
Finance and Economics Discussion Series
Divisions of Research & Statistics and Monetary Affairs

Federal Reserve Board, Washington, D.C.

Estimating (Markov-Switching) VAR Models without Gibbs
Sampling: A Sequential Monte Carlo Approach

Mark Bognanni and Edward P. Herbst

2015-116

Please cite this paper as:
Bognanni, Mark, and Edward P. Herbst (2015). “Estimating (Markov-Switching) VAR
Models without Gibbs Sampling: A Sequential Monte Carlo Approach,” Finance and Eco-
nomics Discussion Series 2015-116. Washington: Board of Governors of the Federal Reserve
System, http://dx.doi.org/10.17016/FEDS.2015.116.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.



Estimating (Markov-Switching) VAR
Models without Gibbs Sampling:
A Sequential Monte Carlo Approach

Mark Bognanni∗
Federal Reserve Bank of Cleveland

Edward Herbst†
Federal Reserve Board of Governors

This Draft: December 10, 2015

Abstract. Vector autoregressions with Markov-switching parameters (MS-VARs) fit the
data better than do their constant-parameter predecessors. However, Bayesian inference
for MS-VARs with existing algorithms remains challenging. For our first contribution,
we show that Sequential Monte Carlo (SMC) estimators accurately estimate Bayesian
MS-VAR posteriors. Relative to multi-step, model-specific MCMC routines, SMC has
the advantages of generality, parallelizability, and freedom from reliance on particular
analytical relationships between prior and likelihood. For our second contribution, we
use SMC’s flexibility to demonstrate that the choice of prior drives the key empirical
finding of Sims, Waggoner, and Zha (2008) as much as does the data.

JEL: C11, C18, C32, C52, E3, E4, E5
Keywords: Vector Autoregressions, Sequential Monte Carlo, Regime-Switching Models,
Bayesian Analysis

We thank Todd Clark, Ron Gallant, Eric Leeper, James Hamilton, Giorgio Primiceri, Juan F.
Rubio-Ramírez and Frank Schorfheide for helpful comments and conversations. We also thank
Dan Waggoner for a particularly helpful conference discussion and the other participants of
various conferences for their feedback. The views expressed in this paper do not necessarily
reflect those of Federal Reserve Bank of Cleveland, the Federal Reserve Board of Governors, or
the Federal Reserve System.

∗Correspondence: Mark Bognanni, Federal Reserve Bank of Cleveland, PO Box 6387, Cleve-
land, OH 44101-1387. Email: email.markbognanni@gmail.com, Web: http://markbognanni.com.

†Correspondence: Board of Governors of the Federal Reserve System, 20th Street and Con-
stitution Avenue N.W., Washington D.C. 20551. Email: edward.p.herbst@frb.gov.

mailto:email.markbognanni@gmail.com
http://markbognanni.com


1. Introduction

The use of vector autoregressions (VARs) has grown steadily since Sims
(1980) and VARs now serve as a vital element of the macroeconomist’s toolkit.
Bayesian methods have come to dominate the literature on VAR applications for
two main reasons. Firstly, VARs’ large number of parameters relative to data in
typical macroeconomic applications has led researchers to favor the additional
parameter discipline that Bayesian priors can provide. Secondly, researchers
have developed methods that make Bayesian estimation of VARs straightforward.
Posterior sampling is often the most challenging aspect of Bayesian inference,
but for VARs a known family of priors yields (conditional) posteriors amenable
to an efficient posterior sampling algorithm called the Gibbs sampler.

In recent years the interests of economists have moved beyond the basic VAR
to extensions with time-varying parameters. One such extension, and the focus of
this paper, is the VAR with Markov-switching parameters (MS-VAR) pioneered
by Sims and Zha (2006). As a byproduct of their inquiry into the cause of the
“Great Moderation,” Sims and Zha (2006) document superior data fit of every
MS-VAR they estimate relative to the constant-coefficient VAR (CC-VAR). Yet,
despite the data’s demonstrated preference for Markov-switching models, few
researchers have used MS-VARs in economic applications.

We suspect that the sparse use ofMS-VARs owes to the complicatedness of the
estimation process; MS-VARs do not admit MCMC samplers that possesses the
efficiency or simplicity of their constant-parameter predecessors. Sims,Waggoner,
and Zha (2008) expound upon the methods used in Sims and Zha (2006) and
describe the following four-step procedure for MS-VAR estimation and model
comparison. First, search in the model’s high dimensional parameter space for
the posterior mode, from which one initializes the MCMC algorithm. Second,
code and deploy a highly model-specific Gibbs sampler, which relies on so-
called Metropolis-within-Gibbs steps. Third, impose both sign and state-labeling
normalizations on the posterior draws at the post-processing stage, which is
necessary for the stability of the estimator in step 4. Fourth and finally, code a
nontrivial augmentation of the modified harmonic mean (MHM) algorithm for
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estimating the marginal data density (MDD), which is necessary for Bayesian
model comparison.

In a recent paper investigating the macroeconomic effects of financial crises,
and which is a notable exception to the hesitance of economists to use MS-VARs,
Hubrich and Tetlow (2015) use the algorithm of Sims et al. (2008) and summarize
the length of the process as follows, “Computation of a specification’s posterior
mode and the marginal data density takes a minimum of 6 hours in clock time
and can take as long as 8 days, depending on the specifics of the run. Adding
lags, imposing restrictions on switching on variances and restricting switching in
equation coefficients is costly in terms of computing times.”1 Of course, even at
the end of this process uncertainty remains about whether or not one found the
true posterior mode in the first step.

Motivated by these difficulties, we estimate MS-VARs using an alternative
class of algorithms called Sequential Monte Carlo (SMC). Our SMC algorithm
begins by propagating a set of “particles” from the prior distribution, where each
particle contains a vector of values for the model’s parameters. The algorithm
then moves and reweights the particles to iteratively approximate a sequence of
distributions, each of which combines the prior with partial information from
the likelihood. Each distribution in the sequence uses more information from
the likelihood than its predecessor and the algorithm concludes once the full
likelihood has been incorporated. When the algorithm concludes, the researcher
has a set of particles that serve as a discrete distribution approximating the
model’s true posterior.

Using SMC to estimate MS-VARs allows us to sidestep many of the aforemen-
tioned challenges. In particular, SMC has four key features that make it attractive
for our purposes. First, the algorithm’s initialization with many random draws
from the prior negates both the need for a time-consuming mode search and any
risk of residual dependence on a unique starting value. Second, the algorithm is
generic and does not rely on any particular analytical convenience of the posterior.
Rather, one needs only the ability to evaluate a posterior kernel pointwise, which

1The quotation comes from the Online Appendix of Hubrich and Tetlow (2015), in which the
authors describe the details of the estimation process.
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negates the need to code a multi-step, model-specific Gibbs Sampler or for the
model to even allow one to derive a Gibbs Sampler.2 Third, the algorithm gener-
ates an estimate of the model’s MDD as a byproduct, which negates the need for
time consuming post-processing and coding a unique MHM algorithm. Fourth,
unlike MCMC algorithms, which must run serially, SMC’s computations admit
almost arbitrary parallelization, which makes SMC an increasingly practical
approach as modern computer architectures continue to expand their parallel
potential.

While the aforementioned properties of SMC are desirable, researchers have
yet to demonstrate that SMC can effectively estimate the posteriors of high-
dimensional time-series models when using a computationally feasible quantity
of particles. Our first contribution is to show that SMC algorithms can indeed
perform this task. We show this by demonstrating the algorithm’s ability to
estimate MDDs in two settings in which we know the true MDD in closed form,
settings which thus provide a gold standard for assessing SMC’s performance.

The first test setting is the familiar reduced-form CC-VAR with conjugate
prior, which we consider the simplest possible test relevant to our interests. For the
CC-VAR we show solid performance by SMC under a variety of choices for the
algorithm’s tuning parameters and highlight a few small changes to existing SMC
implementations that yield particularly dramatic performance improvements for
VARs. One can use our change to the algorithm generally, but its performance
gains for VARs owes to its improved accounting for the correlation structure
among parameters that is typically present in both VAR priors and posteriors.
The second test setting is a mixture of reduced-form CC-VAR posteriors, which
imitates the multi-modality of more complicated models. Remarkably, when
confronted with the multi-modal posterior the SMC algorithm estimates MDDs
as well or better than standardMDD estimators even when we provide the standard

2In principle one can use the same basic SMC algorithm to estimate reduced-form VARs,
structural and exactly-identified VARs, structural and over-identified VARs, VARs with steady-
state priors, and MS-VARs, each of which relies on a unique posterior sampler when using
MCMC for estimation. We consider the algorithm’s genericness to be an argument in favor of
its use. As Geweke (2004) emphasizes, reliance on model-specific Gibbs samplers for posterior
simulation typically involves a lengthy processes of tedious algebra and coding, both of which
lend themselves well to making difficult-to-detect errors.
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estimators with iid draws from the posterior.
Having established SMC’s viability for high dimensional time series models,

we exploit its genericness to make our second contribution: a demonstration
of the importance of the prior for Bayesian model selection among MS-VAR
specifications. We use SMC to estimate a suite of MS-VARs similar to those of
Sims et al. (2008) under a variety of priors. The main empirical result of both
Sims and Zha (2006) and Sims et al. (2008) is that the data clearly favors MS-
VARs with regime switching only in shock variances, and not other economic
dynamics. In this sense, the authors come down on the side of “good luck” in
the debate over the cause of the “Great Moderation.” We find that, when using
the best fitting prior, the posterior probability that the best model includes both
time-varying shock variances and time-varying economic dynamics shifts from
6% to 43%. This result suggests that prior choice deserves particularly careful
attention when comparing competing MS-VAR models, a point that should be
well taken generally by researchers using the Bayesian approach to comparing
different specifications of densely parameterized models.

Lastly, our positive results on SMC’s usefulness in practical applications
constitute a contribution of general interest to economists. SMC provides a way
forward when MCMC algorithms are either inefficient or reliant on the use of
undesirable priors for efficiency. As economists estimate increasingly complicated
models, it seems less likely that they will find priors that both yield a posterior
amenable to Gibbs sampling and perfectly represent economists’ a priori beliefs.
Indeed, the existence of such a prior seems more likely to be the result of divine
coincidence than the norm.

With regards to the estimation algorithm, our paper builds on the recent work
by Durham and Geweke (2012) and Herbst and Schorfheide (2014), who also
explore the use of SMC algorithms for estimating econometric models. Durham
and Geweke (2012) emphasize the massive parallelization possibilities for SMC
algorithms, particularly for use with GPUs. Herbst and Schorfheide (2014) apply
SMC algorithms to the estimation of DSGE models and show that DSGE-model
posteriors can possess multi-modality that random walk Metropolis-Hastings
algorithms fail to uncover in reasonable amounts of time. We also make use of a
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number of advances from the statistics literature, on which we elaborate further
in the next section.

From here the rest of the paper proceeds as follows. In Section 2 we describe
the estimation problem, our estimation algorithm, and its place within the larger
SMC literature. In Section 3 we demonstrate the algorithm’s effectiveness in
settings in which we have closed-form expressions for the objects we estimate.
In Section 4 we describe the MS-VAR models, the three priors we consider, and
our estimation results. In Section 5 we conclude.

