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Abstract

We extent the point-identification result in Guerre, Perrigne, and Vuong (2009) to

environments with one-dimensional unobserved auction heterogeneity. In addition, we

also show a robustness result for the case where the exclusion restriction used for point

identification is violated: We provide conditions to ensure that the primitives recovered

under the violated exclusion restriction still bound the true primitives in this case. We

propose a new Sieve Maximum Likelihood Estimator, show its consistency and illustrate

its finite sample performance in a Monte Carlo experiment. We investigate the bias in

risk aversion estimates if unobserved auction heterogeneity is ignored and explain why

the sign of the bias depends on the correlation between the number of bidders and the

unobserved auction heterogeneity. In an application to USFS timber auctions we find

that the bidders are risk neutral, but we would reject risk neutrality without accounting

for unobserved auction heterogeneity.
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1 Introduction

Risk aversion plays an important role in auction theory. Risk aversion leads to more aggressive

bidding in first-price auctions with independent private values whereas bidding in English

auctions is not affected. Therefore first-price auctions generate higher revenues than English

auctions if the bidders are risk averse (Holt (1980)).1 Matthews (1987) compares auction

formats from the perspective of risk averse bidders and Maskin and Riley (1984) study the

optimal auction mechanism under risk aversion. In first price auctions risk aversion also tends

to reduce the optimal reserve price because aggressive bidding does not have to be induced

with the help of a high reserve price (Riley and Samuelson (1981), Hu, Matthews, and Zou

(2010)). Knowing bidders’ risk aversion is therefore crucial for auction design.

Guerre, Perrigne, and Vuong (2009) showed that risk aversion can be nonparametrically

identified from bid data in first-price auctions under an exclusion restriction, by exploiting

variation in the number of bidders. This paper tries to bridge the gap between this identifi-

cation result and applications to field data.

We begin by showing identification in environments with one-dimensional unobserved

auction heterogeneity, i.e. one of the auction characteristics is observed by the bidders but

not by the econometrician. Identification proceeds in two steps. In the first step multiple

bids from the same auction are used to identify the bid distribution conditional on the unob-

served characteristic. This step builds on results of Krasnokutskaya (2011), Hu, McAdams,

and Shum (2013) and d’Haultfoeuille and Février (2010b), who apply techniques from the

measurement error literature. Intuitively, the bid distributions conditional on the unobserved

characteristic can be identified using the dependence among bids from the same auction cre-

ated by the unobserved characteristic. Applying the techniques from the measurement error

literature to first-price auctions with risk averse bidders creates a technical challenge, be-

cause it requires the highest bid to be strictly increasing in the unobserved characteristic.

1This result holds for a given number of risk averse bidders. The revenue ranking is preserved in the entry
model of Levin and Smith (1994a) but Smith and Levin (1996) show that it can be reversed with endogenous
entry and decreasing absolute risk aversion.
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We provide new comparative statics results for auctions with risk averse bidders to establish

this monotonicity condition.

In the second step we apply the results of Guerre, Perrigne, and Vuong (2009) to the bid

distributions conditional on the unobserved characteristic to identify the primitives. As we

condition on the unobserved characteristic we can exploit variation in the number of bidders

for identification even if the entry decision depends on the unobserved characteristic. The

exclusion restriction required for point identification is that the distribution of valuations

conditional on the unobserved characteristic does not depend on the number of bidders. We

also discuss the case where the exclusion restriction is violated such that the (conditional)

valuation distribution in an auction with more bidders first-order stochastically dominates

the valuation distribution with fewer bidders. We provide a condition for the bid distributions

that guarantees robustness with respect to this violation in the following sense: The primitives

recovered under the violated exclusion restriction still bound the true primitives in this case

and risk neutrality remains testable.

Next, we turn to estimation and inference. In light of the typical sample size available in

applications we consider a semi-parametric specification with constant relative risk aversion

and multiplicative unobserved auction heterogeneity. We propose a new Sieve Maximum

Likelihood Estimator and show its consistency under low level conditions.2 Monte Carlo

experiments show that the estimator performs well with sample sizes commonly found in

applications.

The Monte Carlo study also presents estimates if the unobserved characteristic is ignored,

which has two opposing effects on risk aversion estimates. First, if auctions with a better

unobservable characteristic attract more bidders this increases the shift of the (unconditional)

bid distributions as the number of bidders increases. Risk aversion tends to decrease the

2Deriving the asymptotic distribution of the estimator is difficult due to the non-regular likelihood function
and the semi-parametric specification. Ackerberg, Chen, and Hahn (2012) show that for a regular likelihood
function, treating the problem as parametric is numerically identical to using the asymptotic formula for
semi-parametric estimation. Unfortunately this result does not apply here because the likelihood function is
non-regular. Simulation results suggest however that treating the problem as parametric works very well in
practice.
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shift of the bid distribution as the number of bidders increases, because bids are close to

valuations even without fierce competition. Therefore this effects leads us to underestimate

risk aversion. Second, the unobserved characteristic increases the dispersion of bids. Risk

aversion also increases the dispersion of bids because the bid function at the lower bound of

the valuation distribution not affected by risk aversion while bidders with higher values bid

more aggressively. Hence, this effect leads us to to overestimate risk aversion. Which of the

two effects dominates, and therefore the bias of the risk aversion estimates, depends on how

strongly the number of bidders is correlated with the unobserved characteristic.

In an illustrative application we study US Forest Service timber auctions. We find that

the bidding firms are close to risk neutral, but we would reject risk neutrality without allowing

for unobserved auction heterogeneity.

This paper connects two separate strands of the structural auction literature - unobserved

auction heterogeneity and risk averse bidders.

Krasnokutskaya (2011) and Krasnokutskaya (2012) considers identification and estimation

with separable unobserved auction heterogeneity in first-price auctions while Hu, McAdams,

and Shum (2013) consider identification in the non-separable case. Several papers have

documented unobserved auction heterogeneity in US Forest Service timber auctions (e.g.

Aradillas-López, Gandhi, and Quint (2013a), Aradillas-López, Gandhi, and Quint (2013b),

Roberts and Sweeting (2010), Roberts and Sweeting (2013) and Athey, Levin, and Seira

(2011)).

The empirical literature on risk aversion in first price auctions started with laboratory

experiments where risk aversion has been proposed as an explanation of the overbidding

puzzle.3 Bajari and Hortacsu (2005) apply structural auction methods to experimental data

and conclude that the canonical auction model with risk averse bidders fits experimental data

better than some other models which give up the assumption of Bayesian Nash Equilibrium.

3The overbidding puzzle refers to the common finding in laboratory experiments that bidders bid more
aggressively than predicted by the risk neutral Bayesian Nash Equilibrium. See for example Cox, Smith, and
Walker (1988). For more references see the excellent surveys Kagel (1995) and Kagel and Levin (2010)).
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Several papers found the bidders in US Forest Service timber auctions to be risk averse.

Their results cannot be directly compared to this paper, because they rely on different re-

strictions for the identification of risk aversion.4

Kim (2015b) and Zincenko (2014) propose nonparametric estimators to implement the

main identification result in Guerre, Perrigne, and Vuong (2009). As we are interested to

applications to field data we also consider identification with unobserved auction heterogene-

ity and partial identification if the exclusion restriction is relaxed. In an extension Guerre,

Perrigne, and Vuong (2009) also consider the case where an unobserved auction characteristic

affects the number of bidders and the distribution of valuations. They provide conditions such

that the model can still be identified if an instrument is available, which affects the number

of bidders but not the distribution of valuations. They consider two alternative conditions

to achieve identification: Under the first condition there is a monotone mapping between

the number of bidders and the unobserved characteristic. Under the second condition, there

is a monotone mapping between the instrument and the unobserved characteristic. These

monotonicity assumptions allow the econometrician to back out the unoberved characteristic

in a first step and then proceed as if the unobserved characteristic is observed, to identify

the distribution of valuations and the utility function.

In a complementary paper to our’s Gentry, Li, and Lu (2015) also consider identification

and estimation of risk aversion in first-price auctions. In contrast to this paper, they consider

a model where the bidders do not know the number of entrants when they submit a bid.

Therefore the result of Guerre, Perrigne, and Vuong (2009) does no longer apply in their model

and identification is more challenging. They show that a parametric restriction on the copula

governing entry usually restores point identification, while a parametric restriction of the

utility function leads to partial identification. Allowing for unobserved auction heterogeneity

in their framework would be an interesting avenue for future research.

4For example Lu and Perrigne (2008) use variation in the auction format, while Campo, Guerre, Perrigne,
and Vuong (2011) impose mild parametric restrictions to identify risk aversion. For risk aversion in timber
auction see also Baldwin (1995) and Athey and Levin (2001). Campo (2012) finds evidence of risk aversion
in construction procurement auctions.
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This rest of the paper is organized as follows. Section 2 presents the identification results.

In section 3, we propose a semi-parametric Sieve Maximum Likelihood estimator. Section

4 conducts Monte Carlo experiments to evaluate the finite sample performance of the es-

timator. The Monte Carlo study also illustrates that the bias of risk aversion estimates if

the unobserved characteristic is ignored. We explain why the sign of the bias depends the

correlation between the unobserved characteristic and the number of bidders. Section 5 is an

application to USFS timber auctions.

2 Identification

There are n ≥ 2 active bidders with independent private values. Their values v are inde-

pendent draws from the distribution F (·|u, n) with a continuous density f (·|u, n) supported

on [v (u) , v (u)] where 0 ≤ v (u) < v (u) ≤ ∞. The econometrician does not observe the

one-dimensional auction characteristic u which follows the distribution F u (·|n). The bidders

share a common utility function U with U ′ (·) ≥ 0, U ′′ (·) ≤ 0 and U ′′ is continuous. The

utility function is normalized such that U (0) = 0 and U (1) = 1.5 Define λ (·) = U (·) /U ′ (·).

The equilibrium bidding strategy sn (·, u) is characterized by the following first-order condi-

tion

∂s
′
n (v, u)

∂v
= (n− 1)

f (v|u, n)

F (v|u, n)
λ (v − sn (v, u)) ,

with the boundary condition sn (v (u) , u) = v (u).

Assumption 1. F (·|u, n) = F (·|u).

Guerre, Perrigne, and Vuong (2009, Proposition 3) showed that if u is observed, F and

U are point identified from bid data under this assumption. This assumption holds in many

common entry models under fairly general conditions as shown in Appendix B.1.6 In Theorem

5As we normalize the utility function such that U (1) = 1 we implicitely assume that max
v∈[v(u),v(u)]

v −

sn (v, u) ≥ 1. If this condition is violated identification of λ and F is not affected, but we would have to
choose a smaller point for the normalization to solve the differential equation λ (·) = U (·) /U ′ (·) for U .

6Notice that, like most of the literature, we assume that the bidders know how many of their rivals decided
to enter the auction when they bid. Intuitively, Assumption 1 is not very restrictive in this case, because once

6



3 we provide a robustness result for the case where the condition is violated.

In applications to field data we have to confront the possibility that u is not observed.

Previous work studying such environments assumes that bidders are risk neutral and focuses

on the identification of F (·|u) (Krasnokutskaya (2011) and Hu, McAdams, and Shum (2013)).

The identification arguments exploit the fact that the data contain more than one bid for

each auction. The unobserved characteristic creates dependence among bids from the same

auction, which allows the researcher to separately identify the distribution of u and the

bidders’ private information. We combine this strategy with Guerre, Perrigne, and Vuong

(2009). The first result is an extension of Krasnokutskaya (2011) which considers cases where

valuations consist of two independent and separable components.

Theorem 1. Suppose that Assumption 1 holds and we observe at least two randomly selected

bids from auctions with n1, n2 ≥ 2 bidders. Suppose one of the following conditions holds:

(1). F (v|u) = F ∗ (v − u) for all v and u, for some F ∗ with density f ∗. In addition As-

sumption 7(1) (Appendix A.1) holds.

(2). F (v|u) = F ∗ (v/u) for all v and u, for some F ∗with density f ∗. Bidders have constant

relative risk aversion (CRRA) with CRRA-coefficient σ ∈ [0, 1). In addition Assump-

tion 7(2) (Appendix A.1) holds.

Normalize the lower bound of the support of f ∗ to 1. Then U , F ∗, F u (·|n1) and F u (·|n2)

are identified.

One insight from this result is that there is an important distinction between additive

and multiplicative auction heterogeneity if the bidders are risk averse. If the unobserved

characteristic enters valuations additively, it also enters the equilibrium bid function addi-

tively - regardless of the utility function. If the unobserved characteristic enters valuations

we condition on all the variables observed by the potential bidders - including the unobserved characteristic
and if it varies also the number of potential bidders - variation in the number of entrants is “exogenous”. See
Gentry, Li, and Lu (2015) for identification of risk aversion in first-price auctions if the bidders do not know
how many of their rivals decided to enter the auction when they bid.
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multiplicatively and the bidders have constant relative risk aversion, it also enters the bid

function multiplicatively. If the utility function is not of the CRRA form however, the bid-

ding strategy is not separable in u and the deconvolution techniques in Kotlarski (1967) can

therefore no longer be applied.7

The result requires a location normalization. To see why consider the additive case 1(1).

If F ∗ is shifted to the right by 1 while F u (·|n1) and F u (·|n2) are shifted to the left by 1,

the distribution of v and therefore the bid data remains unchanged. Hence this shifted set

of primitives is observationally equivalent to the original set of primitives. An analogous

argument can be made for the multiplicative case in Theorem 1(1).

Besides allowing for risk aversion, Theorem 1 also generalizes Krasnokutskaya (2011) to

accommodate an unbounded unobserved characteristic and unbounded private values. This

is achieved by building on an extension of Kotlarski (1967) by Evdokimov and White (2012).

If the unobserved characteristic does not enter in a separable way establishing identifica-

tion is more involved. Hu, McAdams, and Shum (2013) show how to achieve identification if

bidders are risk neutral and u takes on a finite number different values under the following

monotonicity restriction on F .

Assumption 2. F (v|u1, n) ≤ F (v|u2, n) for all v, u1 > u2 and n and there exists v such

that F (v|u1, n) < F (v|u2, n).

Proposition 1. Suppose Assumption 2 holds and v̄ (u) <∞ for every u, then sn (v̄ (u1) , u1) >

sn (v̄ (u2) , u2).

