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Abstract
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Introduction

What accounts for the sharp spike in the unemployment rate during recessions? The answer

traditionally given by macroeconomists was that falling product demand leads firms to lay off

workers, with these job separations a key driver of economic downturns. That view has been

challenged by Hall (2005) and Shimer (2012), among others, who argued that cyclical fluctuations

in the unemployment rate are instead primarily driven by declines in the job-finding rates for

unemployed workers. By contrast, Yashiv (2007), Elsby, Michaels and Solon (2009), Fujita and

Ramey (2009), and Fujita (2011) concluded that flows into the unemployment pool are as important

as or more important than the job-finding rates as cyclical drivers of the unemployment rate.

This debate has become particularly important for understanding the Great Recession and its

aftermath. In June 2011—two years into the recovery—the unemployment rate still stood at 9.1%,

higher than the peak in any postwar recession other than 1982. Even more troubling, the average

duration of those unemployed at that time was 40 weeks, about twice the highest value reached in

any month over 1947-2005. Of those workers who had been unemployed for less than one month

in June 2011, only 57% were still unemployed the next month. By contrast, of those who had

been unemployed for more than 6 months as of June 2011, 93% were still unemployed the following

month.1

This fact that the long-term unemployed find jobs or leave the labor force more slowly than

others is a strikingly consistent feature in the postwar data, and could be fundamental for un-

derstanding the respective contributions of unemployment inflows and outflows during recessions.

For example, workers who lose their jobs due to involuntary permanent separation may have a

more diffi cult time finding new jobs than people who quit voluntarily (Bednarzik, 1983; Fujita and

Moscarini, 2013). If more of the separations during a recession are involuntary, it could show up as

what other researchers have interpreted as a fall in the job-finding rate and increase in the duration

of unemployment even if the key driver of the recession was the increase in involuntary separations.

1The values for f1t and f
7.+
t were calculated from

f1t =
U1
t − U2

t+1

U1
t

, f7.+t =
U7.+
t − (U7.+

t+1 − U7
t+1)

U7.+
t

for Unt the number unemployed with duration n months at t. The reported series are seasonally adjusted with
X-12-ARIMA.
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The phenomenon that unemployment exit rates fall with the duration of unemployment has

been widely studied, with explanations falling into two broad categories. One possibility is that

the experience of being unemployed for a longer period of time directly changes the employment

probability for a fixed individual. Following van den Berg and van Ours (1996) we will refer to this

possibility as "genuine duration dependence". Individuals lose human capital the longer they are

unemployed (Acemoglu, 1995; Ljungqvist and Sargent, 1998), employers may statistically discrimi-

nate against those who have been unemployed for longer (Eriksson and Rooth, 2014; Kroft, Lange,

and Notowidigdo, 2013)2, and individuals may search less the longer they have been unemployed

(Faberman and Kudlyak, 2014). We will refer to such negative genuine duration dependence, that

is, a condition where a longer period spent in unemployment directly reduces the probability of

finding a job, as "unemployment scarring." Another possibility is positive genuine duration depen-

dence. For example, the longer somebody has been unemployed, the more willing that person may

be to accept a low-paying job or simply to drop out of the labor force. Meyer (1990) and Katz

and Meyer (1990a,b) argued that such effects may become important as unemployment benefits

become exhausted. We will refer to the possibility that the probability of exiting unemployment

increases as a consequence of a longer duration of unemployment as "motivational" effects.

A quite different explanation for the differences in unemployment exit probabilities across the

different duration categories is that there are important differences across job-seekers from the very

beginning, arising for example from differences in the reason the individuals left their previous

job or in differences in ex ante abilities or motivation across workers. The longer an individual is

observed to have been unemployed, the greater the chance that the individual is a member of a

group whose unemployment exit probabilities were low to begin with. That such cross-sectional

heterogeneity might be important for the question studied by Hall and Shimer was recognized as far

back as Darby, Haltiwanger, and Plant (1986), who argued that heterogeneity accounted for falling

job-finding rates during recessions in a manner consistent with the traditional macroeconomic in-

terpretation of recessions. A number of researchers have tried to investigate this hypothesis by

looking at differences across job seekers in observable characteristics such as demographics, edu-

cation, industry, occupation, geographical region, and reason for unemployment. Baker (1992),

2Jarosch and Pilossoph (2015) demonstrated that the quantitative magnitude of statistical discrimination found
in these studies could in fact be consistent with the claim that cross-section heterogeneity is the primary explanation
for the observed tendency of unemployment-continuation probabilities to rise with duration of unemployment.
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Shimer (2012), and Kroft, Lange, Notowidigdo, and Katz (forthcoming) found that such vari-

ables contributed little to variation over time in long-term unemployment rates, while Aaronson,

Mazumder and Schechter (2010), Bachmann and Sinning (2012), Barnichon and Figura (2015), Hall

(2014), and Hall and Schulhofer-Wohl (2015) documented important differences across observable

characteristics. Elsby, Michaels and Solon (2009) found that incorporating observable heterogeneity

reduced the imputed role of cyclical variation in unemployment exit rates.

However, no two individuals with the same coarse observable characteristics are in fact identical.

It seems undeniable that a given pool of unemployed individuals that conditions on any set of

observed characteristics is likely to become increasingly represented by those with lower ex ante exit

probabilities the longer the period of time for which the individuals have been unemployed. Most

of the above studies assume that conditional on observable characteristics, unemployed individuals

are identical in terms of their transition probabilities into and out of unemployment. The result is

that the imputed exit probabilities are determined solely from the most recent labor force statistics

as if every month was a new steady state of the economy, not taking into account the fact that

each individual has a unique history of unemployment. This approach misses a key feature of

economic recessions and unemployment dynamics. Once one acknowledges heterogeneity across

workers, the pool of those looking for work at a given point in time—and therefore the exit rates for

individuals in that group—depends on the specific history of conditions whereby those individuals

came to be unemployed. This means that more information than the current month’s labor force

statistics is necessary to account for the different histories of unemployed individuals and thus to

credibly analyze the contributions of the inflows and outflows.

A large literature has explored methods to distinguish genuine duration dependence from un-

observed cross-sectional heterogeneity.3 A common resolution has been to assume that there is

no variation over time in unobserved heterogeneity, in which case identification can be achieved by

observing repeated spells of unemployment for a given individual (Honoré,1993). We will demon-

strate in Section 1 that an alternative approach is to assume limited variation over time in genuine

duration dependence and base inference on the observed panel of aggregate unemployment by du-

ration categories. This approach allows us to study the potential consequences of cyclical variation

3See for example Elbers and Ridder (1982), Heckman and Singer (1984a,b,c), Ridder (1990), Honoré (1993), and
van den Berg (2001).
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in the matches between unobserved worker characteristics and available jobs.

Van den Berg and van Ours (1996) used a related idea, assuming proportional hazards along

with time-invariant genuine duration dependence. In this paper we generalize the approach to let

genuine duration dependence change over time with eligibility for unemployment insurance. Most

importantly, we will allow for a key role for cyclical variation in worker heterogeneity, something

that has never previously been done in either the large microeconomic or macroeconomic literatures

on unemployment duration.

Our approach is most similar to that in Hornstein (2012), who used dynamic accounting iden-

tities to interpret aggregate panel dynamics in a similar way to that in our paper. However,

Hornstein’s model was unidentified— in terms of the discussion of identification in Section 1, his

model has 5 unknowns and only 4 equations. As a result, his specification did not allow him to

calculate the likelihood function for the observed data or forecasts of unemployment or duration.

By contrast, our model generates values for all these along with the optimal statistical inference

about the various shocks driving the observed dynamics of unemployment.

Ours is the only paper in the large macro literature on the ins and outs of unemployment that

offers a full dynamic description of changes in aggregate unemployment by duration categories. In

doing so we resolve a key shortcoming in much of the previous literature. Most previous studies

used correlations between unemployment and the steady-state unemployment rate predicted by

either inflows or outflows to draw conclusions about how much of the variation in unemployment

is due to each factor. However, the unemployment rate is highly serially correlated and possibly

nonstationary. What do we even mean by its variance, and how do we distinguish between

the contribution to this variance of short-term versus long-term influences? Previous studies often

addressed these issues by using some kind of detrending procedures. By contrast, our paper develops

a complete statistical model with nonstationary driving processes, which as a by-product generates

a forecast of unemployment at any horizon in the future. Since the forecast error at any specified

horizon has a stationary distribution and well defined mean squared error whether or not the

underlying process is nonstationary, as in den Haan (2000) we can calculate the fraction of the

variance in unanticipated changes in unemployment over any horizon that is attributable to the

various shocks in the model. This allows us to measure the dynamic contributions of different

factors to unemployment and allows us to make very clear statements about the importance for
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short-run, medium-run, and long-run dynamics as well as over specific historical episodes. This is

one of the key innovations of our approach and is entirely new to this literature.

In Section 1 we introduce the data that we will use in this analysis based on the number of job-

seekers each month who report they have been looking for work at various search durations. We

describe the accounting identities that will later be used in our full dynamic model and use average

values of observable variables over the sample to explain the intuition for how such duration data

can be used to separately identify cross-sectional heterogeneity and genuine duration dependence.

We also use these calculations to illustrate why cross-sectional heterogeneity appears to be more

important than genuine duration dependence in terms of explaining the broad features of these

data.

In Section 2 we extend this framework into a full dynamic model in which we postulate the exis-

tence of two types of workers at any given date. Type H workers have a higher ex ante probability

of exiting unemployment than type L workers, and all workers are also subject to potential scarring

or motivational effects. Our model postulates that the number of newly unemployed individuals

of either type, as well as the probability for each type of exiting the pool of unemployed at each

date, evolve over time according to unobserved random walks. We show how one can calculate the

likelihood function for the observed unemployment data and an inference about each of the state

variables at every date in the sample using an extended Kalman filter.

Empirical results are reported in Section 3. Broken down in terms of inflows versus outflows,

we find that variation over time in the inflows of the newly unemployed are more important than

outflows from unemployment in accounting for errors in predicting aggregate unemployment at all

horizons. Broken down in terms of types of workers, inflow and outflow probabilities for type L

workers are more important than those for type H workers, and account for 90% of the uncertainty

in predicting unemployment 2 years ahead. In recessions since 1990, shocks to the inflows of type

L workers were the most important cause of rising unemployment during the recession. We find a

non-monotonic contribution of genuine duration dependence, with scarring effects dominating up

to 1 year but motivational effects apparent for those unemployed longer than a year.

We offer interpretations of our findings in Section 4 by relating our estimated series to those

available from other sources. A key difference between type L and type H workers is the cir-

cumstances under which they left their previous job. Our imputed series for newly unemployed

5



type L workers has very similar cyclical dynamics to separate measures of the number of new

job-seekers who were involuntarily separated from their previous job for a reason other than what

was described as a temporary layoff. Notwithstanding, our estimates imply that type L workers

are a strict subset of those involuntarily separated, but also represent subsets of re-entrants to the

labor force and other individuals. We conclude that, consistent with the traditional interpretation

of business cycles, the key reason that unemployment spikes during recessions is a change in the

circumstances under which individuals lose their jobs.

In Section 5 we investigate the robustness of our approach to various alternative specifications,

including alternative methods to account for the change in the CPS questionnaire in 1994, allowing

for correlation between the innovations of the underlying structural shocks in our model, and the

possible effects of time aggregation. While such factors could produce changes in some of the details

of our inference, our overall conclusions (summarized in Section 6) appear to be quite robust.

1 Observable implications of unobserved heterogeneity

The purpose of this section is to use steady-state calculations to show how unobserved hetero-

geneity and genuine duration dependence can be separately identified and to provide the intution

behind some of the results that will be found in Section 3 using our full dynamic model.