2. Sequential Monte Carlo Methods

Let � be the parameters of a model and Y be the data relevant for the model’s
likelihood function. The Bayesian researcher is interested in the posterior density
p(�|Y ), which is given by

p(�|Y ) =
p(Y |�)p(�)
p(Y )

, where p(Y ) = ∫ p(Y |�)p(�)d� ,(1)

p(�) denotes the prior density, and p(Y |�) denotes the likelihood. The term p(Y )
is known as the “marginal data density” (MDD) or “marginal likelihood”, an
important measure of model fit in Bayesian statistics. For ease of exposition, in
this section we abbreviate these objects by �(�) = p(�|Y ), f (�) = p(Y |�)p(�),
and Z = p(Y ), which gives an equivalent expression to (1) as

�(�) =
f (�)
Z

.(2)

An unfortunate feature of Bayesian inference is that in most applications of
practical interest ones does not know the moments of �(�) in closed-form. Hence,
posterior inference often relies on devising a method to sample from �(�). To
put these facts in the context of our applications, note that for VARs the literature
has previously concentrated on families of priors that induce a posterior such that
either �(�) can be sampled directly or there exists a partitioning of the parameters
� = [�1,… , �n] such that each conditional posterior can be sampled directly,
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yielding draws from the posterior through a Gibbs sampler.3 While for MS-VARs
no known priors induce posteriors from which we can sample with a pure Gibbs
Sampler or for which we know Z in closed-form.

2.1 Overview of the Sequential Monte Carlo Method

In our applications we use SMC algorithms to approximate �(�) and Z.4

Since importance sampling (IS) serves as the keystone of SMC, we begin our
description of SMC methods with a brief description of IS.5 IS approximates the
target density f (⋅) by a different, easy-to-sample density g(⋅), which is sometimes
known as the “source density.” IS is based on the identity

E�[ℎ(�)] = ∫ ℎ(�)�(�)d� = 1
Z ∫Θ

ℎ(�)w(�)g(�)d�,

where w(�) =
f (�)
g(�)

,
(3)

If �i iid∼ g(�), i = 1,… , N , then, under suitable regularity conditions—see
Geweke (1989)—the Monte Carlo estimate

ℎ̄ =
N
∑

i=1
ℎ(�i)W̃ i, where W̃ i =

w(�i)
1
N

∑N
j=1w(�j)

,(4)

converges almost surely (a.s.) to E�[ℎ(�)] as N ⟶ ∞. The set of pairs {(�i,
W̃ i)}Ni=1 provides a discrete distribution that approximates �(�). The W̃ i’s are
known as the (normalized) importance weights assigned to each particle value �i.
The distance between g(⋅) and f (⋅) determines the accuracy of the approximation
(per particle) and the uniformity (or lack thereof) of the distribution of weights
reflects the size of this distance. If the distribution of weights is very uneven,

3Researchers usually estimate VARs under a conjugate prior of the Normal-Inverse Wishart
form. One can efficiently estimate structural VARs that have linear over-identifying restrictions
by using the algorithm described in Waggoner and Zha (2003a).

4We describe only our particular algorithm here. Chopin (2002), Del Moral, Doucet, and
Jasra (2006), Creal (2012), and Herbst and Schorfheide (2014) offer additional details on SMC
implementation.

5Indeed, the SMC method we use in this paper is sometimes known as Iterated Batch Impor-
tance Sampling.

6



the Monte Carlo approximation ℎ̄ is inaccurate, because only a few particles
contribute meaningfully to the estimate. On the other hand, uniform weights arise
if g(⋅) ∝ f (⋅), which means that we are sampling directly from �(�).

Unfortunately, constructing “good” importance distributions, g(⋅), is difficult
when the econometrician knows little about the shape of f .6 The SMC algorithm
we use attacks this problem by recursively building particle approximations to a
sequence of distributions, starting from a known distribution, the prior, and then
slowly adding information from the likelihood until we have obtained a particle
approximation to the posterior. Specifically, we use n to index a sequence of
distributions of the form

�n(�) =
fn(�)
Zn

=
[p(Y |�)]�np(�)

∫ [p(Y |�)]�np(�)d�
, n = 1,… , N�.(5)

and choose an increasing sequence of values for the scaling parameter, �n, such
that �1 = 0 and �N�

= 1. The choice of �1 = 0 means that the initial target
distribution, �1(�), is simply the prior, p(�). Hence, one initializes the algorithm
by propagating the particles as random draws from the prior. The choice of
�N�

= 1 means that the final target distribution, �N�
(�), is the posterior. Thus

the final particles approximate the distribution of interest to the researcher.7

2.2 The Sequential Monte Carlo Algorithm

Algorithm 1 describes the three steps to construct a particle approximation to
�n from a particle approximation to �n−1, in the terminology of Chopin (2002).
The general form of Algorithm 1 is the same as the one used in Herbst and
Schorfheide (2014), but we describe its key features here for completeness. The

6There is a history of using importance sampling techniques for VAR estimation when direct
samplers and Gibbs samplers are unavailable, namely Leeper, Sims, Zha, Hall, and Bernanke
(1996), Uhlig (1997), and Kadiyala and Karlsson (1997) used importance samplers for parts
of VAR posteriors. However since the late 1990s researchers estimating VARs have largely
abandoned this approach because of the difficulty of finding a good “g,” which resulted in
inefficient algorithms.

7The “likelihood tempering” formulation is not the only avenue one could have pursued. For
example Durham and Geweke (2012) propose a GPU-based SMC algorithm as a blackbox for
many time series economic models with fn(�) = p(Y1∶n|�)p(�). Durham and Geweke (2012)’s
“data tempering” approach is attractive for obtaining on-line parameter estimates.
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Algorithm 1: Simulated Tempering SMC
Initialization. (�1 = 0). Draw the initial particles from the prior:

�i1
iid∼ p(�), W i

1 = 1, i = 1,… , N.

for n = 2,… , N� do
1. Correction. Reweight the particles from stage n − 1 by defining the
incremental and normalized weights

w̃i
n = [p(Y |�

i
n−1)]

�n−�n−1 , W̃ i
n =

w̃i
nW

i
n−1

1
N

∑N
i=1 w̃i

nW
i
n−1

, i = 1,… , N.

2. Selection. Compute the effective sample size

ESSn = N∕

(

1
N

N
∑

i=1
(W̃ i

n )
2

)

if ESSn < Npart∕2 then
Resample the particles via multinomial resampling and reinitialize the
weights to uniform, i.e.

W i
n = 1, �̂in ∼ {�

j
n−1, W̃

j
n }j=1,…,N , i = 1,… , N

else
W i
n = W̃

i
n , �̂in = �

i
n−1

end

3. Mutation. Propagate each particle {�̂in,W
i
n} viaM steps of an MCMC

algorithm with transition density �in ∼ Kn(�n|�̂in; �n) and stationary
distribution �n(�). (See Algorithm 2 for details and the definition of �n).

end

Compute posterior moments. An approximation of E�n[ℎ(�)] is given by

ℎ̄n,N =
1
N

N
∑

i=1
ℎ(�in)W

i
n .(6)

This approximation is valid using the particle approximations,
{�in−1, W̃

i
n}

Npart

i=1 , {�̂
i
n,W

i
n}

Npart

i=1 and {�in,W
i
n}

Npart

i=1 after the correction, selection,
and mutation step, respectively.
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algorithm initializes with particles sampled from p(�) and assigned uniform
weights. We then enter the recursions. We enter any stage n of the recursion
with a particle approximation {�n−1, W̃ i

n−1}
Npart

i=1 of �n−1. In the first step of stage
n, the correction step, the particles are reweighted according to �n. This is an
importance sample of �n using �n−1 as the proposal distribution. In the second step,
selection, if the sample is unbalanced in the sense that only a few particles have
meaningful weight, the particles are rejuvenated using multinomial resampling.
This process ensures that the sampler avoids the well-known issue of particle
impoverishment. On the other hand, the resampling itself induces noise into the
simulation, and so we avoid doing it unless necessary. In the third and final step,
mutation, particles are moved around the parameter space, usingM iterations of
a Metropolis-Hastings algorithm on each individual particle.

The last step, mutation, is crucial. Mutation allows particles to move towards
areas of higher density of �n and ensures diversity across replicated particles when
resampling occurs during the selection step. Were the algorithm to run without
mutation, repeated resampling of the corrected particles would leave only a few
unique values surviving until the final stage, resulting in a poor approximation to
the posterior.

From a computational perspective, a point to stress about the mutation step is
that each particle operates independently of one another, in a sense formingNpart

independent Markov chains. This stands in contrast to MCMC algorithms, which
rely on a single chain. The independence of particles during mutation allows us
to exploit parallel computations during the mutation step, which provides the
benefit of greatly speeding up the algorithm, as highlighted by both Durham and
Geweke (2012) and Herbst and Schorfheide (2014).

We follow Herbst and Schorfheide (2014) in our specification for the temper-
ing schedule, {�n}

N�

n=1, and choose a schedule which follows

�n =
(

n − 1
N� − 1

)�

.(7)

The hyperparameter �(> 0) controls the rate at which “information” from the
likelihood is added to the sampler. If � = 1, then the schedule is linear, and, very
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roughly speaking, each stage has the same contribution. We use � > 1 which
means that we add only small increments of the likelihood to the prior in the early
stages of the sampler and add larger increments in the later stages. We discuss
the role of � in more detail in Section 3, in which we test the algorithm under
various choices for the tuning parameters.

2.3 MCMC Transition Kernel

Algorithm 1 presents the generic SMC algorithm for estimating Bayesian
models, but does not specify the exact nature of the MCMC transition kernel used
for particle mutation. As we show in Section 3, the form of the MCMC kernel
can crucially affect the performance of the sampler. Our base mutation kernel is a
block random walk Metropolis-Hasting (RWMH) sampler, detailed in Algorithm
2. Block MH algorithms have been useful in the estimation of DSGE models
(see, for example, Chib and Ramamurthy (2010) and Herbst (2012)). Breaking
the parameter vector into blocks reduces the dimensionality of the target density
for each MCMC step, making it easier to well approximate it by the proposal
density.

A key consideration affecting the efficiency of any RW-MH algorithm is the
construction of the proposal variance. Our choice of proposal covariance departs
from Herbst and Schorfheide (2014) in a simple but important way; we use the
multivariate normal approximation to the conditional variance for block b, while
Herbst and Schorfheide (2014) use the estimate of the marginal variance for the
block b parameters. To be more precise, we use

Σ̂b,n = [Σ̂n]b,b − [Σ̂n]b,−b[Σ̂n]−1−b,−b[Σ̂n]−b,b ,(8)

rather than

Σ̂b,n = [Σ̂n]b,b .(9)

The marginal variance ignores the relationship between the parameters in block
b and the other “conditioning” parameters, which makes it a poor choice for
(MS)VARs because of the nontrivial correlation structures in standard priors and
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Algorithm 2: Mutation Step
Let {Bn}

N�

n=2 be a sequence of random partitions of the parameter vector. For a
given partition Bn, let b denote the block of the parameter vector so that �ib,n
refers to the b elements of the ith particle. Further let �i<b,n the denote the
subpartition of Bn refering to elements of �in partitioned before the bth set and so
on.

At each stage, n, obtain a particle estimate of the covariance of the parameters
after selection but before mutation,

Σ̂n =
Npart
∑

i=1
W i
n (�̂

i
n − �̂n)(�̂

i
n − �̂n)

′ with �̂n =
Npart
∑

i=1
W i
n �̂

i
n.

Denote a covariance matrix for the b-th block, at stage n, which is some function
� (.) of Σ̂n as,

Σ̂b,n = � (Σ̂n).

