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1 Introduction

Predicting aggregate stock returns has been of great interest to academics and in-

vestors alike. For academics, the predictability of stock returns is important for

testing market efficiency. For investors, knowing whether the equity premium is

predictable is crucial for portfolio allocation decisions. An extensive literature uses

a variety of variables to explain the time-variation of returns (see, for example,

Campbell (1987); Campbell and Shiller (1988); Fama and French (1988 and 1989);

Baker and Wurgler (2000); Lettau and Ludvigson (2001); Polk, Thompson, and

Vuolteenaho (2006); Welch and Goyal (2008); Li, Ng, and Swaminathan (2013);

Kruttli, Patton, and Ramadorai (2015)). Valuation ratios were initially found to

have predictive power when forecasting the equity premium, but the set of fore-

casting variables has since been extended with variables such as corporate payout,

fluctuations in the consumption-wealth ratio, implied cost of capital, and yields on

bonds and Treasury securities.

Welch and Goyal (2008) provide a comprehensive analysis of the in-sample and

out-of-sample (OOS) predictive power of the major variables and question whether

an investor could have used these predictors to forecast the equity premium OOS.

Campbell and Thompson (2008) further investigate these findings by imposing eco-

nomic constraints when estimating the single-variable predictive regressions. They

apply sign restrictions on the parameter estimates of the predictive regression and a

non-negativity restriction on the forecast of the equity premium. These restrictions

help the investor to reduce uncertainty about the regression parameters. Campbell

and Thompson (2008) find that through these restrictions, a real-time investor could

profitably forecast the equity premium.

This paper imposes novel economic constraints derived from consumption-based

asset pricing models on the parameters of single-variable predictive regressions that

are typically used in the equity premium prediction literature. I propose a simple

Bayesian econometric framework to implement these economic constraints as prior
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distributions on the parameters. These prior distributions are named model-based

priors. My approach relates to the macroeconometric literature, in which prior dis-

tributions from dynamic stochastic general equilibrium models (DSGE) are imposed

on vector autoregressions (VAR) (see, for example, Ingram and Whiteman (1994)

and Del Negro and Schorfheide (2011)). Instead of macroeconomists who use priors

from DSGE models to improve their forecasts of macroeconomic variables, I con-

sider investors who use model-based priors from consumption-based asset pricing

models to forecast the equity premium. The three consumption-based asset pricing

models that act as sources for the model-based priors are the Habit Formation (HF)

model of Campbell and Cochrane (1999), the Prospect Theory (PT) model of Bar-

beris, Huang, and Santos (2001), and the Long Run Risk (LRR) model of Bansal

and Yaron (2004). I chose these three models, as they propose different theories

that can explain the equity premium puzzle (Mehra and Prescott (1985)). Also, the

respective authors emphasize the equity premium predictability implied by their

models and calibrate their models with similar US data.1

The model-based priors allow me to assess whether an investor could have prof-

ited from knowing the theories and the theories’ implications for the predictability

of the equity premium inherent in these consumption-based asset pricing models. I

assume that an investor who forecasts the equity premium with valuation ratios has

a prior belief about the parameter estimates of the predictive regression that stems

from one of the asset pricing models. The investor then updates her beliefs about

the predictive regression parameters with empirical data and forecasts the equity

premium OOS based on the posterior parameter estimates. To my knowledge, prior

distributions derived from asset pricing models have not been previously explored for

the purpose of forecasting returns OOS. Unlike other papers in the equity premium

prediction literature, the focus of this paper is to compare the performances of the