The Bureau of Labor Statistics reports for each month t the number of Americans who have been

unemployed for less than 5 weeks. Our baseline model is specified at the monthly frequency, leading

us to use the notation U1t for the above BLS-reported magnitude, indicating these individuals

have been unemployed for 1 month or less as of month t. BLS also reports the number who

have been unemployed for between 5 and 14 weeks (or 2-3 months, denoted U2.3t ), 15-26 weeks

(U4.6t ) and longer than 26 weeks (U7.+t ). One reason the BLS reports the data in terms of these

aggregates is to try to minimize the role of measurement error by averaging within broad groups,

an approach that we will also follow in our paper.4 Although our theoretical calculations will keep

track of durations by individual months, our statistical analysis is all based on the implications for

observable broad aggregates. Notwithstanding, when reporting on long-term unemployment, many

4 In January 2011 the BLS changed the maximum allowable unemployment duration response from 2 years to 5
years. Although this affected the BLS’s own estimate of average duration of unemployment, it did not change the
total numbers unemployed by the duration categories we use. This is another reason to favor our approach, which
relies only on aggregated data.
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BLS publications5 further break down the U7.+t category into those unemployed with duration 7-12

months (U7.12t ) and those with duration longer than 1 year (U13.+t ). Since long-term unemployment

is also a major interest in our investigation, we have used the raw CPS micro data from which the

usual publicly reported aggregates are constructed to create these last two series for our study.6

The five series used in our analysis are graphed in Figure 1, with average values over the full

sample reported in the first row of Table 1. Our purpose in this paper is to explore what variation

in these duration-specific counts across time can tell us about unemployment dynamics. Our focus

will be on the following question—of those individuals who are newly unemployed at time t, what

fraction will still be unemployed at time t + k? We presume that the answer to this question

depends not just on aggregate economic conditions over the interval (t, t + k) but also on the

particular characteristics of those individuals. Let wit denote the number of people of type i who

are newly unemployed at time t, where we interpret

U1t =
I∑
i=1

wit. (1)

We define Pit(k) as the fraction of individuals of type i who were unemployed for one month or

less as of date t− k and are still unemployed and looking for work at t. Thus the total number of

individuals who have been unemployed for exactly k + 1 months at time t is given by

Uk+1t =
I∑
i=1

wi,t−kPit(k). (2)

Heckman and Singer (1984b, Theorem 3.1) demonstrated that when observed duration data

are discrete-valued, a discrete number (as opposed to a continuum) of types is fully general. Ham

and Rea (1987), Van den Berg and van Ours (1996), and Van den Berg and van der Klaauw

(2001) tested for the number of types I and found I = 2 provided the best description of the data

sets they analyzed, albeit with different formulations of unobserved heterogeneity than we have

proposed in (2). Since we aggregate durations into 5 discrete categories, it is only feasible to

allow for I = 2 types using our data and method. We will designate the two groups as type H

and type L in anticipation of the normalization that type L workers have a lower probability of

5See for example Bureau of Labor Statistics (2011) and Ilg and Theodossiou (2012).
6See Appendix A for further details of data construction.
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exiting unemployment. We intend to demonstrate that this offers a simple but compelling way of

interpreting the observed data.

We first examine what we could infer about unobserved types based only on the historical

average values Ū1, Ū2.3, Ū4.6, Ū7.12, and Ū13.+, and then will consider what additional information

can be learned from variation over time in these five variables.

1.1 Inference using historical average values alone.

Suppose for purposes of this section only that the number of newly unemployed individuals

of each type remained constant over time at values wL and wH , respectively, and also that the

probabilities that individuals of each type remain unemployed in any given month are constants pL

and pH . Then (2) would simplify to

Uk+1 = wLp
k
L + wHp

k
H . (3)

This equation describes the average number of individuals who have been unemployed for k + 1

months as the sum of two different functions of k, with each of the two functions being fully

characterized by two parameters (wi and pi). The solid red curve in Panel A of Figure 2 plots the

first function (wLpkL), while the dotted blue curve plots the sum. Given observed values of the

sum Un for any four different values of n, we could estimate the four parameters (wL, wH , pL, pH)

to exactly match those four observed numbers, as in Panel A of Figure 2.

As noted above, we regard aggregate measures like U4.6t as more reliable than a specific estimate

such as U5t that could be constructed from CPS micro data. But exactly the same kind of parameter

fitting can be done using aggregates like Ū4.6. For example,

Ū2.3 = Ū2 + Ū3 = (wLpL + wHpH) + (wLp
2
L + wHp

2
H).

The 4 observed values (Ū1, Ū2.3, Ū4.6, Ū7.12) are suffi cient to calculate the four unknowns (wL, wH , pL, pH)

as we illustrate in row 2 of Table 1.7 These estimates imply that type H individuals comprise a very

high fraction, 78.8%, of the initial pool of unemployed U1. But the unemployment-continuation

7Specifically, the four functions are obtained from equations (7)-(10) below for the special case when the left-hand
variables represent historical averages and on the right-hand side we set wit = wi, Pit(k) = pki , and r

x
t = 0.
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probabilty for type H individuals (pH = 0.36) is much lower than for type L (pL = 0.85). Because

the type H are likely to find jobs relatively quickly, there are very few type H individuals included

in Un for durations n beyond 4 months, as seen in Panel A of Figure 2. The key feature of the

observed data (represented by the black dots in Figure 2) that gives rise to this conclusion is the

fact that the numbers initially drop off very quickly (as most of the type H workers find jobs), but

after that much more slowly (as the remaining type L workers continue searching).

Although we did not use the fifth data point, Ū13.+, in estimating these parameters, the frame-

work generates a prediction for what that observation would be.8 This is reported in the last entry

of row 2 of Table 1 to be 614,000 which is quite close to the observed value of 636,000. The feature

of the data that produced this result is that the observed numbers fall off at close to a constant

exponential rate once we get beyond 4 months, as the simple mixture model would predict.

Alternatively, we could equally well describe the observed averages using a model in which there

is only genuine duration dependence (GDD). Suppose that an individual who has been unemployed

for τ months has a probability p(τ) of still being unemployed the following month. We can always

write this in the form

p(τ) = exp(− exp(dτ ))

for dτ an arbitrary function of τ , with double-exponentiation a convenient device for ensuring that

probabilities are always positive. For example, we could fit the 5 observations in the first row of

Table 1 perfectly if we used a 4-parameter representation for dτ such as9

dτ = δ0 + δ1τ + δ2τ
2 + δ3τ

3. (4)

A large number of empirical studies have assumed Weibull durations, essentially corresponding to

δ2 = δ3 = 0. The values for δj that would exactly fit the historical averages are reported in row 3

of Table 1 and the implied function p(τ) is plotted in panel A of Figure 3. Note that in contrast

to the popular Weibull assumption and most theoretical models, the nature of GDD necessary to

fit the observed data would have to be nonmonotonic.

8Following Hornstein (2012) we truncate all calculations at 48 months in equation (11). Most of the models
considered in this paper imply essentially zero probability of an unemployment spell exceeding 4 years in duration.

9Specifically, we calculate Uk+1 = wp(1)p(2) · · · p(k) and find the values of w, δ0, δ1, δ2, δ3 to match the observed
values in row 1 of Table 1.
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If we were willing to restrict the functional form of GDD to the Weibull case, we could also

interpret the historical averages as resulting from a combination of unobserved heterogeneity and

GDD. Suppose that the probability that an individual of type i who has been unemployed for τ

months will still be unemployed the following month is given by

pi(τ) = exp{− exp[xi + dτ ]} (5)

with implied unemployment counts

Uk+1 =
∑

i=L,H wipi(1)pi(2) · · · pi(k). (6)

The value of xi for i = H,L reflects cross-sectional heterogeneity in unemployment-continuation

probabilities and dτ captures genuine duration dependence. As noted by Katz and Meyer (1990,

p. 992), this double-exponential functional form is a convenient way to implement a proportional

hazards specification so as to guarantee a positive hazard10, a feature that will be very helpful for

the generalization in the following section in which we will allow for variation of xit over time.

Suppose we were willing to model GDD using a one-parameter function, say dτ = δ(τ −1), where a

negative value for the scalar δ could represent unemployment scarring. Then we could find a value

for the five parameters wL, wH , xL, xH , δ so as to fit the 5 time-series averages Ū1, Ū2.3, Ū4.6, Ū7.12,

and Ū13.+ exactly. These values are reported in row 4 of Table 1. The implied value for δ is

close to zero, and the other parameters are close to those for the pure cross-sectional heterogeneity

specification of row 2. Thus for this particular parametric example, we would conclude that cross-

sectional heterogeneity is much more important than genuine duration dependence in accounting

for why observed unemployment-continuation probabilities rise with duration of unemployment.

The feature of the data that gave rise to this conclusion is that the 4-parameter pure heterogeneity

model gives a very good prediction of all five observations.

10Consider an individual i who has been unemployed for τ months as of the beginning of month t and let the
hazard within month t be λi,t,τ = exp(xit) exp(dτ ) where the exponentiation is a device to guarantee that the hazard
is positive for any xit and dτ . The meaning of the hazard is that if we divide month t into n subintervals, the
probability that individual i exits unemployment in the interval (s, s + 1/n) is λi,t,τ/n + o(1/n) from which the
probability that the individual is still unemployed at the beginning of month t+ 1 is

lim
n→∞

[1− λi,t,τ/n+ o(1/n)]n = exp(−λi,t,τ ) = exp[− exp(xit) exp(dτ )].
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1.2 Inference using changes over time.

Next consider what we can discover from using time-series variation in the observed aggregates.

Suppose we repeat the above exercises using data only since the Great Recession. Row 6 of Table

1 and Panel B of Figure 2 show the results if we tried to explain these more recent averages entirely

in terms of unobserved heterogeneity. The implied value for the unemployment-continuation

probability for type L individuals, pL = 0.89, is only slightly higher than the value 0.85 fit to the

full historical sample. The reason is that the function Ūn drops off after n = 4 months at only a

slightly slower rate than it did historically. However, we would infer that the inflow of new type L

individuals, wL = 1, 065 is much higher than the historical average value of 679, in order to account

for the fact that Ūn is now dropping off after 4 months from a much higher base. We again find

that the 4-parameter model does a reasonable job of anticipating the fifth unused data point.

If we instead tried to explain the recent averages purely in terms of GDD, we would use the

parameter values from row 7 of Table 1. These again could fit the data perfectly, albeit with

continuation probabilities for which individuals become permanently stuck in unemployment after 2

years11 and a function with odd oscillations (see panel B of Figure 3). Although it is mathematically

possible to describe the data with this equation, it would be diffi cult to motivate a theory of why

GDD should have changed shape in this way. It requires for example a steeper initial slope to the

curve in panel B of Figure 3 when economic conditions worsened, corresponding to the claim that

the scarring associated with unemployment is more severe during a recession. But this is directly

contradicted by the experimental finding of Kroft, Lange, and Notowidigdo (2013) that potential

employers pay less attention to applicants’duration of unemployment when the labor market is

weaker. We will produce additional evidence in Section 4 below on predictability of changes in

unemployment that would also be very hard to interpret based on any theory of cyclically changing

GDD.

These concerns notwithstanding, would it be possible to allow for both an unrestricted non-

monotonic functional form for GDD as well as unobserved heterogeneity? The answer is definitely

yes once we take account of changes over time. Suppose for example we were to pool the observa-

tions from the first row of Table 1 (the full-sample averages) together with those in row 5 (behavior

11 In this case the calculations are of course fundamentally influenced by our convention of truncating unemployment
spells at 48 months.
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since the Great Recession), giving us a total of 10 observations. If we took the view that the

unobserved heterogeneity parameters may have changed over the cycle but that the GDD function

dτ in (5) is time-invariant, we would then be able to generalize dτ to be a function of τ determined

by two parameters, say δ1 and δ2, and use the ten observations to infer ten unknowns (values of

wH , wL, xH , xL for the two subsamples along with the parameters δ1 and δ2). Generalizing a little

further, if we use observations across 4 different subsamples we could infer values of wH , wL, xH , xL

for each subsample along with a completely unrestricted nonmonotonic GDD function as in (4).

In fact, if we were able to use all five observations on U1t , U
2.3
t , U4.6t , U7.12t , U13.+t for every date t,

we could even allow for some modest variation over time in the GDD function dτt, and indeed such

a specification will be included in the general results to be reported below.

Although our approach to identification based on restricting time variation in GDD has been

used in some studies of micro labor data such as van den Berg and van Ours (1996), a more

common assumption in that literature has been to assume that unobserved heterogeneity is time

invariant, with identification dependent on observation of repeated spells of unemployment by the

same individual (see for example Alvarez, Borovičková, and Shimer, 2015). Our paper differs from

any previous study in either the micro or macro labor literature in focusing on aggregate cyclical

variation in unobserved heterogeneity. Documenting its importance for unemployment fluctuations

and examing the causes behind it is one of the key original contributions of our paper.