We consider two different functions � (.), which we describe, and compare the
performance of, in the text.

LetM be an integer (≥ 1) defining the number of Metropolis-Hastings steps in
the mutation stage. Introduce an additional subscript m so that �im,b,n refers to the
bth block of the nth stage, ith particle after mMetropolis-Hastings steps. Set
�i0,b,n = �̂

i
b,n.

for m = 1,… ,M do
for b ∈ Bn do

1. Draw a proposal �∗b ∼ N
(

�im−1,b,n, Σ̂b,n
)

.

Denote �∗ =
[

�im,<b,n, �
∗
b , �

i
m−1,>b,n

]

and �im,n =
[

�im,<b,n, �
i
m−1,≥b,n

]

.

2. With probability,

� = min

{

[p(Y |�∗)]�np(�∗)
[p(Y |�im,n)]�np(�im,n)

, 1

}

Set �im,b,n = �
∗
b . Otherwise set �

i
m,b,n = �

i
m−1,b,n.

end
end
Retain the last step of the Metropolis-Hastings sampler. Set �ib,n = �

i
M,b,n for all

b ∈ Bn.
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posteriors. In Section 3 we show that this simple change greatly improves the
algorithm’s efficiency.

2.4 Theoretical Considerations

Wemake no theoretical contributions in this paper, so wewill not go into detail
about the formal arguments proving the strong law of large numbers (SLLN) and
central limit theorem (CLT) for the particle approximation in (6) at the conclusion
of Algorithm 1. Readers interested in the details of the SLLN and CLT should
refer to Chopin (2002), which provides a recursive characterization of the SLLN
and CLT that apply after each of the correction, selection, and mutation steps.
Herbst and Schorfheide (2014) characterize the high level assumptions sufficient
for the SLLN and CLT to apply when the mutation stage is adaptive; that is, when
features of the MCMC algorithm depend on previous particle approximations.
While difficult to verify in practice, the extension of the SLLN and CLT provides
at least a basis for the use of such a transition kernel. Finally, the variances
associated with the CLTs have the formulation given in Chopin (2002), but the
recursive form is, unfortunately, not useful in practice. Hence, to characterize
the uncertainty around our estimates in subsequent sections we use numerical
standard errors computed across multiple independent runs of the algorithm, as
in Durham and Geweke (2012).

3. Sequential Monte Carlo in Two Controlled Experiments

Since we know of no other research evaluating SMC’s effectiveness in appli-
cations comparable to ours, we find it worthwhile to verify that SMC can reliably
estimate the posteriors of VAR-sized models. We verify our SMC algorithm’s
effectiveness by demonstrating the accuracy of its MDD estimates for two models
for which we know the true MDD in closed-form: 1) a VAR with conjugate prior
and, as a more challenging test, 2) a mixture of VAR posteriors.

3.1 The Constant-Parameter VAR

The MS-VARs we estimate in subsequent sections build off of a parameteri-
zation of the VAR model known as the “structural” form. The structural VAR

12



has the form

y′tA =
p
∑

l=1
y′t−lFl + F0 + "

′
t , "t ∼ (0, In) , for 1 ≤ t ≤ T(10)

where yt is an n×1 vector of observables at time t, yt−l is the time t− l realization
of the same observables, p is the number of lags of the observables, and "t is
an n × 1 vector of structural shocks. Letting xt = [y′t−1,… , y′t−p, 1]

′ and F =
[F ′

1 ,… , F ′
p , F

′
0]
′, we can write the VAR more compactly as

y′tA = x
′
tF + "

′
t , "t ∼ (0, I) ,(11)

and refer to its parameters as �S = (A, F ).
Standard priors for �S described in Sims and Zha (1998) and Waggoner

and Zha (2003a) do not admit a closed form expression for the model’s MDD,
which would make it difficult to assess our algorithm. However, in the absence
of overidentifying restrictions on the matrices A and F , one can derive a prior
for �S as a change of variables from a prior over an alternative (“reduced-form”)
parameterization, with parameters �RF . The reduced-form parameters are defined
as

�RF = (�,Φ) = g(�S) = ((AA′)−1, FA−1) ,(12)

in which case the VAR is written as

y′t = x
′
tΦ + u

′
t , ut ∼ (0,Σ) ,(13)

Standard priors pRF (⋅) admit a closed-form expression for the VAR’s MDD.
Using this distribution and change of variables, the resulting prior density for �S
is simply

pRFB(�S) = pRF (g(�S))|J (g(�S), �S)| ,(14)

where J (g(�S), �S) is the Jacobian of g. We use RFB to indicate that prior for
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the structural parameters �S is based on this change of variables from a standard
reduced-form prior. The details of pRFB are described in subsequent sections,
but for our present purposes it suffices to know that 1) we can easily sample
from it, 2) we have closed form expressions for pRF and J that admit pointwise
evaluation, and 3) it gives us an exact expression for the model’s MDD. In other
words, we can estimate the model with SMC and and compare SMC’s MDD
estimate to the true MDD. To sample from p(�S) we first sample from p(�RF )
and then transform �RF into �S via the function g−1, which we define as

g−1(�RF ) = ((cℎol(�)′)−1,Φ(cℎol(�)′)−1) = (A, F ) = �S ,(15)

where cℎol(⋅) refers to the lower triangular Cholesky matrix. 8

3.2 Experiment 1: SMC Accuracy for VAR Posteriors

We first test SMC’s performance on a VAR with n = 3 variables and p = 3
lags. The data for our test consists of observations on the output gap, inflation
(GDP deflater), and the Federal Funds Rate from 1959:Q1 to 2005:Q4. We use
the exact dataset from the empirical example of Sims et al. (2008), which we also
use when estimating Markov-switching models in Section 4.

Recall that the SMC sampler described in Section 2 features a number of
tuning parameters that must be set by the user. For our baseline experiment, we
set Npart = 2000, N� = 500, M = 1, Nblocks = 3 (random), and � = 4.9 We
run 20 Monte Carlo replications of the sampler and examine the distribution of
ln(MDD) estimates. The first row of Table I shows the results under the baseline

8It is well known in the literature that our choice of g−1 is not the unique definition for which
g(g−1(�RF )) = �RF : multiplying both A and F from the right by an orthogonal matrix would
yield an alternative �̃S for which g(�̃S ) would equal the same �RF . In the present context our
definition of g−1 is just a normalization and its lack of uniqueness is irrelevant. Both the VAR
likelihood and our choice of prior are invariant to orthogonal rotations, so the model’s MDD is
invariant to alternative choices of g−1. Rubio-Ramírez, Waggoner, and Zha (2010) document
that the density of any prior for �S derived from the �RF parameterization will be invariant to
orthogonal rotation.

9Appendix A provides a thorough examination of SMC’s effectiveness under a variety of
values for the tuning parameters. In particular, Table A-1 represents a matrix of approximate
“partial derivatives” of MDD estimation accuracy with respect to various tuning parameters.
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TABLE I
ACCURACY OF SMC ESTIMATES OF ln(MDD): EFFECT OF RW-MH

PROPOSAL COVARIANCE MATRIX

Σprop RMSE
Conditional 0.21
Unconditional 1.90
Notes: The other SMC tuning parameters for this exercise areNpart = 2000,Nblocks = 3,
Random Blocking, N� = 500, M = 1, and � = 4. The VAR model has p = 3 lags.
RMSE is the root mean squared error of the estimates of of ln(MDD). The true value of
the ln(MDD) is 1791.9.

tuning parameters in terms of root mean squared error (RMSE) of ln(MDD)
estimates. We can see that the sampler is quite accurate.

The second row of Table I demonstrates the ramifications of using (9) as the
RWMH proposal variance rather the conditional approximation, given by (8).
The sampler using (9) most closely resembles the one used for DSGE models by
Herbst and Schorfheide (2014). Using the unconditional variance estimate in the
block RWMH leads to substantial deterioration in the sampler’s performance, as
the RMSE of the ln(MDD) estimates increases by nearly an order of magnitude.
To contextualize the efficiency gains from our modification of the Herbst and
Schorfheide (2014) proposal variance, we find that the gains in accuracy from
using the conditional approximation are significantly greater than the gains from
doubling the number of particles (or even moving from 1000 to 5000 particles).
One reason for this is that the VAR prior exhibits substantial correlation among
key parameters. When this correlation structure is not accounted for, the sampler
performs very poorly in the early stages when the prior dominates the likelihood
contribution.

3.3 Experiment 2: SMC Accuracy for a Mixture of VAR Posteriors

Sims et al. (2008) stress that the posterior of MS-VARs “tends to be non-
Gaussian” and may well contain “multiple peaks.” Indeed, when estimating
MS-VARs in Section 4 we find evidence of fat-tailed and multipeaked posterior
densities in our posterior draws, even after normalizing them. To determine
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whether or not SMC can stand up to such irregularities, we conduct a Monte
Carlo simulation on a bimodal target density for which: 1) we know the integrating
constant in closed-form, which provides an absolute measure of success, 2) we can
sample the target distribution directly and then apply existing MDD estimation
techniques, which provides a relative measure of success, and 3) the distribution
is similar to the SMC-estimated posterior of the MS-VARs we consider in Section
4, which provides our controlled experiment with empirical relevance.

We construct the bimodal target distribution as the mixture of two posteriors
for a parameter vector � that share a common prior, but are informed by different
observations. Letting p(�) be a prior, p(Y |�) the model’s likelihood function for
observations Y , and

p(Y ) = ∫Θ
p(�)p(Y |�)d� ,(16)

our target density is given by

p̃(�|Y1, Y2) = �
(

p(�)p(Y1|�)
p(Y1)

)

+ (1 − �)
(

p(�)p(Y2|�)
p(Y2)

)

, � ∈ [0, 1] .

We take � as given and known, so we implicitly condition on this value. Defining

L̃(�|Y1, Y2) = �p(Y2)p(Y1|�) + (1 − �)p(Y1)p(Y2|�) ,(17)

which we call a pseudo-likelihood, and

p̃(Y1, Y2) = p(Y1)p(Y2) ,(18)

and performing some simple algebra, we can write the target distribution as

p̃(�|Y1, Y2) =
p(�)L̃(�|Y1, Y2)

p̃(Y1, Y2)
.(19)

For the mixture components in our experiment we use posteriors of the VAR
model described in Section 3.1 and hence we know p(Y1) and p(Y2) (and thus
p̃(Y1, Y2)) in closed-form. We execute 50 replications of SMC estimation of
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p̃(�|Y1, Y2), which include estimates of the MDD, p̃(Y1, Y2).
To provide a benchmark for SMC, we also sample directly from p̃(�|Y1, Y2)

and estimate the MDD with standard techniques.10 In particular we estimate the
MDD from the direct sample with two versions of the modified harmonic mean
method: the version originally described in Geweke (1989), which we refer to
as “MHM,” and the version adapted for better performance with non-Gaussian
distributions in Sims et al. (2008), which we refer to as “MHM-SWZ.”11

Although we call this exercise a “benchmark” for SMC, it is in fact a very
high bar. The task of posterior sampling is often extremely challenging, to say
nothing of MDD estimation from the resulting sample. Researchers typically
simulate posterior draws using MCMC algorithms for which iid draws represent
a practical upper bound on the quality of the posterior approximation.12 Thus the
benchmark exercise actually sidesteps one of the major challenges of the conven-
tional approach to estimating MDDs. One might then say that our benchmark for
SMC is, in fact, an upper bound on the performance of the conventional approach.
Meanwhile, we charge SMC with the doubly difficult task of simultaneously
sampling the posterior and MDD estimation.