1Barro (2006) explains the equity premium puzzle through a disaster risk model, but unlike the
three asset pricing models used in this paper, the calibration is based on international data on large
economic declines, and the model-implied predictability of the equity premium is not analyzed.
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model-based priors from the three asset pricing models with each other. Comparing

the accuracy of the forecasts provides an assessment of how useful the asset pricing

models’ descriptions of the macro-finance world are for a finance practitioner who

attempts to time her investments in the aggregate stock market. This novel way

of comparing consumption-based asset pricing models leads to insights that are not

obtained when matching empirical data moments with model-based moments from

Monte Carlo simulations, as is generally done (see, for example, Bansal, Gallant,

and Tauchen (2007) for a comparison of the HF and the LRR models and Ludvigson

(2012) for a survey of the literature).2

Several other papers in this growing literature also make use of economically

motivated parameter constraints for predicting the equity premium and implement

them through a type of Bayesian framework on the predictive regressions. Pastor

and Stambaugh (2009) employ a prior that implies a negative correlation between

expected and unexpected return shocks. Shanken and Tamayo (2012) consider prior

beliefs on the risk-return tradeoff and on the extent to which mispricing drives pre-

dictability. Pettenuzzo, Timmermann, and Valkanov (2014) propose a Bayesian

methodology that imposes a non-negative equity premium and bounds on the con-

ditional Sharpe ratio. Their constraints lead to forecasts of the equity premium

that are substantially more accurate. Wachter and Warusawitharana (2009) model

skepticism of an investor over the predictability of the equity premium as an infor-

mative prior over the R2 and show that a skeptical investor achieves better fore-

casts. Wachter and Warusawitharana (2015) analyze whether an investor who is

initially skeptical about the existence of equity premium predictability would up-

date her prior and conclude that the equity premium is predictable when being

confronted with historical data. Other Bayesian studies consider uncertainty about

the predictive regression parameters through uninformative priors (see, for example,

2The analytical solutions and the empirically observable state variables of the LRR model allow
for additional model evaluations: the in-sample estimation proposed by Bansal, Kiku, and Yaron
(2010) and Constantinides and Ghosh (2012) and the OOS fit proposed by Ferson, Nallareddy, and
Xie (2013).
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Stambaugh (1999); Barberis (2000); Brandt, Goyal, Santa-Clara, and Stroud (2005);

Penasse (2016)) or investigate how parameter uncertainty affects the long run pre-

dictive variance (see, for example, Pastor and Stambaugh (2012) and Avramov,

Cederburg, and Lucivjanska (2016)).

My sample comprises data from 1926 to 2014. I compare the predictive accuracy

of hypothetical investors who had access to the three asset pricing models from

1926 onward and use the model-based priors to reduce the uncertainty about the

parameters of the predictive regression. The investors try to time the market by

forecasting the equity premium with either the dividend-price ratio or the dividend

yield.3 For my benchmark analysis, the calibration of the asset pricing models is

the same as presented by the authors in the respective publications of the models.4

However, the results are robust to recalibrating the asset pricing models over a time

period that has no overlap with the OOS period.

I find a sharp distinction between the performances of the LRR model-based

priors and the model-based priors derived from the HF and PT models. The LRR

model-based priors perform particularly well from 1980 onward. The HF and PT

model-based priors result in more accurate forecasts up to the 1980s. Over the

whole data sample, an investor armed with the knowledge of the LRR model would

have generally outperformed investors whose prior beliefs about the predictability

of the equity premium were rooted in the HF or PT model. The differences in

performance hold when comparing both the accuracy of the forecasts and the utility

gains achieved by the investors. The key to the strong performance of the LRR

prior over the total sample period is the bull market of the late 1990s, when low

valuation ratios predicted negative stock returns that did not materialize for several

years (see, for example, Lettau and Ludvigson (2005)). The LRR model implies a

3As in Welch and Goyal (2008) and Pettenuzzo et al. (2014), the dividend-price ratio is defined
as dividends divided by price, and the dividend yield is defined as dividends divided by price lagged
by one period.

4Because the authors of the asset pricing models use almost identical data sets for the calibration
of their respective models, the comparison of the model-based priors’ forecasting performances
should not be distorted.
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lower predictive power of valuation ratios than the other two asset pricing models.

Hence, an investor who uses the LRR model as guidance for her investment choices

is more skeptical to conclude that low valuation ratios imply an immediate decline

in stock prices. This skepticism improves her forecast performance during the late

1990s, and this effect dominates less accurate forecasts of the LRR priors during

episodes when the predictive power of valuation ratios was stronger as, for example,

in the 1970s.