This result says that the highest bid in an auction with unobserved characteristic u1 is

strictly higher than with u2. Hu, McAdams, and Shum (2013) establish this property by

exploiting the closed form of bidding strategy if the bidders are risk neutral. If bidders are

risk averse the bidding strategy does typically not have a closed form and establishing strict

monotonicity of the highest bid is therefore more involved. 8

7This case will be covered in Theorem 2.
8To the best of our knowledge this is a new comparative static result for auctions with risk averse bidders.
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Theorem 2. Suppose that Assumptions 1 and 2 hold and we observe three randomly selected

bids from each auction with n1, n2 ≥ 3 bidders. Then U and F are identified if one of the

following two conditions is satisfied:

(1). Discrete u: The support of u is 1, 2, ...K with K <∞ for n1 and n2.

(2). Continuous u:

(a) [u (n1) , u (n1)] ∩ [u (n2) , u (n2)] 6= ∅.

(b) v (u) is strictly increasing in u.

(c) Assumption 8 (Appendix A.1) holds.

(d) u = v (u).

Here [u (n) , u (n)] is the support of the unobserved characteristic in an n bidder auction.

Theorem 2(1) extends the result of Hu, McAdams, and Shum (2013) for discrete u. Theorem

2(2) builds on d’Haultfoeuille and Février (2010a) and applies to cases where u is continuous.

The condition for Theorem 2(1) can be broken up into three parts. First, the support

of u has finitely many points. Second, the support is the same for n1 and n2. Third, the

support is normalized to 1, 2, ...K. Next we turn to the condition for Theorem 2(2). First,

we require that for some u we observe n1 and n2 bidder auctions - otherwise we could not

exploit variation in the number of bidders conditional on u for identification. Second, we

assume that v (u) is strictly increasing in u. Together with Proposition 1 this implies that

the lowest and the highest bid are both strictly increasing in u. The third assumption is a

smoothness condition. The fourth assumption is a normalization of u.9

It is important that Theorems 1 and 2 allow the distribution of u to depend on the number

of bidders. Intuitively, if the bidders observe u before they make their entry decision, then

To show identification we only need to establish strict monotonicity of the highest bid in u, but the proof in
Appendix A.3 shows that the whole bid distribution is (weakly) shifted to the right as u increases.

9To see why the the normalizations of u are required in Theorem 2 consider ũ = h (u) for some increasing

function h and F̃ (·|u, ·) = F
(
·|h−1 (u) , ·

)
, which leads to the same distribution of valuations and bids as the

true primitives.

9



auctions with a better unobserved characteristic should attract more bidders. In Appendix

B.3 we confirm this intution for the case we consider in our application where the unobserved

characteristic enters valuations multiplicatively and bidders have constant relative risk aver-

sion. Formally, we show that the distribution of the unobserved characteristic is increasing

in n in the sense of first-order stochastic dominance.

Next, we relax Assumption 1 such that valuations are increasing in n in the sense of

first-order stochastic dominance.

Assumption 3. F (v|u, n1) ≥ F (v|u, n2) for all v, u and n1 < n2.

Define

Ri (α, u) =
1

ni − 1

α

g (bni (α, u) |u, ni)
,

where i = 1, 2, α ∈ [0, 1], g (·|u, n) is the bid density and bn (α, u) is the α-th quantile of the

bid distribution.

Condition 1. Let n1 < n2. There is u∗ such that

(1). bn1 (0, u∗) = bn2 (0, u∗).

(2). R1 (α, u∗) > R2 (α, u∗) for all α > 0 .

This is not an assumption on primitives but a condition for the bid distribution. Therefore,

it can be checked once the bid distribution conditional on u has been recovered. The first

part of this condition states that the lowest bid in n1 and n2 bidder auctions is the same. To

interpret the second part note that the first-order condition for an i bidder auction can be

written as Ri (α, u) = λ (v (α, u)− bni (α, u)). Therefore, the condition says that bid shading

is larger at the αth quantile in an n1 bidder auction than in the more competitive n2 bidder

auction.

Let λ̃ with λ̃ (0) = 0 be consistent with the bid distributions given u∗ if we (incor-

rectly) impose Assumption 1 for n1 and n2. Let x = λ̃−1

(
max
α∈[0,1]

R1 (α, u∗)

)
. Let Ũ (x) =

exp
(´ 1

x
log
(
λ̃(t)

))
dt for x ∈ [0, 1] and Ũ (x) = exp

(
−
´ x

1
log
(
λ̃(t)

))
dt for x ∈ [1, x).
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Theorem 3. Suppose that that u is observed and that Assumption 3 and Condition 1 hold,

then

(1). λ (x) ≥ λ̃ (x) for x ∈ [0, x), U (x) ≥ Ũ (x) for x ∈ [0, 1], and U (x) ≤ Ũ (x) for

x ∈ [1, x).

(2). bni (α, u∗) ≤ F−1 (α|u∗, ni) ≤ λ̃−1 (Ri (α, u
∗)) + bni (α, u∗) for i = 1, 2.

To shorten the statement of the result it is assumed that u is observed, but the extension

to unobserved u along the lines of Theorems 1 and 2 is straightforward.

The first part of the result shows that λ̃ bounds the true λ from below. By integrating

up λ (·) = U (·) /U ′ (·) with U (1) = 1, this bound can be translated into a bound on U . The

second part shows that the valuations are bounded from below by the bids and from above

by the inverse bid function consistent with λ̃.

This is a robustness result. It provides conditions to ensure that the primitives recovered

under Assumption 1 remain meaningful as bounds even if the assumption is violated. For

example suppose we estimate λ̂ under Assumption 1 and conclude that the bidders are risk

averse because λ̂ (x) > x for some x. This conclusion remains valid if Assumption 1 is

violated, but Assumption 3 and Condition 1 are satisfied. The primitives can be partially

identified under Assumption 3, even if Condition 1 does not hold. In this case the bounds do

however no longer coincide with the primitives recovered under Assumption 1.

3 Estimation

In light of the typical sample size in applications we consider a semi-parametric specification

with constant relative risk aversion and auction characteristics (observed and unobserved),

which enter valuations multiplicatively. A bidder’s valuation is v = v∗u exp [log (X) γ]. The

bidder’s private value v∗ follows the distribution F ∗ with density f ∗.10 To simplify the

notation, let F u
n denote the distribution of the unobservable characteristic F u (·|u) and let

10Notice that this notation implicitly imposes Assumption 1.
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fun be its density. The private values v∗ and the unobserved characteristic u are independent

of each other.11 The p-dimensional vector X contains observable auction characteristics. We

assume that X is independent of both v∗and u. Bidders share a CRRA utility function

with coefficient σ. Following Proposition 1 in Krasnokutskaya (2011) it can be shown that

u exp [log (X) γ] enters the bidding strategy multiplicatively.

The data contain L auctions. Let Ln denote the number of auctions with n ≥ 2 ac-

tive bidders. Let N be the set of n such that Ln > 0. For the `-th auction, we observe

Z` = (b`, X`, n`). Here b` is the vector of all bids, X` is the vector of observed auction

characteristics and n` is the number of active bidders. We also denote the i-th element of b`

as bi,` . The primitives of the model are
(
σ, γ, f ∗, {fun}n∈N

)
. This specification satisfies the

assumptions of Theorem 1(2) if N has at least two elements.

To the best of our knowledge, estimation of bidders’ risk aversion in first-price auctions

with unobserved auction heterogeneity has not been discussed in the literature. In this paper,

we develop a Sieve Maximum Likelihood Estimator (Sieve MLE) based on the joint densities

of all the bids from the same auction. We propose a computationally feasible method to

compute the joint bid densities. We also show that the estimator is consistent.12

It is worth pointing out that there are several other methods in the literature that can

be generalized to handle this estimation problem. One possibility is to combine the method

suggested by Krasnokutskaya (2011) with Bajari and Hortacsu (2005) to form a two-step

estimator.13 Another candidate is the Simulated Method of Moments (SMM) proposed by

11It is worth noting that this assumption is imposed on bidders who decided to enter the auction. In Ap-
pendix B.2, we impose the same assumption on potential bidders and ask for which entry models separability
and independence of u and v∗ carries over to entrants. We show that if the potential bidders observe a signal
for v∗ or u independence carries over to entrants, but not if they observe both.

12Formally deriving the asymptotic distribution of the estimator is beyond the scope of this paper. The
major difficulty is that our likelihood is non-regular because the support of the bid densities depends on
the parameters. Therefore, the results from Ackerberg, Chen, and Hahn (2012), which are valid for regular
models, do not directly apply here. The Monte Carlo experiments show that treating the model as parametric
and using the asymptotic results from Smith (1985) performs well in practice. It is worth noting that here
the bid density does not jump at the boundary of its support, so the results in Donald and Paarsch (1993),
Chernozhukov and Hong (2004) and Hirano and Porter (2003) do not apply.

13In the first step, use Krasnokutskaya (2011) to separate out the effect of unobserved auction heterogeneity.
In the second-step, use Bajari and Hortacsu (2005) to estimate the CRRA coefficient and the distribution of
private values.
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Bierens and Song (2011) which is extended to the case with unobserved auction heterogeneity

by Grundl and Zhu (2015). A third possibility is to extend a Bayesian estimator proposed

by Kim (2015a). The Sieve MLE method is our preferred choice for the following reasons.

First, compared to the first two alternatives, MLE is more efficient. Second, the Bayesian

method considered in Kim (2015a) does not have efficiency advantages in our problem and

at the same time involves choosing several tuning parameters for discretization and priors.14

3.1 Parameter Space

The support of the densities of unobserved heterogeneity and private values are [µ, u+ µ]

and [1, v∗ + 1] with u > 0, v∗ > 0 known.15 Here u and v∗ are the length of the support

which may be infinity. µ is the unknown lower bound of the support of u which has to be

estimated. It lies in some known closed interval I ⊂ R with lower bound greater than 0.

Without loss of generality, the lower bound of v∗ is normalized to be 1.

Instead of working directly with primitives, we transform them into the parameter θ =(
σ, γ, µ, ψ∗, {ψun}n∈N

)
where µ is the lower bound of unobserved heterogeneity and the ψs

are functions supported on [0, 1] which take on values no less than −1 and integrate up to

0. f ∗, {fun}n∈N can be expressed in terms of ψ functions. To do so, first choose some base

density functions hu and h∗ supported on [0, u] and[1, v∗ + 1], respectively. Let H∗ and Hu

be their corresponding distributions. With some abuse of notation, let the densities given θ

be f ∗ (x; θ) = [Tψ∗] (H∗ (x))h∗ (x) and fun (x; θ) = [Tψun] (Hu (x))hu (x) where

[Tψ] (x) =
[1 + ψ (x)]2

1 +
´
ψ (x)2 dx

.

It is easy to show that for any primitives f ∗ and fun , we can find θ such that f ∗ (·) =

14Unlike in Kim (2015a), the joint bid densities are continuous due to the unobserved auction heterogeneity.
In a parametric model where the densities are continuous at the boundary of the support, the maximum
likelihood estimator is efficient even if the support of the densities depends on the parameters, see Smith
(1985). Therefore, we choose MLE to avoid picking several additional tuning parameters which is required
in Kim (2015a).

15Alternatively, we could assume that u and v∗ are unknown but finite and treat them as parameters.
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f ∗ (·; θ) and fun (·) = fun (· − µ; θ). This transformation allows us to work only with functions

supported on [0, 1].16

Let θ0 =
(
σ0, γ0, µ0, ψ

∗
0,
{
ψu0,n

}
n∈N

)
be the true parameter under h∗ and hu which lives

in a known space Θ = Σ × Kp × I × A . Σ = [0, 1− η], K ⊂ R is a compact set and I is a

closed interval with lower bound greater than 0. A = Ψ (B)n+1 where

Ψ (B) =

ψ ∈ Cq [0, 1] :

ˆ
ψ (x) dx = 0,

ˆ
ψ2 (x) dx <∞, ψ + 1 ≥ η,

∑
0≤k≤q

ˆ
ψ(k) (x)2 dx ≤ B

 ,

where η is some arbitrarily small positive number. B is a known positive constant and q

is a positive integer. Notice that Ψ (B) only contains functions that are smooth enough

to guarantee that Ψ (B) is compact under the sup-norm. Therefore we avoid inconsistency

problem due to a ill-posed inverse problem.17

We further define α =
(
ψ
∗
, {ψun}n∈N

)
, hence θ = (σ, γ, µ, α).With some abuse of notation,

let ‖ψ‖∞ = supx∈[0,1] |ψ (x)| and

‖α‖∞ = max

{∥∥ψ∗∥∥∞ ,max
n∈N

{∥∥ψu

n

∥∥
∞

}}
,

where‖·‖E is the standard Euclidean norm. One can show that Θ is a compact space under

‖·‖s where

‖θ1 − θ2‖s = max {|σ1 − σ2| , |µ1 − µ2| , ‖γ1 − γ2‖E , ‖α1 − α2‖∞} .

3.2 Sieve Maximum Likelihood Estimator

One difficulty in constructing the Sieve MLE is to compute the joint bid densities. These

possibly high dimensional objects are complicated functions of θ and have no closed forms.

We compute the bid densities numerically by exploiting the separable form of the bidding

16This transformation follows Bierens and Song (2012a).
17This regularization follows Santos (2012).
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function. Let gn (·; θ) be the joint density of bids given θ in n-bidder auctions if logX = 0.

gn (b; θ) =

ˆ
1

un

n∏
i=1

g∗n (bi/u; θ) fun (u− µ; θ) du. (1)

Here g∗n is the marginal bid distribution in an auction with n-bidders whose value density

is f ∗ (·; θ). g∗n (b∗; θ) can be obtained by exploiting the first-order condition of the bidding

strategy. Notice that

g∗n (b∗; θ) =


1−σ
n−1

F ∗(s∗−1
n (b∗;θ);θ)

s∗−1
n (b∗;θ)−b∗ if 1 < b∗ ≤ s∗n (v̄∗; θ)

0 Otherwise

where s∗−1
n (·; θ) is the inverse of the bidding strategy

s∗n (v; θ) = v −
ˆ v

1

[
F ∗ (x; θ)

F ∗ (v; θ)

]n−1
1−σ

dx.

The likelihood function can be written as

l (Z`; θ) = l (Z`; (σ, γ, µ, α)) =
∑
n∈N

1{n`=n} log gn (exp (log b` − logX`γ) ; θ) .

