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Abstract

This paper compares consumption-based asset pricing models based on the
forecasting performance of investors who use economic constraints derived
from the models to predict the equity premium. Three prominent asset pric-
ing models are considered: Habit Formation, Long Run Risk, and Prospect
Theory. I propose a simple Bayesian framework through which the investors
impose the economic constraints as model-based priors on the parameters of
their predictive regressions. An investor whose prior beliefs are rooted in the
Long Run Risk model achieves more accurate forecasts overall. The greatest
difference in performance occurs during the bull market of the late 1990s.
During this period, the weak predictability of the equity premium implied by
the Long Run Risk model helps the investor to not prematurely anticipate
falling stock prices.
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1 Introduction

Predicting aggregate stock returns has been of great interest to academics and in-
vestors alike. For academics, the predictability of stock returns is important for
testing market efficiency. For investors, knowing whether the equity premium is
predictable is crucial for portfolio allocation decisions. An extensive literature uses
a variety of variables to explain the time-variation of returns (see, for example,
Campbell (1987); Campbell and Shiller (1988); Fama and French (1988 and 1989);
Baker and Wurgler (2000); Lettau and Ludvigson (2001); Polk, Thompson, and
Vuolteenaho (2006); Welch and Goyal (2008); Li, Ng, and Swaminathan (2013);
Kruttli, Patton, and Ramadorai (2015)). Valuation ratios were initially found to
have predictive power when forecasting the equity premium, but the set of fore-
casting variables has since been extended with variables such as corporate payout,
fluctuations in the consumption-wealth ratio, implied cost of capital, and yields on
bonds and Treasury securities.

Welch and Goyal (2008) provide a comprehensive analysis of the in-sample and
out-of-sample (OOS) predictive power of the major variables and question whether
an investor could have used these predictors to forecast the equity premium OOS.
Campbell and Thompson (2008) further investigate these findings by imposing eco-
nomic constraints when estimating the single-variable predictive regressions. They
apply sign restrictions on the parameter estimates of the predictive regression and a
non-negativity restriction on the forecast of the equity premium. These restrictions
help the investor to reduce uncertainty about the regression parameters. Campbell
and Thompson (2008) find that through these restrictions, a real-time investor could
profitably forecast the equity premium.

This paper imposes novel economic constraints derived from consumption-based
asset pricing models on the parameters of single-variable predictive regressions that
are typically used in the equity premium prediction literature. I propose a simple

Bayesian econometric framework to implement these economic constraints as prior



distributions on the parameters. These prior distributions are named model-based
priors. My approach relates to the macroeconometric literature, in which prior dis-
tributions from dynamic stochastic general equilibrium models (DSGE) are imposed
on vector autoregressions (VAR) (see, for example, Ingram and Whiteman (1994)
and Del Negro and Schorfheide (2011)). Instead of macroeconomists who use priors
from DSGE models to improve their forecasts of macroeconomic variables, I con-
sider investors who use model-based priors from consumption-based asset pricing
models to forecast the equity premium. The three consumption-based asset pricing
models that act as sources for the model-based priors are the Habit Formation (HF)
model of Campbell and Cochrane (1999), the Prospect Theory (PT) model of Bar-
beris, Huang, and Santos (2001), and the Long Run Risk (LRR) model of Bansal
and Yaron (2004). I chose these three models, as they propose different theories
that can explain the equity premium puzzle (Mehra and Prescott (1985)). Also, the
respective authors emphasize the equity premium predictability implied by their
models and calibrate their models with similar US data.’

The model-based priors allow me to assess whether an investor could have prof-
ited from knowing the theories and the theories’ implications for the predictability
of the equity premium inherent in these consumption-based asset pricing models. I
assume that an investor who forecasts the equity premium with valuation ratios has
a prior belief about the parameter estimates of the predictive regression that stems
from one of the asset pricing models. The investor then updates her beliefs about
the predictive regression parameters with empirical data and forecasts the equity
premium OOS based on the posterior parameter estimates. To my knowledge, prior
distributions derived from asset pricing models have not been previously explored for
the purpose of forecasting returns OOS. Unlike other papers in the equity premium

prediction literature, the focus of this paper is to compare the performances of the

'Barro (2006) explains the equity premium puzzle through a disaster risk model, but unlike the
three asset pricing models used in this paper, the calibration is based on international data on large
economic declines, and the model-implied predictability of the equity premium is not analyzed.



model-based priors from the three asset pricing models with each other. Comparing
the accuracy of the forecasts provides an assessment of how useful the asset pricing
models’ descriptions of the macro-finance world are for a finance practitioner who
attempts to time her investments in the aggregate stock market. This novel way
of comparing consumption-based asset pricing models leads to insights that are not
obtained when matching empirical data moments with model-based moments from
Monte Carlo simulations, as is generally done (see, for example, Bansal, Gallant,
and Tauchen (2007) for a comparison of the HF and the LRR models and Ludvigson
(2012) for a survey of the literature).?

Several other papers in this growing literature also make use of economically
motivated parameter constraints for predicting the equity premium and implement
them through a type of Bayesian framework on the predictive regressions. Pastor
and Stambaugh (2009) employ a prior that implies a negative correlation between
expected and unexpected return shocks. Shanken and Tamayo (2012) consider prior
beliefs on the risk-return tradeoff and on the extent to which mispricing drives pre-
dictability. Pettenuzzo, Timmermann, and Valkanov (2014) propose a Bayesian
methodology that imposes a non-negative equity premium and bounds on the con-
ditional Sharpe ratio. Their constraints lead to forecasts of the equity premium
that are substantially more accurate. Wachter and Warusawitharana (2009) model
skepticism of an investor over the predictability of the equity premium as an infor-
mative prior over the R? and show that a skeptical investor achieves better fore-
casts. Wachter and Warusawitharana (2015) analyze whether an investor who is
initially skeptical about the existence of equity premium predictability would up-
date her prior and conclude that the equity premium is predictable when being
confronted with historical data. Other Bayesian studies consider uncertainty about

the predictive regression parameters through uninformative priors (see, for example,

2The analytical solutions and the empirically observable state variables of the LRR model allow
for additional model evaluations: the in-sample estimation proposed by Bansal, Kiku, and Yaron
(2010) and Constantinides and Ghosh (2012) and the OOS fit proposed by Ferson, Nallareddy, and
Xie (2013).



Stambaugh (1999); Barberis (2000); Brandt, Goyal, Santa-Clara, and Stroud (2005);
Penasse (2016)) or investigate how parameter uncertainty affects the long run pre-
dictive variance (see, for example, Pastor and Stambaugh (2012) and Avramov,
Cederburg, and Lucivjanska (2016)).

My sample comprises data from 1926 to 2014. I compare the predictive accuracy
of hypothetical investors who had access to the three asset pricing models from
1926 onward and use the model-based priors to reduce the uncertainty about the
parameters of the predictive regression. The investors try to time the market by
forecasting the equity premium with either the dividend-price ratio or the dividend
yield.> For my benchmark analysis, the calibration of the asset pricing models is
the same as presented by the authors in the respective publications of the models.*
However, the results are robust to recalibrating the asset pricing models over a time
period that has no overlap with the OOS period.

I find a sharp distinction between the performances of the LRR model-based
priors and the model-based priors derived from the HF and PT models. The LRR
model-based priors perform particularly well from 1980 onward. The HF and PT
model-based priors result in more accurate forecasts up to the 1980s. Over the
whole data sample, an investor armed with the knowledge of the LRR model would
have generally outperformed investors whose prior beliefs about the predictability
of the equity premium were rooted in the HF or PT model. The differences in
performance hold when comparing both the accuracy of the forecasts and the utility
gains achieved by the investors. The key to the strong performance of the LRR
prior over the total sample period is the bull market of the late 1990s, when low
valuation ratios predicted negative stock returns that did not materialize for several

years (see, for example, Lettau and Ludvigson (2005)). The LRR model implies a

3As in Welch and Goyal (2008) and Pettenuzzo et al. (2014), the dividend-price ratio is defined
as dividends divided by price, and the dividend yield is defined as dividends divided by price lagged
by one period.

4Because the authors of the asset pricing models use almost identical data sets for the calibration
of their respective models, the comparison of the model-based priors’ forecasting performances
should not be distorted.



lower predictive power of valuation ratios than the other two asset pricing models.
Hence, an investor who uses the LRR model as guidance for her investment choices
is more skeptical to conclude that low valuation ratios imply an immediate decline
in stock prices. This skepticism improves her forecast performance during the late
1990s, and this effect dominates less accurate forecasts of the LRR priors during
episodes when the predictive power of valuation ratios was stronger as, for example,
in the 1970s.

The differences in forecast accuracy between the three asset pricing models are
economically significant. I find that an investor with mean-variance preferences
who allocates her portfolio based on equity premium forecasts would on average be
willing to pay 26 basis points per year to have access to the LRR model-based priors
instead of the HF model-based priors. Relative to the PT model-based priors, the
investor would on average be willing to pay 67 basis points per year to have access
to the LRR model-based priors.

