset.
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Table 17: Leading Indicators of the Construction Sector

id T G FRED-MD Description GSI Descr
50 4 3 HOUST Housing Starts: Total New Privately Owned Starts: nonfarm
51 4 3 HOUSTNE Housing Starts, Northeast Starts: NE
52 4 3 HOUSTMW Housing Starts, Midwest Starts: MW
53 4 3 HOUSTS Housing Starts, South Starts: South
54 4 3 HOUSTW Housing Starts, West Starts: West
55 4 3 PERMIT New Private Housing Permits (SAAR) BP: total
56 4 3 PERMITNE New Private Housing Permits, Northeast (SAAR) BP: NE
57 4 3 PERMITMW New Private Housing Permits, Midwest (SAAR) BP: MW
58 4 3 PERMITS New Private Housing Permits, South (SAAR) BP: South
59 4 3 PERMITW New Private Housing Permits, West (SAAR) BP: West

Variables Measuring Orders and Inventories —These variables are from the M3 survey run by the
U.S. Census Bureau. The M3 is based upon data reported from manufacturing establishments with
$500 million or more in annual shipments. Units may be divisions of diversified large companies,
large homogenous companies, or single-unit manufacturers in 89 industry categories. The M3
provides statistics on manufacturers’value of shipments, new orders (net of cancellations), end-of-
month order backlog (unfilled orders), end-of-month total inventory, materials and supplies, work-
in-process, and finished goods inventories (at current cost or market value). Data are collected and
tabulated predominantly by 6-digit NAICS (North American Industry Classification System). The
most watched series from this survey is ANDENO=“New Orders for Nondefense Capital Goods”
since it excludes certain highly volatile goods (and not so informative on the business cycle) from
new orders. Such series unfortunately has a short history and it is excluded in our estimation.

Table 18: Variables from the M3 Survey

id T G FRED-MD Description GSI Description
3 5 4 DPCERA3M086SBEA Real personal consumption expenditures Real Consumption
4* 5 4 CMRMTSPLx Real Manu. and Trade Industries Sales MT sales
5* 5 4 RETAILx Retail and Food Services Sales Retail sales
64 5 4 ACOGNO New Orders for Consumer Goods Orders: cons gds
65* 5 4 AMDMNOx New Orders for Durable Goods Orders: dble gds
66* 5 4 ANDENOx New Orders for Nondefense Capital Goods Orders: cap gds
67* 5 4 AMDMUOx Unfilled Orders for Durable Goods Unf orders: dble
68* 5 4 BUSINVx Total Business Inventories MT invent
69* 2 4 ISRATIOx Total Business: Inventories to Sales Ratio MT invent/sales

Variables Measuring the Money Stock and Reserves —These data come mainly from the FRB
H.6 statistical release.
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Table 19: Variables Measuring the Money Stock and Bank Reserves

id T G FRED-MD Description GSI Description
70 6 5 M1SL M1 Money Stock M1
71 6 5 M2SL M2 Money Stock M2
72 5 5 M2REAL Real M2 Money Stock M2 (reaal)
73 6 5 AMBSL St. Louis Adjusted Monetary Base MB
74 6 5 TOTRESNS Total Reserves of Depository Institutions Reserves tot
75 7 5 NONBORRES Reserves Of Depository Institutions, Nonborrowed Reserves nonbor

Variables Measuring Credit —These variables are mainly drawn from various FRB statistical
releases such as G.19 and G.20.

Table 20: Variables Measuring Credit

id T G FRED-MD Description GSI Descr
76 6 5 BUSLOANS Commercial and Industrial Loans, All Commercial Banks CI loan plus
77 6 5 REALLN Real Estate Loans at All Commercial Banks DCI loans
78 6 5 NONREVSL Total Nonrevolving Credit Owned and Securitized Outstanding Cons credit
79* 2 5 CONSPI Nonrevolving consumer credit to Personal Income Inst credit/PI
131 6 5 MZMSL MZM Money Stock N.A.
132 6 5 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding N.A.
133 6 5 DTCTHFNM Total Consumer Loans and Leases Outstanding N.A.
134 6 5 INVEST Securities in Bank Credit at All Commercial Banks N.A.