Table II shows the results of our simulation for a VAR(n = 3, p = 5), from
which we arrive at four main conclusions. Firstly, and most central to our interests,
SMC estimates the MDD as well as, or better than, either MHM estimator when
we give the MHM estimators 10,000 i.i.d. draws. From this we conclude that
the SMC algorithm shows superior performance in the presence of substantive
multimodality. And furthermore these simulation results give us a compelling
reason to trust our numerical estimates in Section 4.

Secondly, the MHM-SWZ estimator performs well (compared to traditional
MHM) in the presence of bimodality. Even though the MHM-SWZ estimator con-

10With known �, we can easily sample p̃(�|Y1, Y2) directly. See Appendix D.1 for the direct
sampling algorithm.

11Frühwirth-Schnatter (2004) documents the poor performance of Chib’s estimator for even
small mixture models, so we do not consider it here.

12In principle, it is possible to use other Monte Carlo methods to obtain estimates of model
moments that are even more precise than those achieved with iid draws (i.e., antithetic variates).
In practice, these methods are impractical in the environments we study and they are not widely
used by econometricians. See Geweke (2005) for details on this class of methods.
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TABLE II
ACCURACY OF ln(MDD) ESTIMATES FOR MULTIMODAL TARGET DENSITY

WITH DIFFERENT METHODS OF POSTERIOR SAMPLING AND MDD ESTIMATION.

Posterior Sampler MDD Estimator RMSE
SMC:Npart = 2000 SMC 0.421
SMC:Npart = 5000 SMC 0.337

Direct: 10,000 draws
MHM - SWZ 0.311
MHM 1.068

Single Mode
MHM - SWZ 0.812
MHM 0.829

Notes: VAR(n = 3, p = 5), true ln p(Y ) = 1725.289. Values are based on 50 replications.
“MHM" refers to the original implementation of the modified harmonic mean estimator
from Geweke (1989). “MHM - SWZ" refers to the adaptation of MHM proposed and
implemented in Sims et al. (2008). VAR algorithm settings: SMC sampler uses � = 4,
n� = 500,Nblocks = 8; and MHM estimate uses p = 0.9 for truncation.

structs its approximating density around only one of the distribution’s modes, the
approximating density has fat enough tails to effectively incorporate information
throughout the parameter space.

Thirdly, bimodality rendersMDD estimation via theMHMmethod of Geweke
(1989) hopeless, as it fails even under large numbers of draws from the target
distribution. Since the average bias is in terms of units of ln p(Y ), we can interpret
these values as approximately percentage errors of p(Y ). Hence, for the VAR
simulation, the MHM estimator tends to overstate p(Y ) by more than 50% of its
true value.

Lastly, the extent to which multimodal target densities pose problems for
MCMC methods remains a subject of debate, a debate whose waters we do not
care to wade into any more deeply than necessary, but we do wish to document
the stakes of proper posterior sampling. The basic concern when using MCMC
is that the sampler may not mix properly in a reasonable amount of time. In the
worst-case scenario, the MCMC sampler never leaves a neighborhood around
the mode nearest to the point from which the algorithm initialized.13 The rows in

13Celeux, Hurn, and Robert (2000) document degeneracies of this nature when posterior
sampling with simple MCMC for mixture models. However, Geweke (2007) shows that there
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Table II labeled “Single Mode” showMDD estimates computed from a caricature
of a failed MCMC algorithm, i.e. the draws are simulated from only one of the
two modes. In such a situation the results are disastrous.

4. Sequential Monte Carlo in Practice: MS-VAR Estimation

While conceptually straightforward, just a cursory glance at Sims et al. (2008)
reveals that inference for MS-VARs is messy in practice. In this section we revisit
the empirical application of Sims et al. (2008) using SMC estimation and two
alternative prior specifications. We show that the use of an off-the-shelf prior
commonly used in reduced-form VARs significantly improves data fit for MS-
VARs and meaningfully alters the posterior probability assigned to models that
allow changes to macroeconomic dynamics.

4.1 Structural MS-VAR Model

We estimate MS-VAR models of the form

y′tA(st) = x
′
tF (st) + "

′
tΞ(st)

−1 , "t ∼ iid (0n, In)(20)

Ξ(st) = diag([�1(st),… , �n(st)])(21)

p(st|St−1, Yt−1, �, q) = qst,st−1(22)

qst=i,st−1=j = qi,j , for t > 0(23)

where Ξ(st) is an n × n diagonal matrix, st is the time t realization of a discrete
latent process that we call a “state.”St−1 is the history of states up to and including
t − 1, and Yt−1 is the history of observations up to and including t − 1.

exist MCMC methods, such as the method of Frühwirth-Schnatter (2001), able to handle the a
priori-known-and-symmetric multimodality of mixture models that results from the arbitrariness
of state labeling. Unlike the examples in Celeux et al. (2000) and Geweke (2007), our experience
estimating MS-VARs in the subsequent section indicates the presence of asymmetric posterior
multimodality, also known as “genuine multimodality,” in addition to the typical symmetric
multimodality which can, in theory, be normalized away. The target density in the present section
possesses only genuine multimodality by construction.
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LetH be the total number of states in the latent process and let

A = {A(ℎ)}ℎ∈{1,…,H}, F = {F (ℎ)}ℎ∈{1,…,H}, Ξ = {Ξ(ℎ)}ℎ∈{1,…,H} .(24)

We then let � = {A, F ,Ξ}. Note that we use the set notation in (24) to collect
only the unique parameters in each set of matrices; nothing about our framework
so far assumes that all parameters of A(1) and A(2), or any other two states, are
unique.14 The state of the latent process at time t may be determined by the joint
realization of K independent latent processes, which each govern a different
subset of �. We will refer to the set of parameters corresponding to only process
k as �k. The notation st refers to the joint state of all latent processes, while the
notation skt refers to the state of only process k.

The MS-VAR has the likelihood

p(YT |�, q) =
T
∏

t=1
p(yt|�, q, Yt−1)(25)

where

p(yt|�, q, Yt−1) =
H
∑

ℎ=1
p(yt|�, q, st, Yt−1) p(st|�, q, Yt−1) .(26)

To evaluate (26) note that

p(yt|�, q,st, Yt−1) = (2�)n∕2| det(A(st)−1
′Ξ(st)−1A(st)−1)|−1∕2

× exp
{

−1
2
(y′tA(st) − x

′
tF (st)) Ξ(st)

2 (y′tA(st) − x
′
tF (st))

}

.
(27)

and one can evaluate p(st|�, q, Yt−1), using the filtering algorithms in Sims et al.
(2008).

The probability model for the data described in (20)-(23) belongs to the class
of models considered in Sims et al. (2008) and matches the general form of their

14For example, one could restrict the regime-switching so that A(1) and A(2) differ by only
their last column, which is one specification considered in both Sims and Zha (2006) and Sims
et al. (2008).
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empirical application. Each MS-VAR we estimate uses the same lag length (5
quarters) and exactly the same data set as Sims et al. (2008), which we also used
in Section 3. We also follow Sims et al. (2008) in assuming that �1 = {A, F }
and �2 = {Ξ} follow independent regime-switching processes. Our only point
of departure from Sims et al. (2008) is that we do not restrict the parameters
multiplying variable i in equation j at each lag l to change only proportionally
across regimes. We find that not imposing those restrictions allows the model to
achieve superior data fit.

Since {A, F } determine the conditional mean of yt and {Ξ} determines the
volatility of the structural shocks, we refer to the state of {A, F } at time t as smt
and the state of Ξ at time t as svt . Denote the number of regimes for {A, F } asHm

and the number of regimes for Ξ asHv. If a model hasHm = 2 andHv = 3, then
we refer to it using the shorthand 2m3v. Since we assume that the two processes
evolve independently, a 2m3v model has 6 joint states.

We estimate MS-VAR models under a variety of choices forHm andHv. For
each choice ofH , we estimate the model under three different priors for (A, F ),
to the description of which we now turn.

4.2 Priors for MS-VAR Coefficients

For each MS-VAR the priors on {(A(ℎm), F (ℎm))}
Hm
ℎm=1

and {Ξ(ℎv)}
Hv
ℎv=1

are
independent and identical across ℎm and ℎv respectively.

1. SZ Prior. This is the prior originally described in Sims and Zha (1998) and
used in Sims et al. (2008). For each state ℎm, the prior takes the form

a(ℎm) ∼ (0, In ⊗H0)(28)

f (ℎm)|a(ℎm) ∼ (vec(S̄A(ℎm)), In ⊗H+) ,(29)

where

a(ℎm) = vec(A(ℎm)) , f (ℎm) = vec(F (ℎm)) , S̄ =

[

In
0(n(p−1)+1)×n

]

(30)
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and H0,H+ are prior parameters.15 In practice, the prior is implemented with
dummy observations as described in Sims and Zha (1998). The dummy observa-
tions depend on a few moments constructed from the data, ȳ and s̄, and vector
of hyperparameters that control the influence of different subsets of the dummy
observations. The standard implementation sets ȳ as the mean of the observations
used to initialize the lags of the VAR and s̄ as the standard deviations of the
residuals from univariate autoregressions for each data series, both of which we
follow here.16 For this prior we set Λ identically to Sims et al. (2008) at �0 = 1.0,
�1 = 1.0, �2 = 1.0, �3 = 1.2, �4 = 0.1, �5 = 1.0, and �6 = 1.0 and we refer to
this set of values as ΛSWZ .

2. Reduced-Form-Based (RFB) Prior. We take up the suggestion of Sims
and Zha (1998) and derive a prior for (A, F ) by placing a prior distribution
over the reduced-form dynamics, summarized by Φ and Σ, then mapping to
(A(ℎm), F (ℎm)) via (15) in Section 3.17 Appendix B.2 gives the exact expressions
for the density of the RFB prior.

Discussion. We pause here to describe the key features of, and relationship
between, the SZ and RFB priors. A key aspect of the SZ prior is its centering ofA
at 0. Sims and Zha (1998) note that the prior forA in (28) is equivalent to what one
would derive from inverse-Wishart beliefs about Σ = (AA′)−1 with n+1 degrees
of freedom and while also ignoring the Jacobian term for the transformation from
A→ Σ. With appropriate choices of hyperparameters, the RFB prior forA differs
from the SWZ prior only in that it includes the Jacobian, which serves to recenter
beliefs aboutA away from 0. One can see these differences in the priorA densities
clearly in Figure 1.18 Since the VAR’s forecast errors have covariances (AA′)−1,
centering beliefs about A at 0 amounts to centering beliefs about the VAR’s

15As pointed out in Rubio-Ramírez et al. (2010), the SZ prior has the desirable properties of
invariance of the density with respect to orthogonal rotations of (A, F ).

16As has been common since Litterman (1986), we use six lags in the univariate autoregressions
from which we estimate s̄.

17Sims and Zha (1998) state that, “A better procedure, which, however, would not have been
very different in practice, would have been to derive our prior on A0 from a natural prior on �−1,
the Wishart.”

18The values in the figure have been “sign normalized” to positive values.
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forecast errors at∞. In Appendix B.2.2 we derive that pRFB(F |A) = pSZ(F |A)
and thus the entirety of the difference between the SZ and RFB priors derives
from their differences for p(A). Thus the RFB prior differs from the SZ prior
with respect to p(A), while maintaining the choices for Λ in Sims et al. (2008)
mentioned above.