The implied predictability of the equity premium differs across the asset pricing
models due to the model-specific mechanisms that lead to time-variation in valua-
tion ratios. In the HF and PT models, changes in the valuation ratios are driven
by time-varying discount rates, and this mechanism leads to a predictable equity
premium. In the LRR model, the discount rate channel similarly leads to fluctua-
tions in the valuation ratios and return predictability. However, the LRR model also
incorporates a predictable component in the dividend growth rate, the long-run risk
component, which drives valuation ratios and mitigates their predictive power for
the equity premium. There exists considerable debate about whether the empirically
observed changes in valuation ratios are driven by time-variation of discount rates
or time-variation in the forecasts of dividend growth (see, for example, Campbell
and Shiller (1988); Lettau and Ludvigson (2005); Bansal, Kiku, and Yaron (2007
and 2012); Cochrane (2008)). This paper shows that from the perspective of an

investor who tries to time the market OOS over the 1926-2014 sample, model-based



priors derived from an asset pricing model that accounts for changes in valuation
ratios due to time-varying dividend growth forecasts are preferred because of the
lower equity premium predictability that the model implies.

The rest of this paper is as follows. Section 2 explains the Bayesian methodology
used to impose the model-based priors. Section 3 reports the data used and the
results. Section 4 discusses the utility gains that an investor with mean-variance
preferences achieves when implementing the model-based priors. Section 5 analyzes

the robustness of the results. Section 6 concludes the paper.

2 Methodology

This section describes how I impose economic constraints on the single-variable
predictive regressions through priors derived from consumption-based asset pricing

models and how these models are simulated to obtain the priors.

2.1 Equity premium prediction model

The log equity premium at time ¢+ 1 is denoted by r;,; and is defined as the rate of
return on the stock market in excess of the prevailing short-term interest rate. As is
common in the equity premium prediction literature, r;,; is regressed on a constant

and a predictor, x;, which is lagged by one period:
Tip1 = Po + Brxs + €41, where €,41~N(0,02). (1)

The OOS predictions of the equity premium are generated through recursive fore-
casts (see, for example, Campbell and Thompson (2008), Welch and Goyal (2008),
and Pettenuzzo et al. (2014)). Hence, all available observations up to period t are
used to estimate the model in equation (1). Based on the resulting estimates of
the parameters 8 = [y, (1] and o2, and by observing z;, one can forecast the

equity premium in ¢+ 1. The predicted equity premium is denoted by 7,,,. Because
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observations after ¢t + 1 are not used to estimate (3, a real-time investor who fore-
casts the equity premium can implement this procedure. If no model-based priors
are imposed, the parameters can be estimated via ordinary least squares (OLS). A
common benchmark for a predictor in the equity premium literature is the historical
average model, which forecasts that the equity premium will be next period what it

has been on average in the past (f; in equation (1) is set to zero).

2.2 Model-based priors

An investor who wants to make use of the theoretical insights of a consumption-
based asset pricing model can impose economic constraints derived from the asset
pricing model on 3 and 2. These model-based constraints reduce uncertainty about
the predictive regression parameters and are best imposed via Bayesian techniques.
[ assume that the investor’s prior belief is that 8 and o2 take the values implied by
the asset pricing model. She then updates her belief through empirical data.

The prior distribution of the parameters in equation (1) — that is 8 and ¢ —
is assumed to be Gamma-Normal (see, for example, Koop (2003) and Pettenuzzo
et al. (2014)), which has the advantage of being a tractable prior distribution. The

prior distribution is given by
B~N(BYV), 0.2 ~G(or %0t —1)). (2)
The mean and the variance of the Normal prior distribution are specified as

5 Aoty 0
B = , V= : (3)
I 0 )‘Uyz«,t/ o 3,1&
where 5 and 3] are the coefficient values implied by the consumption-based asset

pricing model. The parameter \ is exogenously chosen and is weakly positive. If

A is large, the prior is loose. If A is equal to zero, the prior is dogmatic. I set



A = 1 for the benchmark analysis. Section 5 reports results for different values of

A and shows that these are in line with the benchmark case. The sample moments

2

Ur,t

and afm are scaling factors, which ensure that the results are comparable for
different predictors and forecast frequencies. Such scaling factors are commonly
used in Bayesian macroeconometrics and date back to Litterman (1986). The sample

moments are given by

t— T=2 t—1 T=2
and
1 t—1 1 t—1
2 —\2 =
O-m,t = t——2 2 (ZL’T - It) , Ty = t——l TZ}CL’T. (5)

The Gamma distribution parametrization follows Koop (2003) by specifying the
distribution with mean 0"~ and degrees of freedom v(t — 1), where o2 is derived
from the consumption-based asset pricing model. The tightness of the prior is
controlled by v, which is strictly positive. A large v corresponds to a tight prior,
and a small v corresponds to a diffuse prior. The benchmark case sets v to 0.1, but

my results are robust to a tighter or a more diffuse prior on o2 (see Section 5).

2.3 Posterior distribution

The model-based prior distributions yield conditional posterior distributions for
and o 2. T draw from these two conditional distributions through a Gibbs sampler.

The conditional posterior distribution for [ is

B|Ue_2aItNN(BaV)7 (6)

where



X is a t — 1 x 2 matrix with rows [1 z,] for 7 =1,..,t — 1, and Risat—1x1
vector with elements r, for 7 = 2, ..., t. The information set at time t is denoted by

Z,. The conditional posterior distribution for o.~2 takes the form
022‘67:Zt NG(‘§727@) ) (8)

where

> ro(rr = Bo — Brar_1)? + 07 u(t — 1)

v=v+(t—1), and 5% =
v

(9)

Through the Gibbs sampling algorithm with .J iterations, we obtain a series of draws
for each of the parameters denoted by {47} and {o.%7} for j = 1,...,J. These

simulated series can then be used to draw from the predictive return distribution

p(Tt+1|It):/ 2p(rt+1|ﬁ,a;2,1t)p(6,a;2|It)d6dof, (10)
B,oc

which yields {ri 1} for 5 =1,...,J. The point forecast for the equity premium in

period t + 1 is given by the mean of the sampled distribution

J
m 1 ;
Tip1 = Wi ngﬂ- (11)

j=1
2.4 Deriving priors from asset pricing models

I next describe how the prior means 8* = [85, 8i]' and o* 2 are derived from
the three consumption-based asset pricing models: HF, LRR, and PT. All three
models specify a log consumption and a log dividend growth process. These two
processes drive the state variables of the models, and the state variables determine
the dividend-price ratio. By simulating random shocks, time series of consumption
growth and dividend growth are generated, based on which I solve the models in

each period for the log equity premium, the log dividend-price ratio, and the log
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dividend yield. The log dividend-price ratio is the difference between the log of
dividends and the log of prices, and the log dividend yield is the difference between
the log of dividends and the log of prices lagged by one period.> (A more detailed
description of the models and how to solve them is provided in Appendix A.) I
denote the simulated log equity premium in period tj; + 1 as rp44+1. I can then
estimate the single-variable predictive regression that is generally used in the equity
premium prediction literature and given in equation (1) with simulated data, where
the simulated predictor ;s is either the log dividend-price ratio or the log dividend
yield:

Tai+1 = Baro + BaaTare + €arer, where engy1~N(0, Uﬂe)- (12)

The OLS estimates of 8y = [Bar0, Bara) and o2 are denoted by 8* and o2,
which act as the prior means of the Gamma-Normal distribution described in Section
2.2. The predictive regression with simulated data in equation (12) is also estimated
by the respective authors of the consumption-based asset pricing models, that is,
Campbell and Cochrane (1999), Barberis et al. (2001), and Bansal and Yaron
(2004), to assess the predictability of the equity premium implied by their proposed
theories.

The model-based priors for my benchmark results are based on data simulated
from the asset pricing models when using the same calibration as proposed by the
authors in the respective published papers. The authors use almost identical cali-
bration data sets, and thus, the comparison of the model-based priors’ performances
should not be distorted. I assume that the investors have no uncertainty about the
parameters of the asset pricing models, since the focus of this paper (as in, for exam-
ple, Campbell and Thompson (2008) and Pettenuzzo et al. (2014)) is the investors’
uncertainty about the parameters of the predictive regression given in equation (1).

There is a concern that the results are affected by an overlap of the OOS period

5The dividend-price ratio and the dividend yield are the only two predictors from the equity
premium prediction literature that can be simulated from the three asset pricing models. Also,
valuation ratios are the most prominent predictors of the equity premium prediction literature.
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with the sample period used by the authors to calibrate the asset pricing models.
To address this concern, I show the robustness of the results in Section 5, by re-
calibrating the models with an empirical data sample that has no overlap with the
OOS period. The calibration of the models is described in Appendix A.

For the HF model, the simulation is at a monthly frequency, and the quarterly
and annual data are constructed by time-averaging the monthly data. The same
procedure is used by Campbell and Cochrane (1999). The log equity premium is
summed across the quarter (year). For the dividend-price ratio and the dividend
yield, consumption and dividends are summed across the quarter (year) and the
end-of-quarter (year) price is used. I simulate 120,000 months, estimate 3* and o2,
and average the estimates over 10 iterations. The HF model has two specifications,
and I use both to generate priors. The first specification (HF 1) assumes a perfect
positive correlation between the log consumption and log dividend growth, and the
second specification (HF 2) assumes that the correlation is imperfect and positive.