The Sieve Maximum Likelihood Estimator is defined as

θ̂L = arg max
θ∈ΘkL

1

L

∑
l (Z`; θ) . (2)

ΘkL = Σ × Kp × I × AkL is the sieve space where AkL is a sequence of finite dimensional

spaces that grows with the sample size. The estimator of the CRRA coefficient σ̂L is the first

element of θ̂L. Let E0 be the expectation under the true primitives.

Assumption 4. (1). hu and h∗ are bounded and strictly bigger than 0 in the interior of

their support and they have bounded continuous derivatives.
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(2). limv↓1 h
∗ (v) / (v − 1)ε = C as v ↓ 1 for some ε ≥ 0 and C > 0.

(3). lim supv→∞ h
∗ (v) v2+δ < C and lim supv→∞ h

u (v) v2+δ < C for some C, δ > 0.

(4). Under h
∗

and hu, θ0 lives in the interior of Θ.

Assumption 5. The sieve space satisfies

(1). {AkL}
∞
L=1 is an increasing sequence of closed subsets of A.

(2). supα∈AkL
‖α−A‖∞ = o (1).

Assumption 6. E0

[
logXT logX

]
has eigenvalues bounded away from 0 and ∞.

Assumption 4(1)-(3) are requirements for the choice of h∗ and hu. Many commonly used

density functions satisfy these requirements. Assumption 4(4) rules out the possibility that

θ0 is a boundary point of Θ. It implies that the densities in the primitives are their cor-

responding base densities multiplied by functions bounded from above and bounded away

from 0.18 Under this assumption, identification is guaranteed by Theorem 1 if there is no

co-variate. Assumption 5(1) requires that the sieve space is closed and increasing so that

the maximization problem in (2) is well-defined. Assumption (5)(2) requires that AkL ap-

proximates A well enough. In Assumption 6 XT is the transpose of X. This assumption

guarantees γ0 is identified.

Proposition 2 (Consistency). If Assumptions 4, 5 and 6 hold, θ̂L
p−→ θ0 as L→∞ under

‖·‖s. In particular, σ̂L
p−→ σ0.

The proof is based on Theorem 5.14 in van der Vaart and Wellner (2000) and generalizes

Wald’s consistency proof to the Sieve MLE. The complication in this case is that the expected

log likelihood function can take on the value −∞ for some θ. Bierens (2014) considers a

similar case but he requires the parameters at which the expected log likelihood is greater

18Therefore, we rule out densities with unconnected support, unbounded first moment and unbounded
values.
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than −∞ to be dense in the parameter space. One can show that in the case considered

here the set of θ such that E0l (Z`, θ) = −∞ has interior points. It is worth noting that

Assumptions 4, 5 and 6 are low level conditions. A key step to prove consistency is to show

that under these low level conditions, the likelihood function and the sieve spaces satisfy

certain regularity conditions. In particular, we need to show that l (Z; θ) is upper semi-

continuous in θ, Z-a.e. and that there exists θ0,kL ∈ ΘkL such that ‖θ0,kL − θ0‖s → 0 and

E0l (Z`, θ0,kL)→ E0l (Z`, θ0). Lemmas that establish these regularity conditions are collected

in Appendix D.

4 Monte Carlo Experiments

4.1 Setup

Each generated sample has 900 auctions and the number of bidders n ranges from 2 to 5.19

We consider three different data generating processes (DGPs). In all DGPs v = v∗uXγ0 with

logX
iid∼ N (0, 1) and γ0 = 0.9. The unobserved characteristic is drawn from a χ2 distribution.

In DGP 1, there is no selection on u and the χ2 parameter is 2 for all n. In DGP 2, there

is weak selection on u and the χ2 parameter increases from 2 for n = 2 to 2.6 for n = 5. In

DGP 3 there is strong selection on u and the χ2 parameter increases from 2 for n = 2 to

6.5 for n = 5. In all DGPs, bidders’ private values v∗ are drawn from a χ2-distribution with

parameter 3. We consider the CRRA coefficients σ0 = 0, 0.1, 0.2, 0.3, to assess how well

the estimation method can distinguish risk neutrality and moderate levels of risk aversion.

We repeat the Monte Carlo experiment 1000 times.

4.2 Estimators

Results for two estimators are reported. First, the Sieve MLE estimator proposed in sec-

tion 3.2. H∗ and Hu are both exponential with parameter 8. ψ∗ and ψ∗n are both 4-th

19The shares are 36% for n = 2, 27% for n = 3, 21% for n = 4 and 16% for n = 5.
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order Legendre polynomials. We compute bidding strategies at 3000 points and interpolate

linearly.20

Second, as a benchmark, we also estimate the CRRA coefficient without taking unob-

served heterogeneity into account, following the method used in Bajari and Hortacsu (2005)

(BH). This estimator is computationlly light and therefore a natural choice for a specification

without unobserved auction heterogeneity. First, we estimate the following equation by OLS:

log bi,` = c+ γ logX` + εi,`

Let γ̂ be the OLS estimate. Then we construct the residual bids b̂∗i,` = exp (bi,` − γ̂ logX`).

Next we estimate the following equation by OLS:

b̂∗n1
(q)− b̂∗n2

(q) = (1− σ)

 qi

ĝn2

(
b̂∗n2

(q)
)

(n2 − 1)
− qi

ĝn1

(
b̂∗n1

(q)
)

(n1 − 1)

 (3)

Here q ∈ [0, 1] and b̂∗n (q) is the q-th quantile in the empirical distribution of b̂∗i,` given n` = n

and ĝn

(
b̂∗n (q)

)
is the corresponding density. A Gaussian kernel with the rule-of-thumb

bandwidth is used to estimate ĝn . Equation 3 is estimated at 100 equally spaced quantiles

ranging from 0.25 to 0.75.21 We restrict the estimates to be between 0 and 1. We report

results for n1 = 2 and n2 = 4.22

4.3 Results

The discussion focuses on the results for the CRRA coefficient shown in Table 1. 23

20The grid points are chosen such that the grid is finer for low values, because the bidding strategy there
can be very nonlinear.

21To avoid boundary effects we exclude quantiles close to 0 and 1. We experimented with different quantiles
ranges and found similar results (available upon request).

22The two-step estimator does not allow us to combine more than two n in an efficient manner. Results
for other pairs of n are similar (available upon request).

23The Online Appendix shows the results for the value distribution and the distribution of the unobserved
characteristic if unobserved heterogeneity is taken into account (Sieve MLE). These findings suggest that the
Sieve MLE estimator is might be preferable to two-step estimation procedures (Krasnokutskaya (2011)) or
Simulated Method of Moments estimators (Bierens and Song (2012b) and Grundl and Zhu (2015)) even if
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First, consider the results if unobserved auction heterogeneity is taken into account using

the Sieve MLE estimator shown in the upper half of Table 1. The estimator works well for

all three DGPs. The bias is very small (at most 0.014) if σ0 6= 0. , but if the parameter is

on the boundary of the parameter space (σ0 = 0) it is somewhat larger (up to 0.048). The

standard deviation is at most 0.102.24

Now consider the result if we ignore unobserved heterogeneity, using the two-step BH

estimator shown in the lower half of Table 1. Interestingly, the sign of the bias depends on

the DGP.25 The CRRA coefficient is significantly over-estimated under DGPs 1 (no selection)

and 2 (moderate selection), but under-estimated under DGP 3 (strong selection). Section

4.4 provides some intution to understand why the sign of the bias depends on the correlation

between the number of bidders and the unobserved characteristic.

We also test risk neutrality using the sieve MLE estimator H0 : σ0 = 0, H1 : σ0 > 0. To

construct the test we treat the model as parametric and use the asymptotic distribution of the

estimator.26 Notice that under the null hypothesis, σ0 is on the boundary of the parameter

space. Following the insight from Andrews (1999), σ̂ is asymptotically truncated normal.

Therefore it is still valid for the one sided test to reject the null hypothesis if σ̂ divided by the

standard error exceeds the corresponding quantiles of a standard normal random variable.

Table 2 shows the results for testing risk neutrality. We consider significance levels of 5%

and 10%. The test has good size control. For all three DGPs the rejection probability is

close to the significance level if σ0 = 0. The test also performs well in terms of power. The

rejection probability for a 5% significance level increases from about 20% if σ0 = 0.1, to about

55% if σ0 = 0.2 and about 85% σ0 = 0.3. In light of the sample size and the flexibility of the

model, it is not surprising that it is difficult to distinguish σ0 = 0.1 from risk neutrality.

the researcher assumes that the bidders are risk neutral.
24We found that the standard error of the estimator is about 60% smaller than for a Simulated Method of

Moments Estimator (Bierens and Song (2012b) and Grundl and Zhu (2015)).
25As expected, the bias gets smaller as the variance of the unobserved characteristic is reduced. These

Monte Carlo results are available upon request.
26To estimate the asymptotic distribution, we need the joint bid densities to vanish smoothly at the

boundary of their supports. Hence, we require that at least that the fun vanish smoothly at their boundaries.
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σ0 = 0 σ0 = 0.1 σ0 = 0.2 σ0 = 0.3

Allowing for Unobserved Heterogeneity

DGP 1: No Selection
Mean 0.046 0.114 0.202 0.292
Std 0.069 0.086 0.102 0.094

DGP 2: Weak Selection
Mean 0.041 0.108 0.188 0.284
Std 0.063 0.090 0.096 0.097

DGP 3: Strong Selection
Mean 0.048 0.109 0.198 0.288
Std 0.074 0.093 0.105 0.102

Ignoring Unobserved Heterogeneity

DGP 1: No Selection
Mean 0.698 0.714 0.737 0.754
Std 0.205 0.160 0.146 0.138

DGP 2: Weak Selection
Mean 0.540 0.554 0.578 0.606
Std 0.232 0.193 0.174 0.156

DGP 3: Strong Selection
Mean 0.019 0.007 0.001 0.000
Std 0.134 0.083 0.032 0.000

Table 1: This table shows results of the Monte Carlo study for two estimators of the CRRA
coefficient σ. The upper half of the table shows results if unobserved auction heterogeneity
is taken into account using the Sieve MLE described in section 3. The lower half of the table
shows results if unobserved heterogeneity is ignored using the two-step estimator proposed
by Bajari and Hortacsu (2005).
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Sig. Level σ0 = 0 σ0 = 0.1 σ0 = 0.2 σ0 = 0.3

DGP 1: No Selection

10 8.8 34.3 72.5 93.8
5 5.7 24.4 57.6 88.2

DGP 2: Weak Selection

10 7.6 27.7 69.5 91.9
5 4.9 19.8 53.1 85.9

DGP 3: Strong Selection

10 10.1 30.1 71.7 92.2
5 7.1 21.2 58.3 84.7

Table 2: This table shows the probability (in %) that risk neutrality (σ0 = 0) is rejected if
the unobserved characteristic is taken into account (Sieve MLE).

4.4 Understanding the Bias if Unobserved Heterogeneity is Ig-

nored

Here we provide some intution for the bias in risk aversion estimates if unobserve auction

heterogeneity is ignored.

Figure I(a) shows bid functions of risk neutral and risk averse bidders in two and four

bidder auctions. Private values are on the horizontal axis and the corresponding bids on the

vertical axis. The solid blue line and the solid red line depict a risk neutral bidder’s strategies

in two and four-bidder auctions, respectively. The dashed lines depict a risk averse bidder’s

strategies. Figure I(b) shows the corresponding bid distributions.

Consider risk neutral bidders first. Their bid shading depends only on the distribution of

valuations. Intuitively, the bidders shade their bids more if the values are more dispersed and

the bidders have more private information and thereby more market power. If the number of

competitors increases, market power declines and the bidders shade their bids less. This shift

in the bid function is smaller if the values are are not very dispersed, because then the bids

are close to values even for a small number of competitors. Hence, the bid distribution tends
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Figure I: This graph illustrates how risk aversion is identified by variation in the number
of bidders. The left panel shows bid functions and the right panel the corresponding bid
distributions. Solid lines depict risk neutral bidders and dashed lines show risk averse bidders.
Blue lines show two bidder auctions and red lines show four bidder auctions.

to respond more to changes in n if the values (and therefore the bids) are more dispersed.

Now consider risk averse bidders who bid more aggressively, which affects how much the

bid distribution responds to changes in n and the dispersion of bids. Risk averse bidders

respond less to changes in n because the bids are close to values even for a small number

of competitors. Second, the dispersion of their bids is larger, because risk aversion has no

effect for bidders at the lower bound of the valuation distribution but increases the bids of

bidders with higher values. Therefore we conclude that the bidders are risk averse if the bid

distribution does not respond much to increases in n relative to the dispersion of the bid

distributions.

If unobserved auction heterogeneity is ignored the (unconditional) bid distributions ap-

pear very dispersed, as variation in bids due to the unobservable characteristic is attributed

to bidders’ private information. In addition, if auctions with a higher unobserved charac-

teristic attract more bidders, this increases the shift of the (unconditional) bid distribution

as n increases. The first effect increases the dispersion of bids and therefore leads to over-
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estimation of risk aversion. The second effect increases the shift of the bid distribution as n

increases and therefore leads to under-estimation of risk aversion. Which of these two effects

dominates, and therefore the sign of the bias, depends on how strongly the number of bidders

is correlated with the unobserved characteristic.

5 Empirical Application

5.1 Data Description

We estimate the risk aversion of bidders in USFS timber auctions.27 The data can be down-

loaded from Phil Haile’s website.28 Lu and Perrigne (2008) and Campo, Guerre, Perrigne,

and Vuong (2011) found the bidding firms to be risk averse.29 Other work documented un-

observed heterogeneity in these auctions (e.g. Aradillas-López, Gandhi, and Quint (2013a),

Aradillas-López, Gandhi, and Quint (2013b), Roberts and Sweeting (2010), Roberts and

Sweeting (2013) and Athey, Levin, and Seira (2011)).

Following Haile and Tamer (2003), we construct a sub-sample of scaled sales with contract

length of less than one year between 1982 and 1990, for which the assumption of private values

is plausible.30 Geographically, we focus on timber tracts from the Southern Region, ranging

from Texas and Oklahoma to Florida and Virginia, where most of the first-price auctions

take place.

To limit the number of parameters in the distributions of the unobserved characteristic,

27Baldwin, Marshall, and Richard (1997, Appendix A) contains a detailed description of the auction pro-
cedure and background on the timber industry.