The actual method that we will use for this analysis is in fact far superior to the simple

steady-state calculations that we have employed in this section. It takes time for new inflows

to start to matter for longer-term unemployment, and underlying labor market conditions are

constantly changing. Our dynamic model fully takes into account the implications of the past

history for current observed values. We will demonstrate in the next section that if we as-

sume that the values of wHt, wLt, xHt, xLt evolve gradually over time, we can use observations of

U1t , U
2.3
t , U4.6t , U7.12t , U13.+t in a nonlinear state-space model to form an inference about the changing

values of wHt, wLt, xHt, xLt. This approach takes as a starting point the guess that this period’s

values for these 4 magnitudes are the same values they were last month, and uses differences be-

tween the observed values for U1t , U
2.3
t , U4.6t , U7.12t , U13.+t relative to what the model would have

predicted to infer how the 4 magnitudes likely changed from the previous month. Such a procedure

can also allow for transient measurement error in each of the 5 observed variables, with an optimal
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inference about the unobserved (wHt, wLt, xHt, xLt) feasible from the assumption that any change

in observed variables that persists for more than 1 month should be attributed to changes in the

underlying (wHt, wLt, xHt, xLt) rather than measurement error.

We have used the time-invariant steady-state calculations in this section primarily to explain

the intuition for where the identification is coming from. Nevertheless, it turns out that the

key conclusions of the above steady-state calculations— that the majority of newly unemployed

individuals can be described as type H who find jobs quickly, that dynamic sorting based on

unobserved heterogeneity appears to be much more important than genuine duration dependence

in explaining why a longer-term unemployed individual is less likely to exit unemployment, and that

the key driver of economic recessions is an increased inflow of newly unemployed type L individuals—

will also turn out to characterize what we will find as we now turn to a richer dynamic model.

2 Dynamic formulation

We now consider a state-space model where the dynamic behavior of the observed vector yt =

(U1t , U
2.3
t , U4.6t , U7.12t , U13.+t )′ is determined as a nonlinear function of latent dynamic variables—the

inflows and outflow probabilities for unemployed individuals with unobserved heterogeneity. Due

to the nonlinear nature of the resulting model, we draw inference on the latent variables using the

extended Kalman filter.

2.1 State-space representation

We assume smooth variation over time for the latent variables of interest, wHt, wLt, xHt, xLt,

with each assumed to follow an unobserved random walk, e.g.,

wHt = wH,t−1 + εw
Ht
.

A random walk is by far the most common assumption in dynamic latent variable models as it has

proven to be a flexible and parsimonious way to adapt inference to a variety of sources of changing

conditions or possible structural breaks.12 It has the intuitive appeal that we enter period t

with the expectation that conditions are similar to those in the previous period, but are prepared

12See for example Baumeister and Peersman (2013).
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to change that inference on the basis of observed changes in the variables. It is an unambiguous

improvement over the steady-state calculations described in the previous section (and invoked in the

majority of previous studies in this literature). Note moreover that the random walk specification

includes the steady-state formulation as a special case when the variance of εwHt is zero. We have

also experimented with a model in which we assume AR(1) dynamics for the latent variables with

autoregressive coeffi cients estimated by maximum likelihood. We found the coeffi cient estimates

to be very close to unity and the resulting inference very similar to those reported for our baseline

random walk specification.

Another key detail of our approach is that we allow for the possibility that unemployment counts

are all contaminated by error. The durations in CPS are in part self reported and respondents

make a variety of errors. We assume that each element of yt has an associated measurement

error rt = (r1t , r
2.3
t , r4.6t , r7.12t , r13.+t )′. Our identification assumption is that the measurement error

is white noise, meaning that the inference is only adjusted for changes in the observed variables

that prove to be persistent. The observation equations can then be written as follows13,

U1t =
∑

i=H,L

wit + r1t (7)

U2.3t =
∑

i=H,L

[wi,t−1Pit(1) + wi,t−2Pit(2)] + r2.3t (8)

U4.6t =
∑

i=H,L

5∑
k=3

[wi,t−kPit(k)] + r4.6t (9)

U7.12t =
∑

i=H,L

11∑
k=6

[wi,t−kPit(k)] + r7.12t (10)

U13.+t =
∑

i=H,L

47∑
k=12

[wi,t−kPit(k)] + r13.+t (11)

where

Pit(j) = pi,t−j+1(1)pi,t−j+2(2)...pit(j). (12)

We assume that for type i workers who have already been unemployed for τ months as of time

t− 1, the fraction who will still be unemployed at t is given by

13As in the steady-state example in Section 1, we consider 4 years to be the maximum unemployment duration
considered.
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pit(τ) = exp[−exp(xit + dtτ )] for τ = 1, 2, 3, ... (13)

where dtτ determines the nature of genuine duration dependence experienced by an unemployed

individual with duration of unemployment τ months and xit is a time-varying magnitude influenc-

ing the unemployment exit probability for all workers of type i regardless of their duration. Like

the inflows wLT and wHt, we assume that the parameters xLt and xHt governing outflow proba-

bilities also follow a random walk. If we assume that the genuine-duration-dependence effects as

summarized by dtτ are time invariant, it is possible to estimate a different value for the parameter

dτ for each τ . We investigated a number of different specifications for dτ and found the best fit

using linear splines at τ = 6 and τ = 12 which we use for the baseline analysis:

dτ =


δ1(τ − 1) for τ < 6

δ1[(6− 1)− 1] + δ2[τ − (6− 1))] for 6 ≤ τ < 12

δ1[(6− 1)− 1] + δ2[(12− 1)− (6− 1)] + δ3[τ − (12− 1)] for 12 ≤ τ .

(14)

Positive δj for j = 1, 2, 3 imply motivational effects while negative values imply unemployment

scarring over the relevant duration ranges.

We can arrive at the likelihood function for the observed data {y1, ..., yT } by assuming that

the measurement errors are independent Normal,14 where R1, R2.3, R4.6, R7.12 and R13.+ are the

standard deviations of r1t , r
2.3
t , r4.6t , r7.12t and r13.+t respectively:

rt ∼ N(0, R)

14The Normality assumption of measurement errors has often been adopted in the literature of unemployment
hazards; see for example Abbring, van den Berg and van Ours (2001) and van den Berg and van der Klaauw (2001).
Moreover, the identical Kalman filter equations that emerge from an assumption of Normality can also be motivated
using a least-squares criterion; see for example Hamilton (1994a, Chapter 13).
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R︸︷︷︸
5×5

=



R21 0 0 0 0

0 R22.3 0 0 0

0 0 R24.6 0 0

0 0 0 R27.12 0

0 0 0 0 R213.+


.

Let ξt be the vector (wLt, wHt, xLt, xHt)
′ and εt = (εwLt, ε

w
Ht, ε

x
Lt, ε

x′
Ht)
′. Our assumption that the

latent factors evolve as random walks would be written as

ξt︸︷︷︸
4×1

= ξt−1 + εt︸︷︷︸
4×1

(15)

εt︸︷︷︸
4×1

∼ N( 0︸︷︷︸
4×1

, Σ︸︷︷︸
4×4

)

Σ︸︷︷︸
4×4

=



(σwL)2 0 0 0

0 (σwH)2 0 0

0 0 (σxL)2 0

0 0 0 (σxH)2


.

In Section 5 we will also report results for a specification in which the shocks are allowed to be

contemporaneously correlated.

Since the measurement equations (7)-(11) are a function of {ξt, ξt−1, ..., ξt−47}, the state equa-

tion should describe the joint distribution of ξt’s from t− 47 to t, where I and 0 denote a (4× 4)

identity and zero matrix, respectively:



ξt

ξt−1

ξt−2
...

ξt−46

ξt−47


︸ ︷︷ ︸

192×1

=



I︸︷︷︸
4×4

0︸︷︷︸
4×4

0 0 ... 0 0 0

I 0 0 0 ... 0 0 0

0 I 0 0 ... 0 0 0

...
...

...
... ...

...
...
...

0 0 0 0 ... I 0 0

0 0 0 0 ... 0 I 0


︸ ︷︷ ︸

192×192



ξt−1

ξt−2

ξt−3
...

ξt−47

ξt−48


︸ ︷︷ ︸

192×1

+



εt︸︷︷︸
4×1

0︸︷︷︸
4×1

0

...

0

0


︸ ︷︷ ︸
192×1

. (16)
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2.2 Estimation

Our system takes the form of a nonlinear state space model in which the state transition

equation is given by (16) and observation equation by (7)-(11) where Pit(j) is given by (12) and

pit (τ) by (13). Our baseline model has 12 parameters to estimate, namely the diagonal terms in

the variance matrices Σ and R and the parameters governing genuine duration dependence, δ1, δ2

and δ3. Because the observation equation is nonlinear in xit, the extended Kalman filter can be

used to form the likelihood function for the observed data {y1, ..., yT } and form an inference about

the unobserved latent variables {ξ1, ..., ξT }, as detailed in Appendix B. Inference about historical

values for ξt provided below correspond to full-sample smoothed inferences, denoted ξ̂t|T .

3 Results for the baseline specification

We estimated parameters for the above nonlinear state-space model using seasonally adjusted

monthly data on yt = (U1t , U
2.3
t , U4.6t , U7.12t , U13.+t )′ for t = January 1976 through December 2013.

Figure 4 plots smoothed estimates for pit(1), the probability that a newly unemployed worker of

type i at t−1 will still be unemployed at t. These average 0.35 for type H individuals and 0.82 for

type L individuals, close to the average calculations of 0.36 and 0.85, respectively, that we arrived

at in row 2 of Table 1 when we were explaining the intuition behind our identification strategy

based on steady-state calculations. The probabilities of type H individuals remaining unemployed

rise during the early recessions but are less cyclical in the last two recessions. By contrast, the

continuation probabilities for type L individuals rise in all recessions. The gap between the two

probabilities increased significantly over the last 20 years.

Figure 5 plots inflows of individuals of each type into the pool of newly unemployed. Type

H workers constitute 77% on average of the newly unemployed, again close to the value of 79%

expected on the basis of the simple steady-state calculations in row 2 of Table 1. Inflows of both

types increase during recessions. New inflows of type H workers declined immediately at the end

of every recession, but inflows of type L workers continued to rise after the recessions of 1990-91

and 2001 and were still at above-average levels 3 years after the end of the Great Recession. This

changing behavior of type L workers’ inflows appears to be another important characteristic of

jobless recoveries. The Great Recession is unique in that the inflows of type L workers as well as
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the continuation probabilities reached higher levels than any earlier dates in our data set.

The combined implications of these cyclical patterns are summarized in Figure 6. Before

the Great Recession, the share in total unemployment of type L workers fluctuated between 30%

and 50%, falling during expansions and rising during and after recessions. But during the Great

Recession, the share of type L workers skyrocketed to over 80%. The usual recovery pattern of a

falling share of type L workers has been very slow in the aftermath of the Great Recession.

While the inflows of type H workers show a downward trend since the 1980’s, those of type

L workers exhibit an upward trend. This difference in the low frequency movements of the two

series provides a new perspective on the secular decrease in the inflows to unemployment and the

secular rise in the average duration of unemployment. Abraham and Shimer (2001) and Aaronson,

Mazumder and Schechter (2010) showed that the substantial rise in average duration of unem-

ployment between mid-1980 and mid-2000 can be explained by the CPS redesign, the aging of the

population and the increased labor force attachment of women. Bleakley, Ferris and Fuhrer (1999)

concluded that the downward trend in inflows can be explained by reduced churning during this

period. Figure 5 shows that the downward trend in the inflows is mainly driven by type H workers.

The increased share of type L inflows contributed to the rise in the average duration of unemploy-

ment since the 1980’s. This suggests that unobserved heterogeneity is important in accounting for

low frequency dynamics in the labor market as well as those for business cycle frequencies.