The differences in forecast accuracy between the three asset pricing models are

economically significant. I find that an investor with mean-variance preferences

who allocates her portfolio based on equity premium forecasts would on average be

willing to pay 26 basis points per year to have access to the LRR model-based priors

instead of the HF model-based priors. Relative to the PT model-based priors, the

investor would on average be willing to pay 67 basis points per year to have access

to the LRR model-based priors.

The implied predictability of the equity premium differs across the asset pricing

models due to the model-specific mechanisms that lead to time-variation in valua-

tion ratios. In the HF and PT models, changes in the valuation ratios are driven

by time-varying discount rates, and this mechanism leads to a predictable equity

premium. In the LRR model, the discount rate channel similarly leads to fluctua-

tions in the valuation ratios and return predictability. However, the LRR model also

incorporates a predictable component in the dividend growth rate, the long-run risk

component, which drives valuation ratios and mitigates their predictive power for

the equity premium. There exists considerable debate about whether the empirically

observed changes in valuation ratios are driven by time-variation of discount rates

or time-variation in the forecasts of dividend growth (see, for example, Campbell

and Shiller (1988); Lettau and Ludvigson (2005); Bansal, Kiku, and Yaron (2007

and 2012); Cochrane (2008)). This paper shows that from the perspective of an

investor who tries to time the market OOS over the 1926-2014 sample, model-based
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priors derived from an asset pricing model that accounts for changes in valuation

ratios due to time-varying dividend growth forecasts are preferred because of the

lower equity premium predictability that the model implies.

The rest of this paper is as follows. Section 2 explains the Bayesian methodology

used to impose the model-based priors. Section 3 reports the data used and the

results. Section 4 discusses the utility gains that an investor with mean-variance

preferences achieves when implementing the model-based priors. Section 5 analyzes

the robustness of the results. Section 6 concludes the paper.

2 Methodology

This section describes how I impose economic constraints on the single-variable

predictive regressions through priors derived from consumption-based asset pricing

models and how these models are simulated to obtain the priors.

2.1 Equity premium prediction model

The log equity premium at time t+1 is denoted by rt+1 and is defined as the rate of

return on the stock market in excess of the prevailing short-term interest rate. As is

common in the equity premium prediction literature, rt+1 is regressed on a constant

and a predictor, xt, which is lagged by one period:

rt+1 = β0 + β1xt + εt+1, where εt+1∼N(0, σ2
ε ). (1)

The OOS predictions of the equity premium are generated through recursive fore-

casts (see, for example, Campbell and Thompson (2008), Welch and Goyal (2008),

and Pettenuzzo et al. (2014)). Hence, all available observations up to period t are

used to estimate the model in equation (1). Based on the resulting estimates of

the parameters β = [β0, β1]′ and σ2
ε , and by observing xt, one can forecast the

equity premium in t+1. The predicted equity premium is denoted by r̂t+1. Because
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observations after t + 1 are not used to estimate β, a real-time investor who fore-

casts the equity premium can implement this procedure. If no model-based priors

are imposed, the parameters can be estimated via ordinary least squares (OLS). A

common benchmark for a predictor in the equity premium literature is the historical

average model, which forecasts that the equity premium will be next period what it

has been on average in the past (β1 in equation (1) is set to zero).

2.2 Model-based priors

An investor who wants to make use of the theoretical insights of a consumption-

based asset pricing model can impose economic constraints derived from the asset

pricing model on β and σ2
ε . These model-based constraints reduce uncertainty about

the predictive regression parameters and are best imposed via Bayesian techniques.

I assume that the investor’s prior belief is that β and σ2
ε take the values implied by

the asset pricing model. She then updates her belief through empirical data.