Variables Measuring Interest Rates —The following table contains variables measuring interest
rates, yields and spreads. Most variables are from statistical releases by the FRB such as the H.15.
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Table 21: Interest Rates, Yields and Spreads

id T G FRED-MD Description GSI Descr
84 2 6 FEDFUNDS Effective Federal Funds Rate Fed Funds
85* 2 6 CP3Mx 3-Month AA Financial Commercial Paper Rate Comm paper
86 2 6 TB3MS 3-Month Treasury Bill: 3 mo T-bill
87 2 6 TB6MS 6-Month Treasury Bill: 6 mo T-bill
88 2 6 GS1 1-Year Treasury Rate 1 yr T-bond
89 2 6 GS5 5-Year Treasury Rate 5 yr T-bond
90 2 6 GS10 10-Year Treasury Rate 10 yr T-bond
91 2 6 AAA Moody’s Seasoned Aaa Corporate Bond Yield Aaa bond
92 2 6 BAA Moody’s Seasoned Baa Corporate Bond Yield Baa bond
93* 1 6 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS CP-FF spread
94 1 6 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 3 mo-FF spread
95 1 6 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 6 mo-FF spread
96 1 6 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1 yr-FF spread
97 1 6 T5YFFM 5-Year Treasury C Minus FEDFUNDS 5 yr-FF spread
98 1 6 T10YFFM 10-Year Treasury C Minus FEDFUNDS 10 yr-FF spread
99 1 6 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS Aaa-FF spread
100 1 6 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS Baa-FF spread
101 5 6 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies Ex rate: avg
102* 5 6 EXSZUSx Switzerland / U.S. Foreign Exchange Rate Ex rate: Switz
103* 5 6 EXJPUSx Japan / U.S. Foreign Exchange Rate Ex rate: Japan
104* 5 6 EXUSUKx U.S. / U.K. Foreign Exchange Rate Ex rate: UK
105* 5 6 EXCAUSx Canada / U.S. Foreign Exchange Rate EX rate: Canada

Variables Measuring Prices —The variables are from the BLS CPI and PPI statistical releases.
For PPI more than 100,000 price quotations per month are organized into three sets of PPIs: (1)
Final demand-Intermediate demand (FD-ID) indexes, (2) commodity indexes, and (3) indexes for
the net output of industries and their products. The CPIs are based on prices of food, clothing,
shelter, fuels, transportation fares, charges for doctors’

and dentists’services, drugs, and other goods and services that people buy for day-to-day living.
Prices are collected each month in 87 urban areas across the country from about 6,000 housing units
and approximately 24,000 retail establishments-department stores, supermarkets, hospitals, filling
stations, and other types of stores and service establishments.
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Table 22: Measures of Prices

id T G FRED-MD Description GSI Descr
106 6 7 PPIFGS PPI: Finished Goods PPI: fin gds
107 6 7 PPIFCG PPI: Finished Consumer Goods PPI: cons gds
108 6 7 PPIITM PPI: Intermediate Materials PPI: int matls
109 6 7 PPICRM PPI: Crude Materials PPI: crude matls
110* 6 7 OILPRICEx Crude Oil, spliced WTI and Cushing Spot market price
111 6 7 PPICMM PPI: Metals and metal products: PPI: nonferrous
113 6 7 CPIAUCSL CPI : All Items CPI-U: all
114 6 7 CPIAPPSL CPI : Apparel CPI-U: apparel
115 6 7 CPITRNSL CPI : Transportation CPI-U: transp
116 6 7 CPIMEDSL CPI : Medical Care CPI-U: medical
117 6 7 CUSR0000SAC CPI : Commodities CPI-U: comm.
118 6 7 CUUR0000SAD CPI : Durables CPI-U: dbles
119 6 7 CUSR0000SAS CPI : Services CPI-U: services
120 6 7 CPIULFSL CPI : All Items Less Food CPI-U: ex food
121 6 7 CUUR0000SA0L2 CPI : All items less shelter CPI-U: ex shelter
122 6 7 CUSR0000SA0L5 CPI : All items less medical care CPI-U: ex med

Variables Measuring the Stock Market —These data are elaborated by Standard & Poor.

Table 23: Measures of the Stock Market from Standard and Poor

id T G FRED-MD Description GSI Descr
80* 5 8 SP 500 SP’s Common Stock Price Index: Composite SP 500
81* 5 8 SP: indust SP’s Common Stock Price Index: Industrials SP: indust
82* 2 8 SP div yield SP’s Composite Common Stock: Dividend Yield SP div yield
83* 5 8 SP PE ratio SP’s Composite Common Stock: Price-Earnings Ratio SP PE ratio

Diffusion Indexes from Manufacturing and Consumer Surveys —The last table mostly collects
the diffusion indexes from the Institute for Supply Management (ISM)14. These variables are re-
leased the first day of month,following the reference month, hence they are quite timely and are
used by several institutions in the produciton of their high frequency forecasts. However, since the
literature on large panels of macro variables carries out monthly pseudo-forecast experiments and
we follow that tradition, we do not exploit the full potential of these variables. Hence the only
variable that likely has the most forecasting power is “new orders”a natural measure of future ac-
tivity. Notice that these variables are diffusion indexes, that is they essentially capture the fraction
of respondents that say that activity is up15. Given that they are diffusion indexes (fractions) they
are stable and they are left in levels in the estimation. The dataset does not include data from
other manufacturing surveys used in the construction of activity indexes and nowcasting such as
the Philly Fed BOS survey or the Richmond Fed survey as well as information from the services