Table 2 provides parameter estimates for our baseline model. We find a value for δ1, the para-

meter that governs genuine duration dependence for unemployment durations less than 6 months,

that is near zero and statistically insignificant. The estimate of δ2 (applying to individuals unem-

ployed for more than 5 months and less than 1 year) is statistically significant and negative. The

negative sign is consistent with the scarring hypothesis—the longer someone from either group has

been unemployed, provided the duration has been 11 months or less, the more likely it is that per-

son will be unemployed next month. On the other hand, we find a statistically significant positive

value for δ3 (unemployment lasting for a year and over). Once someone has been unemployed for

more than a year, it becomes more likely as more months accumulate that they will either find a

job or exit the labor force in any given month, consistent with what we have labeled motivational

effects. This non-monotonic behavior of genuine duration dependence is displayed graphically in

Panel A of Figure 7.
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As seen in Panel B of Figure 7, our estimates of genuine duration dependence imply relatively

modest changes in continuation probabilities for type L workers for most horizons. And while

the implications for long-horizon continuation probabilities for type H workers may appear more

significant, they are empirically irrelevant, since the probability that type H workers would be

unemployed for more than 12 months is so remote. To gauge the overall significance of genuine

duration dependence, we calculated the unemployment level predicted by our model for each date t

in the sample if the values of δ1, δ2, and δ3 were all set to zero, and found it would only be 2.3% lower

on average than the value predicted by our baseline model. Thus although the values of δ2 and δ3

are statistically significant, they play a relatively minor role compared to ex ante heterogeneity in

accounting for differences in continuation probabilities by duration of unemployment.

3.1 Variance decomposition

Many previous studies have tried to summarize the importance of different factors in determining

unemployment by looking at correlations between the observed unemployment rate and the steady-

state unemployment rate predicted by each factor of interest alone; see for example Fujita and

Ramey (2009) and Shimer (2012). One major benefit of our framework is that it delivers a much

cleaner answer to this question in the form of variance decompositions, a familiar method in linear

VARs for measuring how much each shock contributes to the mean squared error (MSE) of an

s-period-ahead forecast of a magnitude of interest.15

Our model can be used to account for the difference between the unemployment realization at

time t + s and a forecast based on values of the state vector only through date t in terms of the

sequence of shocks between t and t+ s, denoted εt+1, εt+2, ..., εt+s. It is convenient to work with a

linear approximation to that decomposition, which we show in Appendix C takes the form

yt+s − ŷt+s|t '
s∑
j=1

[Ψs,j(ξt, ξt−1, ..., ξt−47+s)]εt+j (17)

for Ψs,j(·) a known (5 × 4)-valued function of ξt, ξt−1, ..., ξt−47+s. The mean squared error matrix

associated with an s-period-ahead forecast of yt+s is then

15See for example Hamilton (1994a, Section 11.5).
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E(yt+s − ŷt+s|t)(yt+s − ŷt+s|t)′ =
s∑
j=1

[Ψs,j(ξt, ξt−1, ..., ξt−47+s)]Σ[Ψs,j(ξt, ξt−1, ..., ξt−47+s)]
′ (18)

=
s∑
j=1

4∑
m=1

Σm[Ψs,j(ξt, ξt−1, ..., ξt−47+s)em][Ψs,j(ξt, ξt−1, ..., ξt−47+s)em]′

for em columnm of the (4×4) identity matrix and Σm the rowm, columnm element of Σ. Thus the

contribution of innovations of type L worker’s inflows (the first element of εt = (εwLt, ε
w
Ht, ε

x
Lt, ε

x
Ht)
′)

to the MSE of the s-period-ahead linear forecast error of total unemployment, ι′5yt, is given by

ι5
′
s∑
j=1

Σ1[Ψs,j(ξt, ξt−1, ..., ξt−47+s)e1][Ψs,j(ξt, ξt−1, ..., ξt−47+s)e1]
′ι5 (19)

where ι5 denotes a (5 × 1) vector of ones. Note that as in the constant-parameter linear case,

the sum of the contributions of the 4 different structural shocks would be equal to the MSE of an

s-period-ahead linear forecast of unemployment in the absence of measurement error. However,

in our case the linearization is taken around time-varying values of {ξt, ξt−1, ..., ξt−47+s}. We can

evaluate equation (19) at the smoothed inferences {ξ̂t|T , ξ̂t−1|T , ..., ξ̂t−47+s|T } and then take the

average value across all dates t in the sample. This gives us an estimate of the contribution of the

type L worker’s inflows to unemployment fluctuations over a horizon of s months:

qs,1 = T−1
T∑
t=1

ι5
′
s∑
j=1

Σ1[Ψs,j(ξ̂t|T , ξ̂t−1|T , ..., ξ̂t−47+s|T )e1][Ψs,j(ξ̂t|T , ξ̂t−1|T , ..., ξ̂t−47+s|T )e1]
′ι5.

Consequently qs,1/
4∑

m=1
qs,m would be the ratio of the first factor’s contribution to unemployment

volatility at horizon s.

Figure 8 shows the contribution of each factor to the mean squared error in predicting overall

unemployment as a function of the forecasting horizon. If one is trying to forecast unemployment

one month ahead, uncertainty about future inflows of type H and type L workers are equally

important. However, the farther one is looking into the future, the more important becomes

uncertainty about what is going to happen to type L workers. If one is trying to predict one or

two years into the future, the single most important source of uncertainty is inflows of new type

L workers, followed by uncertainty about their outflows. Much of the MSE associated with a
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2-year-ahead forecast of unemployment comes from not knowing when the next recession will begin

or the current recession will end. For this reason, the MSE associated with 2-year-ahead forecasts

is closely related to what some researchers refer to as the "business cycle frequency" in a spectral

decomposition. If we are interested in the key factors that change as the economy moves into and

out of recessions, inflows and outflows for type L workers are most important. We will provide

additional evidence on this point in Section 3.2.

The last panel of Figure 8 breaks these contributions separately into inflows and outflows.

Both inflows and outflows are important. However, the uncertainty about future inflows is more

important in accounting for the error we would make in predicting total unemployment, accounting

for more than 60% of the MSE for any forecasting horizon.

3.2 Historical decomposition

A separate question of interest is how much of the realized variation over some historical episode

came from particular structural shocks. As in (17) our model implies an estimate of the contribution

of shocks to a particular observed episode, namely

yt+s − ŷt+s|t '
s∑
j=1

[Ψs,j(ξ̂t|T , ξ̂t−1|T , ..., ξ̂t−47+s|T )]ε̂t+j|T (20)

where ε̂t+s|T = ξ̂t+s|T − ξ̂t+s−1|T . From this equation, we can estimate for example the contribution

of εwL,t+1, ε
w
L,t+2, ..., ε

w
L,t+s (the shocks to wL between t + 1 and t + s) to the deviation of the level

of unemployment at t+ s from the value predicted on the basis of initial conditions at t:

ι5
′
s∑
j=1

[Ψs,j(ξ̂t|T , ξ̂t−1|T , ..., ξ̂t−47+s|T )]e1ε̂
′
t+j|T e1.

Figure 9 shows the contribution of each component to the realized unemployment rate in the last

five recessions. In each panel, the solid line (labeled Ubase) gives the change in the unemployment

rate relative to the value at the start of the episode that would have been predicted on the basis

of initial conditions. Typically an increase in the inflow of type L workers (whose contribution to

total unemployment is indicated by the starred red curves) is the most important reason that un-

employment rises during a recession. A continuing increase of these inflows even after the recession

was over was an important factor in the jobless recoveries from the 1990 and 2001 recessions.
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During the first 8 months of the Great Recession, changes in inflows and outflows of type

L individuals were of equal importance in accounting for rising unemployment. But our model

concludes that new inflows of type L individuals were by far the most important factor contributing

to rising unemployment after July of 2008.

3.3 Features of the data that account for the conclusions

What features of the data lead us to the conclusions in Figures 8 and 9? Type L and type H

individuals are not directly observable. Nevertheless, recall for example from Panel A of Figure 2

that our parameter estimates imply that most of the people who have been unemployed for longer

than 4 months are likely to be type L individuals. We can thus directly observe an approximation

to the unemployment-exit probabilities of type L individuals at any given date simply by looking

at the average unemployment-exit probability of those who have been unemployed for 4 months or

longer:

f4.+t =
U4.+t − (U4.+t+1 − U4t+1)

U4.+t
. (21)

The behavior of this series during the Great Recession is indicated by the blue line with circles in

Figure 10. It fell during the first half of the recession but then stabilized, suggesting that ongoing

deterioration in the unemployment-exit probabilities of type L workers was not the main factor

contributing to rising unemployment during the second half of the recession.

On the other hand, any individual who had been unemployed for exactly 4 months in any given

month t was most likely a newly unemployed type L individual at t − 3. The red starred line in

Figure 10 plots U4t around the Great Recession. This continued to increase long after f4.+t had

stabilized, suggesting that new inflows of type L individuals were the key factor contributing to

rising unemployment in the second half of the Great Recession, consistent with the inference from

our model in Panel E of Figure 9.

We can summarize the quantitative importance of these observations with the following simple

calculations. Suppose that the unemployment-exit probabilities of the long-term unemployed had

remained fixed at their value in 2008:M7, namely at f̄4.+ = 0.12. If we apply this fixed rate to the

observed new inflows into this category as measured by U4t+1, the number unemployed for exactly

4 months, we would then predict a value for U4.+t+1 , the number unemployed for 4 months or longer,
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according to

Û4.+t+1 = U4t+1 + Û4.+t (1− f̄4.+).

If the number of unemployed for 1-3 months had also remained fixed at its value in 2008:M7

(Ū1.3 = 5.687 million), we would then arrive at a predicted value for total unemployment of Ût+1 =

Û4.+t+1 + Ū1.3. This series is plotted in Panel A of Figure 11 along with the actual value for total

unemployment Ut+1. These calculations demonstrate the basis in the observed data for concluding

that much of the increase in unemployment during the second half of the Great Recession can

be attributed to new inflows of type L individuals alone rather than to any deterioration in the

unemployment-exit probability.

We can also use these calculations to see why our analysis reaches a different conclusion from

Shimer (2012), who focused on the unemployment-exit probability itself. The aggregate probability

is defined as

ft =
Ut − (Ut+1 − U1t+1)

Ut
,

which is plotted as the solid line in Panel B of Figure 11. We can interpret this as a weighted

average of the exit probabilities of those with duration 1-3 months and those with 4 months or

longer,

ft =
U1.3t f1.3t + U4.+t f4.+t

U1.3t + U4.+t
,

which we use as the definition of f1.3t . We can then calculate what this magnitude would have

been predicted to be if U1.3t , f1.3t , and f4.+t had all remained frozen at their 2008:M7 levels, with

the only thing that changed subsequently being the imputed new inflows of type L individuals:

f̂t =
Ū1.3f̄1.3 + Û4.+t f̄4.+

Ū1.3 + Û4.+t
.

This series is plotted as the dotted line in Panel B of Figure 11, and shows that much of the

observed change in the unemployment-exit probability can be explained by increased inflows of

type L individuals alone. It is in sharp contrast to Figure 9 in Shimer (2012), whose graphs

purported to show that changes in the composition of the unemployed explain virtually none of the

observed changes in exit probabilities. The reason is that his analysis assumed that everyone within

a given group is homogeneous and did not make use of their differing individual unemployment
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histories. Shimer thus overlooked the single most important driving variable in unemployment

dynamics.

Before leaving this issue we should comment on an unresolved controversy in the literature

about how to measure outflows from unemployment. Our measure (21) follows van den Berg and

van Ours (1996), van den Berg and van der Klaauw (2001), Elsby, Michaels and Solon (2009),

Shimer (2012), and Elsby, Hobijn and Şahin (2013) in deriving flow estimates from the observed

change in the number of unemployed by duration. An alternative approach, employed by Fujita

and Ramey (2009) and Elsby, Hobijn and Şahin (2010), is to look at only those individuals for

whom there is a matched observation of unemployment in month t and a status of employment or

out of the labor force in month t + 1. In the absence of measurement error, the two estimates

should be the same, but in practice they turn out to be quite different. In particular, Elsby, Hobijn,

and Şahin (2010, Figure 15) used matched flows to calculate a series for a monthly outflow rate

from long-term unemployment that remains above 25% throughout the Great Recession, whereas

the monthly outflow rate in our Figure 10 falls below 10%. One reason for the discrepancy is

misclassification. For example, an individual who goes from long-term unemployed to out of the

labor force to back to long-term unemployed in three successive months counts as a successful

"graduate" from long-term unemployment using matched flows but is contributing to the stubborn

persistence of long-term unemployment when using the stock data. A follow-up paper to Elsby,

Hobijn and Şahin (2010) by Elsby et al. (2011) documented that more than half of the newly

unemployed individuals reported their duration of unemployment to be 5 weeks or longer. Another

important reason is that individuals for whom two consecutive observations are available differ in

important ways from those for whom some observations are missing. Abowd and Zellner (1985)

and Frazis et al. (2005) acknowledged that these measurement errors are more likely to bias the

matched flow data than the stock data and suggested methods to correct the bias.