28http://www.econ.yale.edu/˜pah29/timber/timber.htm
29The findings in these papers cannot be directly compared to the findings in this paper, because they

do not rely on variation in the number of bidders for the identification of risk aversion. Lu and Perrigne
(2008) use variation in the auction format, while Campo, Guerre, Perrigne, and Vuong (2011) impose mild
parametric restrictions. For risk aversion in timber auctions see also Baldwin (1995) and Athey and Levin
(2001).

30In scaled sales, bidders pay only for the timber that is actually harvested; this insures the bidders against
the risk of overestimating the volume of timber and reduces the common value component in the valuations.
Short term contracts with a contract length of less than one year limit resale opportunities and thereby reduce
the common value component generated by the resale market. In 1981 the Forest Service introduced new
policies designed to limit subcontracting and speculative bidding (Haile (2001)). Therefore, only auctions
after 1981 are included. The data does not contain sales after 1990 for this region.
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we further restrict the sample to auctions with 2 to 5 bidders. Intuitively, auctions with few

competiors contain most information about risk preferences. As the number of competitors

increases the effect of risk aversion on bids becomes small, because competition drives bids

close to the values even for risk neutral bidders. To reduce the influence of the extreme

bids, we also discard 8 auctions with bids more than 8 times the appraisal value.31 The final

sample includes 370 2-bidder, 263 3-bidder, 172 4-bidder, and 105 5-bidder auctions.

Our estimates condition only on the appraisal value provided by the US Forest Service, but

not on other observed timber tract characteristics such as the timber volume, acreage or the

species composition. As the appraisal value is meant to capture all the relevant information

it can plausibly be treated as a sufficient statistic for the various timber tract characteristics.

If some observed characteristics contain important information, which is not captured by the

appraisal value, this affects only the precision of the estimator but not its consistency, as we

allow for unobserved auction heterogeneity.

5.2 Results and Discussion

The point estimate for the CRRA coefficient is 0.0018. The p-value for testing risk neutrality

is 0.4914 and the 95% confidence interval for σ0 is [0, 0.163]. Hence, we reject high levels of

risk aversion.

For comparison table 3 shows results if risk aversion is ignored using the estimator in Ba-

jari and Hortacsu (2005) as described in section 4. We report results for different pairs of auc-

tion sizes. To assess the robustness of the results, we report estimates based on three choices

of quantiles. The bandwidth for the bid density estimators are chosen to be std(b)L
−1/4
n .32

The point estimates for the CRRA coefficient range from 0.547 to 0.708. The estimated

confidence intervals do not cover any values below 0.324.

Hence we find that the bidders are close to risk neutral if we allow for an unobserved

31The remaining bids are all less than 4 times the appraisal value. Therefore we believe that the bids above
8 times the appraisal value can plausibly be considered outliers.

32The results are robust to different bandwidth choices we tried.
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auction characteristic, but reject risk neutrality in a specification without unobserved auction

heterogeneity. This pattern is consistent with a low correlation between the unobserved

characteristic and the number of bidders as explained in section 4.4. Indeed we find that the

distribution of the unobserved characteristic for different numbers of bidders is fairly similar.

A possible explanation is that the unobserved characteristic is observed by the bidder only

after they decided to enter the auction. For example, characteristics that are only observable

for entrants who typically cruise the auctioned tract, but not for potential bidders.

We follow most of the structural auction literature in assuming that the bidders know

the number of their opponents, who also decided to enter, when they submit their bid.33

Intuitively, a violation of this assumption would bias our risk aversion estimates upwards. To

see this consider the case where the number of potential bidders is the same for all auctions.34

In this case the bid distribution would not vary with the number of entrants. Through the

lense of our model this is consistent with extreme levels of risk aversion, such that the bids

are very close to valuation regardless of the number of bidders.

2 and 3 bidders 2 and 4 bidders 2 and 5 bidders
Quantiles σ̂ 95% CI σ̂ 95% CI σ̂ 95% CI

[0.20, 0.80] 0.708 [0.501, 1.000] 0.666 [0.480, 0.898] 0.694 [0.552, 0.912]

[0.25, 0.75] 0.652 [0.406, 1.000] 0.606 [0.398, 0.913] 0.635 [0.450, 0.913]

[0.30, 0.70] 0.615 [0.333, 1.000] 0.547 [0.324, 0.891] 0.568 [0.357, 0.870]

Table 3: Estimates of the CRRA coefficient σ in a specification without unobserved auction
heterogeneity.

33Athey, Levin, and Seira (2011) argues that this is a reasonable assumption for timber auctions as the
bids are highly correlated with the number of active bidders even after controlling for a variety of variables
including the number of potential bidders. See Gentry, Li, and Lu (2015) for identification of risk aversion
in first-price auctions if this assumption does not hold.

34Alternatively, we could condition number of potential bidders if it is observed.
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6 Conclusion

This paper extends the point identification result in Guerre, Perrigne, and Vuong (2009) to

environments with unobserved auction heterogeneity and provides conditions to ensure that

the primitives recovered under the exclusion restriction for the number of bidders remain

meaningful as bounds of the true primitives even if the exclusion restriction is violated. We

propose a Sieve Maximum Likelihood Estimator and show its consitency under low level con-

ditions. We explain why the bias in risk aversion estimates if unobserved auction heterogentiy

is ignored depends on the correlation between the number of bidders and the unobserved auc-

tion heterogeneity. The application underscores the importance of accounting for unobserved

heterogeneity as we find the bidders to be risk neutral, but would reject risk neutrality if

unobserved heterogeneity is ignored.

We see two avenues for future research. First, relaxing the assumptions of symmetric,

independent and private values are important extensions for many applications. Relaxing

the assumption of independent values is perhaps most pertinent, because this creates an

additional source of correlation among bids from the same auction. The researcher then

faces the challenging task disentangle which part of this correlation can be attributed to

the unobserved characteristic and which part to the correlation of values conditional on the

unobserved characteristic. Second, allowing for unobserved heterogeneity in the framework

of Gentry, Li, and Lu (2015) where bidders do not know the number of entrants. For this

extension we would have to confirm that the conditions to apply the techniques from the

measurment error literature are still satisfied.
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A Identification

A.1 Technical Assumptions

Assumption 7. Technical Assumptions for Theorem 1.

(1). Additive Case:

(a) The density f ∗has non-negative interval support and f ∗ (x) < a1 exp (−a2 |x|) for

some constants a1, a2 > 0. In addition,
´
|u| dF u (u|n) <∞ for all n.

(b) λ (x) < exp (a3x) for some a3 > 0. In addition, either ∃a4 > 0 such that

lim inf
x→∞

λ (x) / exp (a4x) > 0 or a3 < a2.

(2). Multiplicative Case: The density f ∗ has positive interval support and
´
|v| dF ∗ (v) <∞.

In addition,
´
|log u| dF u (u|n) <∞ for all n.

Assumption 8. (1). F u (·|n) has a continuous density fu (·|n) supported on [u (n) , u (n)].

(2). F (·|·, n) is continuously differentiable on {(v, u) : v ∈ [v (u) , v (u)] , u ∈ [u (n) , u (n)]}.

A.2 Proof of Theorem 1

In Theorem 1 (1) bids are additive in u and in Theorem 1 (2) log bids are additive in log (u).

This follows from a slight generalization of Proposition 1 in Krasnokutskaya (2011) presented

in section A.2.1. The main identification proof is presented in section A.2.2.

A.2.1 Bidding Strategy

Lemma 1. Let sn (v, u) be the bidding strategy for a bidder with value v in an auction with

unobserved heterogeneity u and s∗n be the bidding strategy under F ∗.

(1). If F (v|u) = F ∗ (v − u), then sn (v, u) = s∗n (v − u) + u for all u ≥ 0 and v ≥ u+ 1.
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(2). If F (v|u) = F ∗ (v/u) and the bidders have constant relative risk aversion, then sn (v, u) =

s∗n (v/u)u for all u > 0 and v ≥ u .

Proof. The bidding strategy under F ∗ is given by the boundary condition s∗n (1) = 1 and the

first-order condtion

ds∗n (v)

dv
= (n− 1)

f ∗ (v)

F ∗ (v)
λ (v − s∗n (v)) .

If F (v|u) = F ∗ (v − u), then sn (v, u) = s∗n (v − u)+u satisfies the initial condition sn (v (u) , u) =

v (u) and the first order condition holds:

∂sn (v, u)

∂v
=
ds∗n (v − u)

dv
= (n− 1)

f∗ (v − u)

F ∗ (v − u)
λ (v − u− s∗n (v − u)) = (n− 1)

f∗ (v|u)

F ∗ (v|u)
λ (v − sn (v, u)) .

If F (v|u) = F ∗ (v/u) , then sn (v, u) = s∗n (v/u)u satisfies the initial condition sn (v (u) , u) =

v (u) and:

∂sn (v, u)

∂v
=
ds∗n

(
v
u

)
dv

= (n− 1)
f∗
(
v
u

)
F ∗
(
v
u

)λ(v
u
− s∗n

(v
u

))
= (n− 1)

f∗ (v|u)

F ∗ (v|u)
λ

(
v − sn (v, u)

u

)
u

Notice that λ (·/u)u = λ (·) if and only if the utility function is of the CRRA form. Therefore

sn (v, u) = s∗n (v/u)u satisfies the first-order condidtion with CRRA in this case.

A.2.2 Proof of Theorem 1

Proof. Let G∗n and g∗n be the bid distribution and the corresponding bid density in an n

bidder auction if u = 0 in Theorem 1 (1) or if u = 1 in Theorem 1 (2).

The proof proceeds in two steps. First, we identify g∗n1
and g∗n2

building on Lemma 2 in

Evdokimov and White (2012). Second, we identify the model primitives from g∗n1
and g∗n2

building on Proposition 3 in Guerre, Perrigne, and Vuong (2009). Please refer to Evdokimov

and White (2012) and Guerre, Perrigne, and Vuong (2009) for these results. Here, we only

show that the joint bid distributions satisfy the conditions in Lemma 2 of Evdokimov and

White (2012) for both cases in Theorem 1.

For Theorem 1 (1), we can rewrite the model as v = v∗ + u with v∗ independent of u.
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The bidding strategy in an auction with n bidders u is u + s∗n (v∗) where s∗n (1) = 1 and for

v∗ > 1

ds∗n (v∗)

dv∗
= (n− 1)

f ∗ (v∗)

F ∗ (v∗)
λ (v∗ − s∗n (v∗)) .

To apply Lemma 2 from Evdokimov and White (2012), we need to show that (a)E [|u|+ |s∗n (v∗)|] <

∞ and (b) g∗n has a tail bounded by an exponential function. Condition (a) is guaranteed

by the fact that E |s∗n (v∗)| < E |v∗| < ∞ and the assumption
´
|u| dF u (u|n) < ∞. For

condition (b), notice that by assumption ∃C > 0 such that for v∗ > C > 0 we have

ds∗n (v∗)

dv∗
= (n− 1)

f∗ (v∗)

F ∗ (v∗)
λ (v∗ − s∗n (v∗)) < (n− 1) 2a1 exp (−a2v

∗) exp (a3 (v∗ − s∗n (v∗))) .

The inequality uses the exponential bound for f ∗ and λ. Let s1
n (v∗) be a function that solves

ds1
n (v∗)

dv∗
= (n− 1) 2a1 exp (−a2v

∗) exp
(
a3

(
v∗ − s1

n (v∗)
))

(4)

with s1
n (C) = s∗n (C). Then s1

n (v∗) > s∗n (v∗) if v∗ > C.35

If a3 < a2, it is easy to see that s1
n is bounded, so g∗n has bounded support and is bounded

by an exponential tail.

If a2 < a3, (4) has the solution exp (s1
n (v∗)) = c1 exp

(
a3−a2
a3

v∗
)

+ c2 where c1 > 0 and c2

are constants. As a3−a2
a3

< 1, s∗n (v∗) < s1
n (v∗) < c2v

∗ with 0 < c2 < 1 for v∗ large enough.

Then from the first order condition, the density of s∗n (v∗) satisfies

g∗n (s∗n (v∗)) =
f ∗ (v∗)
ds∗n(v∗)
dv∗

=
F ∗ (v∗)

(n− 1)λ (v∗ − s∗n (v∗))

<
F ∗ (v∗)

(n− 1) exp (a4 (1− c2) v∗)
<

1

(n− 1) exp
(
a4(1−c2)

c2
s∗n (v∗)

)
The first inequality follows from the assumption that λ (x) > exp (a4x) for x large enough.

Hence, g∗n has an exponential bound.

For Theorem 1 (2), we can rewrite the model as v = v∗u with v∗ independent of u . The

35This follows from a standard contradiction argument. The proof is available upon request.
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bidding strategy is us∗n (v∗) with

ds∗n (v∗)

dv∗
= (n− 1)

f ∗ (v∗)

F ∗ (v∗)
(1− σ) (v∗ − s∗n (v∗)) < (n− 1)

f ∗ (v∗)

F ∗ (v∗)
(1− σ) v∗

Now we need to show that (a) E [|log u|+ |log s∗n (v∗)|] < ∞ and that (b) log s∗n (v∗) has a

density with a tail bounded by an exponential function. First, let v∗ be the lower bound of

v∗. Then s∗n (v∗) ≤ (n− 1)
´ v∗
v∗

f∗(v)
F ∗(v)

(1− σ) vdv is bounded from above by the assumption

that
´
vf ∗ (v) dv < ∞. In addition, the bidding function is bounded away from 0. Hence,

the density of log s∗n (v∗) has a bounded support. Hence, the density satisfies (b) which also

suggests E |log s∗n (v∗)| < ∞. In addition, E |log u| < ∞ by assumption which implies (a) is

satisfied.

We normalize the lower bound of the support of f ∗and thereby the lower bounds of the

supports of g∗n for all n to one. It follows from Lemma 2 in Evdokimov and White (2012)

that g∗nand fu (·|n) are identified for n = n1, n2.

Next we apply Proposition 3 in Guerre, Perrigne, and Vuong (2009) to g∗n1
and g∗n2

. This

allows us to identify f ∗ and U .

A.3 Proof of Proposition 1

To simplify the notation, let Fi (·) = F (·|ui) , vi (α) = F−1
i (α) and sin (·) be the bidding

strategy under Fi for i = 1, 2. In addition, bin (α) = sin (vi (α)) is the αth quantile of the bid

distribution.