Similar to the HF model, the PT model is specified by Barberis et al. (2001)
with perfect positive correlation between the log consumption and log dividend
growth processes and with imperfect positive correlation between the two processes.
I only use the latter specification, as it more successfully matches the empirical data
moments. The authors calibrate the model with a range of parameter values for
the investor’s sensitivity to financial wealth fluctuations (b0) and the effect of prior
losses on risk aversion (k). I generate priors from the parameterizations that set b0
equal to 100 and k equal to 3 (PT 1) and 8 (PT 2). Of the specifications proposed by
Barberis et al. (2001), setting b0 equal to 100 and k equal to 8 generates a log equity
premium that is closest to the empirical data moment. For the b0 equal to 100 and &
equal to 3, the generated log equity premium is lower, but the average loss aversion
of the agent is 2.25, which is in line with experimental evidence. Following Barberis

et al. (2001), I simulate the model at monthly, quarterly, and annual frequencies by
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adjusting the model parameters accordingly.’

The LRR model, like the HF model, is simulated at a monthly frequency, and the
quarterly and annual values are time-averaged.” Bansal and Yaron (2004) use the
same procedure to generate simulated data. Again, 120,000 months are simulated
to estimate 8* and 7%, and the estimates are averaged across 10 iterations. Bansal
and Yaron (2004) present two specifications of their model: with and without time-
varying volatility of consumption growth. Because the specification that accounts
for time-varying volatility of consumption growth is substantially more successful at
matching the empirical data moments, I generate priors only from this specification.
However, as in Bansal and Yaron (2004), I consider two calibrations for the agent’s
risk aversion to simulate the model: a risk aversion of 7.5 (LRR 1) and a risk aversion
of 10 (LRR 2).

Panels A and B of Table 1 show 3* and o7 2 estimated from simulated data of the
three consumption-based asset pricing models. The table also reports the empirical
estimates over the total sample from 1926 to 2014 for comparison.® For all three
asset pricing models, 87 is positive for the dividend-price ratio and the dividend
yield. Thus, high valuation ratios predict higher subsequent returns, which is in line
with the empirical estimates. For both predictors and across all return frequencies,
the coefficients of the LRR model are substantially lower than for the HF and PT
models. The implication is that in the LRR model, the predictive power of valuation
ratios is weak. Of the three models, the PT model generates the highest 3; and
Bi for the dividend-price ratio. For the dividend yield, the 8§ and 37 of the HF

model are greater than the estimates of the other two models and the empirical

5For the monthly, quarterly, and annual frequencies, I simulate 120,000, 40,000, and 10,000
periods, and average the §* and o 2 estimates over 10 iterations.

"I simulate the model based on the analytical solutions as done by Bansal et al. (2010 and
2012) and Beeler and Campbell (2012).

8Adjusting the (; empirical estimates for the bias discussed by Stambaugh (1999) leads to
annual, quarterly, and monthly estimates of 0.034, 0.011, and 0.002, respectively, for the log
dividend-price ratio. For the dividend yield, the adjusted annual, quarterly, and monthly estimates
are 0.079, 0.020, and 0.006, respectively. For the model-implied parameter estimates, a bias-
adjustment is not necessary, because the data is simulated, and thus, finite sample issues do not

apply.
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estimates. The pattern for 0¥~ is more mixed. However, the values implied by the
asset pricing models are close to the empirical values.

The weak implied predictability of the LRR model can also be seen in Panel
C. Panel C reports the R? for the single-variable predictive regression in equation
(12). The R? values for the LRR model are lower than for the HF and PT models
and the empirical data. The predictability of the equity premium is strongest for
the HF model, for which the R? is higher than for the empirical data across all
frequencies and both predictors. For the PT model, the dividend-price ratio has
considerable predictive power, but the R? values for the dividend yield are lower
— consistent with the higher 57 for the dividend-price ratio in Panel A. While the
R? positively correlates with the magnitude of f, the 3} of the HF model is lower
than for the PT model for the dividend-price ratio, despite the R? being higher for
the HEF model. The reason for the smaller g7 of the HF model is the more volatile

simulated dividend-price ratio (shown in Appendix A).

2.5 Implied predictability of the asset pricing models

The reason for the weak implied predictability of the LRR prior relative to the HF
and the PT priors lies in the different mechanisms of the three asset pricing models.

In the HF model, time-variation of the dividend-price ratio is driven by a sur-
plus consumption ratio that increases (decreases) with positive (negative) shocks to
consumption. A positive shock to consumption makes the agent less risk averse,
which causes asset prices to rise. The increase in the asset prices results in a lower
dividend-price ratio, which predicts lower expected returns as the agent requires less
compensation for risk. Hence, time-variation in the dividend-price ratio is driven
by changes in the risk aversion of the agent, and these changes also affect expected
returns. However, the expected dividend growth remains constant and does not
affect the time-variation of the dividend-price ratio.

Similar to the HF model, the PT model generates a time-varying dividend-price

14



ratio through time-varying risk aversion and not changes in expected cash flows.
Barberis et al. (2001) incorporate utility from fluctuations in financial wealth into
a standard power utility function. Gains (losses) in financial wealth make the agent
less (more) risk averse. Thus, a positive shock to dividends will lower the risk
aversion of the agent, which results in a higher asset price and a lower dividend-price
ratio. As the expected dividend growth remains constant, the price increase leads
to lower expected returns. Dividend-price ratios and future returns are therefore
positively related.

In the LRR model, the agent is concerned about economic growth prospects
and economic uncertainty. The key difference in terms of predictability between
the LRR and the other two models is that the time-variation of the dividend-price
ratio is partly driven by changes to expected dividend growth prospects. A positive
shock to expected dividend growth leads to a lower dividend-price ratio that is
followed by higher cash flows. This mechanism mitigates the predictive power of
the dividend-price ratio that is generated by the economic uncertainty channel of
the LRR model: because of the Epstein-Zin (see Epstein-Zin (1989)) preferences of
the agents, a negative shock to time-varying economic uncertainty results in higher
asset prices and lower dividend-price ratios, which reduces subsequent returns.

Whether the changes in valuation ratios are driven by time-variation in the
forecasts of dividend growth or time-variation in discount rates is a source of con-
siderable debate (see, for example, Lettau and Ludvigson (2005), Bansal et al. (2007
and 2012), and Cochrane (2008)). The former leads to weak predictability of re-
turns, while the latter implies strong predictability of returns. This paper uses the
asset pricing models and the implied mechanisms for the time-variation in valua-
tion ratios dogmatically and investigates which mechanism leads to more accurate
forecasts through the model-based priors. The investors who use the model-based
priors to forecast the equity premium have no uncertainty about the asset pricing

parameters. The investors’ uncertainty is about the parameters of the predictive
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regression in equation (1).

3 Results

In this section, I describe the data and report the OOS results when imposing
model-bases priors derived from asset pricing models on the single-variable predictive

regressions.

3.1 Data

The empirical data on the equity premium and the predictors at a monthly, quar-
terly, and annual frequency are available on Amit Goyal’s website.” The equity
premium is computed as the log return on the S&P 500 index minus the log three-
month U.S. Treasury bill rate. I set the start date of the time series at 1926, as
high-quality return data on the S&P 500 from the Center of Research in Security
Prices became available in 1926. The time series ends in 2014. The availability of
predictor variables that can be used to assess the performances of the model-based
priors is restricted by the three asset pricing models. The predictor variables that
can be simulated from the three models are the dividend-price ratio and the divi-
dend yield. Dividends on the S&P 500 index are 12-month moving sums from 1926
to 2014. As for the data simulated from the asset pricing models, the dividend-price
ratio is defined as the difference between log dividends and log prices, and the div-
idend yield is defined as the difference between log dividends and log prices lagged

by one period.

9 Amit Goyal’s website address is http://www.hec.unil.ch/agoyal/.
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3.2 Measuring forecast accuracy

I assess the performances of the model-based priors via the OOS R? (see, for example,

Campbell and Thompson (2008)):

> gy (rr =77

Sy (re = )2

RQOOS =1- (13)

where 7" is the equity premium forecast when imposing the model-based prior as
given in equation (11); 7" is the prediction of the historical average model; and ¢ and
T are the start and end dates, respectively, of the OOS forecast period. Thus, the
R% 4 assesses the forecast performance of the model-based prior relative to the non-
predictability model, which assumes that the best forecast of the equity premium is

its historical average, that is, §; being set equal to zero in equation (1).

3.3 Forecasting

I consider four sample periods for the OOS predictability exercise. First, I use
the full sample from 1926 to 2014 and start the recursive OOS forecast in 1947.
This starting point guarantees that a sufficient number of data points are available
to estimate the predictive regression. Next, I analyze the subsample stability by
splitting the 1947-2014 OOS forecast period in half and consider forecasts up to
1980 and forecasts starting in 1981. Last, I only use the postwar sample from 1947
to 2014, and the forecasts start in 1968.

Figure 1 shows the quarterly OOS forecasts of the log equity premium from 1947
to 2014 in the top panel, when the predictive regression in equation (1) is estimated
via OLS. The valuation ratios predict a substantial time variation of the equity
premium. The lower panel depicts the corresponding OLS coefficient estimates.
Both predictors lost predictive power during the dot-com boom in the late 1990s,
which leads to the sharp drop in the coefficient estimates.