Since our goal is to understand how the reported stock of long-term unemployed came to be so

high and why it falls so slowly, we feel that our approach, which is consistent with the observed

stock data by construction, is preferable. In any case, we emphasize that the inflow and outflow

rates in Figure 10 were not used in any way in producing our Figures 4-9, which were instead

derived solely from the raw data plotted in Figure 1. We report the calculations in Figures 10 and

11 only to provide additional intuition and support for why our findings in Figures 4-9 came out
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the way they did.

4 Who are the type L workers?

We noted that many of the individuals that our model designates as type L can be effectively

identified ex post by the fact that most of those who have been unemployed longer than 4 months

are likely in this group. In this section we discuss the relation between these individuals and

various observable characteristics.

4.1 The importance of permanent involuntary separations and recalls

The BLS data include observable characteristics such as age, gender, education, occupation, in-

dustry, and reason for unemployment. The consensus of previous studies is that the last category

holds the most promise for predicting unemployment duration, though it can only account for a

small part of the observed cross-sectional dispersion. Darby, Haltiwanger and Plant (1986) argued

that counter-cyclicality in the average unemployment duration mainly comes from the increased

inflow of prime-age workers suffering permanent job loss who are likely to have low job-finding

probabilities. Bednarzik (1983) also noted that permanently separated workers are more likely

to experience a long duration of unemployment, while Fujita and Moscarini (2013) showed that

the unemployed who are likely to experience long-term unemployment spells tend to be those who

are not recalled to work by their previous employers. Shimer (2012) found that the most im-

portant potential source of heterogeneity across different workers is differences in the reasons the

individuals became unemployed, though he argued that this made only a small empirical contribu-

tion to observed cyclical fluctuations in unemployment and job-finding probabilities. Kroft et al.

(forthcoming) concluded that observable characteristics could account for almost none of the rise

in long-term unemployment during the Great Recession.

Panel A of Figure 12 breaks down people looking for work in terms of the reason they came to

be unemployed. Dark bars describe the share of people who have been looking for work for less

than one month and white bars the share of those who have been looking for more than 6 months.

Permanent job losers and job losers on temporary layoff each account for about one fifth of new

entrants into the pool of unemployed. By contrast, those on temporary layoff account for less than
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3% of the unemployed with duration longer than 6 months, while around half of the long-term

unemployed are accounted for by permanent job losers. This means that the unemployment exit

probabilities of permanent job losers are much lower than those of job losers on temporary layoff.

Panel B of Figure 12 plots the inflows to unemployment by reason. Both the inflows of perma-

nent job losers and those on temporary layoff exhibit counter-cyclicality. They rise as the recession

begins and fall as the recession ends. In Panel C of Figure 12 we compare our estimate of the

number of newly unemployed type L workers to the number of those newly unemployed who gave

permanent separations from their previous job as the reason16. The two series were arrived at

using different data and different methodologies but exhibit remarkably similar dynamics. By

contrast, our series for newly unemployed type L workers does not look much like any of the other

series in Panel B. Panel D compares the total number of those unemployed who gave permanent

separation as the reason to our estimate of the total number of unemployed type L workers, for

which the correspondence is even more striking.

In March 2009 there were 1.38 million newly unemployed individuals who reported permanent

separation as their reason for unemployment, 454,000 more than in March 2008. In March 2009

there were 3.47 million newly unemployed individuals altogether, 642,000 more than the previous

year. This means that 454/642 = 71% of the increase in U1t between 2008:M3 and 2009:M3 was

due to permanent separations.17 There is no question that permanent separations account for much

of the increase in newly unemployed type L individuals that we identified in Figure 5 as occurring

during this period.

We also repeated calculations like those in Panel A of Figure 11 using only those new inflows

into U4t who gave permanent separation as the reason. If we assumed that the unemployment-exit

probabilities for this group as well as the number of unemployed in all other groups had remained

fixed at their values of 2008:M7, we could account for an increase in total unemployment between

2008:M7 and 2009:M12 of 2.94 million individuals, almost half of the observed total increase of

6.37 million, as a result of inflows of type L individuals who became unemployed as a result of

16Permanent separations include permanent job losers and persons who completed temporary jobs. The separate
series, permanent job losers and persons who completed temporary jobs, are publicly available from 1994, but their
sum (permanent separations) is available back to 1976.

17We seasonally adjusted the number for newly unemployed individuals who reported permanent separation as
their reason for unemployment using X-12-ARIMA. We also did the same calculation with publicly available seasonally
unadjusted numbers and found that 81% of the increase in U1

t between 2008:M3 and 2009:M3 was due to permanent
separations.
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permanent separations.

4.2 Inference using data that condition on reason for unemployment

To obtain further evidence on the role of observed and unobserved worker characteristics, Ahn

(2014) fit models like the one developed here to subsets of workers sorted based on observable

characteristics. She replaced our observation vector yt based on aggregate unemployment numbers

with yjt = (U1jt, U
2.3
jt , U

4.6
jt , U

7.12
jt , U13.+jt )′ where U2.3jt for example denotes the number of workers with

observed characteristic j who have been unemployed for 2-3 months, the idea being that within the

group j there are new inflows (wjHt and wjLt) and outflows (pjHt and pjLt) of two unobserved types

of workers. Of particular interest for the present discussion are the results when j corresponds to

one of the 5 reasons for why the individual was looking for work. Panel A of Figure 13 displays

Ahn’s estimated values for new inflows of type L workers for each of the categories as well as the sum∑5
j=1 ŵjLt|T . Our series ŵLt|T inferred from aggregate data is also plotted again for comparison.

The sum of micro estimates is very similar to our aggregate estimates, and the individual micro

components reveal clearly that those we have described as type L workers primarily represent a

subset of people who were either permanently separated from their previous job or are looking

again for work after a period of having been out of the labor force.

Ahn (2014) also calculated the models’inferences about the total number of type L individuals

in any given observable category j who were unemployed in month t. These are plotted in Panel B

of Figure 13. Here the correspondence between the aggregate inference and the sum of the micro

estimates is even more compelling, as is the conclusion that type L unemployed workers represent

primarily a subset of those permanently separated from their old jobs or re-entering the labor force.

Ahn (2014) found that permanent job losers who are type L account for around 50% of the

aggregate type L unemployment and drive most of its counter-cyclicality. The second most im-

portant group is type L re-entrants to the labor force. Considering that permanent job losers are

likely to leave the labor force and re-enter to the labor force, there is a high chance that the type

L re-entrants used to be permanent job losers before leaving the labor force. In addition, type

L people are found disproportionately more among permanent job losers than they are among in

other categories. The type L individuals account for one third of the newly unemployed permanent

job losers, whereas they only comprise less than one fifth of the inflows in other categories.
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Again it is useful to corroborate these conclusions with model-free direct evidence. Our goal is to

examine the factors that account statistically for fluctuations in U4.+t , the seasonally adjusted count

of individuals who have been unemployed for 4 months or longer. We are interested in the extent

to which this can be predicted from the number of newly unemployed individuals with observed

characteristic j. We also consider the role of outflows as measured by Ft = Ut−1 − U2.+t . We sum-

marize the usefulness of different variables for predicting long-term unemployment by estimating

12th-order vector autoregressions of the form

xt = c+ Φ1xt−1 + Φ2xt−2 + · · ·+ Φ12xt−12 + εt (22)

where xt is an (n×1) vector consisting of U4.+t along with other variables, Φm are (n×n) matrices,

and each row of the system is estimated by OLS.

We first consider a 3-variable system consisting of long-term unemployment along with gross

outflows and inflows: xt = (U4.+t , Ft, U
1
t )′. Key results are summarized in Table 3. Both inflows

and outflows are statistically significant predictors of long-term unemployment; an F -test of the

hypothesis that the (1,2) elements of {Φ1, ...,Φ12} are all zero rejects with a p-value of 10−10, while

the hypothesis that the (1,3) elements are all zero rejects with p < 10−7. Of particular interest

is a variance decomposition of the VAR, which calculates how much of a 24-month-ahead forecast

error xt+24 − x̂t+24|t is accounted for by innovations of each of the three variables. Typically in

such decompositions the variance in any individual variable xit is mostly accounted for by its own

innovations εit. To try to minimize further any imputed role to innovations in inflows we order

inflows U1t last in the Cholesky factorization, meaning that any contemporaneous correlations

among the three shocks is imputed to the first two rather than the third. We nevertheless find

that inflows account for 34% of the two-year-ahead variance in long-term unemployment. By

contrast only 30% can be attributed to outflows.

We next ask whether the composition of inflows has additional explanatory power by looking

at a 4-variable VAR in which new inflows of permanently separated workers, U1PS,t, are added to

the system. We find that permanently separated workers have significant predictive power even

when aggregate inflows U1t are already included in the regression (see Table 3, row 2, column 6).

Indeed, when ordered third in the 4-variable VAR, new inflows of permanently separated workers
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can account for 41% of the two-year-ahead variance of long-term unemployment and inflows of

permanently separated and other workers together contribute 49%.18

Similar results for predicting longer term unemployment, U7.+t , as reported in row 3. And if we

add in new claims for unemployment insurance (denoted St), which may be a more reliable measure

of new inflows of involuntarily separated workers than estimates based on the CPS, the combined

contribution of inflows (U1t , U
1
PS,t, and St) is 63%.

Inflows are also quantitatively very important if we measure variables in terms of fractions rather

than aggregate counts. Let ft = Ft/Ut−1 denote the unemployment exit probability, u4.+t = U4.+t /Ut

long-term unemployment as a share of total, u1PS,t = U1PS,t/U
1
t permanent separations as a share

of new unemployment, and st = St/U
1
t new claims for unemployment insurance as a share of new

unemployment. In a VAR ordered as xt = (u4.+t , ft, u
1
PS,t, st)

′, inflows (as measured by the last two

variables) account for 47% of the 24-month-ahead error in forecasting u4.+t and 45% of the error

in forecasting ft, compared to 35% and 50%, respectively, accounted for by innovations in outflow

probabilities ft.

4.3 Understanding cyclical variation in heterogeneity

The vast majority of newly unemployed individuals will exit unemployment relatively quickly.

Even among those who are newly unemployed as a result of a permanent separation, more than half

would be designated within our framework as type H. In fact, within the "permanently separated"

category, many workers do end up being recalled to their old positions (Fujita and Moscarini, 2013),

and such individuals are likely be included in our type H designation. This is why a much more

important predictor of an individual’s outcome is how long that individual has been unemployed

rather than any observable characteristic. And this is also the key reason why many researchers,

whose frameworks assume that all individuals with the same observed characteristic should have

the same unemployment-exit probabilities, cannot account for the features that we find in the data.

Our approach also differs radically from the applied micro literature on this topic in that we

have put cyclical variation in unobserved heterogeneity front and center of the analysis. Why

18Calculating the separate contributions of U1
PS,t and U

1
t is quite sensitive to which is ordered third, since there

is a significant contemporaneous correlation between the innovations in U1
PS,t and U

1
t . However, it is certainly not

the case that the former is simply proxying for the latter. When both are included in the regression as in the third
row of Table 3, both are statistically significant, with permanent separations producing an F -test with p-value of 0.03
and total new unemployed producing p < 10−5.
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does unobserved heterogeneity vary cyclically? In normal times there is a tremendous amount

of churning in the labor market, with millions of workers entering and exiting the unemployment

pool every month even as the overall unemployment rate remains low– see for example, Davis,

Faberman and Haltiwanger (2006). Lazear and Spletzer (2012) showed using micro data from

JOLTS that churning is procyclical, with quits accounting for the major part of it. However, our

measure of type H inflows often rises during recessions. It is clear that in addition to normal

churning arising from those who quit their job voluntarily, unemployment due to temporary layoffs

is another important part of what we have characterized as type H unemployment. Temporary

layoffs rise during recessions, but insofar as many of these individuals often return to their old jobs

relatively quickly, our procedure is assigning most of those on temporary layoff to type H rather

than type L.