Though an undesirable property, the SZ prior’s mode of A = 0 has little
effect on the posterior of constant-parameter VARs. Sims and Zha (1998) note
that the sample size in typical macro applications is large enough that this will
typically be the case: the Jacobian term consists of

(31) |J (g(A), A)| = 2n
n
∏

j=1
ajjj ,

while the likelihood contains
∏n

i=1 a
T
ii , hence ignoring the Jacobian will have

little effect on posterior estimates as long as T is “considerably larger than” n.
However, effective sample sizes informing regime-specific parameters of MS-
VARs may well be small enough that the omitted Jacobian term has a substantial
effect on inference. The basic logic is simple (and hardly new): prior beliefs have
a larger effect on posteriors when sample sizes are smaller. Thus undesirable
features of a prior typically employed for models informed by large sample sizes
can distort inference when reemployed for models with “smaller” sample sizes.

3. Reduced-Form-Based Hierarchical (RFB-Hier.) Prior. It is known in the
literature that VAR posteriors can be sensitive to the choice of hyperparameters,
Λ. However, it is not obvious to us what type of, or how much, shrinkage one
should impose in MS-VARs. Should we increase shrinkage to restrict the “size”
of the large parameter space inherent in MS-VARs? Or should we decrease the
standard types of shrinkage to let the parameters of different, possibly highly tran-
sitory, regimes take on values that one might consider unreasonable in constant
parameter VARs?

For these reasons we follow the approach of Giannone, Lenza, and Primiceri
(2015) and form a hierarchical model in which we put priors over some elements
of Λ, as well as ȳ and s̄, treating them as an additional vector of parameters
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to estimate.19 Following Giannone et al. (2015), we estimate �0, �5, �6, and s̄.
We also estimate �4 and ȳ since it seems reasonable to us that the MS-VAR
might favor additional flexibility for the constant term (controlled by �4 and the
average level of variables (controlled by ȳ).20 When estimating �0, �4, �5, and
�6, we give each parameter a prior from the Gamma distribution with a mode
at the value used in the SZ and RFB priors and a standard deviation of one. For
{ȳj}nj=1, we set identical and independent Normal distributions centered at 0 with
a standard deviation of 0.1. For {s̄j}nj=1, we use relatively diffuse independent
Inverse Gamma distributions as in Giannone et al. (2015).

The hierarchical approach gives us 10 additional parameters to estimate.
However, when using the SMC algorithm, estimating (Λ, ȳ, s̄) does not introduce
any additional complications. To be sure, the efficacy of the sampler will diminish
slightly because of the increased dimensionality of the parameter space, but
estimation proceeds without any modification of the algorithm. Were we to use
MCMC methods to estimate the model with the RFB-Hier. prior, we would
have to include an additional Metropolis-Hastings step in our sampler, as there
are not natural conditionally conjugate relationships for all of hyperparameters.
Moreover, estimating these parameters would deteriorate the performance of the
algorithm, given the obvious relationships between Λ and (A, F ) and the fact that
posteriors of some of the hyperparameters–in particular ȳ–are nonstandard.21

Priors on Other Parameters. The priors for all MS-VARs we consider share
common specifications for the volatilities and transition regimes. For the volatili-
ties, p(�j(ℎv)) are independent and identically distributed across j and ℎv such
that

�2j (ℎv) ∼ (�̄j , �̄j)(32)

19Sims and Zha (1998) also suggest the potential to form a hierarchical prior by putting prior
beliefs over Λ, stating that, “In principle, these hyperparameters can be estimated or integrated
out in a hierarchical framework.”

20We follow Giannone et al. (2015) and fix the other parameters.
21See the discussion in Herbst and Schorfheide (2015) on parameter blocking in Metropolis-

Hastings algorithms.
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FIGURE 1.—Prior Densities for A22
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Notes: The figure shows the prior distribution for the parameter A22 under the
SWZ and RFB priors.

and we set �̄j = 1 and �̄j = 1 for all j and k, as in Sims et al. (2008). Additionally,
we normalize the first state of volatilities so that �j(1) = 1 for all j.

Priors over the transition probabilities qij for both the mean and shock regimes
are of the unrestricted Dirichlet form from Sims et al. (2008). For an n state
process i, this distribution is parameterized by n hyperparameters, {�ij}nj=1 which
SWZ suggest eliciting by introspection about the persistence of each regime. For
every specification (regardless of the number of regimes), we set

�i,j = 5.667, i = j and �i,j = 1, i ≠ j.

For a two state process, this implies an average duration of a given regime of about
6.5 quarters. As the number of states increases, this expected length decreases.

4.3 Estimation Details

Under each prior, we estimate MS-VARs for Hm = 1, 2 and Hv = 1,… , 5
using the SMC algorithm described in Section 2. We setNpart = 4000,Nblocks =
12 (random) andM = 1, using the conditional variance given by the normal
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approximation for the mutation step. For the tempering schedule we set � = 4
andN� = 2000.

We have run our SMC sampler in both Fortran and MATLAB. In Fortran,
estimation of a given model takes between one and ten minutes, with likelihood
evaluations parallelized across the 12 cores of a desktop with an Intel Xeon x5670
CPU. The Matlab version executing on the same machine roughly takes between
twenty minutes to six hours, depending on the number of states.22

For each specification we estimate the model with 50 independent runs of the
algorithm and report both the point estimate and standard error of the model’s
log(MDD). Owing to the difficulty of MCMC estimation of MS-VARs, previous
researchers have been able to report standard errors only from different subsets
of draws along a single MCMC chain.23 Since we initialize each run of SMC
from an independent draw of initial particles, there is no risk of our standard
error estimates being spuriously small because of influential initial conditions.
Hence, we interpret the precision of our estimates to, in fact, reflect accuracy.

4.4 Estimation Results: MS-VAR Model Selection

Table III shows the point estimates and associated standard errors of log(MDD)
values of MS-VARs, including the constant-parameter VAR (the special case
of 1m1v), for each of the three priors. Figure 2 shows the results graphically.
From our estimation results we deduce four main findings. Firstly, and consistent
with the key findings of Sims and Zha (2006) and Sims et al. (2008), the best
fitting model for each prior is a 1m3v or 1m4v model and, furthermore, regime-
switching in shock variances is critical to fitting the data. Indeed, the worst fitting

22In principle, we could also simulate from the posteriors using the sampler proposed by Sims
et al. (2008) for the SWZ prior and modify the Metropolis-within-Gibbs steps of the sampler
to accommodate the RFB prior. However, like the other researchers we quoted in Section 1, we
have found the MCMC estimation process cumbersome and lengthy. Experimentation across
models indicated difficulties with reliably finding the posterior mode, making the batch estimation
exercise tedious. On a subset of models with the SWZ prior, which we successfully repeatedly
sampled using MCMC, the SMC and MCMC posteriors more-or-less coincided. The SMC
posteriors were slightly wider than the MCMC ones, which generally indicates a more thorough
posterior exploration.

23For MCMC estimation, Gelman and Rubin (1992) emphasize the importance of using
multiple independent chains, with each chain initialized from a different starting value.
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TABLE III
SMC ESTIMATES OF ln(MDD) FOR MS-VAR MODELS.

Prior
SWZ RFB RFB-Hier.

Model ln(MDD) (S.E.) ln(MDD) (S.E.) ln(MDD) (S.E.)
1m 1v 1759.10 (0.07) 1754.77 (0.08) 1778.15 (0.78)
1m 2v 1869.51 (0.09) 1873.24 (0.13) 1877.93 (0.71)
1m 3v 1872.64 (0.11) 1877.83 (0.18) 1880.92 (0.81)
1m 4v 1872.57 (0.12) 1879.17 (0.14) 1880.07 (1.07)
1m 5v 1871.27 (0.16) 1878.03 (0.15) 1878.82 (1.29)
2m 1v 1845.23 (1.45) 1836.78 (2.84) 1857.68 (2.73)
2m 2v 1867.48 (0.33) 1873.70 (0.55) 1879.94 (0.74)
2m 3v 1869.98 (0.45) 1877.34 (0.55) 1880.32 (0.93)
2m 4v 1869.55 (0.27) 1878.22 (0.47) 1879.58 (1.17)
2m 5v 1868.26 (0.45) 1876.83 (0.43) 1877.49 (1.55)
Notes: ln(MDD) estimates are means from 50 independent runs of the algorithm for
each model. We give standard errors of the log(MDD) estimates, computed across the
50 runs, in parentheses. The SMC algorithm hyperparameters areNpart = 4000, � = 4,
Nblocks = 12 ,N� = 2000, andM = 1.

regime-switching specification is always the 2m1v model by a large margin.
Secondly, changing the prior from SWZ to RFB to RFB-Hier increases the

MDD of all regime-switching models (other than 2m1v). We take this to mean
that the two variants of the RFB prior are first and foremost favored by the data
rather than any particular specification. The MDD improvements are large for
any particular specification, in many cases exceeding 10 log points.24

Thirdly, in addition to improving data fit for all models, changing the prior
from SWZ to RFB to RFB-Hier dramatically increase the posterior probability of
a 2m specification being the correct model.25 Table IV shows the posterior proba-
bility on 2m specifications conditional on each prior, along with the unconditional
posterior probability on all specifications for each prior. Under the SWZ prior,

24Note that, with equal prior odds on two models, a 10 point difference in their log(MDD)s
puts the posterior odds in favor of the better fitting model above 20,000 to 1.

25In calculations of posterior probabilities, we assume all models are a priori equiprobable.
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FIGURE 2.—log(MDD) estimates for each MS-VAR specification and prior.
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Notes: The figure shows box plots for log MDD of each specification and prior,
computed from 50 independent runs of the SMC algorithm for each specification-
prior combination. We omit the 1m1v and 2m1v because they are the worst fitting
models by wide margins.

there is negligible probability (0.06) on changes in the mean parameters; that is,
the 2m models. Under the RFB prior, in which we have only taken into account
the Jacobian term and the IW degrees of freedom, the probability increases to
0.29. Under the RFB-Hier. the probability increases further to 0.43, nearly a coin-
flip with the only-variances-change explanation. This finding contrasts with the
results in Sims and Zha (2006) and Sims et al. (2008) who find a landslide victory
(10 log points in Sims et al. (2008)) for the only-variances-change specification.
Recall that a key difference between our model and the models in Sims and Zha
(2006) and Sims et al. (2008) is that we do not impose the additional restriction
of only proportional switching across the coefficients multiplying variable i in
equation j. Sims et al. (2008) express the concern that allowing all parameters to
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TABLE IV
POSTERIOR PROBABILITY OF 2M MODEL CONDITIONAL ON PRIOR.

Prior P (2m|Prior, Y ) P (Prior|Y )
SWZ 0.06 0.00
RFB 0.29 0.12
RFB - Hierarchical 0.43 0.88
Notes: The second column gives the posterior probability of the 2m models, conditional
on the prior. The third column gives the posterior probability on all models estimated
with a particular prior.

change would over-parameterize the model and such models would be heavily
penalized for their complexity in the MDD calculation. Our results show that
these fears are unwarranted.26

Fourth, across all priors and model specifications, Markov-switching parame-
ters offer large gains in model fit compared to constant-parameter specifications,
as was also found in Sims and Zha (2006). For all models with at least 2 volatility
regimes, the MDD gains exceed a staggering 100 log points.