14Formerly known as the National Association of Purchasing Managers (NAPM).
15The ISM also reports other interesting diffusion indexes such as "new export orders", or "level of inventories",

but these variables are available only starting from the 1990s, too short a time series to include them in pseudo-out-
of-sample forecasting experiments. The same is true for the recently introduced diffusion indexes from the Markit
survey.
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surveys: most likely the choice of the authors was dictated by the span of available data. The
last variable in the table is the closely watched Consumer Sentiment Index from the University of
Michigan used in the forecast of comsuption expenditures. Other informative sub-indexes of the
Michigan survey were not included in the dataset.

Table 24: Diffusion Indexes from the ISM Manufacturing Survey and the UM Con-
sumer Survey

id T G FRED-MD Description GSI Descr
19 1 1 NAPMPI ISM Manufacturing: Production Index NAPM prodn
29 1 2 NAPMEI ISM Manufacturing: Employment Index NAPM empl
60 1 4 NAPM ISM : PMI Composite Index PMI
61 1 4 NAPMNOI ISM : New Orders Index NAPM new ordrs
62 1 4 NAPMSDI ISM : Supplier Deliveries Index NAPM vendor del
63 1 4 NAPMII ISM : Inventories Index NAPM Invent
112 1 7 NAPMPRI ISM Manufacturing: Prices Index NAPM com price
130* 2 4 UMCSENTx Consumer Sentiment Index Consumer expect

8 Appendix B: Regularized SIR Algorithm

In relevance to the forecasting model (2.1), the response is yt+h, t = 1, . . . , T, . . ., and the predictors
consist of a group of p exogenous variables xt = (xt1, . . . , xtp)

′ and the current response value yt
along with L of its lags, which is denoted by Wt = (yt−1, . . . , yt−L)

′
.

1. Carry-out PCA on the sample predictor matrix XT : T × p

a. Compute the spectral decomposition of Σ̂ = V̂D̂V̂′, where V̂ = (v̂1, . . . , v̂p) are the Σ̂

eigenvectors, and D̂ = diag(λ̂1, . . . , λ̂p) is the diagonal matrix with the eigenvalues of Σ̂
arranged in decreasing order.

b. Let M be the number of principal components that capture most of the variability in
X, either by formal tests such as Bai and Ng (2002) [2] or by simply surveying the scree
plot, i.e. the plot of the ordered eigenvalues versus component number. A scree plot
displays the proportion of the total variation in a dataset that is explained by each of
the components in a principle component analysis. Using the scree plot, the number of
components is estimated to be the number corresponding to the "elbow" of the plot.

c. Let F1 = v̂′1X, . . . , FM = v̂′MX be the retained principal factors of X.

2. Let X̃t = (Ft1, . . . , FtM , Yt, Yt−1, . . . , Yt−L)′ = (X̃1, . . . , X̃M+L+1)
′ be the (M + L + 1) × 1

vector of adjusted predictors, and let q = M + L+ 1 where L denotes the lags of yt.

3. Set ¯̃
X = ( ¯̃X1, . . . ,

¯̃Xq)
T , where ¯̃Xi =

∑T
t=1 X̃it/T , i = 1, . . . , q.

4. For j = 1, . . . , J , let ¯̃
Xj =

∑
yt∈SJ X̃t/nj , where nj is the number of Yt’s in Sj .

5. Compute

M̂ =
J∑
j=1

nj
T

(
¯̃
Xj − ¯̃

X)(
¯̃
Xj − ¯̃

X)′
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6. Compute the SVD of M̂ = ÛΛ̂ÛT , where Λ̂ = diag(l̂1, . . . , l̂q), l̂1 > l̂2 > . . . > l̂q are the
eigenvalues of M̂ and Û = (û1, . . . , ûq) is the q × q orthonormal matrix of its eigenvectors
that correspond to l̂1, l̂2, . . . , l̂q .

7. Estimate the dimension d of the regression as d̂ using any dimension estimation method that
applies.

8. The SIR predictors are SIR1 = Σ̃−1û1X, . . . ,SIRd̂ = Σ̃−1ûdX, where Σ̃ =
∑T

t=1(X̃t− ¯̃
X)(X̃t−

¯̃
X)′/T is the sample covariance matrix of the adjusted predictors X̃.