Table 2 shows the R2,4 (in percent) results for all model-based priors for three re-
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Figure 1: Empirical out-of-sample forecasts
The top panel shows the OOS quarterly log equity premium forecasts for two predictors: the
log dividend-price ratio and the log dividend yield. The predictive regression in equation (1) is
estimated recursively via OLS. The data sample starts in 1926 and the OOS period is from 1947
to 2014. The lower panel depicts the corresponding OLS coefficient estimates.
turn frequencies. Following the equity premium OOS forecasting literature, monthly,
quarterly, and annual return frequencies are used. The “no prior” column reports
the R% 4 for the case in which the single-variable predictive regression in equation
(1) is estimated via OLS. If the model-based prior leads to an increase in the R% ),
then the figure is in bold. The last column of the table show the best-performing
prior for the respective frequency, predictor, and time period. Whether the differ-
ences in forecast errors between the predictive regression, estimated via OLS or the
model-based priors, and the historical average model are significant is tested with a
Diebold-Mariano test (see Diebold and Mariano (1995)).

Overall, the model-based priors help to improve the forecast accuracy of the
single-variable predictive regression relative to the OLS estimates. The gains in

R%¢ are considerable compared with the literature (see, for example, Campbell

and Thompson (2008)). Out of the three asset pricing models, the priors derived
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from the LRR model perform consistently better than the priors derived from the HF
and PT models for three out of the four OOS periods. The LRR model-based priors
yield less accurate forecasts than the other model-based priors only for the 1947-1980
OOS period. In most cases, the LRR model-based priors outperform the historical
average model, which is shown by the positive R, values. The exception is the
1981-2014 OOS period, for which the LRR model-based priors improve the forecast
accuracy the most relative to the OLS estimates but fail to beat the historical average
model. The Diebold-Mariano test leads to statistically significant results only for
the 1947-1980 OOS period, for which we can reject the historical average model
at the quarterly and annual frequency. The difficulty of statistically rejecting the
historical average model when predicting the equity premium OOS is emphasized
by Welch and Goyal (2008).

Table 3 compares the model-based priors by assessing their forecast errors against
each other instead of comparing them to the forecast errors of the historical average
model. The differences in the RZ,q (in percent) between the best-performing prior
and the other priors are reported for every return frequency, predictor, and sample
period. To test whether the difference in forecast errors is statistically significant,
I use a one-sided Diebold-Mariano test. Despite the difficult task to statistically
reject OOS forecasting models of the equity premium (see, for example, Campbell
and Thompson (2008) and Welch and Goyal (2008)), the differences are statistically
significant in several cases. For the log dividend-price ratio, the hypothesis of equal
predictive power of the model estimated with the LRR priors and the PT priors
can be rejected for the majority of data samples. The differences between the RZ,q
of the LRR priors and the HF priors are generally smaller and, thus, significant
in fewer cases. When the log dividend yield acts as the predictor, the results are
not as pronounced as for the log dividend-price ratio, but the hypothesis of equal
predictive power can be rejected particularly at the monthly frequency, where more

data points are available and the power of the test is increased. The analysis in
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Section 4 shows that even small and statistically insignificant differences in R3¢
can lead to substantial utility gains for an investor with mean-variance preferences.

The strong performance of the LRR prior can be explained by the low model-
implied predictability. In Table 1, 35 and 3] are lower for all three frequencies and
both predictors compared with the empirical estimates and ; and /5 of the HF and
PT models. Thus, imposing the LRR prior pushes the posterior estimates of 5y and
B down. Figure 2 shows the OLS estimates — that is, no prior is imposed on the
predictive regression — and the posterior estimates for the log dividend-price ratio
and quarterly returns for the 1968-2014 OOS period. The LRR 1 posterior estimates
are substantially lower than the OLS estimates and the posterior estimates of the
HF 1 and PT 1 models. However, the model-based priors derived from the HF 1
model lead to posterior estimates that are similar to the OLS estimates. The model-
based priors from the PT 1 model push the posterior estimates for both coefficients
higher than they are when ignoring any prior and simply relying on OLS estimates.

Figure 3 shows that the lower posterior estimates achieved through the LRR 1
prior are beneficial for an investor. The top panel depicts the difference between
the cumulative sum of squared errors (SSE) of the historical average model and the
single-variable predictive regression estimated via OLS or via model-based priors. I
subtract the cumulative SSE of the predictive regression from the cumulative SSE
of the historical average model. Hence, a positive value implies that the predictive
regression outperforms the historical average model. Until the beginning of the
1990s, the predictive regression performs better than the historical average model
regardless of the estimation method. The highest cumulative SSE value is achieved
for an investor who relies on the priors of the PT 1 model, which is due to the strong
predictive power of the log dividend-price ratio implied by the PT 1 model. In the
1970s, valuation ratios had strong predictive power, and the PT 1 model makes
the investor rely on this predictive power to a higher degree than an investor who

uses the HF 1 or LRR 1 model to form her priors. The LRR 1 prior leads to the
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lowest cumulative SSE value until 1994. However, during the dot-com boom from
1994 to 1999, the predictive power of the log dividend-price ratio collapses and the
cumulative SSE of the predictive regression turns negative for all four estimation
methods. The investor armed with the LRR 1 model is able to limit poor forecasts,
as her belief in the predictive ability of valuation ratios is qualified because of her
prior. The lower panel of Figure 3 provides further detail. The equity premium
forecasts for the OOS period from 1968 to 2014 are depicted. The posterior point
forecasts given in equation (11) of the LRR 1 model are close to zero during the
dot-com boom. The other two model-based priors and the OLS estimates result in
strongly negative forecasts. Hence, an investor relying on these forecasts to time the
market suffers losses during this bull market period.

Some papers in the equity premium prediction literature restrict the model esti-
mates to yield only non-negative predictions of the equity premium (see, for example,
Campbell and Thompson (2008) and Pettenuzzo et al. (2014)). Such a restriction
will lead to a result that is similar to imposing the LRR prior. However, an investor
who derives a prior belief about the predictability of the equity premium through
data simulated from the asset pricing models would conclude that valuation ratios
can forecast a negative equity premium. Particularly for the HF and PT models,
negative forecasts occur frequently when estimating the predictive regression solely
with simulated data (as in equation (12)). For simulated data from the LRR model,
negative forecasts of the equity premium are not as frequent, as less weight is placed
on the predictor variable: [ is small.

Figure 4 shows the simulated posterior density of the quarterly log equity pre-
mium prediction given in equation (10) for the third quarter in 1998. The predictor
is the log dividend-price ratio, and the model-based priors are the same as in Figures
2 and 3. The densities are simulated with 10,000 draws. For all three model-based
priors, the posterior densities are similarly shaped and approximate a Normal dis-

tribution. Hence, there are no substantial differences in terms of the risk that the
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predictive densities imply. However, when imposing the LRR 1 prior, the density is
furthest to the right, corresponding to an equity premium forecast that is greater
than the forecast of the other two model-based priors. These posterior densities are
in line with the predictions during the dot-com boom shown in the lower panel of
Figure 3. Figure 5 shows the corresponding posterior densities of 5y and f; given
in equation (6). As the predictive density of the log equity premium, the coefficient
densities approximate Normal distributions. For both coefficients, the LRR 1 prior
results in posterior densities that are centered to the left of the HF 1 and PT 1
priors, consistent with the higher posterior mean of the equity premium predictive
density shown in Figure 4. Hence, in the third quarter of 1998 at the height of the
dot-com boom, when the dividend-price ratio was low, an investor who believes in
the HF 1 or PT 1 model expects a negative equity premium to materialize in the
next period. However, an investor whose prior beliefs are in line with the LRR 1
model is more hesitant to draw this conclusion. This finding is related to Wachter
and Warusawitharana (2009), who show that an investor who is skeptical about the
predictive power of the dividend-price ratio and the yield spread performs better
when forecasting the equity premium OOS.

My paper focuses on how model-based priors from different consumption-based
asset pricing models perform without investigating the reasons behind empirical
fluctuations in valuation ratios. However, several papers analyze drivers of the
high equity prices during the 1990s. Some researchers propose that an increase
in stock market participation and diversification is at least partially responsible
for the higher equity prices (see, for example, Heaton and Lucas (1999)). Lettau,
Ludvigson, and Wachter (2008) estimate through a regime-switching model that the
low dividend-price ratios during 1990s are driven by a shift to substantially lower
consumption volatility. This decrease in macroeconomic risk led to a lower expected
equity premium. Lettau and Van Nieuwerburgh (2008) allow for shifts in the steady

state of the economy and find a structural break in the 1990s for the dividend-price
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Figure 4: Predictive posterior density of the equity premium

This figure shows the simulated posterior density of the quarterly log equity premium prediction
given in equation (10) for the third quarter in 1998 for three model-based priors: HF 1, LRR 1,
and PT 1. The predictor is the log dividend-price ratio. Data from the first quarter in 1947 to the
second quarter in 1998 are used to estimate the predictive regression. The densities are simulated
with 10,000 draws.

ratio. The authors show that while this structural break can be detected in-sample,
an investor could not have exploited it OOS. Based on a VAR framework, Campbell,
Giglio, and Polk (2013) find that during the dot-com boom, the discount rates of

investors were at a historically low level, but the boom preceding the financial crisis

of 2007-2009 was caused by positive cash flow news.