As v′ (α) f (v (α)) = 1 we can rewrite the first order condition as follows:

dbin (α)

dα
=


(n− 1) 1

α
λ (vi (α)− bin (α)) if α > 0

(n−1)λ
′
(0)

(n−1)λ′ (0)+1
1

fi(vi(0))
if α = 0

(5)

Before we prove Proposition 1, we illustrate the main idea of the proof by showing that
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the stronger assumption v1 (α) > v2 (α) for all α implies that b1
n (α) > b2

n (α) for all α.

To see this notice that b1
n (0) > b2

n (0). Now suppose towards contradiction that for some

α > 0 we have b1
n (α) ≤ b2

n (α). By continuity of the bid functions there exists α1 =

min {α : b1
n (α) = b2

n (α)} > 0. Notice that b1
n (α) > b2

n (α) for α < α1 by construction.

At the same time we have ∂
∂α
b1
n (α1) > ∂

∂α
b2
n (α1) because v1 (α1) > v2 (α1). Therefore there

exists some α slightly smaller than α1 such that b1
n (α) < b2

n (α) which is a contradiction. The

proof of Proposition 1 follows a similar idea but is more involved.

Lemma 2. Under Assumption 2, b1
n (α) ≥ b2

n (α) for all α ∈ [0, 1].

Proof. First, notice that b1
n (0) ≥ b2

n (0) as v1 (0) ≥ v2 (0). Now suppose towards contradiction

that there is α2 > 0 such that b1
n (α2) < b2

n (α2). Define α1 = max {α : b1
n (α) ≥ b2

n (α) , α ≤ α2}.

By construction, b1
n (α) < b2

n (α) for α ∈ (α1, α2). As v1 (α) ≥ v2 (α) for all α we have

db1n(α)
dα

> db2n(α)
dα

for all α ∈ (α1, α2). This implies that b1
n (α2) = b1

n (α1)+
´ α2

α1

db1n(α)
dα

> b2
n (α2) =

b2
n (α1) +

´ α2

α1

db2n(α)
dα

which is a contradiction.

Lemma 3. Under Assumption 2 , if v1(α) > v2(α) then b1
n (α) > b2

n (α), for α ∈ [0, 1].

Proof. For α = 0 this holds because bin (0) = vi(0) for i = 1, 2. Now suppose towards

contradiction that b1
n(α) ≤ b2

n(α) for some α ∈ (0, 1] such that v1(α) > v2(α). This implies

that db1n(α)
dα

> db2n(α)
dα

. Therefore we can find α1 slightly smaller than α such that b1
n(α1) <

b2
n(α1) which contradicts Lemma 2.

Proof of Proposition 1. Suppose towards contradiction that b1
n (1) = b2

n (1) and v1 (1) =

v2 (1). This is the only case left to be ruled out, because the remaining cases where b1
n (1) ≤

b2
n (1) are covered by Lemmas 2 and 3. Define ∆b (α) = b1

n (α)−b2
n (α), ∆v (α) = v1 (α)−v2 (α)

and let α = inf {α : v1 (α) = v2 (α) on [α, 1]} > 0. Notice that ∆b (α) = 0 for all α ∈ [α, 1].36

Take the difference of the first-order conditions for b1
n and b2

n and apply the mean value the-

36On this region both bid functions can be derived by solving the same differential equation given by
equation 5 and the end condition b1n (1) = b2n (1).
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orem twice to obtain

α∆b′ (α) = (n− 1)λ
(
v1 (α)− b1

n(α)
)
− (n− 1)λ

(
v2 (α)− b2

n(α)
)

= (n− 1)λ
′
(r̄ (α)) (∆v (α)−∆b (α))

= (n− 1)λ
′ (
v1 (α)− b1

n(α)
)

(∆v (α)−∆b (α))

+ (n− 1)λ
′′

(r̃ (α))
(
r̄ (α)−

(
v1 (α)− b1

n(α)
))

(∆v (α)−∆b (α)) (6)

= (n− 1) (c+ δ (α)) (∆v (α)−∆b (α))

Here r̄ (α) is some value between v1 (α)−b1
n(α) and v2 (α)−b2

n(α), r̃ (α) is some value between

r̄ (α) and v1 (α)−b1
n(α), c = λ

′
(v1 (α)− b1

n(α)) ≥ 1 and δ (α) = λ
′′

(r̃ (α)) (r̄ (α)− (v1 (α)− b1
n(α))) .If

α→ α then vi (α)− bin(α)→ v1 (α)− b1
n(α) for i = 1, 2. Consequently, r̄ (α)→ v1 (α)− b1

n(α)

and δ (α)→ 0 as α→ α. As c ≥ 1, we can find an ε > 0 such that α− ε > 0 and c+δ (α) > 0

for all α ∈ [α− ε, α]. Suppose we know δ then we can solve the differential equation (6) for

∆b on [α− ε, α] with the end condition ∆b (α) = 0 . The closed form solution is

∆b (α) = −
´ α
α

[c+ δ (w)] ∆v (w) exp
´ w
α−ε

c+δ(z)
z

dzdw

exp
´ α
α−ε

c+δ(z)
z

dz
< 0.

This contradicts Lemma 2. Therefore, b1
n (1) > b2

n (1).

A.4 Proof of Theorem 2

Proof. The bid distribution given u in an n-bidder auction is denoted by Gn (·|u) and the

corresponding density by gn (·|u). First, consider the case where u is discrete. As the support

of u does not depend on the number of bidders, we can normalize u such that it takes values

on 1, 2, 3, · · · , K for n1 and n2. Hu, McAdams, and Shum (2013) shows that Gn (·|u) is

identified if the highest bid is strictly increasing in u. This is satisfied by Proposition 1. We

then pair Gn1 (·|u) and Gn2 (·|u) to identify U and F by applying Proposition 3 in Guerre,
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Perrigne, and Vuong (2009).

Now consider the case where where u is continuous. We show that the relevant conditions

for Steps 1 and 2 in the proof of Theorem 2.1 in d’Haultfoeuille and Février (2010b) are satis-

fied: First, the highest bid given u is strictly increasing in u by Proposition 1. Second, the low-

est bid is assumed to be strictly increasing in u. Third, Gn (·|·) , sn (v̄ (u) , u) and sn (v (u) , u)

are continuously differentiable. To see this, notice that F (·|·) and the utility function U are

both continuously differentiable by Assumption 8. By Theorem 1 in Campo, Guerre, Per-

rigne, and Vuong (2011), the bidding strategy sn (v, u) is continuously differentiable on the

support of F (·|·) . Hence the highest bid sn (v̄ (u) , u) is continuously differentiable with

respect to u and Gn (·|·) is continuously differentiable. Therefore, sn (v (u) , u) = v (u) is

continuously differentiable. We normalize u = v (u). Now we can apply Theorem 2.1 from

d’Haultfoeuille and Février (2010b) to show that Gn (·|v (u)) is identified for n1 and n2. As

the supports of fun1
and fun2

overlap, we can find some v (u) such that we observe Gn (·|v (u))

for n = n1, n2. We then invoke Proposition 3 in Guerre, Perrigne, and Vuong (2009) to

identify U and F .

A.5 Proof of Theorem 3

Proof. Let G1 and G2 be the bid distributions from n1 and n2 bidder auctions. We first

prove that the bid distribution G2 first order stochastically dominates G1. To simplify the

notation we suppress u∗ from now on. Suppose towards contradiction that G2 does not first

order stochastically dominate G1. Let v denote the common lower bound of the support of

both bid distributions (Condition 1(1)). Guerre, Perrigne, and Vuong (2009, Theorem 1)

establish that the slope of the bid function at v is strictly higher in the n2 bidder auction.

Moreover Assumption 2 implies that the density of valuations in the n2 bidder auction is

weakly lower at v. Therefore g2 (v) < g1 (v) and at the smallest point b̃ > v such that

G1

(
b̃
)

= G2

(
b̃
)

= α < 1 we must have g2

(
b̃
)
≥ g1

(
b̃
)

. The first order condition of the
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bidding strategy can be written as

gi

(
b̃
)

=
1

ni − 1

α

λ
(
vi (α)− b̃

) for i = 1, 2.

, where vi (α) is the α-th quantile of the valuation distribution. As n2 > n1 and v2 (α) ≥

v1 (α), we must have g2

(
b̃
)
< g1

(
b̃
)

which is a contradiction. Therefore, G2 must first order

stochastically dominate G1.

As in Guerre, Perrigne, and Vuong (2009), construct a decreasing sequence of αs such

that R1 (αt) = R2 (αt−1) with R1 (α0) = x. As R1 (αt−1) > R2 (αt−1), R1 (0) = 0 < R2 (αt−1)

and R1 is continuous, there exits an αt ∈ (0, αt−1) such that R1 (αt) = R2 (αt−1) by the

intermediate value theorem. Therefore, such a decreasing sequence of αs exists. In addition,

this sequence converges to 0. This can be shown by contradiction. First, notice that the

sequence is decreasing and bounded from below by 0. Hence, it must converge to some

non-negative number c. Suppose towards contradiction that c > 0. As R1 and R2 are both

continuous,

R1 (c) = R1

(
lim
t→∞

αt

)
= lim

t→∞
R1 (αt) = lim

t→∞
R2 (αt−1) = R2

(
lim
t→∞

αt−1

)
= R2 (c)

This violates the condition that R1 (α) > R2 (α) for α > 0 .

We want to bound λ−1 (x). We define λ̃ as the strictly increasing function satisfying

λ̃−1 (R1 (α)) − λ̃−1 (R2 (α)) = b2 (α) − b1 (α) for α ∈ [0, 1] with λ̃ (0) = 0. Notice that if

Assumption 1 is violated the existence of this function is no longer guaranteed. We assume

that it exists henceforth. Using the α sequence and recursive subsitution λ̃ can be expressed

as follows:

λ̃−1 (x) =
∞∑
t=0

[b2 (αt)− b1 (αt)] =
∞∑
t=0

b2 (αt)− b1 (αt) =
∞∑
t=0

∆b (αt)
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with x ∈
[
0, max

α∈[0,1]
R1 (α)

)
. This infinite sum exists because for any finite T ,

∑T
t=0 ∆b (αt) ≤

λ̃−1 (x) and ∆b (αt) ≥ 0 by the first order stochastic dominance of bid distributions shown

above. The true λ satisfies the first-order condition Ri (α) = λ (vi (α)− bi (α)) for i = 1, 2 so

∞∑
t=0

b2 (αt)− b1 (αt) ≥
∞∑
t=0

[b2 (αt)− b1 (αt) + v1 (αt)− v2 (αt)]

=
∞∑
t=0

[
λ−1 (R1 (αt))− λ−1 (R2 (αt))

]
= λ−1 (R1 (α0))− lim

t→∞
λ−1 (R2 (αt)) = λ−1 (x)

The inequality follows from Assumption 2. The last equality uses the fact that lim
t→∞

λ−1 (R2 (αt)) =

0 because the α sequence converges to zero. Hence λ̃−1 (·) ≥ λ−1 (·) and therefore λ̃ (·) ≤ λ (·).

The bounds for the utility function are obtained by solving the differential equation λ(x) =

U(x)
U ′(x)

with the boundary condition U (1) = 1.

The underlying valuations recovered under Assumption 1 bound the actual valuations

from above: F−1 (α|u, ni) = λ−1 (Ri (α, u)) + bi (α, u) ≤ λ̃−1 (Ri (α, u)) + bi (α, u) for i = 1, 2.

Moreover, the valuations are bounded from below by the bids: F−1 (α|u, ni) ≥ bi (α, u) for

i = 1, 2.

B Entry

B.1 Entry and Assumption 1

In this section we show that Assumption 1 is satisfied in a fairly general entry framework

with (conditionally) independent signals. There are N potential entrants. Prior to bidding,

a potential bidder i observes a vector of auction characteristics X including the number

of potential entrants and a private signal ξi (possibly multi-dimensional). Bidder i′s entry

strategy is a function φi : (X, ξi)→ {0, 1}. If φi takes the value 1, the potential bidder enters.

Most commonly considered entry models fit into this framework for some φi. To simplify the
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notation, we suppress the argument of φi from now on.

Let −→v = (v1, v2, · · · , vN) ,
−→
ξ = (ξ1, ξ2, · · · , ξN) and

−→
φ = (φ1, φ2, · · · , φN). We use the

subscript −i to denote the vector of variables from bidders other than i. Let FA,B|C (·, ·|·)

denote the joint distribution of A and B conditional on C. For instance, F−→v ,−→ξ |X (·, ·|·) is the

joint distribution of the value and signal for bidder i given X.37 The next lemma provides a

sufficient condition to ensure that an entrant’s value distribution depends only on his identity

and X. Therefore, if the bidders are symmetric, an active bidder’s value distribution does

not vary with n and Assumption 1 holds.

Lemma 4. If (vi, ξi) ⊥
X

−→
ξ −i for all i, then for every i, Fvi|φi,φ−i,X (v|1, ·, x) = Fvi|φi,X (v|1, x),

x-a.e.

Proof. Notice that (vi, ξi) ⊥
X

−→
ξ −i implies that (vi, φi) ⊥

X

−→
φ −i. By conditional independence

Fvi|φi,φ−i,X (v|1, ·, x) =
Fvi,φi,φ−i|,X (v, 1, ·|x)

P (φi = 1, φ−i = ·|x)
=
Fvi,φi,φ−i|,X (v, 1|x)P (φ−i = ·|x)

P (φi = 1|x)P (φ−i = ·|x)
= Fvi|φi,X (v|1, x)

B.2 Independence of v∗ and u with Entry

Proposition 3. Suppose v∗ and u are independent for potential bidders, then v∗and u are

independent conditional on n if one of the following conditions holds:

(1). Potential bidders do not observe any information about v∗ or u.

(2). Potential bidders observe only u.

(3). Potential bidders observe a signal si of v∗, which is independent across bidders and

independent of u.

37For example, in the AS model studied in Li, Lu, and Zhao (2015), entry can be described by φi (X, ξi) =
1 (ξi > c (X)) where c (X) be a cutoff determined by the model.

36



Proof. We must allow for the possibility of mixed entry strategies. Bidder i uses a random-

ization device which generates a random variable εi independent of (u, v∗) to implement the

mixed strategy.