Finally, we emphasize that whether an individual is type L or type H can vary with economic

circumstances. An unemployed carpenter who would have little trouble finding a job in normal

times may spend a substantial period unemployed during a housing bust. Indeed, the fact that we

have idenfied permanent involuntary separations as a key driver of new inflows of type L individuals

is most naturally interpreted as exactly this kind of phenomenon.19

5 Robustness checks

Here we examine how our conclusions would change under a number of alternative specifica-

tions, including changes in the unemployment measures used, alternative specifications of genuine

duration dependence, possible correlations among the shocks, and reformulation of the model in

terms of weekly rather than a monthly frequency. Further details for all of these alternative

specifications are reported in the online appendix.

19Some readers have asked us whether this view should imply that an individual could change type at some point
during a spell of unemployment, for example, when carpenter skills come back in demand. In our framework, the
defining characteristic of a type i is the average unemployment continuation probabilities for the group, pit. These
probabilities are indeed constantly changing with cyclical conditions under our baseline model. See also Ravenna
and Walsh’s (2012) DSGE in which the fraction of unemployed type L individuals increases during recessions and is
an important propagating factor.
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5.1 Accounting for the structural break in the CPS

As noted in Appendix A, a redesign in the CPS in 1994 introduced a structural break with which

any user of these data has to deal. Our baseline estimates adjusted the unemployment duration

data using differences between rotation groups 1 and 5 and groups 2-4 and 6-8 in the CPS micro

data. Here we summarize how our results would change if we were to instead use the adjustment

employed by Hornstein (2012).

Table 4 summarizes the implications of alternative specifications for what we see as the most

important conclusions that emerge from our baseline analysis. The table breaks down the MSE

of a forecast of the overall level of unemployment at 3-month, 1-year, and 2-year forecast horizons

into the fraction of the forecast error that is attributable to various shocks. Column 1 gives the

numbers implied by our baseline specification and highlights our key conclusion that inflows account

for more than half the variance at all horizons. Inflows of type L workers are most important but

the outflows of type L workers and the inflows of type H workers are also crucial at a 3-month

horizon. At a 1- or 2-year horizon, shocks to inflow and outflow probabilities for type L workers are

the most important factors. The table also reports asymptotic standard errors for each of these

magnitudes.20

Column 2 of Table 4 reports the analogous variance decompositions when we instead use Horn-

stein’s data adjustment as described in Appendix A. This produces very little change in these

numbers. In column 3 we use only data subsequent to the redesign in 1994 making no adjustment

to the reported BLS figures. This reduces the estimated contribution of inflows of type L workers

at shorter horizons, but preserves our main finding that for business-cycle frequencies, changes for

type L workers account for most of the fluctuations in unemployment, with changes in type L in-

flows accounting for about half the variance of unemployment at the 2-year horizon. We obtained

similar results using the full data set from 1976-2013 with no adjustments for the 1994 redesign

(column 4). We also found that the non-monotonic pattern in the genuine duration dependence is

preserved regardless of data adjustment methods.

20Standard errors were calculated as follows. For each model, we generated 500 draws for the k-dimensional
parameter vector (where k is reported in the first row of the table) from a N(θ̂, V̂ ) distribution where θ̂ is the MLE
and V̂ is the (k × k) variance matrix from inversed hessian of the likelihood function. For each draw of θ(`) we
calculated the values implied by that θ(`) and then calculated the standard error of that inference across the draws
θ(1), ..., θ(500).
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Note that although we report the log likelihood and Schwarz’s (1978) Bayesian criterion in rows

2 and 3 of Table 4, the values for columns 2-4 are not comparable with the others due to a different

definition of the observable data vector yt.

5.2 Alternative specifications for genuine duration dependence

Our baseline specification assumed that a single parameter δ1 described genuine duration de-

pendence for any worker unemployed for less than 6 months. We also estimated a model in which

each of the observed duration categories (2-3 months, 4-6 months, 7-12 months, and greater than

12 months) was characterized by a different genuine duration parameter, replacing (14) with

dτ =



δA1 (τ − 1) for τ < 3

δA1 (3− 2) + δB1 (τ − 2) for 3 ≤ τ < 6

δA1 (3− 2) + δB1 (5− 2) + δ2(τ − 5) for 6 ≤ τ < 12

δA1 (3− 2) + δB1 (5− 2) + δ2(11− 5) + δ3(τ − 11) for 12 ≤ τ .

Adding this additional parameter δB1 results in only a trivial improvement in the likelihood function

and virtually no change in any of the variance decompositions, as seen in comparing columns 1 and

5 of Table 4.

We also estimated a model in which genuine duration dependence varies over time, allowing the

coeffi cients δj that characterize genuine duration dependence to take on different values when the

national unemployment rate is above 6.5%, times when the labor market is in slack and it is likely

that many job losers automatically became eligible for extended UI benefits.21 We re-estimated

our state space model with dtτ in equation (13) given by d0τ for dates t for which ut ≤ 6.5 and dEτ

if ut > 6.5 where

djτ =


δj1(τ − 1) for τ < 6

δj1[(6− 1)− 1] + δj2[τ − (6− 1))] for 6 ≤ τ < 12

δj1[(6− 1)− 1] + δj2[(12− 1)− (6− 1)] + δj3[τ − (12− 1)] for 12 ≤ τ .

for j = 0 or E.
21Vishwanath (1989) and Blanchard and Diamond (1994) developed theoretical models in which genuine duration

dependence could be linked to market tightness. See Whittaker and Isaacs (2014) for a detailed discussion of the
conditions that can trigger extended unemployment benefits.
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Adding 3 new parameters (δE1 , δ
E
2 , δ

E
3 ) to the model results in an increase in the log likelihood

of 58.2, leading to a rejection (p-value < 0.001) of the null hypothesis that the values of δj are

constant over time in favor of the alternative that they vary over time depending on eligibility

for unemployment benefits. However, this does not change any of our core conclusions, as seen in

column 6 of Table 4.

5.3 Allowing for correlated shocks

Our baseline specification assumed that the shocks to wLt, wHt, pLt and pHt were mutually

uncorrelated. It is possible to generalize this in a parsimonious way by allowing a factor structure

to the innovations, εt = λFt + ut, where Ft ∼ N(0, 1), λ is a (4 × 1) vector of factor loadings,

and ut is a (4× 1) vector of mutually uncorrelated idiosyncratic components with variance matrix

E(utu
′
t) = Q:

E(εtε
′
t) = λλ′ +Q

Q =



(qwH)2 0 0 0

0 (qwL )2 0 0

0 0 (qxH)2 0

0 0 0 (qxL)2


.

In this case the variance decomposition (18) becomes

E(yt+s − ŷt+s|t)(yt+s − ŷt+s|t)′ =
s∑
j=1

[Ψs,j(ξt, ξt−1, ..., ξt−47+s)](λλ
′ +Q)[Ψs,j(ξt, ξt−1, ..., ξt−47+s)]

′

=
s∑
j=1

[Ψs,j(ξt, ξt−1, ..., ξt−47+s)]λλ
′[Ψs,j(ξt, ξt−1, ..., ξt−47+s)]

′

+
s∑
j=1

4∑
m=1

Qm[Ψs,j(ξt, ξt−1, ..., ξt−47+s)em][Ψs,j(ξt, ξt−1, ..., ξt−47+s)em]′

for Qm the row m, column m element of Q. Because the factor Ft has an effect on all four

components, it is not possible to impute the term involving λλ′ to any one of the four shocks

individually. However, we can calculate the portion of the MSE that is attributable to this aggregate

factor along with those of each of the individual idiosyncratic shocks in ut. This is reported in
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column 7 of Table 4, and variance decompositions are plotted in Figure 14. The aggregate factor by

itself accounts for 57% of the MSE of a 3-month-ahead forecast of unemployment, and inflows and

outflows of type H workers account for another 19%. The aggregate factor is strongly correlated

with outflows of type L workers. If we isolate the idiosyncratic component of each shock that is

uncorrelated with the other three, shocks to inflows of type L workers account for only a quarter

of the 3-month-ahead forecast error and almost 1/3 of the 2-year-ahead forecast error. There is

essentially no role for the idiosyncratic component of outflows of type L workers, since changes

in these outflows are so highly correlated with the other three shocks. This suggests that the

probability of exiting unemployment of type L workers is closely related to an aggregate shock and

that the compositional change of unemployment can be interpreted as an aggregate phenomenon

that is core to the dynamics of economic recessions.

5.4 Time aggregation

Focusing on monthly transition probabilities understates flows into and out of unemployment

since someone who loses their job in week 1 of a month but finds a new job in week 2 would never

be counted as having been unemployed. Shimer (2012) argued that this time-aggregation bias

would result in underestimating the importance of outflows in accounting for cyclical variation in

unemployment, and Fujita and Ramey (2009), Shimer (2012) and Hornstein (2012) all formulated

their models in continuous time.

On the other hand, Elsby, Michaels and Solon (2009) questioned the theoretical suitability of

a continuous-time conception of unemployment dynamics, asking if it makes any sense to count a

worker who loses a job at 5:00 p.m. one day and starts a new job at 9:00 a.m. the next as if they

had been unemployed at all. We agree, and think that defining the central object of interest to

be the fraction of those newly unemployed in month t who are still unemployed in month t + k,

as in our baseline model, is the most useful way to pose questions about unemployment dynamics.

Nevertheless, and following Kaitz (1970), Perry (1972), Sider (1985), Baker (1992), and Elsby,

Michaels and Solon (2009) we also estimated a version of our model formulated in terms of weekly

frequencies as an additional check for robustness.

We can do so relatively easily if we make a few simplifying assumptions. We view each month

t as consisting of 4 equally-spaced weeks and assume that in each of these weeks there is an
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inflow of wit workers of type i, each of whom has a probability pit(0) = exp[− exp(xit)] of exiting

unemployment the following week. This means that for those type i individuals who were newly

unemployed during the first week of month t, wit[pit(0)]3 are still unemployed as of the end of the

month. Thus for the model interpreted in terms of weekly transitions, equation (7) would be

replaced by

U1t =
∑

i=H,L

{wit + wit[pit(0)] + wit[pit(0)]2 + wit[pit(0)]3}+ r1t .

Likewise (8) becomes

U2.3t =
∑

i=H,L

4∑
s=1

{
wi,t−1[pi,t−1(1)]8−s + wi,t−2[pi,t−2(2)]12−s

}
+ r2.3t

for pit(τ) given by (13)-(14) for τ = 1, 2. Note that although this formulation is conceptualized in

terms of weekly inflow and outflows wi and pi, the observed data yt are the same monthly series

used in our other formulations, and the number of parameters is the same as for our baseline

formulation.

As seen in column 8 of Table 4, the weekly formulation implies a slightly smaller role for inflows

than our baseline model. This is to be expected, as allowing for shorter employment spells by

construction imputes some people who exit unemployment by obtaining new jobs but then lose

them again before the month is over. This may be one reason that Hornstein (2012), who used

a model related to ours but in which employment spells could be infinitesimally short, found a

smaller role for inflows than we do. One benefit of our formulation is that we can calculate the

likelihood function associated with any of the alternative specifications. We find that the weekly

model in column 8 has a slightly worse fit to the data than the baseline monthly model in column

1.

6 Conclusion

People who have been unemployed for longer periods than others have dramatically different

probabilities of exiting unemployment, and these relative probabilities change significantly over the

business cycle. Even when one conditions on observable characteristics, unobserved differences

across people and the circumstances under which they came to be unemployed are crucial for
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understanding these features of the data.

We have shown how the time series of unemployment levels by different duration categories can

be used to infer inflows and outflows from unemployment for workers characterized by unobserved

heterogeneity. In contrast to other methods, our approach uses the full history of unemployment

data to summarize inflows and outflows from unemployment and allows us to make formal statistical

statements about how much of the variance of unemployment is attributable to different factors as

well as identify the particular changes that characterized individual historical episodes.

In normal times, around three quarters of those who are newly unemployed find jobs quickly.