The prior distribution of the parameters in equation (1) — that is β and σ2
ε —

is assumed to be Gamma-Normal (see, for example, Koop (2003) and Pettenuzzo

et al. (2014)), which has the advantage of being a tractable prior distribution. The

prior distribution is given by

β ∼ N
(
β, V

)
, σ−2

ε ∼ G
(
σ∗ε
−2, v(t− 1)

)
. (2)

The mean and the variance of the Normal prior distribution are specified as

β =

β∗0
β∗1

 , V =

λσ2
r,t 0

0 λσ2
r,t/σ

2
x,t

 , (3)

where β∗0 and β∗1 are the coefficient values implied by the consumption-based asset

pricing model. The parameter λ is exogenously chosen and is weakly positive. If

λ is large, the prior is loose. If λ is equal to zero, the prior is dogmatic. I set
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λ = 1 for the benchmark analysis. Section 5 reports results for different values of

λ and shows that these are in line with the benchmark case. The sample moments

σ2
r,t and σ2

x,t are scaling factors, which ensure that the results are comparable for

different predictors and forecast frequencies. Such scaling factors are commonly

used in Bayesian macroeconometrics and date back to Litterman (1986). The sample

moments are given by

σ2
r,t =

1

t− 2

t∑
τ=2

(rτ − r̄t)2, rt =
1

t− 1

t∑
τ=2

rτ (4)

and

σ2
x,t =

1

t− 2

t−1∑
τ=1

(xτ − x̄t)2, xt =
1

t− 1

t−1∑
τ=1

xτ . (5)

The Gamma distribution parametrization follows Koop (2003) by specifying the

distribution with mean σ∗ε
−2 and degrees of freedom v(t− 1), where σ∗ε

−2 is derived

from the consumption-based asset pricing model. The tightness of the prior is

controlled by v, which is strictly positive. A large v corresponds to a tight prior,

and a small v corresponds to a diffuse prior. The benchmark case sets v to 0.1, but

my results are robust to a tighter or a more diffuse prior on σ−2
ε (see Section 5).

2.3 Posterior distribution

The model-based prior distributions yield conditional posterior distributions for β

and σ−2
ε . I draw from these two conditional distributions through a Gibbs sampler.

The conditional posterior distribution for β is

β|σ−2
ε , It ∼ N

(
β̄, V

)
, (6)

where

V = (V −1 + σ∗ε
−2X ′X)−1, β̄ = V (V −1β + σ∗ε

−2X ′R), (7)
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X is a t − 1 × 2 matrix with rows [1 xτ ] for τ = 1, ..., t − 1, and R is a t − 1 × 1

vector with elements rτ for τ = 2, ..., t. The information set at time t is denoted by

It. The conditional posterior distribution for σε
−2 takes the form

σ−2
ε |β, It ∼ G

(
s̄−2, v̄

)
, (8)

where

v̄ = v + (t− 1), and s̄2 =

∑t
τ=2(rτ − β0 − β1xτ−1)2 + σ∗ε

2v(t− 1)

v̄
. (9)

Through the Gibbs sampling algorithm with J iterations, we obtain a series of draws

for each of the parameters denoted by {βj} and {σ−2,j
ε } for j = 1, ..., J . These

simulated series can then be used to draw from the predictive return distribution

p(rt+1|It) =

∫
β,σ−2

ε

p(rt+1|β, σ−2
ε , It)p(β, σ−2

ε |It)dβdσ2
ε , (10)

which yields {rjt+1} for j = 1, ..., J . The point forecast for the equity premium in

period t+ 1 is given by the mean of the sampled distribution

r̂mt+1 =
1

J

J∑
j=1

rjt+1. (11)

2.4 Deriving priors from asset pricing models

I next describe how the prior means β∗ = [β∗0 , β∗1 ]′ and σ∗ε
−2 are derived from

the three consumption-based asset pricing models: HF, LRR, and PT. All three

models specify a log consumption and a log dividend growth process. These two

processes drive the state variables of the models, and the state variables determine

the dividend-price ratio. By simulating random shocks, time series of consumption

growth and dividend growth are generated, based on which I solve the models in

each period for the log equity premium, the log dividend-price ratio, and the log
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dividend yield. The log dividend-price ratio is the difference between the log of

dividends and the log of prices, and the log dividend yield is the difference between

the log of dividends and the log of prices lagged by one period.5 (A more detailed

description of the models and how to solve them is provided in Appendix A.) I

denote the simulated log equity premium in period tM + 1 as rM,t+1. I can then

estimate the single-variable predictive regression that is generally used in the equity

premium prediction literature and given in equation (1) with simulated data, where

the simulated predictor xM,t is either the log dividend-price ratio or the log dividend

yield:

rM,t+1 = βM,0 + βM,1xM,t + εM,t+1, where εM,t+1∼N(0, σ2
M,ε). (12)