4.5 Estimation Results: Examining the 2m3v Model

4.5.1 Hyperparameter Posteriors

Figure 3 shows the priors and posteriors for the estimated elements ofΛ under
both 1m3v and 2m3v specifications and Appendix E contains tables summarizing
the posteriors of all estimated hyperparameters, for all specifications. The most
important feature of the estimated hyperparameter posteriors is the difference
of the �5 posteriors (lower left panel of Figure 3) under the 1m3v and 2m3v
specifications. The hyperparameter �5 controls shrinkage towards the “sums-of-
coefficients” dummy observations. In particular, the 2m3v model wants virtually
no influence for these observations. This represents a dimension in which the
model strongly favors weaker prior restrictions to make the best use of the

26Some researchers also find the proportionality restrictions undesirable on theoretical grounds.
As is well-known, and was pointed out particularly starkly in Benati and Surico (2009), one would
expect all coefficients of the VAR representation of a DSGE model to change if one changes the
DSGE model’s policy rule parameters.
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FIGURE 3.—Posterior of Λ
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infrequently occurring additional conditional mean regime.

4.5.2 Conditional Mean Regimes

Rather than describe the time-series of regime probabilities conditional on
an estimate of the model’s posterior mode, Figure 4 shows the time-series of
regime-probabilities for each of the 4000 particles from a single run of the SMC
algorithm for the 2m3v model. In particular, the figure shows the time-series data
used in estimation (scale on left axis) together with the posterior probabilities of
estimated regimes (conditional means in top panel, shock variances in bottom
panel). For example, if we look at the year 1990 in the top panel and see that the
figure’s background is uniformly white from top to bottom, then that means that
virtually all 4000 particles are in agreement about the regime probability at that
date.

From the top panel of Figure 4 one can see a substantial amount of disagree-
ment across particles about the timing of regime occurrences. In particular, the
posterior contains two modes which support alternative interpretations of the
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ℎm = 1 regime. To make the bimodality more visually apparent, we sorted the
particles in Figure 4 in ascending order from the top according to the average
probability of ℎm = 2 over the 2 years of observations from 1965:Q1 to 1966:Q4.
Near the top of the figure, one can see a set of particles favoring an ℎm = 1
occurrence in 1965-1966, some of which favor a recurrence in the late 1990s.
These same particles put less probability on ℎm = 1 in the early 1980s than do the
particles near the bottom of the panel. Documenting this relationship formally,
there is a negative correlation of -0.34 between the average probability of ℎm = 1
over 1965-1966 and the average probability of ℎm = 1 over 1980-1981, thus
revealing a substantial amount of multimodality.27

The key macroeconomic feature of the first mode is periods of rapid economic
growth with little inflation and thus little movement in the nominal interest rate.
One might interpret the parameter value corresponding to this mode as represent-
ing periods of a particularly flat Phillips Curve. Other time-series investigations
have uncovered nonlinearities and/or time-variation in the Phillips curve that
mesh well with this type of time-variation in economic dynamics. Stock and
Watson (2010) and many references therein document a nonlinear relationship
between the traditional gap measures and inflation, wherein the strongest Phillips
curve relationship occurs in recessions. Their finding is roughly consistent with
the interpretation of the parameter values generating this mode: that the relation-
ship between inflation and economic slack deteriorates during (some) periods of
quickly diminishing slack.

One can also examine how a fixed coefficient structural general equilibrium
model fits the economic dynamics during the ℎm = 1 period. That these periods
might represent a structural change economic dynamics is, in a sense, visible

27When we describe the features of a particular regime’s posterior, there is an issue about
which of a given particle’s parameter values represent which regime. In the statistics literature on
mixture models, this is a well-known annoyance referred to as the “label switching problem.” We
refer readers interested in the issue to Jasra, Holmes, and Stephens (2005)’s excellent description
and survey of solutions. Since one can always relabel regimes arbitrarily, a model with 2 regimes
necessarily has 2 symmetric modes. The statistics literature on mixture models uses the term
“genuinemultimodality” to refer tomultimodality in the posterior that exists even after normalizing
draws around one of the inherently-symmetric modes. Appendix C contains the details on our
handling of normalization and relabeling for the MS-VAR.
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from the historical decompositions implied by the NK-DSGE model of Smets
and Wouters (2007). The Smets and Wouters (2007) model interprets the second
half of the 1990s as a period in which the joint dynamics of output growth and
inflation are caused by a sequence of similarly sized negative “mark-up” shocks
occurring for more than 5 years in a row. The “mark up” shocks in the Smets and
Wouters (2007) model function largely as a time-varying slope to the Phillips
Curve. The persistence of necessary mark up shocks suggests a dimension of
model misspecification.

The key macroeconomic feature of the second mode (the particles whose
time-series of probabilities are nearer the bottom of Figure 4’s top panel) is an
increased responsiveness of the nominal interest rate to changes in inflation. To
document this formally we calculate the impulse response of the nominal interest
rate to a one standard deviation sized inflation shock (the second shock in the
structural system) on impact under each regime, conditional on the posterior
draw belonging to the region around the second mode. Figure 5 shows density
estimates of these two responses under each regime. While the IRFs under the
second regime are not as sharply identified as those of the first, the greater
probability of a larger response under regime 1 is still apparent in the figure.

4.5.3 Shock Variance Regimes

Turning to the shock volatility regimes, shown in the second panel of Figure
4, one can see that a single regime prevailed from the mid-1980s to the end of
the sample and that same regime occurs in the late 1960s. For most posterior
draws this regime has the lowest variance for all three structural shocks.

Not surprisingly, the regime with the largest shock standard deviations occurs
during the mid-1970s and early 1980s, similar to the 1m models. Echoing the
main result of Sims and Zha (2006) and Sims et al. (2008), our model interprets
the Great Moderation as a once-and-for-all decrease in shock volatilities, in line
with a “good luck” explanation. The same “good luck” regime also prevailed
during the late 1960s.
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5. Conclusion

Led by Sims and Zha (2006) and Sims et al. (2008), MS-VARs have played
a prominent role the debate over whether or not any structural change to US
macroeconomic dynamics has occurred in the last 50 years. In this paper we have
shown that some small tweaks to recently-developed SMC algorithms allows us
to apply them to MS-VAR estimation. SMC delivers fast, reliable characterization
of posteriors and dramatically broadens the space of tractable priors. We use the
ease of SMC implementation under alternative priors to show that, relative to the
conclusions of Sims et al. (2008), the use of an off-the-shelf prior typically applied
to reduced-form VARs improves data fit and substantially alters posterior beliefs
about changes to economic dynamics. When using the hierarchical reduced-
form-based prior we find a 43% chance that the true model features changing
macroeconomic dynamics either in the form of a periodically flattening Phillips
Curve or increased responsiveness of the monetary authority to inflation shocks.

The results in our paper suggest that the choice of priors deserves careful
attention when working with densely-parameterized models, such as MS-VARs.
It may well be the case that appropriate priors for such models require us to depart
from previous methods that were chosen for either analytical or computational
tractability. Whether or not such departures are necessary is an empirical question,
but this paper shows that it is a question whose answer will most likely be found
by using SMC methods.
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FIGURE 4.—Observables and Regime Probabilities
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Notes: The figure shows the time-series data used in estimation (left axis) together
with the posterior probabilities for the conditional mean regimes (top panel) and
volatility regimes (bottom panel), for each of 4000 particles from a single run of
SMC for the 2m3v model. Top panel particles are sorted according to probability
ℎm = 1 averaged over 1965-1966.
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FIGURE 5.—Density Estimates for IRF of Rt to "�t .
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A. Additional Computational Results

A.1 Assessing the Importance of Tuning Parameters

The researcher applying SMC faces a few key questions about SMC’s use
in practice. How should one choose n� (or �)? How many particles should one
use? How many parameter blocks? While theoretical results on the optimal
choice of the algorithm’s tuning parameters are beyond the scope of this paper,
in this section we exploit the relative transparency of VARs to move beyond the
suggestions of Herbst and Schorfheide (2014) and find well-performing choices
for tuning parameters.

To assess the importance of each of the algorithm parameters, we vary each
component while holding the rest of the hyperparameters at the baseline case.
This gives a rough “partial derivative” of each parameter’s contribution to the
effectiveness of the algorithm. In particular, we 1) consider the use of the proposal
distribution for the mutation steps as described in Herbst and Schorfheide (2014),
2) vary the number of particles to 1000 and 5000, 3) vary the number of blocks and
the mechanism for selecting them, 4) assess the trade-off between the number of
bridge distributions and intermediateMetropolis-Hastings steps while keeping the
number of likelihood evaluations fixed by setting (N�,M) = (50, 10), and 5) vary
the � schedule by testing � = 1, 7. We run 20 Monte Carlo replications of the
sampler for each configuration of hyperparameters and examine the distribution
of the estimates of ln p(Y ). Table A-1 shows the results of our Monte Carlo
exercise. Each row after the first describes a deviation from the baseline tuning
parameters and shows the estimation performance of the algorithm under that
parameterization.

Under the baseline setting, the sampler using the structural parameterization
is slightly more accurate. The primary reason for this is that the RWMH is
restricted to draws which satisfy a positive definiteness condition for Σ. When
a draw does not have this property, it is rejected, reducing the efficiency of the
MH algorithm and hence the size of movements in the parameter space. The
structural parameterization operates on the Cholesky decomposition of Σ thus
negating the problem of drawing inadmissable parameterizations and allowing
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TABLE A-1
SMC ESTIMATES OF ln p(Y ) FOR VAR: EFFECTS OF ALGORITHM TUNING

PARAMETERS

VAR Parameterization
SMC Tuning Parameters Reduced Form Structural

Σprop Npart Nblocks Blocking N� M � RMSE RMSE
Cond 2000 3 Random 500 1 4 0.29 0.21
Un - - - - - - 1.37 1.90
- 1000 - - - - - 0.39 0.47
- 5000 - - - - - 0.19 0.11
- - 1 - - - - 0.61 0.50
- - 2 - - - - 0.39 0.38
- - 2 (Φ,Σ) - - - 0.44 3.95
- - 3 Row - - - 0.26 0.75
- - 4 (Row,Σ) - - - 0.18 1.51
- - - - 50 10 - 0.43 1.33
- - - - - - 1 1.87 4.02
- - - - - - 7 0.41 0.37
Notes: The symbol “ - ” indicates inheritance of the parameter value from the baseline
parameterization given in the first line of the table. RMSE is the root mean squared error
of the estimates of ln p(Y ). VAR has 3 variables, 3 lags, and a constant term. The true
value is of the ln(MDD) is 1791.9.

for more effective moves.28

The first set of deviations we consider, line two in Table A-1, shows what
happens when (9) is used as the RWMH proposal variance rather the conditional
approximation, given by (8). This variation of the sampler most closely resem-
bles the one used for DSGE models by Herbst and Schorfheide (2014). Using
the unconditional variance estimate in the block RWMH leads to substantial
deterioration in performance of the sampler. While the average log marginal data
density still reliably estimates the true value, the standard deviation of the log

28Since our identification scheme is the Cholesky decomposition, negative elements along the
diagonal should technically have zero density. However our prior density does not actually rule
out these values and thus treats the sign of a column of A and F as simply a normalization.

37



MDD estimate across the twenty simulations has increased markedly: relative to
the baseline algorithm the RMSE is about five times larger for the reduced-form
parameterization and almost ten times larger for the structural. One reason for
this is that the VAR prior exhibits substantial correlation among key parameters.
When this is not accounted for, the sampler performs very poorly in the key early
stages when the prior dominates the likelihood contribution. To contextualize
the efficiency gains from our modification of the Herbst and Schorfheide (2014)
proposal variance, we find that the gains in accuracy from using the conditional
approximation are significantly greater than the gains from doubling the number
of particles (or even moving from 1000 to 5000 particles).