But in contrast to the conclusions of Hall (2005) and Shimer (2012), we find that more than half

the variance in unemployment comes from shocks to the number of newly unemployed. A key

feature of economic recessions is newly unemployed individuals who have significantly lower job-

finding probabilities. Our inferred values for the size of this group exhibit remarkably similar

dynamics to separate measures of the number of people who permanently lose their jobs. We

conclude that recessions are characterized by a change in the circumstances under which people

become unemployed that accounts for the greater diffi culty in finding new jobs during a recession.
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Table 1. Actual and predicted values for unemployment on average and since 2007 using different

steady-state representations

Parameter values Actual or predicted values

U1 U2.3 U4.6 U7.12 U13.+

1976:M1-2013:M12 Observed values

(1) 3,210 2,303 1,238 1,050 636

wH wL pH pL Fitted (and predicted) values

(2) 2,531 679 0.360 0.848 3,210 2,303 1,238 1,050 (614)

w δ0 δ1 δ2 δ3 Fitted values

(3) 3,210 0.0899 -0.3490 0.0110 1.757e-4 3,210 2,303 1,238 1,050 636

wH wL pH(1) pL(1) δ Fitted values

(4) 2,528 683 0.360 0.846 -0.003 3,210 2,303 1,238 1,050 636

2007:M12-2013:M12 Observed values

(5) 3,339 2,787 2,131 2,426 1,902

wH wL pH pL Fitted (and predicted) values

(6) 2,274 1,065 0.329 0.890 3,339 2,787 2,131 2,426 (2,358)

w δ0 δ1 δ2 δ3 Fitted values

(7) 3,339 0.2382 -0.6644 0.0547 -1.283e-3 3,339 2,787 2,131 2,426 1,902

wH wL pH(1) pL(1) δ Fitted values

(8) 2,307 1,033 0.334 0.900 0.017 3,339 2,787 2,131 2,426 1,902

Notes to Table 1. Table reports average values of Uxt in thousands of workers over the entire

sample and since 2007 along with predicted values from simple steady-state calculations.

Parameters were chosen to fit exactly the values in that row appearing in normal face, while the

model’s predictions for other numbers are indicated by parentheses.
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Table 2. Parameter estimates for the baseline model

σwL 0.0434*** R1 0.0981*** δ1 0.0053

(0.0041) (0.0058) (0.0138)

σwH 0.0456*** R2.3 0.0759*** δ2 -0.0647***

(0.0059) (0.0043) (0.0242)

σxL 0.0446*** R4.6 0.0775*** δ3 0.0724***

(0.0049) (0.0068) (0.0250)

σxH 0.0209*** R7.12 0.0597***

(0.0028) (0.0051)

R13+ 0.0366***

(0.0026)

No. of Obs. 456

Log-Likelihood 2,401.6

Notes to Table 2. White (1982) quasi-maximum-likelihood standard errors in parentheses.
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Table 3. Variance decomposition and test of null hypothesis that composition of inflows does not

matter in alternative unrestricted vector autoregressions

Dependent Other variables Variance decomposition F -test

variable in VAR Own Outflows Inflows (p-value)

(1) (2) (3) (4) (5) (6)

(1) U4.+t Ft, U
1
t 36% 30% 34% –

(2) U4.+t Ft, U
1
PS,t, U

1
t 26% 25% 49% F (12, 389) = 1.97

(p = 0.03)

(3) U7.+t Ft, U
1
PS,t, U

1
t 24% 30% 46% F (12, 389) = 1.79

(p = 0.05)

(4) U4.+t Ft, U
1
PS,t, St, U

1
t 24% 14% 63% F (24, 377) = 1.78

(p = 0.01)

(5) u4.+t ft, u
1
PS,t, st 18% 35% 47% F (24, 389) = 1.11

(p = 0.33)

Notes to Table 3. All results based on a 12-lag VAR estimated 1977:M7-2013:M12 including the

variables indicated in columns 1 and 2 with Cholesky ordering from left to right. Variance

decompositions refer to contributions to the 24-month-ahead mean-squared error for the variable

indicated in column 1.
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Table 4. Comparison of variance decomposition across different models

Shocks (1) (2) (3) (4) (5) (6) (7) (8)

# of Param. 12 12 12 12 13 15 16 12
Log-L. 2401.6 2311.0 1149.8 2428.7 2402.0 2459.8 2413.2 2399.3
SIC -4729.7 -4584.5 -2233.8 -4783.9 -4724.4 -4827.8 -4728.4 -4725.1

3 month F - - - - - - 0.571 -
- - - - - - (0.071) -

wL 0.434 0.423 0.283 0.126 0.429 0.371 0.240 0.396
(0.047) (0.049) (0.063) (0.031) (0.048) (0.045) (0.039) (0.046)

wH 0.223 0.248 0.209 0.396 0.226 0.278 0.128 0.147
(0.044) (0.047) (0.062) (0.054) (0.044) (0.049) (0.030) (0.038)

pL 0.242 0.258 0.307 0.186 0.243 0.211 0.000 0.225
(0.039) (0.040) (0.064) (0.039) (0.040) (0.037) (0.051) (0.036)

pH 0.101 0.071 0.201 0.292 0.103 0.140 0.061 0.232
(0.024) (0.022) (0.051) (0.050) (0.025) (0.031) (0.012) (0.046)

Inflows 0.657 0.671 0.492 0.522 0.655 0.649 0.368 0.543
L group 0.676 0.681 0.590 0.312 0.672 0.582 0.240 0.621

1 year F - - - - - - 0.615 -
- - - - - - (0.076) -

wL 0.545 0.517 0.386 0.292 0.545 0.533 0.311 0.496
(0.049) (0.050) (0.067) (0.046) (0.052) (0.050) (0.051) (0.050)

wH 0.083 0.092 0.094 0.223 0.083 0.108 0.049 0.054
(0.020) (0.022) (0.031) (0.042) (0.020) (0.024) (0.013) (0.016)

pL 0.333 0.365 0.413 0.297 0.333 0.303 0.000 0.354
(0.048) (0.049) (0.066) (0.052) (0.051) (0.049) (0.071) (0.049)

pH 0.039 0.026 0.107 0.188 0.039 0.056 0.025 0.096
(0.010) (0.009) (0.028) (0.040) (0.011) (0.014) (0.005) (0.024)

Inflows 0.628 0.609 0.480 0.515 0.628 0.641 0.360 0.550
L group 0.878 0.882 0.799 0.589 0.878 0.836 0.311 0.850

2 year F - - - - - - 0.616 -
- - - - - - (0.078) -

wL 0.570 0.527 0.434 0.410 0.571 0.533 0.331 0.520
(0.050) (0.052) (0.068) (0.049) (0.054) (0.052) (0.055) (0.051)

wH 0.057 0.062 0.061 0.152 0.057 0.074 0.035 0.038
(0.014) (0.015) (0.021) (0.032) (0.014) (0.017) (0.009) (0.012)

pL 0.346 0.394 0.435 0.306 0.344 0.334 0.000 0.375
(0.049) (0.051) (0.067) (0.053) (0.053) (0.052) (0.075) (0.050)

pH 0.027 0.018 0.070 0.133 0.028 0.039 0.018 0.068
(0.007) (0.006) (0.019) (0.031) (0.008) (0.010) (0.004) (0.018)

Inflows 0.627 0.589 0.495 0.562 0.628 0.607 0.366 0.558
L group 0.916 0.921 0.869 0.716 0.915 0.867 0.331 0.895

Notes to Table 4. (1) Baseline model, (2) alternative data, (3) post 94 data, (4) unadjusted data, (5)

unrestricted time-invariant genuine duration dependence (GDD), (6) time-varying GDD, (7) correlated

shocks, (8) weekly frequency. SIC calculated as minus twice the log likelihood plus number of parameters
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times log of sample size (T = 456). Likelihood and SIC for columns 2-4 are not comparable with the

others because the data on yt are different. F denotes aggregate factor. Standard errors in parentheses.
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Figure 1. Number of unemployed individuals (in thousands) by duration of time they have

already been unemployed as of the indicated date

Notes to Figure 1. Panel A plots the number unemployed for 1 month, 2-3 months, and 4-6

months, while Panel B reports those unemployed 7-12 months and more than 12 months. Sources:

For U1, U2.3 and U4.6 in Panel A, BLS. For U7.12 and U13.+ in Panel B, authors’calculation.
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Figure 2. Predicted and actual numbers of unemployed as a function of duration based on constant-

parameter cross-sectional heterogeneity specification

Notes to Figure 2. Horizontal axis shows duration of unemployment in months and vertical axis

shows number of unemployed for that duration in thousands of individuals. Dots denote imputed

values for Ū1, Ū3, Ū5, Ū9.5, and Ū15 based on equation (6) with wL, wH , xL, xH , and δ chosen to

fit the observed values of Ū1, Ū2.3, Ū4.6, Ū7.12, and Ū13.+ exactly. Curves denote predicted values

from 4-parameter pure cross-sectional heterogeneity model fit to 1976-2013 historical average values

for Ū1, Ū2.3, Ū4.6, and Ū7.12 (panel A) and for values since 2007:M12 (panel B).
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Figure 3. Unemployment continuation probabilities as a function of duration based on constant-

parameter pure genuine duration dependence specification

Notes to Figure 3. Horizontal axis shows duration of unemployment in months and vertical axis

shows probability that individual is still unemployed the following month. Curves denote predicted

values from the 5-parameter pure GDD model (4) fit to 1976-2013 historical average values for Ū1,

Ū2.3, Ū4.6, Ū7.12 and Ū13.+ (panel A) and for values since 2007:M12 (panel B). The GDD model

exactly fits the dots plotted in Figure 2 for each case.
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Figure 4. Probability that a newly unemployed worker of each type will still be unemployed

the following month

Notes to Figure 4. The series plotted are p̂it|T (1) for i = L,H.
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Figure 5. Number of newly unemployed workers of each type

Notes to Figure 5. The series plotted are ŵit|T for i = L,H.
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Figure 6. Share of total unemployment accounted for by each type of worker
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Figure 7. Estimates of genuine duration dependence

Notes to Figure 7. Panel A plots dτ as a function of τ (months spent in unemployment).

Panel B plots average unemployment-continuation probabilities of type H and type L workers as

a function of duration of unemployment.
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Figure 8. Fraction of variance of error in forecasting total unemployment at different horizons

attributable to separate factors

Notes to Figure 8. Horizontal axis indicates the number of months ahead s for which the forecast

is formed. Panel A plots the contribution of each of the factors {wHt, wLt, xHt, xLt} separately,

Panel B shows combined contributions of {wHt, xHt} and {wLt, xLt}, and Panel C shows combined

contributions of {wHt, wLt} and {xHt, xLt}.
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Figure 9. Historical decompositions of five U.S. recessions

Notes to Figure 9. The shaded areas denote NBER recessions.
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Figure 10. Number unemployed for 4 months normalized at a value of 1.0 (starred line, left

axis) and exit probability of those unemployed for 4 months and over (solid line, right axis) during

and after the Great Recession

Notes to Figure 10. The shaded area denotes the Great Recession. Horizontal solid line denotes

value of 2008:M7. Source: Authors’calculation.
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Figure 11. Realized and predicted total number unemployed and unemployment exit probabil-

ities, October 2007 to May 2012

Notes to Figure 11. The shaded area denotes the Great Recession. Units for Panel A are in

thousands workers. Predicted fixes exit probability from U4.+t at 2008:M7 value. Sources: For

the total number unemployed in Panel A, BLS. For the unemployment exit probability in Panel B,

authors’calculation.
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Figure 12. Breakdown of unemployment by reason for unemployment and duration

Notes to Figure 12. Panel A shows 1994-2013 average shares of unemployment by reason. Panel

B plots newly unemployed individuals by reason for unemployment. Panel C shows newly unem-

ployed type L individuals and newly unemployed individuals who gave permanent job loss or end

of a temporary job as the reason. Panel D shows total numbers of unemployed type L workers

compared to total numbers of unemployed who gave permanent job loss or end of temporary job

as the reason. Sources: For Panel A and B, authors’calculation. For the number of newly unem-

ployed permanent job losers in Panel C, author’s calculation. For the total number of unemployed

permanent job losers in Panel D, BLS.
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Figure 13. Inflows and total numbers of type L workers by reason of unemployment

Notes to Figure 13. Panel A shows the number of type L individuals who are newly unemployed

by reason of unemployment along with the sum across reasons (thick fuchsia) and inference based

on uncategorized aggregate data (dashed black). Panel B shows the number of type L workers

who have been unemployed for any duration by reason of unemployment along with the sum across

reasons (thick fuchsia) and inference based on uncategorized aggregate data (dashed black). Source:

Ahn (2014).
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Figure 14. Fraction of variance of error in forecasting total unemployment at different horizons

attributable to separate factors in the model with correlated errors

Notes to Figure 14. Horizontal axis indicates the number of months ahead s for which the

forecast is formed. Panel A shows the contribution of the aggregate factor Ft along with the idio-

syncratic components of {wHt, wLt, xHt, xLt} separately. Panel B shows the combined contributions

of idiosyncratic components of {wHt, xHt} and {wLt, xLt} along with aggregate factor Ft. Panel C

shows the combined contributions of idiosyncratic components of {wHt, wLt} and {xHt, xLt} along

with aggregate factor Ft.
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Appendix

A. Measurement issues and seasonal adjustment

The seasonally adjusted numbers of people unemployed for less than 5 weeks, for between 5 and

14 weeks, 15-26 weeks and for longer than 26 weeks are published by the Bureau of Labor Statistics.