The OLS estimates of βM = [βM,0, βM,1]′ and σM,ε
−2 are denoted by β∗ and σ∗ε

−2,

which act as the prior means of the Gamma-Normal distribution described in Section

2.2. The predictive regression with simulated data in equation (12) is also estimated

by the respective authors of the consumption-based asset pricing models, that is,

Campbell and Cochrane (1999), Barberis et al. (2001), and Bansal and Yaron

(2004), to assess the predictability of the equity premium implied by their proposed

theories.

The model-based priors for my benchmark results are based on data simulated

from the asset pricing models when using the same calibration as proposed by the

authors in the respective published papers. The authors use almost identical cali-

bration data sets, and thus, the comparison of the model-based priors’ performances

should not be distorted. I assume that the investors have no uncertainty about the

parameters of the asset pricing models, since the focus of this paper (as in, for exam-

ple, Campbell and Thompson (2008) and Pettenuzzo et al. (2014)) is the investors’

uncertainty about the parameters of the predictive regression given in equation (1).

There is a concern that the results are affected by an overlap of the OOS period

5The dividend-price ratio and the dividend yield are the only two predictors from the equity
premium prediction literature that can be simulated from the three asset pricing models. Also,
valuation ratios are the most prominent predictors of the equity premium prediction literature.
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with the sample period used by the authors to calibrate the asset pricing models.

To address this concern, I show the robustness of the results in Section 5, by re-

calibrating the models with an empirical data sample that has no overlap with the

OOS period. The calibration of the models is described in Appendix A.

For the HF model, the simulation is at a monthly frequency, and the quarterly

and annual data are constructed by time-averaging the monthly data. The same

procedure is used by Campbell and Cochrane (1999). The log equity premium is

summed across the quarter (year). For the dividend-price ratio and the dividend

yield, consumption and dividends are summed across the quarter (year) and the

end-of-quarter (year) price is used. I simulate 120,000 months, estimate β∗ and σ∗ε
2,

and average the estimates over 10 iterations. The HF model has two specifications,

and I use both to generate priors. The first specification (HF 1) assumes a perfect

positive correlation between the log consumption and log dividend growth, and the

second specification (HF 2) assumes that the correlation is imperfect and positive.

Similar to the HF model, the PT model is specified by Barberis et al. (2001)

with perfect positive correlation between the log consumption and log dividend

growth processes and with imperfect positive correlation between the two processes.

I only use the latter specification, as it more successfully matches the empirical data

moments. The authors calibrate the model with a range of parameter values for

the investor’s sensitivity to financial wealth fluctuations (b0) and the effect of prior

losses on risk aversion (k). I generate priors from the parameterizations that set b0

equal to 100 and k equal to 3 (PT 1) and 8 (PT 2). Of the specifications proposed by

Barberis et al. (2001), setting b0 equal to 100 and k equal to 8 generates a log equity

premium that is closest to the empirical data moment. For the b0 equal to 100 and k

equal to 3, the generated log equity premium is lower, but the average loss aversion

of the agent is 2.25, which is in line with experimental evidence. Following Barberis

et al. (2001), I simulate the model at monthly, quarterly, and annual frequencies by
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adjusting the model parameters accordingly.6

The LRR model, like the HF model, is simulated at a monthly frequency, and the

quarterly and annual values are time-averaged.7 Bansal and Yaron (2004) use the

same procedure to generate simulated data. Again, 120,000 months are simulated

to estimate β∗ and σ∗ε
2, and the estimates are averaged across 10 iterations. Bansal

and Yaron (2004) present two specifications of their model: with and without time-

varying volatility of consumption growth. Because the specification that accounts

for time-varying volatility of consumption growth is substantially more successful at

matching the empirical data moments, I generate priors only from this specification.

However, as in Bansal and Yaron (2004), I consider two calibrations for the agent’s

risk aversion to simulate the model: a risk aversion of 7.5 (LRR 1) and a risk aversion

of 10 (LRR 2).