4 Utility of an investor

So far, I have analyzed how priors derived from the three consumption-based asset
pricing models affect the forecast accuracy of single-variable predictive regressions.
However, investors are ultimately concerned about utility, and thus, we need to com-
pute differences in utility gains when comparing the model-based priors. Further,

comparing utility gains takes the investors’ risk aversion into account.
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Figure 5: Posterior density of coefficients

This figure shows the simulated posterior density of the coefficients Sy and ; given in equation (6)
for the third quarter in 1998 for three model-based priors: HF 1, LRR 1, and PT 1. The predictor
is the log dividend-price ratio. Quarterly data from the first quarter in 1947 to the second quarter
in 1998 are used to estimate the predictive regression. The densities are simulated with 10,000
draws.

The Bayesian technique that I use to impose the economic constraints provides
the full predictive density of the equity premium. Based on the mean and the
variance of the predictive density, I can compute the portfolio allocation and util-
ity gains of an investor with mean-variance preferences (see, for example, Camp-
bell and Thompson (2008) and Wachter and Warusawitharana (2009)). The utility
gains of an investor achieved through the model-based priors will also give us an

estimate of how much an investor would be willing to pay to know the theory of one

consumption-based asset pricing model over another.

4.1 Asset allocation

An investor is assumed to have mean-variance preferences, and she chooses portfolio

weights for a risky asset and a risk-free asset. The return on the risky asset is the log
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equity premium 7,4 plus the log risk-free return r,, and the risk-free asset yields

rr¢. At time ¢, the investor solves the following maximization problem
1
maxk; Wita] — 5V are (Wil (14)
subject to

Wit1 = apexp(ripr +754) + (1 — o) exp(ryy), (15)

where a; is the portfolio share of the risky asset, and v is the risk aversion of the

investor. The solution to the maximization problem is

o E;lexp(ryq + Tr) — eXP(Tf,t)]
! YVar, [exp(re41)]

(16)

For an investor who imposes model-based priors on the predictive regression to
forecast the equity premium, we can use the mean and the variance of the sampled
predictive density of ;1 given in equation (10) to approximate «;. The optimal
risky asset portfolio share based on the model-based prior forecasts is denoted &y ,,.

Based on &;,,, and the realized equity premium, the realized wealth can be computed
Witim = &5 exp(Tea1 +754) + (1 — &7 ,,) exp(ryy)- (17)

Solving for &;,, for t = ¢ —1,..,7 — 1 results in a sequence of {/Wt,m}tT:t. The

realized utility over the total OOS sample period is then given by

T

where W,, = #7—1) ZZ:; /I/I?T,m.
When estimating the realized utility of portfolios N and A, a certainty equivalent
return (CER) can be computed. The CER is defined as a constant return that, when

added to the portfolio return of portfolio IV, equates the realized utility of portfolios
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N and A. The CER is given by
CER = Uy — Uy. (19)

A more intuitive interpretation of the CER is a transaction cost or a management fee
that the investor is willing to pay each period to have access to the equity premium
forecasts used for portfolio A. For example, when portfolio N uses the model-based
prior from the HF model and portfolio A uses the model-based prior from the LRR
model, then the CER tells us how much the investor would be willing to pay each

period to have access to the LRR model instead of the HF model.

4.2 Utility results

I compute the CER given in equation (19) for each return frequency, predictor, and
OOS period. The share of the risky asset for portfolio A is computed based on
the predictions of the predictive regression when imposing the model-based prior
which results in the highest utility for the investor. The share of the risky asset
for portfolio NV is computed based on the predictions when imposing one of the
remaining model-based priors, respectively. The results are shown in Table 4, which
is structured like Table 3 but with the R%,4 figures replaced with the annualized
CERs. The risk aversion parameter 7 is set equal to 5.

The CER results are even more favorable to the LRR prior than the R% g
results reported in Table 2 and 3: an investor who derives her prior belief about
the predictability of the equity premium from the LRR model performs consistently
the best for three out of the four sample periods across all frequencies and both
predictors. The only OOS period during which the HF and PT priors dominate is
from 1947 to 1980. The CERs are economically significant with the maximum value
being 4.46%.

Panel D averages the CER for each prior pair across all frequencies, predic-
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tors, and sample periods. These values show how much on average an investor
would be willing to pay to have access to the model-based priors derived from the
consumption-based asset pricing model in the top row instead of any of the remain-
ing five model-based priors. For the LRR 1 prior, all the CER values are positive,
which implies that an investor who uses the LRR 1 prior to predict the equity pre-
mium and allocate her portfolio according to these predictions achieves the highest
average utility. The LRR 2 model is a close second with positive average CER values
against all model-based priors except the LRR 1 prior. The average CER values are
economically meaningful. Investors who rely on the HF 1 or HF 2 priors would pay
between 20 and 30 basis points per year to have access to the LRR priors. The in-
vestors who derive their prior beliefs about the predictability of the equity premium
from the PT model would on average need an additional 60 and 75 basis points per
year to achieve the utility level of the investor who uses the LRR priors.

Figure 6 shows the risky asset share of the portfolio given in equation (16) for
the HF 2, LRR 2, and PT 2 priors. The forecasts are at an annual frequency,
and the OOS period is from 1947 to 2014. The top panel shows the risky asset
share when the log dividend-price ratio is used as the predictor. For the bottom
panel, the log dividend-yield is the predictor. Generally, the LRR prior leads to a
more stable portfolio share of the risky asset, which is due to the low predictability
implied by the LRR model. The greatest difference between the priors is again
during the bull market of the late 1990s. For the dividend-price ratio, the HF 2 and
the PT 2 investors short the risky asset during this period, because they expect low
valuation ratios to predict strongly negative returns. However, the investor with
prior beliefs derived from the LRR 2 model is skeptical about the predictive power
of the low valuation ratios and maintains a positive weight on the risky asset. The
bottom panel is similar to the top panel with the difference being that the PT 2
investor is more bullish during the bull market of the late 1990s when predicting

with the dividend yield. This difference is explained by the prior means of the
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predictive regression coefficients reported in Panel A of Table 1. The model-implied
parameters of PT 2 for the dividend yield are smaller than for the dividend-price
ratio, which makes the investor more hesitant to believe that the low dividend yield

will predict an immediate downturn of the stock market.

5 Robustness

For the benchmark results shown previously, the consumption-based asset pricing
models used to derive the priors are calibrated as proposed by the respective authors,
that is, Campbell and Cochrane (1999), Barberis, et al. (2001), and Bansal and
Yaron (2004). To test whether the results are robust to calibrating the asset pricing
models with data from a time period that has no overlap with the OOS period, I
calibrate the parameters of the asset pricing models with data from 1926 to 1967.
In the OOS forecast exercise above, 1926 is the beginning of the return sample,
and 1967 is the end of the burn-in period for the postwar data sample. All three
asset pricing models are calibrated with annual data. Hence, using a shorter sample
for the calibration makes the task of matching empirical moments too challenging
for the models, as the empirical moments are likely distorted by outliers. I follow
the calibration methodology proposed by the respective authors: some parameters
are set equal to their empirical counterparts and others are chosen such that the
model simulated moments match the empirical moments, as, for example, the mean
and standard deviation of the dividend-price ratio or the equity premium. Details
regarding the calibration of the models can be found in Appendix A.

Table 5 reports the results for the priors derived from the asset pricing models
calibrated with data from 1926 to 1967. The OOS forecasts start in 1968. Panel
A shows the R% 4 for each prior, predictor, and return frequency. The priors from
the LRR model perform consistently the best and improve the R%, g relative to the

“no prior” forecast in every case. In Panel B, the difference between the R% ¢ of
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the respective prior and the best performing prior is shown. The significance of the
difference in forecast errors is tested with a Diebold-Mariano test (see Diebold and
Mariano (1995)). The differences in forecast performance between the LRR priors
and priors derived form the HF and the PT model are generally significant at a
monthly and a quarterly frequency, where the higher number of observations leads
to more power compared to the annual returns.

For the benchmark analysis, the tightness parameters of the Gamma-Normal
prior, A and v, are set equal to 1 and 0.1, respectively, as described in Section 2.2.
However, the results and the conclusions drawn in this paper are robust to tightening
or loosening the model-based priors.

Table 6 reports the results for the total sample, that is, the 1947-2014 OOS pe-
riod. Relative to the benchmark, the model-based priors are tightened and loosened
by a factor of 2 and 4. Tightening the priors further does not alter the conclusion,
and loosening the priors by more than factor of 4 leads to forecast results that are
not substantially different from the OLS estimates. Tightening (loosening) the prior
by a factor of 4 results in A = 0.25 (A = 4) and v = 0.4 (v = 0.025). The LRR
model-based priors yield the most accurate forecasts across the range of A and v val-
ues. For the dividend-price ratio, a LRR model-based prior is the best performing
prior for all the hyperparameter values and return frequencies, with the exception
of the monthly return frequency when A = 4 and v = 0.4. For the dividend-yield,
the LRR model-based priors outperform the other priors in half of the cases. As
in Table 3, the differences in OOS forecast errors are statistically significant based
on the Diebold-Mariano test (see Diebold and Mariano (1995)) in several cases at a
monthly and quarterly frequency.