For Proposition 3(1) the entry strategy can be described by some function g (εi) which

takes the value 0 or 1. Therefore, the joint distribution of (u, v∗) for entrants is

Pr (u ≤ x, v∗ ≤ y|g (εi) = 1) = Pr (u ≤ x, v∗ ≤ y) = Pr (u ≤ x)P (v∗ ≤ y)

.

For Proposition 3(2) the entry strategy can be described by g (u, εi), the joint distribution

for entrants is

Pr (u ≤ x, v∗ ≤ y|g (u, εi) = 1) = E {E [1 (u ≤ x, v∗ ≤ y) |u, εi] |g (u, εi) = 1} .

= E [1 (u ≤ x)E [1 (v∗ ≤ y) |u, εi] |g (u, εi) = 1]

= Pr (v∗ ≤ y) Pr (u ≤ x|g (u, εi) = 1)

The last step follows because v∗ is independent of (u, εi).

Lastly, following an analogous argument one can show for Proposition 3(3) that

P (u ≤ x, v∗ ≤ y|g (si, εi) = 1) = P (v∗ ≤ y|g (si, εi) = 1)P (u ≤ x) .

This result does not cover the case where bidders obtain some information about the

private information v∗ and about the unobserved characteristic u before they enter. In this

case v∗and u are generally no longer independent for entrants.
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B.3 Selection on u

With some abuse of notation, let F ∗ and F u denote the distributions of v∗ and u for potential

bidders and F ∗ ( ·|n) and F u ( ·|n) the distributions of v∗ and u for a given number of active

bidders n. Let N be the number of potential bidders. For simplicity, assume that fu has

a bounded interval support [u, u]. The entry cost is k. Potential bidders share a wealth

level W > k and a utility function U. Define U (x) = U (x+W − k) − U (W − k) as the

re-centered utility function. We assume that at the bidding stage the bidders know their own

v∗, u and n.

Proposition 4. Suppose that v = uv∗ where u and v∗ are independent, and U (x) = x1−σ.

Potential bidders observe only u, but no signal for v∗. Then F u ( ·|n) is first-order stochasti-

cally increasing in n.

To prove this we use the following lemma.

Lemma 5. Let p (u) ∈ [0, 1] be a weakly increasing function on [u, u]. Let

F u (x|n) =

ˆ x

u

p (u)n [1− p (u)]N−n fu (u) du/C (n)

with C (n) =
´ ū
u
p (u)n [1− p (u)]N−n fu (u) du. Then if n < n

′
, F u

(
x|n′

)
≤ F u (x|n) for

x ∈ [u, u].

Proof. This is proved by contradiction. As F u
(
u|n′

)
= F u (u|n) = 0 any violation of first

order stochastic dominance must be such that F u
(
x|n′

)
≤ F u (x|n) until a point x ∈ [u, u)

and then F u
(
x|n′

)
> F u (x|n) for x ∈ (x, x+ ε) with ε > 0. If this is the case, we must have

∂
∂x
F u
(
x|n′

)
= fu

(
x|n′

)
≥ fu (x|n) = ∂

∂x
F u (x|n). Now consider

fu (x|n)

fu (x|n′)
=

C (n) p (x)n [1− p (x)]N−n

C (n′) p (x)n
′
[1− p (x)]N−n

′ =
C (n)

C (n′)

[
1− p (x)

p (x)

]n′−n
.

As n
′
> n and p is weakly increasing, the ratio above is weakly decreasing in x. Consequently,

fu
(
x|n′

)
≥ fu (x|n) for all x > x. As F u

(
x|n′

)
> F u (x|n) for x ∈ (x, x+ ε) this implies that
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F u
(
u|n′

)
> F u (u|n). This is a contradiction because by definition F u

(
u|n′

)
= F u (u|n) =

1.

Proof of Proposition 4. At the bidding stage bidder i solves the following problem:

max
bi

[U (v∗i u− bi +W − k)−U (W − k)]P

(
Sn

(
max
j 6=i

v∗j , u

)
≤ bi

∣∣∣∣u)n−1

+ U (W − k)

= max
bi

(v∗i u− bi)
1−σ

P
(
Sn
(
v∗j , u

)
≤ bi

∣∣u)n−1
+ U (W − k)

= u1−σ (v∗i − s∗n (v∗i ))
1−σ

F ∗ (v∗i ) n−1 + U (W − k) . (7)

Here Sn is the bidding strategy and s∗n is the bidding strategy if u = 1. Let

πn (u, v∗i ) = u1−σ (v∗i − s∗n (v∗i ))
1−σ F ∗ (v∗i )

n−1

Let Πn (u) =
´
πn (u, v∗i ) dF

∗ (v∗i ) . Notice that Πn (u) = u1−σΠn (1).

In equilibrium, potential bidders enter randomly with some probability which is a function

of u. The symmetric entry probability p (u) satisfies

1. p (u) = 1 if u1−σ0ΠN (1) > U (W )− U (W − k)

2. p (u) = 0 if u1−σ0Π1 (1) < U (W )− U (W − k).

3. Otherwise,

N∑
n=1

[1− p (u)]N−n p (u)n−1 Πn (1) =
U (W )− U (W − k)

u1−σ . (8)

We only need to show that p (u) is weakly increasing in u then Lemma 5 implies that F u ( ·|n)

is increasing in n in the sense of first-order stochastic dominance . This takes two steps. First,

notice that Πn (1) is decreasing in n. To see this, recall that

Πn (1) =

ˆ
(v∗i − s∗n (v∗i ))

1−σ F ∗ (v∗i )
n−1dF ∗ (v∗i ) .

Here v∗−s∗n (v∗) and F ∗ (v∗)n−1 are both decreasing in n. Hence Πn (1) is decreasing in n as the

integrand is always decreasing in n. Second, notice that a higher u reduces U(W )−U(W−k)
u1−σ

which
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corresponds to the entry cost in Lemma 1 from Levin and Smith (1994b). Apply this lemma

to conclude that p (u) is increasing in u if p (u) solves (8). If u1−σΠN (1) > U (W )−U (W − k)

or u1−σΠ1 (1) < U (W )− U (W − k) , d
du
p (u) = 0. Then p (u) is weakly increasing in u.

Proposition 4 considers the specification used in the application with constant relative

risk aversion and multiplicative unobserved heterogeneity. The result can be extended to

additive unobserved heterogeneity and in this case the restriction to constant relative risk

aversion is no longer needed.

C Proof of Proposition 2

Proof. Assumption 6 and the identification result imply that E0l (Z`; θ) is uniquely maximized

at θ0. l (Z`; θ) is bounded from above by a constant because by Lemma 9, g∗n is bounded.

Then E0l (Z`; θ) is upper semi-continuous by Lemma 11 and the Reverse Fatou Lemma,

lim sup
k→∞

E0l (Z`; θk) ≤ E0 lim sup
k→∞

l (Z`; θk) ≤ E0l (Z`; θ) .

As Θ is compact, for any ε > 0, there exists a δ > 0 such that

E0l (Z`, θ0)− sup
‖θ−θ0‖s≥ε

E0l (Z`, θ) > δ.

Define Θ (ε) = {θ ∈ Θ : ‖θ − θ0‖s ≥ ε}. For any θ ∈ Θ (ε), let N (θ) be a closed ball

around it. Let lN (θ) (Z`) = supθ′∈N (θ) l
(
Z`, θ

′)
. By Lemma 11, l (Z`, θ) is continuous in

θ Z`-a.s. Hence if N (θ) ↓ θ, lN (θ) (Z`) ↓ l (Z`, θ) a.s. By the monotone convergence the-

orem, E0lN (θ) (Z`) ↓ E0l (Z`, θ). Therefore, for any θ ∈ Θ (ε), there exists N (θ) such that

E0l (Z`, θ0)−E0lN (θ) (Z`) > δ/2. Then Θ (ε) ⊆ ∪θ∈Θ(ε)N (θ). Because Θ (ε) is a closed subset

of a compact space Θ, it is also compact. Hence, there exist Nj = N (θj), j = 1, 2, · · · , J

that cover Θ (ε). By Lemma 6 and Lemma 9, gn (b, θ) is bounded from above, so is l (Z`, θ)

and lNj (Z`). Therefore, we can still apply law of large numbers even if the expectation may
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be −∞.

sup
θ∈Θ(ε)

1

L

∑
l (Z`, θ) ≤ sup

j

1

L

∑
lNj (Z`)→a.s. sup

j
E0lNj (Z`) < E0l (Z`, θ0)− δ/2. (9)

There exists sequence {θ0,kL}
∞
kL=1, θ0,kL ∈ ΘkL such that limkL→∞ ‖θ0,kL − θ0‖s = 0 , and

E0l (Z`, θ0,kL)− E0l (Z`, θ0)→ 0 by Lemma 12. Therefore, we can find K large enough such

that |E0l (Z`, θ0,kL)− E0l (Z`, θ0)| < δ/4 and θK ∈ Θ (ε)c ∩ ΘkL for all kL ≥ K. By this

definition and (9),

E0l (Z`, θK)− sup
j
E0lNj (Z`) > δ/4 (10)

For L large enough

{
θ̂L ∈ Θ (ε)

}
⊆

{
sup

θ∈Θ(ε)∩ΘkL

1

L

∑
l (Z`, θ) ≥ sup

θ∈Θ(ε)c∩ΘkL

1

L

∑
l (Z`, θL)

}

⊆

{
sup
θ∈Θ(ε)

1

L

∑
l (Z`, θ) ≥ sup

θ∈Θ(ε)c∩ΘkL

1

L

∑
l (Z`, θL)

}

⊆

{
sup
θ∈Θ(ε)

1

L

∑
l (Z`, θ) ≥

1

L

∑
l (Z`, θK)

}

The probability of
{

supθ∈Θ(ε)
1
L

∑
l (Z`, θ) ≥ 1

L

∑
l (Z`, θK)

}
converges to 0 because

lim sup
L→∞

P

(
sup
θ∈Θ(ε)

1

L

∑
l (Z`, θ) ≥

1

L

∑
l (Z`, θK)

)
≤ lim sup

L→∞
P

(
sup
j

1

L

∑
lNj (Z`) ≥

1

L

∑
l (Z`, θK)

)
≤ P

(
sup
j
E0lNj

(Z`) + δ/8 ≥ E0l (Z`, θK)− δ/8
)

+ lim sup
L→∞

P

(
1

L

∑
l (Z`, θK)− E0l (Z`, θK) < −δ/8

)
+ lim sup

L→∞
P

(
sup
j

1

L

∑
lNj (Z`)− sup

j
E0lNj (Z`) > δ/8

)
≤ P

(
E0l (Z`, θK)− sup

j
E0lNj

(Z`) ≤ δ/4
)

+ lim sup
L→∞

P

(
sup
j

1

L

∑
lNj

(Z`)− sup
j
E0lNj

(Z`) > δ/8

)
+ lim sup

L→∞
P

(
1

L

∑
l (Z`, θK)− E0l (Z`, θK) < −δ/8

)
= 0
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The last step follows from (10) and the Law of Large Numbers. Hence,

P
(
θ̂L ∈ Θ (ε)

)
≤ P

(
sup
θ∈Θ(ε)

1

L

∑
l (Z`, θ) ≥

1

L

∑
l (Z`, θK)

)
→ 0.
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D Lemmas for the Proof of Proposition 2 (not for pub-

lication)

Throughout this section, C and any C with a subscript are generic finite positive constants

which may take different values at different places.

Lemma 6. f ∗ (·; θ) and fun (·; θ) satisfies the following

(1). η2

1+B
h∗ (·) ≤ f ∗ (·; θ) ≤

(
1 + 3

√
B
)2

h∗ (·), η2

1+B
hu (·) ≤ fun (·; θ) ≤

(
1 + 3

√
B
)2

hu (·).

Hence, f ∗ (·, θ) and fun (·, θ) are uniformly bounded from above.

(2). η2

1+B
H∗ (·) ≤ F ∗ (·; θ) ≤

(
1 + 3

√
B
)2

H∗ (·), η2

1+B
Hu (·) ≤ F u

n (·; θ) ≤
(

1 + 3
√
B
)2

Hu (·).

(3). supx ‖f ∗ (x; θ1)− f ∗ (x; θ2)‖∞ ≤ C ‖θ1 − θ2‖s ∀θ1, θ2 ∈ Θ for some C < ∞. The same

holds for fun (·; θ) ∀n ∈ N.

(4). supx ‖F ∗ (x; θk)− F ∗ (x; θ)‖∞ ≤ C ‖θ1 − θ2‖s ∀θ1, θ2 ∈ Θ for some C < ∞.The same

holds for F u
n (·; θ) ∀n ∈ N.

Proof. We start with the first claim. ψ ∈ Ψ (B) implies |ψ (x)| ≤ 3
√
B. To see this, notice

|ψ (0)| ≤ 2
√
B for any ψ ∈ Ψ (B). If not, we can find a ψ ∈ Ψ (B) such that |ψ (0)| > 2

√
B.

Without loss of generality, we can assume that ψ (0) > 2
√
B. Then

ψ (x) = ψ (0) +

ˆ x

0
ψ′ (y) dy ≥ ψ (0)−

ˆ x

0

∣∣ψ′ (y)
∣∣ dy ≥ ψ (0)−

√ˆ 1

0
|ψ′ (y)|2 dy >

√
B

which suggestsψ /∈ Ψ (B). This is a contradiction. Therefore, ψ (0) ≤ 2
√
B and

|ψ (x)| =
∣∣∣∣ψ (0) +

ˆ x

0
ψ′ (y) dy

∣∣∣∣ ≤ |ψ (0)|+
ˆ x

0

∣∣ψ′ (y)
∣∣ dy ≤ |ψ (0)|+

√ˆ 1

0
|ψ′ (y)|2 dy ≤ 3

√
B (11)

Because |ψ (x)| ≤ 3
√
B,

η2

1 +B
≤ (1 + ψ (x))2

1 +
´
ψ (x)2 dx

≤
(

1 + 3
√
B
)2

(12)
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Then we have

(
1 + 3

√
B
)2

hu (x) ≥ fun (x; θ) = (Tψun) [Hu (x)]hu (x) ≥ η2

1 +B
hu (x) ,

The same inequalities hold for f ∗ (x; θ). The second claim holds by integrating the above

inequalities.