The second set of deviations we consider, rows 3 and 4 of Table A-1, shows
the effects of changing the quantity of particles. As one would expect, RMSEs
fall as the number of particles increases, roughly in line with the central limit
theorems in the previously mentioned literature.

The third set of deviations we consider, rows 5 through 9 of Table A-1,
examines the role of the blocking configurations of the parameter vector during
the mutation phase. First, we consider using a single block for all parameters
and we can see that failing to break the parameters into smaller blocks yields
RMSEs twice as large as our baseline configuration. Second, we allow for two
blocks instead of the baseline number, three. These two blocks are chosen either
randomly or by dividing the parameter vector in a “natural way,” with one block
for Φ and another for Σ. We also allow for a three block fixed scheme where
the parameters are grouped by the row in which they enter this VAR. For the
samplers using the reduced form parameterization, the effects of blocking is
generally smaller. Reducing the number of blocks to 2, but maintaining the
random assignment of parameters into blocks each stage, results in an increase
in the RMSE to 0.39, relative to the baseline of 0.29, which has three blocks.
Removing the randomization every stage and partitioning the parameter in the
“natural way”: [Φ,Σ], results in a modest increase in the RMSE. For the sampler
using the structural parameterization, the quality of the marginal data density
estimate deteriorates much more when using a fixed block scheme. Under the
natural partitioning of � intoΦ and Σ, the RMSE of the log marginal data density

38



is 3.95, more then ten times the size when randomizing the blocks.
The fourth type of deviation we consider concerns the number of � stages

and mutation steps. Row 10 of Table A-1 shows the results when the number of
stagesN� is reduced to 50 but the number of intermediate MH steps is increased
to 10, thus keeping the total number of likelihood evaluations the same as under
the baseline configuration. We see that performance, measured in terms of RMSE
is, deteriorates under this setting relative to the baseline. In the case of structural
parameterization, the increase in RMSE is substantial. One reason for this is that
the drop in the number of intermediate stages causes the “difference” between
two subsequent distributions to increase substantially, in a way that the increased
MH steps cannot compensate for. Another reason is that even though the blocks
are randomized at each stage, the blocks are fixed within the sequence of mutation
MH steps at a given stage, so that even a few “bad” configurations of blocks can
deteriorate performance despite a large number of MH steps.

Finally, the fifth set of deviations we consider, the bottom two rows of Table
A-1, shed light on the role of the � schedule. When � = 1, the schedule is
linear, resulting in information being added too quickly. Only a few particles have
meaningful weight as we move from the prior to the early stages of the schedule.
This means that many particles at the end of the algorithm share a common
ancestor, and this dependence manifests itself in poor estimates. Indeed, this
configuration is the only one exhibiting meaningful bias. Moreover, the RMSE of
the log marginal data density estimate under the structual parameterization is 4.02
more than twice that of the reduced form estimate, suggesting that the discrepancy
between the prior and posterior is worse under the structural parameterization.
Adding information “too” slowly does not incur the same penalty, as the results
when � = 7, show. While the RMSEs of 0.41 and 0.37 are slightly higher
than under the baseline case, because of the relatively large differences in the
distributions later in the sampler, the mean error is still quite small. One reason
for this is that the shape of the posterior is largely determined when � is quite
small, so even large differences between � later in the schedule don’t result in
radically different distributions.

Overall, the SMC algorithm works well across a wide range of values for the
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hyperparameters under both the reduced form and structural parameterizations
of the VAR.

B. VAR Priors

B.1 Conjugate Reduced-Form VAR Prior and MDD Expression

The standard conjugate prior for the parameters (�,Φ) of a reduced-form
VAR specifies Inverse-Wishart beliefs about � and Gaussian beliefs about
vec(Φ)|�.

Σ ∼ (Ψ, �)(33)

vec(Φ)|Σ = (vec(Φ∗),Σ⊗Ω−1)(34)

where Ψ, �, Φ∗, and Ω prior hyperparameters specified by the econometrician. In
practice, researchers typically implement VAR priors by supplementing the data
matrices Y and X with dummy observations Y ∗ and X∗. The resulting posterior
for Σ and Φ is identical under either approach as long as

Ω = X∗′X∗(35)

Φ∗ =
(

X∗′X∗)−1X∗′Y ∗(36)

Ψ =
(

Y ∗′Y ∗
)

−
(

Φ∗′ΩΦ∗)(37)

d = T ∗ − m ,(38)

with T ∗ and m the number of rows and columns of X∗ respectively.
Given the data and choices of prior hyperparameters and defining

S̃ = (Y ′Y + Φ∗′ΩΦ∗) − (X′Y + ΩΦ∗)′(X′X + Ω)−1(X′Y + ΩΦ∗) ,(39)
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the MDD of the VAR is given in closed form by the expression

p(Y ) = (2�)−T n∕2
(

|(X′X + Ω)|−n∕2

|Ω|−n∕2

)(

|S̃ + Ψ|−(T+�)∕2

|Ψ|−�∕2

)

×
(

2(T+�)n∕2

2�n∕2

)(

Γn((T + �)∕2)
Γn(�∕2)

)

.
(40)

B.2 Reduced-Form-Based Prior

B.2.1 Prior Density for A

Our reduced-form-based prior forA is derived from the relationship (AA′)−1 =
�. As is standard in the analysis of reduced-form VARs, we give � a density of
the inverse-Wishart family (Ψ, �), i.e.

p(�|Ψ, �) =
|Ψ|�∕2

2�n∕2Γn(�∕2)
|�|−(�+n+1)∕2 exp

{

−1
2
tr[Ψ�−1]

}

(41)

and then derive the implied density of A from the mappings g and g−1 described
in (12) and (15).

The density for � given by (41) is equivalent to specifying a Wishart density
for �−1 with scale matrix Ψ−1. Thus we might just as well write

p(�−1
|Ψ−1, �) =

[

1
2�n∕2|Ψ−1|�∕2Γn(�∕2)

]

× |�−1
|

(�−n−1)∕2 exp
{

−1
2
tr[Ψ�−1]

}

.
(42)

Letting

g�−1(A) = �−1 = AA′(43)

we then have

pRFB(A|Ψ, �) =
[

1
2�n∕2|Ψ−1|�∕2Γn(�∕2)

]

× |AA′|(�−n−1)∕2 exp
{

−1
2
tr(Ψ(AA′))

}

|J (�−1, A)|
(44)
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where J (�−1, A) denotes the Jacobian of the transformation from A to �−1.
Magnus and Neudecker (1980) show that, assuming the upper triangularity of A,
one can write J as29

(45) |J (�−1, A)| = 2n
n
∏

i=1
Ai
ii .

B.2.2 Prior Density for F

The reduced-form parameters on lagged coefficients of the VAR have density

p(Φ|�) = (2�)−kn∕2|Σ⊗Ω−1|−1∕2 exp
{

−1
2
(� − �∗)′(Σ⊗Ω−1)−1(� − �∗)]

}

.

where � = vec(Φ) and �∗ = vec(Φ∗). Recall that the mapping in (12) defines

gΦ(F |A) = Φ = FA−1(46)

Hence the density of F |A is given by

pRFB(F |A) = p(gΦ(F |A)) |J (Φ, F |A)| .(47)

Defining

VA,Ω = (AA′)−1 ⊗Ω−1 ,(48)

we can write

pRFB(F |A) = (2�)−kn∕2|VA,Ω|−1∕2

× exp
{

−1
2
(vec(FA−1) − �∗)′V −1

A,Ω(vec(FA
−1) − �∗)

}

× |J (Φ, F |A)| ,

(49)

29See Table 6.2 in Magnus and Neudecker (1980). Assuming that A is upper triangular, the
relevant row of the table is (vb).
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where

J (Φ, F |A) = dFA−1

dF
=
dImFA−1

dF
(50)

= (A−1)′ ⊗ Im .(51)

B.3 Relationship Between RFB Prior and SZ Prior

B.3.1 Densities for A

In this appendix we show that there exist choices of hyperparameters (Ψ, �)
for the inverse-Wishart prior in (41) that yield the SZ prior for A as long as the
Jacobian of the transformation is excluded.

Letting kRFB denotes a kernel for the density pRFB we can write

kRFB(A|Ψ, �) = |AA′|(�−n−1)∕2 exp
{

−1
2
tr(Ψ(AA′))

}

|J (�−1, A)|(52)

From (28), the density for A in the SZ prior is given by

pSZ(A|H0) = (2�)−n
2∕2
|(In ⊗H0)|−1∕2 exp

{

−1
2
a′(In ⊗H0)−1a

}

(53)

∝ exp
{

−1
2
a′(In ⊗H0)−1a

}

= kSZ(A|H0)
(54)

where a = vec(A).
We rewrite the exponential term in (52), ignoring the −1∕2, as

tr[Ψ(AA′)] = tr[A′ΨA](55)

= vec(ΨA)′vec(A)(56)

= ((In ⊗Ψ)vec(A))′vec(A)(57)

= vec(A)′(In ⊗Ψ)vec(A)(58)

= a′(In ⊗Ψ)a(59)

= a′(In ⊗Ψ−1)−1a ,(60)
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which matches the exponential term in (54) with Ψ−1 = H0. Thus we can write

kRFB(A|Ψ−1 = H0, �)

= |AA′|(�−n−1)∕2 exp
{

−1
2
a′(In ⊗H0)−1a

}

|J (�−1, A)|
(61)

= kSZ(A|H0)|AA′|(�−n−1)∕2|J (�−1, A)| .(62)

Noting that

|AA′| = |A||A′| = |A|2 =
n
∏

i=1
Aii ,(63)

where the last equality follows from A’s triangularity, we can write

kRFB(A|Ψ−1 = H0, �) = kSZ(A|H0)

(

n
∏

i=1
A�−n−1
ii

)

|J (g(A), A)| .(64)

Since the expression for the Jacobian in (45) raises each Aii to a unique power,
one cannot find a value � which cancels all of the terms besides ksz on the right
hand side of (64). Thus, as stated in Sims and Zha (1998), the only way to align
the two kernels is to exclude the Jacobian. Denoting the resulting kernel kRFB∕J ,
one can see that setting � = n + 1 in

kRFB∕J (A|Ψ−1 = H0, �) =

(

n
∏

i=1
A�−n−1
ii

)

kSZ(A|H0) .(65)

aligns the kernels:

kRFB∕J (A|Ψ−1 = H0, � = n + 1) = kSZ(A|H0) .(66)

B.3.2 Densities for F |A

Proposition: If Ω−1 = H+ and Φ∗ = S̄ then pSZ(F |A) = pRFB(F |A).