Panels A and B of Table 1 show β∗ and σ∗ε
−2 estimated from simulated data of the

three consumption-based asset pricing models. The table also reports the empirical

estimates over the total sample from 1926 to 2014 for comparison.8 For all three

asset pricing models, β∗1 is positive for the dividend-price ratio and the dividend

yield. Thus, high valuation ratios predict higher subsequent returns, which is in line

with the empirical estimates. For both predictors and across all return frequencies,

the coefficients of the LRR model are substantially lower than for the HF and PT

models. The implication is that in the LRR model, the predictive power of valuation

ratios is weak. Of the three models, the PT model generates the highest β∗0 and

β∗1 for the dividend-price ratio. For the dividend yield, the β∗0 and β∗1 of the HF

model are greater than the estimates of the other two models and the empirical

6For the monthly, quarterly, and annual frequencies, I simulate 120,000, 40,000, and 10,000
periods, and average the β∗ and σ∗ε

2 estimates over 10 iterations.
7I simulate the model based on the analytical solutions as done by Bansal et al. (2010 and

2012) and Beeler and Campbell (2012).
8Adjusting the β1 empirical estimates for the bias discussed by Stambaugh (1999) leads to

annual, quarterly, and monthly estimates of 0.034, 0.011, and 0.002, respectively, for the log
dividend-price ratio. For the dividend yield, the adjusted annual, quarterly, and monthly estimates
are 0.079, 0.020, and 0.006, respectively. For the model-implied parameter estimates, a bias-
adjustment is not necessary, because the data is simulated, and thus, finite sample issues do not
apply.
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estimates. The pattern for σ∗ε
−2 is more mixed. However, the values implied by the

asset pricing models are close to the empirical values.

The weak implied predictability of the LRR model can also be seen in Panel

C. Panel C reports the R2 for the single-variable predictive regression in equation

(12). The R2 values for the LRR model are lower than for the HF and PT models

and the empirical data. The predictability of the equity premium is strongest for

the HF model, for which the R2 is higher than for the empirical data across all

frequencies and both predictors. For the PT model, the dividend-price ratio has

considerable predictive power, but the R2 values for the dividend yield are lower

— consistent with the higher β∗1 for the dividend-price ratio in Panel A. While the

R2 positively correlates with the magnitude of β∗1 , the β∗1 of the HF model is lower

than for the PT model for the dividend-price ratio, despite the R2 being higher for

the HF model. The reason for the smaller β∗1 of the HF model is the more volatile

simulated dividend-price ratio (shown in Appendix A).

2.5 Implied predictability of the asset pricing models

The reason for the weak implied predictability of the LRR prior relative to the HF

and the PT priors lies in the different mechanisms of the three asset pricing models.

In the HF model, time-variation of the dividend-price ratio is driven by a sur-

plus consumption ratio that increases (decreases) with positive (negative) shocks to

consumption. A positive shock to consumption makes the agent less risk averse,

which causes asset prices to rise. The increase in the asset prices results in a lower

dividend-price ratio, which predicts lower expected returns as the agent requires less

compensation for risk. Hence, time-variation in the dividend-price ratio is driven

by changes in the risk aversion of the agent, and these changes also affect expected

returns. However, the expected dividend growth remains constant and does not

affect the time-variation of the dividend-price ratio.

Similar to the HF model, the PT model generates a time-varying dividend-price
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ratio through time-varying risk aversion and not changes in expected cash flows.

Barberis et al. (2001) incorporate utility from fluctuations in financial wealth into

a standard power utility function. Gains (losses) in financial wealth make the agent

less (more) risk averse. Thus, a positive shock to dividends will lower the risk

aversion of the agent, which results in a higher asset price and a lower dividend-price

ratio. As the expected dividend growth remains constant, the price increase leads

to lower expected returns. Dividend-price ratios and future returns are therefore

positively related.