Next, we prove the third claim. We only need to show that the mapping Tψ = [1+ψ(·)]2
1+
´
ψ2(x)dx

is continuous in ψ under ‖·‖∞ on Ψ (B). If ‖ψk − ψ‖∞ → 0 as k →∞,

‖Tψ1 − Tψ2‖∞ = sup
x∈[0,1]

∣∣∣∣∣ [1 + ψ1 (x)]2

1 +
´
ψ2

1 (x) dx
− [1 + ψ2 (x)]2

1 +
´
ψ2

2 (x) dx

∣∣∣∣∣
≤ sup

x∈[0,1]

∣∣∣∣∣ [1 + ψ1 (x)]2

1 +
´
ψ2

1 (x) dx
− [1 + ψ2 (x)]2

1 +
´
ψ2

1 (x) dx

∣∣∣∣∣
+ sup

x∈[0,1]

∣∣∣∣∣ [1 + ψ2 (x)]2

1 +
´
ψ2

1 (x) dx
− [1 + ψ2 (x)]2

1 +
´
ψ2

2 (x) dx

∣∣∣∣∣
≤ ‖ψ1 − ψ2‖∞

(
2 ‖ψ1‖∞ + 2 ‖ψ2‖∞ + 4 (1 + ‖ψ2‖∞)2) .

By (11), ‖Tψ1 − Tψ2‖∞ ≤
(

6
√
B + 4

(
1 + 3

√
B
)2
)
‖ψ1 − ψ2‖∞ ≡ C2 ‖ψ1 − ψ2‖∞ which is

Hölder continuous in ψ. Trivially

|fun (x; θ1)− fun (x; θ2)| =
∣∣(Tψun,1) [Hu (x)]hu (x)−

(
Tψun,2

)
[Hu (x)]hu (x)

∣∣
≤ C2 ‖hu‖∞ ‖ψ1 − ψ2‖∞ ≤ C2 ‖hu‖∞ ‖θ1 − θ2‖s

which is Hölder continuous in θ. Notice that the bound of the above expression does not de-

pend on x. The same holds for f ∗ (x, θ). For the last claim, just notice that |F u
n (x; θ1)− F u

n (x; θ2)| ≤
´
|fun (x; θ1)− fun (x; θ2)| dx ≤ C ‖θ1 − θ2‖∞ . The same inequality holds for F ∗ (·; θ)

Lemma 7. supv∈[1,v̄∗+1] |s∗n (v; θk)− s∗n (v; θ)| → 0 for if ‖θk − θ‖s → 0.

Proof. First, suppose v∗ < ∞. We first show that that s∗n (·; θk) converges to s∗n (·; θ) uni-
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formly on [1 + ε, v∗ + 1] for any ε > 0.

|s∗n (x; θk)− s∗n (x; θ)| =

∣∣∣∣∣
ˆ x

1

[
F ∗ (v; θk)

F ∗ (x; θk)

] n−1
1−σk

dv −
ˆ x

1

[
F ∗ (v; θ)

F ∗ (x; θ)

]n−1
1−σ

dv

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ x

1

[
F ∗ (v; θk)

F ∗ (x; θk)

] n−1
1−σk

dv −
ˆ x

1

[
F ∗ (v; θ)

F ∗ (x; θk)

] n−1
1−σk

dv

∣∣∣∣∣
+

∣∣∣∣∣
ˆ x

1

[
F ∗ (v; θ)

F ∗ (x; θk)

] n−1
1−σk

dv −
ˆ x

1

[
F ∗ (v; θ)

F ∗ (x; θk)

]n−1
1−σ

dv

∣∣∣∣∣
+

∣∣∣∣∣
ˆ x

1

[
F ∗ (v; θ)

F ∗ (x; θk)

]n−1
1−σ

dv −
ˆ x

1

[
F ∗ (v; θ)

F ∗ (x; θ)

]n−1
1−σ

dv

∣∣∣∣∣
= A1 (x) +A2 (x) +A3 (x) .

A1 (x),A2 (x) and A3 (x) have bounds independent of x.

A1 (x) ≤ 1

F ∗ (x; θk)
n−1
1−σk

ˆ x

1

∣∣∣F ∗ (v; θk)
n−1
1−σk − F ∗ (v; θ)

n−1
1−σk

∣∣∣ dv
≤ 1

F ∗ (x; θk)
n−1
1−σk

ˆ v̄∗+1

1

∣∣∣F ∗ (v; θk)
n−1
1−σk − F ∗ (v; θ)

n−1
1−σk

∣∣∣ dv
Because x > ε, F ∗ (x) > 2δ for some δ > 0. F ∗ (v; θk) → F ∗ (v; θ) uniformly by Lemma 6.

Hence, there exists an K such that for all k > K, F ∗k (x) > δ for all x > 1 + ε. Therefore, for

k large enough,

A1 (x) ≤ 1

δ
n−1
1−σk

ˆ v̄∗+1

1

∣∣∣F ∗ (v; θk)
n−1
1−σk − F ∗ (v; θ)

n−1
1−σk

∣∣∣ dv.
In addition, notice σk → σ, δ

n−1
1−σk → δ

n−1
1−σ . Therefore, for k large enough

A1 (x) ≤ 2

δ
n−1
1−σ

ˆ v∗+1

0

∣∣∣F ∗ (v; θk)
n−1
1−σk − F ∗ (v; θ)

n−1
1−σk

∣∣∣ dv.
Because

∣∣∣F ∗ (v; θk)
n−1
1−σk − F ∗ (v; θ)

n−1
1−σk

∣∣∣ → 0 uniformly, A1 (x) → 0 uniformly in x. We can

apply a similar argument to A2 (x) and A3 (x) to conclude they converges to 0 uniformly

in x. Therefore, |s∗n (x; θk)− s∗n (x; θ)| converges to 0 uniformly on [1 + ε, 1 + v∗]. Because
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s∗n (1; θk) = s∗n (1; θ) = 1 and bid functions are continuous and increasing, for any δ > 0 we

can find an ε such that s∗n (ε; θ) < δ/3. There exists a K such that for all k > K,

|s∗n (x; θk)− s∗n (x; θ)| < δ/3, ∀x ∈ [1 + ε, 1 + v∗] .

If x ∈ [1, 1 + ε], one can easily show that f k > K,

|s∗n (x; θk)− s∗n (x; θ)| ≤ sup (|s∗n (1; θk)− s∗n (ε; θ)| , |s∗n (ε; θk)− s∗n (1; θ)|) < δ

Because the above inequality holds for all δ > 0 and it is independent of x, we can conclude

s∗n (·; θk) converges to s∗n (·; θ) uniformly on [1, 1 + v̄∗] if ‖θk − θ‖s → 0 if v̄∗ <∞.

If v̄∗ =∞, by the above argument, for any c <∞, supv∈[1,c+1] |s∗n (v; θk)− s∗n (v; θ)| → 0.

By the FOC, for any θ ∈ Θ

∂s∗n (v; θ)

∂v
=
n− 1

1− σ
f ∗ (v; θ)

F (v; θ)
(v − s∗n (v; θ)) ≤ C

n− 1

η

h∗ (v)

H (v)
v

for some constant C. The last inequality holds because of Lemma 6 and s∗n (v; θ) ≥ 0. By

Assumption 4, h∗ (v) has a tail bounded by C/v2+δ for some δ > 0, for v1 > v2 large enough,

|s∗n (v2; θ)− s∗n (v1; θ)| ≤ C

ˆ v1

v2

h∗ (v)

H (v2)
vdv ≤ C

H (v2)
v−δ2 .

Hence, for any ε > 0, there exists a v (ε) <∞ such that for v > v (ε), |s∗n (v (ε) ; θ)− s∗n (v; θ)| ≤

ε. Therefore,

sup
v≥v(ε)

|s∗n (v; θk)− s∗n (v; θ)|

≤ sup
v≥v(ε)

|s∗n (v; θk)− s∗n (v (ε) ; θk)|+ sup
v≥v(ε)

|s∗n (v; θ)− s∗n (v (ε) ; θ)|

+ |s∗n (v (ε) ; θk)− s∗n (v (ε) ; θ)| ≤ 2ε+ |s∗n (v (ε) ; θk)− s∗n (v (ε) ; θ)|

Consequently, supv∈[1,v∗+1] |s∗n (v; θk)− s∗n (v; θ)| → 0, because the following holds for any
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ε > 0

sup
v∈[1,∞]

|s∗n (v; θk)− s∗n (v; θ)| ≤ sup
v∈[1,v(ε)]

|s∗n (v; θk)− s∗n (v; θ)|+ sup
v≥v(ε)

|s∗n (v; θk)− s∗n (v; θ)|

≤ 2ε+ 2 sup
v∈[1,v(ε)]

|s∗n (v; θk)− s∗n (v; θ)| → 2ε.

Lemma 8. For every n ∈ N and θk, θ ∈ Θ, if ‖θk − θ‖s → 0 then g∗n (x; θk) → g∗n (x; θ)

x-a.e.

Proof. Because s∗n (v; θ) is strictly increasing on [1, v∗ + 1] for all θ ∈ Θ, by Lemma 7, for any

1 < x < s∗n (v̄∗; θ), s∗−1
n (x; θk) → s∗−1

n (x; θ). If not, we can find an v 6= s∗−1
n (x; θ) such that

s∗n (v; θ) = x which violates the strictly increasing property. For such an x, s∗−1
n (x; θk)−x→

s∗−1
n (x; θ)− x > 0,

∣∣F ∗ (s∗−1
n (x; θk) ; θk

)
− F ∗

(
s∗−1
n (x; θ) ; θ

)∣∣
≤

∣∣F ∗ (s∗−1
n (x; θk) ; θk

)
− F ∗

(
s∗−1
n (x; θ) ; θk

)∣∣+
∣∣F ∗ (s∗−1

n (x; θ) ; θk
)
− F ∗

(
s∗−1
n (x; θ) ; θ

)∣∣
≤ ‖f ∗ (·; θk)‖∞

∣∣s∗−1
n (x; θk)− s∗−1

n (x; θ)
∣∣+ ‖F ∗ (·; θ)− F ∗ (·; θk)‖∞

≤ C
(∣∣s∗−1

n (x; θk)− s∗−1
n (x; θ)

∣∣+ ‖θk − θ‖s
)
→ 0

In addition, 1−σk
n−1
→ 1−σ

n−1

g∗n (x; θk) =
1− σk
n− 1

F ∗ (s∗−1
n (x; θk) ; θk)

s∗−1
n (x; θk)− x

→ 1− σ
n− 1

F ∗ (s∗−1
n (x; θ) ; θ)

s∗−1
n (x; θ)− x

= g∗n (x; θ) .

It is easy to see for any x < 1, gn (x; θk) = gn (x; θ) = 0. In addition, if x > s∗n (v∗ + 1; θ),

x > s∗n (v∗ + 1; θk) for k large enough by Lemma 7. Hence gn (x; θk) = gn (x; θ) = 0 for all

k large enough. If x = 1, gn (1; θk) = f∗(1;θk)(1−σk)
n−σk

→ gn (1; θ). Hence g∗n (x; θk) → g∗n (x; θ)

x-a.e.

Lemma 9. There exists a constant C > 0 such that, g∗n (·; θ) ≤ C for all θ ∈ Θ.
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Proof. For any v ∈ [1, v∗ + 1], the first order condition implies

g∗n (s∗n (v; θ) ; θ) =
1− σ
n− 1

F ∗ (v; θ)

v − s∗n (v; θ)
=

1− σ
n− 1

F ∗ (v; θ)

´ v
1

[
F ∗(s;θ)
F ∗(v;θ)

]n−1
1−σ

ds

=
1− σ
n− 1

F ∗ (v; θ)
n−σ
1−σ´ v

1 F
∗ (s; θ)

n−1
1−σ ds

(13)

By Lemma 6, for C1 = η2

1+B
and C2 =

(
1 + 3

√
B
)2

,

g∗n (s∗n (v; θ) ; θ) ≤ 1− σ
n− 1

C
n−σ
1−σ

2

C
n−σ
1−σ

1

H∗ (v)
n−σ
1−σ´ v

0 H
∗ (s)

n−1
1−σ ds

≤ C3
H∗ (v)

n−σ
1−σ´ v

1 H
∗ (s)

n−1
1−σ ds

≤ C3
H∗ (v)

1+n−1
η

´ v
1 H

∗ (s)
n−1
η ds

(14)

Notice that

lim
v→1

H∗ (v)1+n−1
η´ v

1
H∗ (s)

n−1
η ds

=

(
n− 1

η
+ 1

)
h∗ (1)

and let v1 be H∗ (v1) = 1/2, for any v > v1

H∗ (v)1+n−1
η´ v

1
H∗ (s)

n−1
η ds

<
2
n−1
η

v1

Therefore,

g∗n (s∗n (v; θ) ; θ) ≤ C3 max

{(
n− 1

η
+ 1

)
h∗ (1) , max

v∈[1,v1]

H∗ (v)1+n−1
η´ v

1
H∗ (s)

n−1
η ds

}
= C

maxv∈[1,v1]
H∗(v)

1+n−1
η

´ v
1 H

∗(s)
n−1
η ds

is bounded because it is continuous in v on (1, v1] and smaller than(
n−1
η

+ 1
)
h∗ (1) if v approaches 1.

Lemma 10. gn (log b/ exp (logXγ) ; θ) is continuous in θ on Θ (b, X)-a.e..
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Proof. ∀θ ∈ Θ and θk → θ under ‖·‖s,∣∣∣∣gn( b

exp (logXγk)
; θk

)
− gn

(
b

exp (logXγ)
; θ

)∣∣∣∣
=

∣∣∣∣∣
ˆ

1

un

n∏
i=1

g∗n

(
bi

(u+ µ) exp (logXγ)
; θ

)
fun (u; θ) du

−
ˆ

1

un

n∏
i=1

g∗n

(
bi

(u+ µk) exp (logXγk)
; θk

)
fun (u; θk) du

∣∣∣∣∣
≤ C

ˆ n∏
i=1

g∗n

(
bi

(u+ µk) exp (logXγk)
; θk

)
|fun (u; θk)− fun (u; θ)| du+

C

ˆ ∣∣∣∣∣
n∏
i=1

g∗n

(
bi

(u+ µk) exp (logXγk)
; θk

)
−

n∏
i=1

g∗n

(
bi

(u+ µ) exp (logXγ)
; θ

)∣∣∣∣∣ fun (u; θ) du

= A1 +A2.