Appendix C: Covariance-Stationary Time Series Properties

A sequence of random variables xjt is covariance stationary or weakly stationary if and only if

∃µj ∈ R : E(xjt) = µj ,∀t > 0

and

∀t′ ≥ 0,∃γjt′ ∈ R : cov(xjt, xj,t−t′) = E[(xjt−µj)(xj,t−t′ −µj)] = γj,t−t′ = γj(t− t′) = γj(h),∀t > t′

In other words, all the terms of the sequence have mean µ, and the hth lag autocovariance,
cov(xjt, xj,t−t′), depends only on t′ and not on t, so that xjt has time invariant first and sec-
ond moments. Thus, if xjt is a weakly stationary time series, then the vector xt = (x1t, x2t, ..., xpt)
and the time-shifted vector xt+h = (x1,t+h, x2,t+h, ..., xp,t+h) have the same mean vectors and co-
variance matrices for every integer h and positive integer t. A strictly stationary sequence is one in
which the joint distributions of these two vectors are the same. Weak stationarity does not imply
strict stationarity but a strictly stationary time series with E(x2jt) <∞ ∀t is also weakly stationary.
A useful result is that any function of a weakly (strictly) stationary time series is also a weakly
(strictly) stationary time series. A stationary time series xjt is ergodic if sample moments converge
in probability to population moments.

A multivariate time series xt = (x1t, x2t, ..., xpt) is covariance stationary and ergodic if all of its
component time series are stationary and ergodic. The mean of xt is defined as the (T × 1) vector
E(xt) =µ = (E(x1t),E(x2t), ...,E(xpt))

′ =
(
µ1, µ2, ..., µp

)′ and the variance/covariance matrix
Σ(0) = var(xt) =

(
(xt − µ) (xt − µ)′

)
= E

(
xtx
′
t − µµ′

)
=

=


var(x1t) cov(x1t, x2t) · · · cov(x1t, xpt)

cov(x2t, x1t) var(x2t) · · · cov(x2t, xpt)
...

...
. . .

...
cov(xpt, x1t) · · · · · · var(xpt)


Σ(h) = cov(xt+h,xt) = E

(
(xt+h − µ) (xt+h − µ)′

)
= E

(
xt+hx

′
t − µµ′

)
If xjt is a stationary time series with mean µj and autocovariance function γj(h), X̄j =∑T
t=1Xjt/T converges in mean square to µj if γ(T ) → 0 as T → ∞ (see Prop. 2.4.1, p. 58

in Brockwell and Davis (2002), prop. 10.5, p. 279 in Hamilton (1994)). The consistency of the
estimator X̄ is established by applying the proposition to each of the component time series xjt,
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j = 1, . . . , p (Prop. 7.3.1, p. 234, Brockwell and Davis (2002)). A suffi cient condition to ensure er-
godicity (consistency) for second moments is

∑∞
h=−∞ |γjj(h)| <∞ (Prop. 7.3.1, p. 234, Brockwell

and Davis (2002)).
The parameters µ, Σ(0), and Σ(h) are estimated from X1,X2, ...,XT using the sample mo-

ments:

X̄ =
1

T

T∑
t=1

X

Σ̂(0) =
1

T

T∑
t=1

(
Xt − X̄

) (
Xt − X̄

)′
Σ̂(h) =

{
1
T

∑T−h
t=1

(
Xt+h − X̄

) (
Xt − X̄

)′ if 0 ≤ h ≤ T − 1

Γ̂(h)′ if − T + 1 ≤ h < 0

The ergodic theorem obtains that if xt is a strictly stationary and ergodic time series then as
T →∞

X̄
p→ µ (8.1)

Σ̂(0)
p→ Σ(0) (8.2)

Σ̂(h)
p→ Σ(h) (8.3)

Under more restrictive assumptions on the process xt it can also be shown that X̄T is approxi-
mately normally distributed for large T . Determination of the covariance matrix of this distribution
is quite complicated. For example, the following is a CLT for a covariance stationary m-dependent
vector process (Villegas (1976), Thm. 5.1). A stochastic vector process x1,x2, . . . is m-dependent
if the two sets of random vectors x1, . . . ,xr and xs, . . . ,xn are independent whenever s− r > m.

Theorem 4 lf x1,x2, . . . is a stationary m-dependent second-order vector process, then:

(i) the distribution of
√
T (X̄T −µ) converges to a (possibly degenerate) normal distribution with

zero mean vector and covariance matrix

V =

m∑
h=−m

Σ(h)

where Σ(h) is the covariance matrix of xt and xt+h;

(ii) the covariance matrix of
∑T

t=1(X1 + X2 + . . . + XT )/
√
T converges to V when T increases

indefinitely.
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