The sensitivity to the prior tightness of the economic performance of a mean-
variance investor are shown in Table 7, which is stuctured similarly to Table 4 and
reports the CER given in equation (19) for each return predictor, prior tightness, and

return frequency, for the total sample OOS period, that is, from 1947 to 2014. An
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investor who forecasts the equity premium with an LRR model-based prior achieves
the highest utility in 23 out of the 24 cases. Panel D shows the average CER for
each model-based prior pair. Compared to an investor who times the market based
on forecasts from HF priors, an investor using the LRR priors generates a CER of
close to 20 basis point a year. The average CER of the LRR priors compared to
the PT priors is around 50 basis points per year. These results confirm that the
strong forecasting performance of an investor who derives her prior beliefs about
the equity premium predictability from the LRR model are robust to changes in the

prior tightness.

6 Conclusion

Different theories have been proposed to resolve the equity premium puzzle of Mehra
and Prescott (1985). Three prominent consumption-based asset pricing models that
provide different explanations for the existence of the equity premium puzzle are the
Habit Formation (HF), the Long Run Risk (LRR), and the Prospect Theory (PT)
models. I compare these asset pricing models based on whether they can profitably
guide the investment decisions of investors who try to time the stock market. I
propose a simple Bayesian framework in which investors reduce the uncertainty
about predictive regression parameters by imposing economic constraints derived
from the three asset pricing models. The predictor of the single-variable predictive
regression is a valuation ratio — that is, the log dividend-price ratio or the log
dividend yield.

The priors derived from the LRR model perform particularly well during the
dot-com boom in the late 1990s. During that period, low valuation ratios predicted
negative returns that failed to materialize for several years. The key to the strong
performance of the LRR priors is the weak implied predictive power of valuation

ratios for the equity premium. The weak predictive power is caused by the LRR
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model’s time-variation in the dividend growth forecasts, the long-run risk compo-
nent. Hence, an investor who uses the LRR model to guide her investment choices
is hesitant to conclude that low valuation ratios result in an immediate fall in stock
prices. The stronger predictability implied by the HF and PT models helps to im-
prove the forecast accuracy up to the 1980s. However, the performance deteriorates
quickly during the dot-com boom, as the investors who believe in the strong predic-
tive power of valuation ratios anticipate a sharp price decline much earlier than it
materializes. Because the performance during the dot-com boom dominates over the
total sample period, that is, from 1926 to 2014, an investor whose prior beliefs are
anchored in the LRR model would have outperformed investors whose prior beliefs
stem from the HF and PT models. These differences in forecast accuracy are not
only shown by the R%,, but also translate into considerable utility gains for an
investor with mean-variance preferences.

By imposing model-based priors derived from consumption-based asset pricing
models on predictive regressions and showing how the forecast performances of these
priors differ, this paper makes a novel contribution to the equity premium prediction
literature. This paper also adds to our understanding of consumption-based asset
pricing models. The paper shows that over the 1926-2014 sample, an investor whose
beliefs had been rooted in an asset pricing model that implies weak equity premium
predictability would have outperformed investors who relied on priors from models

in which the equity premium is strongly predictable.
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Appendix A Asset pricing models

A.1 By force of habit: A consumption-based explanation of

aggregate stock market behavior

Campbell and Cochrane (1999) use a standard representative-agent consumption-
based asset pricing model but add a slow-moving habit to the basic power utility
function. This slow-moving habit leads to a time-varying risk premium that is higher
at business cycle troughs than at peaks.

The agents are identical and maximize their utility given by

(1= _1q

Zat (G- Xt — : (A1)

where C; is the consumption level, X, is the level of habit, § is the time discount
factor, and + is the risk aversion. A surplus consumption ratio S; = (C; — X;)/C;
is defined — a small value of S; indicates that the economy is in a bad state. The

local curvature of this utility function is given by
wW=—————"==—. (A.2)
A process is specified for s; = In(S;), which ensures that C; is always above X;:
Sir1 = (1 — )5+ psp + A(s)(cry1 — ¢t — 9), (A.3)
with ¢ reflecting habit persistence. The function A(s;) takes the form

1 1_2(3t_'§)_17 St < Smaz
Asy) = 5 (A.4)

0, St > Smaz,

with the parameter s,,., set equal to 5+ %(1 — S52). The steady state value 5 is given
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by In(o/7/(1 — ¢)). The evolution of s;y; is based on consumption growth being

an i.i.d. lognormal process
Acii1 = g + vey1, where v S N(0,02). (A.5)

Stocks represent a claim to the consumption stream. The price-consumption

ratio for a consumption claim satisfies

C P
—(s¢) = By |:Mt+l%1 [l + C,t—H(SH_l)}} . (A.6)
t t+1

The underlying assumption is that dividend growth is perfectly correlated with

consumption growth in equation (A.5). Above, I denote this specification the HF

1 model.’® The intertemporal marginal rate of substitution (IMRS) M, takes the
form
Si1 G\
My, =0 . AT
= (% (A7)

Because the term (S;11/5;)~7 correlates positively with asset returns, the HF model
generates a higher equity premium compared with the standard power utility model.

The log risk-free rate is given by

2 .2

rl = =1n(8) + 79 = ¥(1 = 6)(s = 5) = [+ As)l” (A8)

The price-consumption ratio is correlated with the business cycles, as it depends
on s;. The ratio is high at business cycle peaks and low at troughs. Why is the price-
consumption ratio procyclical? Suppose there is a positive shock to consumption
in period ¢. Higher consumption raises s; and consequently E;[M, 1], which results
in a higher asset price and price-consumption ratio. (Equation (A.2) shows how

an increase in s; lowers the the local curvature of the utility function and makes

10The solution for the model specification which assumes imperfectly correlated consumption
and dividend processes (HF 2) is given in Campbell and Cochrane (1999).

48



the agent less risk averse.) Because expected future cash flows remain constant, the
higher asset prices will lead to lower expected returns. Hence, the price-consumption

ratio and subsequent returns are inversely correlated.

A.1.1 Calibration and simulation of model

For my benchmark analysis, priors from the HF model are based on the parameter
values proposed by Campbell and Cochrane (1999). These parameter values are re-
ported in Table A.1. in the “original value” column. My recalibration of the model
with data from 1926 to 1967 results in parameter values reported in the “1926-
1967 value” column. For the recalibration, I follow the methodology of Campbell
and Cochrane (1999). Consumption data are real per capita consumption of non-
durables and services from the Bureau of Economic Analysis (BEA). The standard
deviation of log consumption growth is chosen such that annual log consumption
growth simulated from the model matches the empirical counterpart of 3.02%. The
risk-free rate time series is from Amit Goyal’s website and deflated with inflation
data from Federal Reserve Economic Data. Dividends are computed using CRSP
New York Stock Exchange (NYSE) data. The persistence of the log price-dividend
ratio is 0.82. Following Campbell and Cochrane (1999), I chose v to match the
NYSE equity premium sharpe ratio, which is 0.33 for the 1926-1967 period, with
the HF 1 specification. The discount factor 0 is selected such that the annualized
log risk-free rate matches the empirical value of 0.31.

I apply the fixed-point method to solve for the price-consumption and the price-
dividend ratio (see Wachter (2005)). The model is simulated at a monthly frequency
and time-aggregated to lower frequencies. Summary statistics of the simulation for
the model specification with perfectly (HF 1) and imperfectly (HF 2) correlated
log consumption and log dividend growth are given in Panel A of Table A.2. The
simulated moments match the moments obtained by Campbell and Cochrane (1999)

and Wachter (2005). The simulated moments based on the model recalibrated with
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data from 1926-1967 can be found in Panel B of Table A.2.

A.2 Prospect theory and asset prices

In the model of Barberis et al. (2001), the agent not only derives utility from
consumption but also from financial wealth fluctuations. There are two important
aspects in the way financial wealth fluctuations affect the utility of an economic
agent. First, the agent is loss averse. Second, the degree of loss aversion depends
on prior investment outcomes. Prior gains lead to less loss aversion, and prior losses
lead to more loss aversion. Hence, the risk aversion of the agent varies over time.
Aggregate consumption growth and dividend growth follow the i.i.d. lognormal

processes given by

iid.
Aciy1 = ge + 0c€cpr1, where €.y ~ N(0,1) (A.9)
and
idd.
Adt+1 = da + O0d€d,t+1, where €dt+1 ™ N(O, 1), (AlO)

with the correlation between €.,41 and €441 being denoted by w.!!

The agent’s maximization problem is set up as

E

t=0

[, C .
Z (ptl t_ ~ + by C VPtHU(XtH, St, Zt))] . (A.11)

The second term captures the fact that the agent’s utility is affected by fluctuations
in financial wealth. The variable X;,; denotes the change of the financial wealth

between time ¢ and ¢ + 1 and is defined as

Xt+1 = Sth+1 — StRf’t. <A12)

HBarberis et al. (2001) consider two different specifications: Economy I, in which dividends
equal consumption, and Economy II, in which consumption and dividends follow separate but
positively correlated processes. The simulated moments of Economy II are much more successful
in matching the empirical moments; hence, I do not consider Economy I.
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Table A.1: Habit Formation model parameter values

The parameter values from Campbell and Cochrane (1999) are reported in the “original value”
column. The parameter values chosen for the calibration of the model based on data from 1926
to 1967 are reported in the “1926-1967 value” column. A * denotes that the value is annualized.