Proof:
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The two relevant densities are given by

pSZ(F |A) = (2�)−kn∕2 |In ⊗H+|
−1∕2

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
DSZ

× exp
{

− 1
2
vec(F − S̄A)′(In ⊗H+)−1vec(F − S̄A)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

RSZ

}

,
(67)

which is the prior density for F |A from (29) and

pRFB(F |A) = (2�)−kn∕2 |VA,Ω|−1∕2|J (F ,A)|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

DRFB

× exp
{

− 1
2
(vec(FA−1) − �∗)′V −1

A,Ω(vec(FA
−1) − �∗)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
RRFB

}

,
(68)

which is the density from (49). We prove the claim by showing thatRSZ = RRFB

and DSZ = DRFB.
We first show that RSZ = RRFB. Note that

V −1
A,Ω = ((AA

′)−1 ⊗Ω−1)−1(69)

= ((AA′)⊗Ω)(70)

= (A⊗ Im)(In ⊗Ω)(A′ ⊗ Im) .(71)

Letting � = vec(FA−1) and Φ = FA−1 we derive that

(� − �∗)′V −1
A,Ω(� − �

∗)

= (� − �∗)′(A⊗ Im)(In ⊗Ω)(A′ ⊗ Im)(� − �∗)(72)

= [(A⊗ Im)′(� − �∗)]′(In ⊗Ω)[(A′ ⊗ Im)(� − �∗)](73)

= vec(Im(Φ − Φ∗)A)′(In ⊗Ω)vec(Im(Φ − Φ∗)A)(74)
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Setting Φ∗ = S̄ we can see that

Im(Φ − Φ∗)A = (FA−1 − S̄)A(75)

= (F − S̄A)(76)

and then substituting (76) into (74) we have

vec(Im(Φ − Φ∗)A)′(In ⊗Ω)vec(Im(Φ − Φ∗)A)

= vec(F − S̄A)′(In ⊗Ω)vec(F − S̄A)(77)

= vec(F − S̄A)′(In ⊗Ω−1)−1vec(F − S̄A) .(78)

Setting Ω−1 = H+ completes the proof that RSZ = RRFB.
We now show that DSZ = DRFB. We first note that

|VA,Ω|
−1∕2 = |(AA′)−1 ⊗Ω−1|−1∕2(79)

= |(AA′)⊗Ω|1∕2(80)

= (|AA′|m|Ω|n)1∕2(81)

= (|A|2m|Ω|n)1∕2(82)

= |A|m|Ω|n∕2 .(83)

Next note that

|J (F ,A)| = |(A−1)′ ⊗ Im|(84)

= |(A−1)′|m|Im|n(85)

= |A|−m .(86)
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Finally using (83) and (86) we have that

|VA,Ω|
−1∕2

|J (F ,A)| = |A|m|Ω|n∕2|A|−m(87)

= |Ω|n∕2(88)

= (|In|m|Ω|n)1∕2(89)

= |In ⊗Ω−1|−1∕2 .(90)

Again setting Ω−1 = H+ completes the proof that DSZ = DRFB.

B.4 Details for the Minnesota Prior

The reduced-form based prior is a Minnesota-style prior centered at a random
walk. The multivariate-normal-inverse-Wishart density parameterization is set
via dummy-observations following closely the procedure in Sims and Zha (1998).
Their approach requires three sets of hyperparameters ȳ, �̄, and

Λ = [�0, �1, �2, �3, �4, �5, �6](91)

The first parameter �0 controls the overall tightness of the prior. The parameter
�1 functions similarly to �0 but it does not affect beliefs about the constant term.
The parameter �2 should always be set to 1 in this framework. The parameter
�3 shrinks the prior for the own lags so that prior standard deviation on lag l
shrinks by l−�3 . The parameter �4 controls tightness of beliefs on the constant
term in the VAR. The parameter �5 controls what is known as the “sums-of-
coefficients” dummy. Higher values give more weight to the view that, if an
element of the observables has been near its mean ȳi for sometime, ȳi will be a
good forecast for that observable, regardless of the values of other observables.
This induces correlations between “own” lags of Φ. Finally, �6 controls the
so-called “co-persistence” dummy observations. The observations are similar
to the “sums-of-coefficients”, but operate jointly on the observables, inducing
correlations among columns of Φ.
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C. Normalization and Regime Labeling in the MS-VAR

The MS-VAR posterior density is invariant to sign changes on VAR equations
and state labeling. To interpret our results economically we thus have to perform
normalization in both of these dimensions.

C.1 Sign Normalization

For each state of {A, F }, we first normalize each column of theA((ℎm), F (ℎm))
system by sign, forcing nonnegativity of A(ℎm)’s diagonal elements. When we
change the sign of the Aii element to satisfy nonnegativity, we also change the
sign of all elements in the ith column of (A(ℎm), F (ℎm)). With the Cholesky iden-
tification employed in this paper, this method of sign-normalization implements
the “likelihood-preserving” normalization of Waggoner and Zha (2003b).

C.2 Regime Labeling

After normalizing signs we still need to assign regime labels in each draw.
To do so, we implement a version of the algorithm described in Stephens (2000)
for clustering inference. This algorithm seeks to minimize the the expected loss
from reporting a sequence of state probabilities Q(�), when the loss function is
the Kullback-Leibler divergence of Q(�) from the true state probabilities, P (�).
Hence, the algorithm selects state labels using a rule that has a reasonable decision
theoretic foundation. A similar approach used in the population genetics literature
is that of Jakobsson and Rosenberg (2007), who minimize a different notion of
average distance between Q(�) across draws. Both approaches give very similar
results to the posteriors reported in the text. We take this approach because it
tends to leave less severe multimodality in the posterior after regime labeling.

D. Bimodal Example

D.1 Direct Sampler for Mixture of Posteriors

To generate nsim draws, execute:
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Algorithm 3: Direct Sampler for Mixture of Posteriors

for i = 1,… , nsim do

1. Draw latent state si according to

p(si = 1) = �

p(si = 2) = 1 − �

2. Draw Σi|si,Φi, Ysi , which is a draw from p(Σi|Φi, Ysi). Under the conjugate
prior this is simply p(Σi|Ysi).

3. Draw Φi|si,Σi, Ysi , which is a draw from p(Φi|Σi, Ysi).

end

E. RFB-Hierarchical: Hyperparameter Posteriors

Tables A-2, A-3, and A-4 show the posterior mean and 90 percent credible
set for the estimated hyperparameters under the RFB-Hierarchical prior from one
run of the SMC sampler.
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TABLE A-2
POSTERIOR OF Λ

Mean [05, 95] Mean [05, 95]
�0

1m1v 0.969 [ 0.631, 1.405] 2m1v 0.938 [ 0.708, 1.225]
1m2v 1.226 [ 0.809, 1.763] 2m2v 1.319 [ 0.862, 1.820]
1m3v 1.046 [ 0.725, 1.448] 2m3v 1.025 [ 0.704, 1.438]
1m4v 1.119 [ 0.767, 1.566] 2m4v 1.147 [ 0.816, 1.553]
1m5v 1.057 [ 0.721, 1.481] 2m5v 0.890 [ 0.654, 1.203]

�4
1m1v 0.325 [ 0.018, 1.083] 2m1v 0.125 [ 0.012, 0.350]
1m2v 0.174 [ 0.012, 0.613] 2m2v 0.122 [ 0.012, 0.307]
1m3v 0.220 [ 0.012, 0.771] 2m3v 0.162 [ 0.017, 0.438]
1m4v 0.189 [ 0.010, 0.613] 2m4v 0.127 [ 0.014, 0.316]
1m5v 0.183 [ 0.012, 0.595] 2m5v 0.145 [ 0.019, 0.348]

�5
1m1v 1.794 [ 0.022, 6.278] 2m1v 0.597 [ 0.001, 2.821]
1m2v 1.824 [ 0.020, 5.984] 2m2v 0.366 [ 0.000, 1.785]
1m3v 1.838 [ 0.025, 6.094] 2m3v 0.405 [ 0.000, 2.044]
1m4v 1.756 [ 0.023, 5.654] 2m4v 0.534 [ 0.000, 2.435]
1m5v 1.726 [ 0.027, 5.588] 2m5v 0.467 [ 0.001, 2.103]

�6
1m1v 3.015 [ 0.894, 7.131] 2m1v 2.646 [ 0.852, 5.305]
1m2v 4.619 [ 1.665, 9.561] 2m2v 3.533 [ 1.660, 6.275]
1m3v 4.175 [ 1.300, 9.270] 2m3v 3.256 [ 1.371, 6.117]
1m4v 4.056 [ 1.307, 8.655] 2m4v 2.971 [ 1.232, 5.419]
1m5v 3.709 [ 1.214, 8.052] 2m5v 2.654 [ 1.098, 5.198]
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TABLE A-3
POSTERIOR OF ȳ

Mean [05, 95] Mean [05, 95]
ȳ1

1m1v -0.002 [-0.117, 0.110] 2m1v 0.000 [-0.081, 0.079]
1m2v -0.003 [-0.148, 0.136] 2m2v -0.007 [-0.117, 0.113]
1m3v 0.000 [-0.136, 0.143] 2m3v -0.007 [-0.115, 0.113]
1m4v -0.002 [-0.132, 0.137] 2m4v 0.007 [-0.104, 0.113]
1m5v -0.004 [-0.131, 0.127] 2m5v -0.019 [-0.115, 0.097]

ȳ2
1m1v 0.010 [-0.161, 0.163] 2m1v 0.005 [-0.141, 0.143]
1m2v 0.008 [-0.160, 0.169] 2m2v 0.002 [-0.122, 0.128]
1m3v 0.003 [-0.167, 0.166] 2m3v 0.005 [-0.131, 0.128]
1m4v 0.008 [-0.162, 0.168] 2m4v -0.030 [-0.131, 0.104]
1m5v 0.011 [-0.157, 0.173] 2m5v 0.009 [-0.120, 0.127]

ȳ3
1m1v 0.015 [-0.185, 0.198] 2m1v -0.002 [-0.169, 0.161]
1m2v 0.007 [-0.206, 0.211] 2m2v 0.040 [-0.154, 0.182]
1m3v 0.010 [-0.201, 0.207] 2m3v 0.041 [-0.142, 0.172]
1m4v 0.014 [-0.194, 0.215] 2m4v -0.045 [-0.177, 0.151]
1m5v 0.009 [-0.202, 0.204] 2m5v -0.024 [-0.164, 0.157]
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TABLE A-4
POSTERIOR OF s̄

Mean [05, 95] Mean [05, 95]
s̄1

1m1v 0.023 [ 0.018, 0.031] 2m1v 0.022 [ 0.018, 0.026]
1m2v 0.035 [ 0.024, 0.048] 2m2v 0.032 [ 0.024, 0.042]
1m3v 0.031 [ 0.021, 0.045] 2m3v 0.030 [ 0.022, 0.041]
1m4v 0.031 [ 0.021, 0.044] 2m4v 0.031 [ 0.023, 0.040]
1m5v 0.028 [ 0.019, 0.040] 2m5v 0.024 [ 0.019, 0.030]

s̄2
1m1v 0.028 [ 0.020, 0.037] 2m1v 0.025 [ 0.020, 0.031]
1m2v 0.038 [ 0.025, 0.053] 2m2v 0.032 [ 0.023, 0.042]
1m3v 0.032 [ 0.021, 0.046] 2m3v 0.029 [ 0.020, 0.041]
1m4v 0.032 [ 0.021, 0.044] 2m4v 0.029 [ 0.020, 0.040]
1m5v 0.033 [ 0.021, 0.049] 2m5v 0.026 [ 0.020, 0.034]

s̄3
1m1v 0.023 [ 0.017, 0.031] 2m1v 0.018 [ 0.015, 0.022]
1m2v 0.035 [ 0.023, 0.049] 2m2v 0.028 [ 0.020, 0.039]
1m3v 0.024 [ 0.017, 0.035] 2m3v 0.026 [ 0.019, 0.035]
1m4v 0.026 [ 0.018, 0.037] 2m4v 0.024 [ 0.019, 0.032]
1m5v 0.025 [ 0.018, 0.034] 2m5v 0.021 [ 0.017, 0.027]
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