To further break down the number unemployed for longer than 26 weeks into those with duration

between 27 and 52 weeks and with longer than 52 weeks, we used seasonally unadjusted CPS

microdata publicly available at the NBER website (http://www.nber.org/data/cps_basic.html).

Since the CPS is a probability sample, each individual is assigned a unique weight that is used to

produce the aggregate data. From the CPS microdata, we obtain the number of unemployed whose

duration of unemployment is between 27 and 52 weeks and the number longer than 52 weeks. We

seasonally adjust the two series using X-12-ARIMA,22 and calculated the ratio of those unemployed

27-52 weeks to the sum. We then multiplied this ratio by the published BLS seasonally adjusted

number for individuals who had been unemployed for longer than 26 weeks to obtain our series

U7.12t .23

An important issue in using these data is the redesign of the CPS in 1994. Before 1994,

individuals were always asked how long they had been unemployed. After the redesign, if an

individual is reported as unemployed during two consecutive months, then her duration is recorded

automatically as the sum of her duration last month and the number of weeks between the two

months’survey reference periods. Note that if an individual was unemployed during each of the two

weeks surveyed, but worked at a job in between, that individual would likely self-report a duration

of unemployment to be less than 5 weeks before the redesign, but the duration would be imputed

to be a number greater than 5 weeks after the redesign.

As suggested by Elsby, Michaels and Solon (2009) and Shimer (2012) we can get an idea of the

size of this effect by making use of the staggered CPS sample design. A given address is sampled

for 4 months (called the first through fourth rotations, respectively), not sampled for the next 8

22An earlier version of this paper dealt with seasonality by taking 12-month moving averages and arrived at
similar overall results to those presented in this version. As a further check on the approach used here, we compared
the published BLS seasonally adjusted number for those unemployed with duration between 15 and 26 weeks to an
X-12-ARIMA-adjusted estimate constructed from the CPS microdata, and found the series to be quite close.

23This adjustment is necessary because the published number for unemployed with duration longer than 26 weeks
is different from that directly computed from the CPS microdata, although the difference is subtle. The difference
arises because the BLS imputes the numbers unemployed with different durations to various factors, e.g., correction
of missing observations.
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months, and then sampled again for another 4 months (the fifth through eighth rotations). After

the 1994 redesign, the durations for unemployed individuals in rotations 2-4 and 6-8 are imputed,

whereas those in rotations 1 and 5 are self-reported, just as they were before 1994. For those in

rotation groups 1 and 5, we can calculate the fraction of individuals who are newly unemployed

and compare this with the total fraction of newly unemployed individuals across all rotations. The

ratio of these two numbers is reported in Panel A of Figure A1, and averaged 1.15 over the period

1994-2007 as reported in the second row of Table A1. For comparison, the ratio averaged 1.01

over the period 1989-1993, as seen in the first row. This calculation suggests that if we want to

compare the value of U1t as calculated under the redesign to the self-reported numbers available

before 1994, we should multiply the former by 1.15. This is similar to the adjustment factors of

1.10 used by Hornstein (2012), 1.154 by Elsby, Michaels and Solon (2009), 1.106 by Shimer (2012),

and 1.205 by Polivka and Miller (1998).

For our study, unlike most previous researchers, we also need to specify which categories the

underreported newly unemployed are coming from. Figure A1 reports the observed ratios of

rotation 1 and 5 shares to the total for the various duration groups, with average values summarized

in Table A1. One interesting feature is that under the redesign, the fraction of those with 7-12

month duration from rotations 1 and 5 is very similar to that for other rotations, whereas the

fraction of those with 13 or more months is much lower.24 Based on the values in Table A1, we

should scale up the estimated values for U1t and scale down the estimated values of U
2.3
t and U13.+t

relative to the pre-1994 numbers. The values for U4.6t and U7.12t seem not to have been affected

much by the redesign. Our preferred adjustment for data subsequent to the 1994 redesign is to

multiply U1t by 1.15, U
2.3
t by 0.87, U13.+t by 0.77, and leave U4.6t and U7.12t as is. We then multiplied

all of our adjusted duration figures by the ratio of total BLS reported unemployment to the sum

of our adjusted series in order to match the BLS aggregate exactly.

Hornstein (2012) adopted an alternative adjustment, assuming that all of the imputed newly

unemployed came from the U2.3 category. He chose to multiply U1t by 1.10 and subtract the

added workers solely from the U2.3t category. As a robustness check we also report results using

24One possible explanation is digit preference—an individual is much more likely to report having been unemployed
for 12 months than 13 or 14 months. When someone in rotation 5 reports they have been unemployed for 12 months,
BLS simply counts them as such, and if they are still unemployed the following month, BLS imputes to them a
duration of 13 months. The imputed number of people 13 months and higher is significantly bigger than the self-
reported numbers, just as the imputed number of people with 2-3 months appears to be higher than self-reported.

60



Hornstein’s proposed adjustment in Section 5.1, as well as results using no adjustments at all.

An alternative might be to to use the ratios for each t in Figure A1 rather than to use the aver-

ages from Table A1. However, as Shimer (2012) and Elsby, Michaels and Solon (2009) mentioned,

such an adjustment would be based on only about one quarter of the sample and thus multiplies

the sampling variance of the estimate by about four, which implies that noise from the correction

procedure could be misleading in understanding the unemployment dynamics.

Table A1. Average ratio of each duration group’s share in the first/fifth rotation group to that

in total unemployment

U1 U2.3 U4.6 U7.12 U13.+

1989-1993 1.01 1.01 0.96 1.02 0.97

1994-2007 1.15 0.87 0.95 1.05 0.77

B. Estimation Algorithm

The system (16) and (7)-(11) can be written as

xt = Fxt−1 + vt

yt = h(xt) + rt

for xt = (ξ′t, ξ
′
t−1, ..., ξ

′
t−47)

′, E(vtv
′
t) = Q, and E(rtr

′
t) = R. The function h(.) as well as elements of

the variance matrices R and Q depend on the parameter vector θ = (δ1, δ2, δ3, R1, R2.3, R4.6, R7.12,

R13+, σ
w
L , σ

w
H , σ

x
L, σ

x
H)′. The extended Kalman filter (e.g., Hamilton, 1994b) can be viewed as an

iterative algorithm to calculate a forecast x̂t+1|t of the state vector conditioned on knowledge of

θ and observation of Yt = (y′t, y
′
t−1, ..., y

′
1)
′ with Pt+1|t the MSE of this forecast. With these

we can approximate the distribution of yt conditioned on Yt−1 as N(h(x̂t|t−1), H
′
tPt|t−1Ht + R)

for Ht = ∂h(xt)/∂x
′
t|xt=x̂t|t−1 from which the likelihood function associated with that θ can be

calculated and maximized numerically. The forecast of the state vector can be updated using

x̂t+1|t = Fx̂t|t−1 + FKt(yt − h(x̂t|t−1))

Kt = Pt|t−1Ht(H
′
tPt|t−1Ht +R)−1
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Pt+1|t = F (Pt|t−1 −KtH
′
tPt|t−1)F

′ +Q.

A similar recursion can be used to form an inference about xt using the full sample of available

data, x̂t|T = E(xt|yT , ..., y1) and these smoothed inferences are what are reported in any graphs in

this paper; see our online appendix for further details.

Prior to the starting date January 1976 for our sample, BLS aggregates are available but not the

micro data that we used to construct U13.+t . For the initial value for the extended Kalman filter,

we calculated the values that would be implied if pre-sample values had been realizations from an

initial steady state, estimating the (4× 1) vector ξ̄0 from the average values for Ū1, Ū2.3, Ū4.6, and

Ū7.+ over February 1972 - January 1976 using the method described in Section 1.1. Our initial

guess was then x̂1|0 = ι48 ⊗ ξ̄0 where ι48 denotes a (48 × 1) vector of ones. Diagonal elements of

P1|0 determine how much the presample values of ξj are allowed to differ from this initial guess ξ̂j|0.

For this we set E(ξj − ξ̂j|0)(ξj − ξ̂j|0)′ = c0I4 + (1 − j)c1I4 with c0 = 10 and c1 = 0.1. The value

for c0 is quite large relative to the range of ξt|T over the complete observed sample, ensuring that

the particular value we specified for x̂1|0 has little influence. For k < j we specify the covariance25

E(ξj − ξ̄0)(ξk − ξ̄0)′ = E(ξj − ξ̄0)(ξj − ξ̄0)′. The small value for c1 forces presample ξj to be close

to ξk when j is close to k, again consistent with the observed month-to-month variation in ξ̂t|T .

C. Derivation of linearized variance and historical decompositions

The state equation ξt+1 = ξt + εt+1 implies

ξt+s = ξt + εt+1 + εt+2 + εt+3 + · · ·+ εt+s

= ξt + ut+s.

Letting yt = (U1t , U
2.3
t , U4.6t , U7.12t , U13.+t )′ denote the (5 × 1) vector of observations for date t, our

model implies that in the absence of measurement error yt would equal h(ξt, ξt−1, ξt−2, ..., ξt−47)

25 In other words,

P1|0 =


c0I4 c0I4 c0I4 · · · c0I4
c0I4 c0I4 + c1I4 c0I4 + c1I4 · · · c0I4 + c1I4
c0I4 c0I4 + c1I4 c0I4 + 2c1I4 · · · c0I4 + 2c1I4
...

...
... · · ·

...
c0I4 c0I4 + c1I4 c0I4 + 2c1I4 · · · c0I4 + 47c1I4

 .
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where h(·) is a known nonlinear function. Hence

yt+s = h(ut+s + ξt, ut+s−1 + ξt, ..., ut+1 + ξt, ξt, ξt−1, ..., ξt−47+s).

We can take a first-order Taylor expansion of this function around ut+j = 0 for j = 1, 2, ..., s,

yt+s ' h(ξt, ..., ξt, ξt, ξt−1, ..., ξt−47+s) +
s∑
j=1

[Hj(ξt, ξt, ..., ξt, ξt, ξt−1, ..., ξt−47+s)]ut+s+1−j

for Hj(·) the (5× 4) matrix associated with the derivative of h(·) with respect to its jth argument.

Using the definition of ut+j , this can be rewritten as

yt+s ' cs(ξt, ξt−1, ..., ξt−47+s) +
s∑
j=1

[Ψs,j(ξt, ξt−1, ..., ξt−47+s)]εt+j

from which (17) follows immediately.

Similarly, for purposes of a historical decomposition note that the smoothed inferences satisfy

ξ̂t+s|T = ξ̂t|T + ε̂t+1|T + ε̂t+2|T + ε̂t+3|T + · · ·+ ε̂t+s|T

where ε̂t+s|T = ξ̂t+s|T − ξ̂t+s−1|T . For any date t + s we then have the following model-inferred

value for the number of people unemployed:

ι5
′h(ξ̂t+s|T , ξ̂t+s−1|T , ξ̂t+s−2|T , ..., ξ̂t+s−47|T ).

For an episode starting at some date t, we can then calculate

ι5
′h(ξ̂t|T , ξ̂t|T , ξ̂t|T , ..., ξ̂t|T , ξ̂t−1|T , ..., ξ̂t+s−47|T ).

This represents the path that unemployment would have been expected to follow between t and t+s

as a result of initial conditions at time t if there were no new shocks between t and t+s. Given this

path for unemployment that is implied by initial conditions, we can then isolate the contribution

of each separate shock between t and t + s. Using the linearization in equation (17) allows us to
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represent the realized deviation from this path in terms of the contribution of individual historical

shocks as in (20).
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Figure A1. Ratio of each duration group’s share in the first and fifth rotation groups to that in

all rotation groups. Source: Authors’calculation.
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