Description Variable Original value 1926-1967
value
Mean log consumption growth* g 1.89% 1.77%
Std. dev. log consumption growth* o 1.50% 3.75%
Log risk-free rate* rf 0.94% 0.31%
Persistence coefficient* 10) 0.87 0.82
Utility curvature ¥ 2.00 1.00
Std. dev. log dividend growth* Ouw 11.2% 14.3%
Corr. log cons. and log div. growth P 0.20 0.57
Subjective discount factor* 1) 0.89 0.92

Table A.2: Habit Formation model simulated moments

Simulated moments at monthly, quarterly, and annual frequencies that are reported for the
specifications of the HF model that assume perfect (HF 1) and imperfect correlation (HF 2)
between log consumption and log dividend growth. For Panel A, the parameter values of Campbell
and Cochrane (1999) are used. For Panel B, the parameter values are calibrated based on a
sample with data from 1926 to 1967. The price-dividend ratio moments are annualized.

Panel A: Based on original parameter values

Model Freq. P/D Log P/D Log equity prem. Log Sharpe
Mean Std. dev. Mean Std. dev. ratio
HF 1 Annual 18.55 0.27 6.60% 15.06% 0.44
HF 2 Annual 19.00 0.30 6.52% 19.91% 0.33
HF 1 Quarterly 18.43 0.27 1.65% 7.73% 0.21
HF 2 Quarterly 18.92 0.28 1.63% 10.08% 0.16
HF 1 Monthly 18.39 0.27 0.55% 4.49% 0.12
HF 2 Monthly 18.89 0.28 0.54% 5.84% 0.09
Panel B: Based on 1926-1967 parameter values
HF 1 Annual 17.32 0.35 7.76% 23.71% 0.33
HF 2 Annual 17.14 0.40 7.92% 31.59% 0.25
HF 1 Quarterly 17.20 0.35 1.95% 12.26% 0.16
HF 2 Quarterly 17.01 0.37 1.97% 16.17% 0.12
HF 1 Monthly 17.12 0.34 0.65% 7.12% 0.09
HF 2 Monthly 17.03 0.37 0.66% 9.38% 0.07

51



The variable S; measures the value of the agent’s risky assets at time ¢. The variable
2; accounts for prior gains and losses up to time ¢t and is defined as Z;/S;, where Z;
is a historical benchmark level for the value of the risky asset. If z; is smaller than
one, the agent has prior gains; if z; is greater than one, the agent faces prior losses.
The time discount factor is p, and byC; ” is a scaling term, with v being the risk
aversion over consumption. The form of the utility function over financial wealth
v(.) is different conditional on prior gains or prior losses.

The dynamics of z; are given by the process

R ) +(1—n). (A.13)

Zt4+1 =1 (ZtR
t+1

This process ensures that the benchmark level Z; reacts sluggishly to changes in the
stock price. The parameter R is chosen such that the median value of z is around
one.

The price-dividend ratio is assumed to be a function of the state variable z;:
i =P/Dy = f(z). (A.14)

The real stock returns are thus given as

L4 f(241) guronenss
_ atoded,i+1 Al
fots f(z) ‘ (A15)

Barberis et al. (2001) show that the equilibrium is characterized by a constant real

risk-free rate,

Ry = §'e19e770e/2, (A.16)
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and a price-dividend ratio determined by the equation

1 :56gd—7gc+7203(1—w2)/2Et |:1 + {(Z)t+1)€(od—~/woc)ed7t+1
f(z

OB, [@ (1 + f(Zt+1)€gd+aded,t+1’ Zt)} 7
f(z)

(A.17)

where the utility function 0(Ryy1, 2¢) is equal to v(Xy41, S, 2¢)/S: and specified for

z <1 as

X Ry — Ryy, Rip1 > 2z Ryy
O(Regr, 2) = (A.18)

(zeRpp — Ryy) + MRiv1 — 2eRypy), Ripr < 2Ry

and for z; > 1 as

Ry — Ryy, Ri1 > Ry
ﬁ(Rt-i-h Zt) = (Alg)

)\(Zt>(Rt+1 — Rf,t)7 Ry < Ryy,

where A\(z) = A+ k(2 — 1) with k£ > 0.

The PT model generates an equity premium that is predictable by the dividend-
price ratio. The mechanism works through time-varying risk aversion. A positive
period ¢ shock to dividends in equation (A.10) increases the return of the asset
and leads to a lower z; through equation (A.13). A lower z; implies that the agent
is less loss averse as shown in equations (A.18) and (A.19). Hence, the price of
the asset will increase, which reduces the agent’s loss aversion further, leading to
a higher price-dividend ratio. Because of the higher prices and unchanged cash
flow expectations, the expected returns are lower. Price-dividend ratios and future

returns are therefore negatively related.
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A.2.1 Calibration and simulation of model

The parameter values from Barberis et al. (2001) are reported in Table A.3. in the
“original value” column. My recalibration of the model with data from 1926 to 1967
uses the parameter values in the “1926-1967 value” column. For some parameters,
two values are given. In these cases, the first value corresponds to the PT 1 model.
The recalibration follows the methodology of Barberis et al. (2001). The PT 1 model
is calibrated such that the average effective loss aversion of the model is 2.25.'2 The
second value corresponds to the PT 2 model, which is calibrated such that the log
equity premium of the model matches the empirical moment. When calibrating the
model with the 1926-1967 data sample, I use the the same consumption, dividend,
and return data as for the calibration of the HF model, described previously.'® The
parameters v, p, and  are chosen to bring the risk-free rate close to the empirical
value of 0.31%. The prior outcome parameter k£ and the time discount factor p are
set to 4 and 0.98, respectively, for the PT 1 model such that the annual average
effective loss aversion is 2.25. For the PT 2 model, the parameter values are chosen
to be 18 and 0.99, respectively, to bring the annual simulated equity premium close
to 7.42%. The persistence parameter 7 is set such that the persistence of the log
price-dividend ratio is close to the empirical value of 0.82. The remaining parameters
are not estimated with empirical data and set equal to the values of Barberis et al.
(2001).

I solve the model by following the process laid out by Barberis et al. (2001).
The moments in Panel A of Table A.4. are generated by simulating the model with
the parameter values proposed by the authors, particularly b0 = 100 and k& = 3 for
PT 1 and b0 = 100 and k = 8 for PT 2. The moments match the moments obtained

by Barberis et al. (2001). Panel B reports the simulated moments based on my

12This value is chosen by Barberis et al. (2001) based on experimental evidence.

BT set op equal to 12% for the 1926-1967 parameter values, as in Barberis et al. (2001), instead
of 14.2% as in the HF model, as a convergence of the numerical solution was not achieved with a
more volatile log dividend growth process.
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recalibration of the parameter values with data from 1926 to 1967.

A.3 Risks for the long run: a potential resolution of asset

pricing puzzles

Bansal and Yaron (2004) propose a solution to the equity premium puzzle through
a consumption-based asset pricing model with Epstein and Zin (1989) preferences.
Their model differs from other consumption-based asset pricing models in two ways.
First, they include a small persistent expected growth rate component in the con-
sumption and dividend growth rate processes. This component causes consumption
and the return on the market portfolio to covary positively, and hence, the eco-
nomic agents require a higher risk premium. Second, they allow for time-varying
volatility, which accounts for fluctuating economic uncertainty, in both processes:
this additional source of systematic risk increases the risk premium further.

The asset pricing restriction for the real return on the market portfolio R,, 141,

according to the Epstein and Zin (1989) preferences, is
_e
E, 69Gc,tﬁ1Rc,§ile)Rm,t+l = E; [Mt+1Rm,t+l] =1, (A-20)

where G, ;11 is the aggregate gross growth rate of consumption, R. ;41 denotes the
real return on an asset that pays aggregate consumption as dividends, J is the time
discount factor, and M4 is the IMRS. The parameter 6 is defined as (1—~)/(1— i),
where v is the risk aversion parameter, and 1 accounts for the intertemporal elas-
ticity of substitution (IES). To derive the real returns, the authors use the standard
approximation of Campbell and Shiller (1988). The real log return for the claim to

aggregate consumption is

Tet+1 = Ko + K12t+1 — 2t + Get+1, (A-Ql)
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Table A.3: Prospect Theory model parameter values

The parameter values from Barberis et al. (2001) are reported in column “original value”. The pa-
rameter values chosen for the calibration of the model based on data from 1926 to 1967 are reported
in the “1926-1967 value” column. When two values are given for the same parameter, then the first
value stands for the PT 1 model and the second value for the PT 2 model. All values are annualized.

Description Variable Original value 1926-1967
value
Mean log consumption growth Je 1.84% 1.77%
Mean log dividend growth 94 1.89% 1.77%
Std. dev. log consumption growth o 3.79% 3.02%
Std. dev. log dividend growth 04q 12.0% 12.0%
Corr log cons. and log div. growth w 0.15 0.57
Utility curvature ¥ 1.00 1.00
Time discount factor P 0.98 0.98 / 0.99
Loss aversion A 2.25 2.25
Prior outcome parameter k 3/8 4 /18
Prospect utility weight b0 100 100
Persistence factor n 0.90 0.90

Table A.4: Prospect Theory model simulated moments

Simulated moments at monthly, quarterly, and annual frequencies are reported. In Panel A, the
parameter values of Barberis et al. (2001) are used, particularly b0 = 100 and k& = 3 for the PT 1
specification and b0 = 100 and k = 8 for the PT 2 specification. For Panel B, the parameter values
are estimated based on a sample with data from 1926 to 1967, particularly 50 = 100 and k = 4
for the PT 1 specification and b0 = 100 and k& = 18 for the PT 2 specification. The price-dividend
ratio moments are annualized.