The first inequality holds because µ has to be strictly greater than some positive number.

Hence, u ≥ µ is bounded from below. Consequently, there exists C > 1/un for all u. Next,

we show that A1 and A2 converge to 0.

A1 ≤ C ‖θk − θ‖s
ˆ n∏

i=1

g∗n (bi/ (u+ µk) exp (logXγk) ; θk) du ≤ C ‖θk − θ‖s → 0.

The first inequality holds by Lemma 6 and the second inequality holds by the fact that g∗n is

bounded and it is a density function.

A2 ≤
ˆ ∣∣∣∣∣

n∏
i=1

g∗n

(
bi

(u+ µk) exp (logXγk)
; θk

)
−

n∏
i=1

g∗n

(
bi

(u+ µk) exp (logXγk)
; θ

)∣∣∣∣∣ fun (u; θ) du

+

ˆ ∣∣∣∣∣
n∏
i=1

g∗n

(
bi

(u+ µk) exp (logXγk)
; θ

)
−

n∏
i=1

g∗n

(
bi

(u+ µ) exp (logXγ)
; θ

)∣∣∣∣∣ fun (u; θ) du

= B1 +B2

First, use a change of variables to rewrite

B1 =

ˆ ∣∣∣∣∣
n∏
i=1

g∗n (bi/u; θk)−
n∏
i=1

g∗n (bi/u; θ)

∣∣∣∣∣ fun (u/ exp (logXγk)− µk; θ) du.

|
∏n

i=1 g
∗
n (bi/u; θk)−

∏n
i=1 g

∗
n (bi/u; θ)| → 0 u-a.e. by Lemma 8. In addition, by Lemma 9 for
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some C <∞

∣∣∣∣∣
n∏
i=1

g∗n (bi/u; θk)−
n∏
i=1

g∗n (bi/u; θ)

∣∣∣∣∣ fun (u/ exp (logXγk)− µk; θ) ≤ Cfun (u/ exp (logXγk)− µk; θ)

Notice that Cfun (u/ exp (logXγk)− µk; θ)→ Cfun (u/ exp (logXγ)− µ; θ) u-a.e. and

ˆ
Cfun (u/ exp (logXγk)− µk; θ) du = C exp (Xγk)→ C exp (Xγ) =

ˆ
Cfun (u/ exp (logXγ)− µ; θ)

The generalized Dominated Convergence Theorem implies B1 → 0. Similarly, the Domi-

nated Convergence Theorem implies B2 → 0. Consequently, gn (log b/ exp (logXγ) , θ) is

continuous in θ (b, X)-a.e..

Lemma 11. l (Z, θ) is continuous in θ on Θ Z-a.e..

Proof. l (Z, θ) is the log of a continuous function gn by Lemma 10. Therefore, it is continuous

in θ, Z-a.e.

Lemma 12. Under Assumptions 4 and 5, there exists a sequence {θ0,kL}
∞
kL=1 such that θ0,kL ∈

ΘkL , limkL→∞ ‖θ0,kL − θ0‖s = 0 , and E0l (Z`, θ0,kL)− E0l (Z`, θ0)→ 0.

Proof. By Assumption 5, there exists α0,kL ∈ AkL such that ‖α0,kL − α0‖∞ → 0. Now we

find σ0,kL ↓ σ0 such that θ0,kL = (σ0,kL , γ0, µ0, α0,kL) which satisfies s∗n (·; θ0) ≤ s∗n (·; θ0,kL) ≤

C (s∗n (·; θ0)− 1)+1 for some C > 1. Then we show that this sequence of θ0,kL is the desirable

sequence.

Recall the first order condition

∂s∗n (v; θ)

∂v
=
n− 1

1− σ
f ∗ (v; θ)

F ∗ (v; θ)
(v − s∗n (v; θ)) .

Therefore s∗n (·; θ0) ≤ s∗n (·; θ0,kL) if n−1
1−σ0

f∗(v;θ0)
F ∗(v;θ0)

≤ n−1
1−σ0,kL

f∗(v;θ0,kL)
F ∗(v;θ0,kL)

, or 1−σ0
n−1

F ∗(v;θ0)
f∗(v;θ0)

≥ 1−σ0,kL
n−1

F ∗(v;θ0,kL)
f∗(v;θ0,kL)

which in turn can be written as

1− σ0

n− 1

´ v
1 (Tψ∗0) ◦H∗ (s)h∗ (s) ds

(Tψ∗0) ◦H∗ (v)h∗ (v)
≥

1− σ0,kL

n− 1

´ v
1

(
Tψ∗0,kL

)
◦H∗ (s)h∗ (s) ds(

Tψ∗0,kL

)
◦H∗ (v)h∗ (v)
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Because
∥∥ψ∗0,kL − ψ∗0∥∥∞ → 0, by Lemma 6,

sup
v

∣∣(Tψ∗) ◦H∗ (v)−
(
Tψ∗kL

)
◦H∗ (v)

∣∣ = εkL → 0

By (12), η2

1+B
≤ (Tψ∗) ◦H∗ (v) ≤

(
1 + 3

√
B
)2

. Therefore, for kL large enough

[
1− εkL (1 +B)

η2

]
(Tψ∗0) ◦H∗ (v)h∗ (v) ≤

(
Tψ∗0,kL

)
◦H∗ (v)h∗ (v) ≤

[
1 +

εkL (1 +B)

η2

]
(Tψ∗0) ◦H∗ (v)h∗ (v)

which suggests

[
1− εkL (1 +B)

η2

]
f∗ (v; θ0) ≤ f∗ (v; θ0,kL) ≤

[
1 +

εkL (1 +B)

η2

]
f∗ (v; θ0) (15)

[
1− εkL (1 +B)

η2

]
F ∗ (v; θ0) ≤ F ∗ (v; θ0,kL) ≤

[
1 +

εkL (1 +B)

η2

]
F ∗ (v; θ0) (16)

(15) and (16) together imply

1− σ0

n− 1

F ∗ (v; θ0)

f∗ (v; θ0)
≥ 1− σ0

n− 1

[
1− εkL (1+B)

η2

]
F ∗ (v; θ0,kL)[

1 +
εkL (1+B)

η2

]
f∗ (v; θ0,kL)

≥ 1− σ0

n− 1

F ∗ (v; θ0)

f∗ (v; θ0)

[
1− εkL (1+B)

η2

]2

[
1 +

εkL (1+B)

η2

]2

Define σkL = 1 − (1− σ0)
[
1− εkL (1+B)

η2

]
/
[
1 +

εkL (1+B)

η2

]
↓ σ0 as εkL → 0. Then let C >[

1 +
εkL (1+B)

η2

]2

/
[
1− εkL (1+B)

η2

]2

for kL large enough, then because s∗n (v; θ0) ≤ s∗n (v; θ0,kL)

C
∂s∗n (v; θ)

∂v
= C

n− 1

1− σ0

f∗ (v; θ0)

F ∗ (v; θ0)
(v − s∗n (v; θ0)) ≥ n− 1

1− σ0,kL

f∗ (v; θ0,kL)

F ∗ (v; θ0,kL)
(v − s∗n (v; θ0,kL)) =

∂s∗n (v; θ0,kL)

∂v

Therefore, s∗n (·; θkL) ≤ C (s∗n (·; θ0)− 1)+1 where 1 comes from the initial condition s∗ (1; θ) =

1. Notice θ0,kL converges to θ0 under ‖·‖s.

It is left to show that E0l (Z`; θ0,kL)−E0l (Z`; θ0)→ 0. First, notice l (Z; θ0,kL)→ l (Z; θ0)

Z-a.e. by Lemma 11. Then if |l (Z; θ0,kL)| is bounded by a integrable function, the Dominated

Convergence Theorem implies that E0l (Z`; θ0,kL) − E0l (Z`; θ0) → 0. First notice, Lemma 9

implies that g∗n (·; θ) < C. Therefore g∗n (b; θ) =
´

1
un

∏n
i=1 g

∗
n (bi; θ) f

u
n (u; θ) du < C for some

constant C . Because l (Z; θ0,kL) is the log of g∗n, it is bounded from above by a constant.
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Then it suffices to show that l (Z; θ0,kL) is bounded from below by an integrable function.

To this end we show gn (b; θ0,kL) > C1gn (b; θ0) for some constant C1 > 0, which implies

l (Z; θ0,kL) ≥ l (Z; θ0) + C1.

We first show b ∈ [1, s∗n (1 + v∗; θ0)], g∗n (b; θ0,kL) ≥ C2g
∗
n (b; θ0) for some constant C2 > 0.

Use (13) to obtain

g∗n (b; θ0,kL)

g∗n (b; θ0)
=

1− σkL
1− σ0

F ∗
(
s∗−1
n (b; θ0,kL) ; θ0,kL

)n−σ0,kL
1−σ0,kL

F ∗
(
s∗−1
n (b; θ0) ; θ0

)n−σ0
1−σ0

´ s∗−1
n (b;θ0)

1 F ∗ (s; θ0)
n−1
1−σ0 ds

´ s∗−1
n (b;θ0,kL)

1 F ∗ (s; θ0,kL)
n−1

1−σ0,kL ds

By Lemma 6 and the fact σ0,kL ≥ σ0, there exists a constant C3 such that

g∗n (b; θ0,kL)

g∗n (b; θ0)
≥ C3

H∗
(
s∗−1
n (b; θkL)

)
H∗
(
s∗−1
n (b; θ0)

)
´ s∗−1

n (b;θ0)
1

[
H∗(s)

H∗(s∗−1
n (b;θ0))

] n−1
1−σ0

ds

´ s∗−1
n (b;θkL)

1

[
H∗(s)

H∗(s∗−1
n (b;θkL))

] n−1
1−σ0,kL ds

≥ C3
H∗
(
s∗−1
n (b; θ0,kL)

)
H∗
(
s∗−1
n (b; θ0)

)
´ s∗−1

n (b;θ0)
1

[
H∗(s)

H∗(s∗−1
n (b;θ0))

] n−1
1−σ0

ds

´ s∗−1
n (b;θ0,kL)

1

[
H∗(s)

H∗(s∗−1
n (b;θ0,kL))

] n−1
1−σ0

ds

= C3
H∗
(
s∗−1
n (b; θ0,kL)

)n−σ0
1−σ0

H∗
(
s∗−1
n (b; θ0)

)n−σ0
1−σ0

´ s∗−1
n (b;θ0)

1 H∗ (s)
n−1
1−σ0 ds

´ s∗−1
n (b;θ0,kL)

1 H∗ (s)
n−1
1−σ0 ds

First, because s∗−1
n (b; θ0) ≥ s∗−1

n (b; θ0,kL),

g∗n (b; θ0,kL)

g∗n (b; θ0)
≥ C3

H∗
(
s∗−1
n (b; θ0,kL)

)n−σ0
1−σ0

H∗
(
s∗−1
n (b; θ0)

)n−σ0
1−σ0

If b = s∗n (v̄∗ + 1; θ0),

g∗n (b; θ0,kL)

g∗n (b; θ0)
≥ C3

H∗
(
s∗−1
n (b; θkL)

)n−σ0
1−σ0

H∗ (v̄∗ + 1)
n−σ0
1−σ0

≥ C3/2
1+n−1

η (17)

for large kL. This is because we can find an ε > 0 such that s∗−1
n (b− ε; θ0) > vH (1/2) where

H∗ (vH (1/2)) = 1/2. Because s∗−1
n (b− ε; θ0,kL) → s∗−1

n (b− ε; θ0) for any ε > 0 and H∗ is

continuous, H∗ (s∗−1
n (b; θ0,kL)) > 1/2. Because n−σ0

1−σ0 ≤ 1 + n−1
η

, the last inequality in (17)
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holds. In addition, because s∗n (·; θkL) ≤ C (s∗n (·; θ0)− 1) + 1

g∗n (b; θkL)

g∗n (b; θ0)
≥ C3

H∗
(
s∗−1
n (b; θkL)

)n−σ0
1−σ0

H∗
(
s∗−1
n (b; θ0)

)n−σ0
1−σ0

≥ C3
H∗
(
s∗−1
n

(
b−1
C + 1; θ0

))n−σ0
1−σ0

H∗
(
s∗−1
n (b; θ0)

)n−σ0
1−σ0

By Assumption 4,

lim
b↓1

H∗
(
s∗−1
n

(
b−1
C + 1; θ0

))n−σ0
1−σ0

H∗
(
s∗−1
n (b; θ0)

)n−σ0
1−σ0

= lim
b↓1

(
s∗−1
n

(
b−1
C + 1; θ0

)
− 1
)n−σ0

1−σ0
(1+ε)(

s∗−1
n (b; θ0)− 1

)n−σ0
1−σ0

(1+ε)

= lim
b↓1

 b−1
C

1
s∗′n (1;θ0)

(b− 1) 1
s∗′n (1;θ0)


n−σ0
1−σ0

(1+ε)

= 1/C
n−σ0
1−σ0

(1+ε)
= C4

Because
g∗n(b;θ0,kL)
g∗n(b;θ0)

> 0 for all b ∈ (1, s∗n (v̄∗ + 1; θ0)) and it is continuous, there exists an

C2 > 0 such that
g∗n(b;θ0,kL)
g∗n(b;θ0)

≥ C2 on [1, s∗n (v̄∗ + 1; θ0)] . In addition, g∗n (b; θ) = 0 if b /∈

[1, s∗n (v̄∗ + 1; θ0)]. g∗n (b; θ0,kL) ≥ C2g
∗
n (b; θ0) for kL large enough.By Lemma 6, fun (u; θkL) >

C5f
u
n (u; θ0)

gn (b; θ0,kL) =

ˆ
1

un

n∏
i=1

g∗n (bi/u; θ0,kL) fun (u; θ0,kL) du ≥ C5

ˆ
1

un

n∏
i=1

g∗n (bi/u; θk) f
u
n (u; θ0) du

≥ C5C2

ˆ
1

un

n∏
i=1

g∗n (bi/u; θ0) fun (u; θ0) du = C1gn (b; θ0)

Therefore, l (Z`; θ0,kL) ≥ l (Z`; θ0) + logC1. Then by the Dominated Convergence Theorem,

E0l (Z`; θ0,kL)→ E0l (Z`; θ0).
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