Panel A: Based on original parameter values

Model Freq. Price-dividend ratio Log equity prem. Log Sharpe
Mean Std. dev. Mean Std. dev. ratio
PT 1 Annual 17.30 2.38 3.74% 20.23% 0.19
PT 2 Annual 12.73 2.21 5.87% 23.87% 0.25
PT 1 Quarterly 9.46 0.54 2.13% 9.00% 0.24
PT 2 Quarterly 7.45 0.60 2.84% 10.79% 0.26
PT 1 Monthly 6.30 0.14 1.15% 4.48% 0.26
PT 2 Monthly 5.05 0.16 1.47% 5.05% 0.29
Panel B: Based on 1926-1967 parameter values
PT 1 Annual 16.99 2.48 3.90% 21.18% 0.18
PT 2 Annual 12.30 2.54 7.47% 28.54% 0.26
PT 1 Quarterly 9.45 0.57 2.12% 9.34% 0.23
PT 2 Quarterly 6.73 0.67 3.51% 12.99% 0.27
PT 1 Monthly 6.32 0.16 1.15% 4.65% 0.25
PT 2 Monthly 4.35 0.18 1.85% 5.85% 0.32
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where g.;41 is the log consumption growth, and z; denotes the log price-consumption

ratio. The specification for the real log return on the market portfolio is

Tmt+1 = Rom + R1mZmt+1 — Zmt + gd,t+1, (A22)

where g411 is the log dividend growth rate, and z,,; denotes the log price-dividend
ratio. The values for kg, Kom, K1, and Ky, are constants that are derived through
the approximation of Campbell and Shiller (1988).'4

The dynamics of log consumption growth and log dividend growth — which
incorporate a small persistent predictable component x;, the long run risk compo-
nent, and a time-varying volatility component oy, reflecting fluctuating economic
uncertainty — are

Tir1 =Pt + PeOrit

e+l =He T Ty + 04Nt
(A.23)

Gd,t+1 =Hd + PT¢ + PaoiUi

2 _ 2 2 2
01 =0 +v1(0; — 0%) + 0w,

with €441, Uss1, g1, and wyo; having i.i.d. standard Normal distributions.'® The
state variables, which determine the price-consumption and price-dividend ratios,

are x; and o;. The solutions for 2z, and z,,; are

2t :AO + All‘t + AQO‘tQ
(A.24)

2
Zm,t :A07m + Al,mxt + A2,m0—t .

The derivation of A and A,, can be found in Bansal and Yaron (2004) and Bansal
et al. (2010 and 2012).

14Bansal et al. (2010) show that r; is equal to exp(2)/(1 + exp(Zz)), and kg is equal to In(1 +
exp(Z)) — k12, where Z is the mean log price-consumption ratio. Accordingly, k1., is given by
exp(Zm)/(1 + exp(Zy,)), and Ko, is equal to In(1 + exp(Zm)) — K1,mZm, With Z,, being the mean
log price-dividend ratio.

15Bansal and Yaron (2004) also simulate a version of their model without time-varying volatility
of consumption growth, which is less successful in matching empirical data moments.
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The model generates excess returns that are predictable by the price-dividend
ratio, but the predictability is weak. The predictability is affected by the two state
variables o? and ;. A negative shock to o2 results in a lower Ei[R.t11], which
causes Fy;[M;1] to increase. Consequently, asset prices and price-dividend ratios
are both higher. The higher prices cause a decrease in expected returns, and thus, a
negative correlation between the price-dividend ratio and future returns. A positive
shock to x; also causes an increase in Fy[M;. 1] as E;[Gyy1] goes up: asset prices and
price-dividend ratios increase. However, dividends in subsequent periods will be
higher because of the positive shock to the growth rate. Thus, high price-dividend

ratios are followed by higher cash flows which weakens the negative correlation of

price-dividend ratios and subsequent returns.

A.3.1 Calibration and simulation of model

The parameter values used by Bansal and Yaron (2004) are reported in Table A.5.
in the “original value” column. My calibration of the model over the 1926-1967
sample uses the parameter values in the “1926-1967 value” column. For the risk
aversion parameter vy two values are given. The first value corresponds to the LRR
1 model. The LRR 1 model yields a simulated price-dividend ratio that is close to
the empirical moment. The second value corresponds to the LRR 2 model, which
matches the empirical log equity premium closely. For the calibration with the
1926-1967 sample, I use the same consumption, dividend, and return data as for the
calibration of the HF model, described previously.'® Following Bansal and Yaron
(2004), the parameters pu, fig, p, e, @, Y4, and o, are chosen such that the model
can replicate the log consumption growth and log dividend growth dynamics of the
annual empirical data, as well as producing a price-dividend ratio (LRR 1) and an
equity premium (LRR 2) that are close to their empirical counterparts of 22.34 and

7.42%, respectively. For the 1926-1967 sample, log consumption growth has a mean

16Bansal and Yaron (2004) assume consumption takes place at the end of a period. I assume
the same timing convention.
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of 1.80% and a standard deviation of 3.08% with an autocorrelation of 0.32. The
variance ratios at the 2, 5, and 10 year horizon are 1.35, 1.32, and 1.37, respectively.
The log dividend growth has a standard deviation of 14.27% and an autocorrelation
of -0.03. The correlation between log consumption and log dividend growth is 0.57.
The parameters of the economic uncertainty process v; and o, are selected such that
predictable variation of consumption volatility with the log price-dividend ratio is
3% as in the empirical data.

Panel A of Table A.6. reports the moments of the simulated data from the LRR
model for v = 7.5 (LRR 1) and v = 10 (LRR 2) when the Bansal and Yaron (2004)
parameter values are used. The simulation is based on the analytical solutions of
the model. The analytical solutions are considered more reliable than the numerical
solutions (see, for example, Bansal et al. (2010 and 2012) and Beeler and Campbell
(2012)). The model is simulated at a monthly frequency and time-aggregated to
lower frequencies. The obtained data moments match the data moments in Bansal
and Yaron (2004) and Beeler and Campbell (2012). Panel B of Table A.6. reports
the simulated moments based on my recalibration of the model with data from 1926

to 1967.
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Table A.5: Long Run Risk model parameter values

The parameter values from Bansal and Yaron (2004) are reported in the “original value” column.
The parameter values chosen for the calibration of the model based on data from 1926 to 1967 are
reported in the “1926-1967 value” column. When two values are given for the same parameter,
then the first value stands for the LRR 1 model and the second value for the LRR 2 model. A *
denotes that the value is at a monthly frequency.

Description Variable Original value 1926-1967 value
Mean log consumption growth* Le 0.0015 0.0015
Mean log dividend growth* L 0.0015 0.0015
Persistence of z;* p 0.979 0.977
Volatility multiple of x;* Ve 0.044 0.049
Dividend leverage* 10) 3.00 3.70
Dividend volatility multiple* ©d 4.50 4.80
Unconditional mean of o;* o 0.0078 0.0083
Persistence of o,* vy 0.987 0.987
Baseline volatility™ Ow 0.23x107° 0.23x107°
Risk aversion 0% 7.5/ 10 7.5/ 10
1IES P 1.50 1.50
Time discount factor™® 1 0.9880 0.9885

Table A.6: Long Run Risk model simulated moments

Simulated moments at monthly, quarterly, and annual frequencies are reported for the specifica-
tions of the LRR model with v = 7.5 (LRR 1) and v = 10 (LRR 2). For Panel A, the parameter
values of Bansal and Yaron (2004) are used. For Panel B, the parameter values are estimated
based on a sample with data from 1926 to 1967. The price-dividend ratio moments are annualized.

Panel A: Based on original parameter values

Model Freq. P/D Log P/D Log equity prem. Log Sharpe
Mean Std. dev. Mean Std. dev. ratio
LRR 1 Annual 26.86 0.20 2.70% 16.75% 0.16
LRR 2 Annual 20.61 0.20 4.08% 16.46% 0.25
LRR 1 Quarterly 26.68 0.17 0.67% 8.32% 0.08
LRR 2 Quarterly 20.43 0.17 1.03% 8.22% 0.13
LRR 1 Monthly 26.65 0.16 0.23% 4.81% 0.05
LRR 2 Monthly 20.44 0.16 0.35% 4.76% 0.07
Panel A: Based on 1926-1967 parameter values
LRR 1 Annual 23.10 0.27 4.13% 21.10% 0.20
LRR 2 Annual 16.46 0.26 6.17% 20.50% 0.30
LRR 1 Quarterly 22.79 0.23 1.04% 10.56% 0.10
LRR 2 Quarterly 16.31 0.22 1.58% 10.30% 0.15
LRR 1 Monthly 22.72 0.22 0.35% 6.09% 0.06
LRR 2 Monthly 16.27 0.21 0.52% 5.95% 0.09
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