In the LRR model, the agent is concerned about economic growth prospects

and economic uncertainty. The key difference in terms of predictability between

the LRR and the other two models is that the time-variation of the dividend-price

ratio is partly driven by changes to expected dividend growth prospects. A positive

shock to expected dividend growth leads to a lower dividend-price ratio that is

followed by higher cash flows. This mechanism mitigates the predictive power of

the dividend-price ratio that is generated by the economic uncertainty channel of

the LRR model: because of the Epstein-Zin (see Epstein-Zin (1989)) preferences of

the agents, a negative shock to time-varying economic uncertainty results in higher

asset prices and lower dividend-price ratios, which reduces subsequent returns.

Whether the changes in valuation ratios are driven by time-variation in the

forecasts of dividend growth or time-variation in discount rates is a source of con-

siderable debate (see, for example, Lettau and Ludvigson (2005), Bansal et al. (2007

and 2012), and Cochrane (2008)). The former leads to weak predictability of re-

turns, while the latter implies strong predictability of returns. This paper uses the

asset pricing models and the implied mechanisms for the time-variation in valua-

tion ratios dogmatically and investigates which mechanism leads to more accurate

forecasts through the model-based priors. The investors who use the model-based

priors to forecast the equity premium have no uncertainty about the asset pricing

parameters. The investors’ uncertainty is about the parameters of the predictive
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regression in equation (1).

3 Results

In this section, I describe the data and report the OOS results when imposing

model-bases priors derived from asset pricing models on the single-variable predictive

regressions.

3.1 Data

The empirical data on the equity premium and the predictors at a monthly, quar-

terly, and annual frequency are available on Amit Goyal’s website.9 The equity

premium is computed as the log return on the S&P 500 index minus the log three-

month U.S. Treasury bill rate. I set the start date of the time series at 1926, as

high-quality return data on the S&P 500 from the Center of Research in Security

Prices became available in 1926. The time series ends in 2014. The availability of

predictor variables that can be used to assess the performances of the model-based

priors is restricted by the three asset pricing models. The predictor variables that

can be simulated from the three models are the dividend-price ratio and the divi-

dend yield. Dividends on the S&P 500 index are 12-month moving sums from 1926

to 2014. As for the data simulated from the asset pricing models, the dividend-price

ratio is defined as the difference between log dividends and log prices, and the div-

idend yield is defined as the difference between log dividends and log prices lagged

by one period.

9Amit Goyal’s website address is http://www.hec.unil.ch/agoyal/.
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3.2 Measuring forecast accuracy

I assess the performances of the model-based priors via the OOSR2 (see, for example,

Campbell and Thompson (2008)):

R2
OOS = 1−

∑T
τ=t (rτ − r̂mτ )2∑T
τ=t (rτ − r̂hτ )2

, (13)

where r̂mτ is the equity premium forecast when imposing the model-based prior as

given in equation (11); r̂hτ is the prediction of the historical average model; and t and

T are the start and end dates, respectively, of the OOS forecast period. Thus, the

R2
OOS assesses the forecast performance of the model-based prior relative to the non-

predictability model, which assumes that the best forecast of the equity premium is

its historical average, that is, β1 being set equal to zero in equation (1).

3.3 Forecasting

I consider four sample periods for the OOS predictability exercise. First, I use

the full sample from 1926 to 2014 and start the recursive OOS forecast in 1947.

This starting point guarantees that a sufficient number of data points are available

to estimate the predictive regression. Next, I analyze the subsample stability by

splitting the 1947-2014 OOS forecast period in half and consider forecasts up to

1980 and forecasts starting in 1981. Last, I only use the postwar sample from 1947

to 2014, and the forecasts start in 1968.

Figure 1 shows the quarterly OOS forecasts of the log equity premium from 1947

to 2014 in the top panel, when the predictive regression in equation (1) is estimated

via OLS. The valuation ratios predict a substantial time variation of the equity

premium. The lower panel depicts the corresponding OLS coefficient estimates.

Both predictors lost predictive power during the dot-com boom in the late 1990s,

which leads to the sharp drop in the coefficient estimates.

Table 2 shows theR2
OOS (in percent) results for all model-based priors for three re-
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Figure 1: Empirical out-of-sample forecasts
The top panel shows the OOS quarterly log equity premium forecasts for two predictors: the
log dividend-price ratio and the log dividend yield. The predictive regression in equation (1) is
estimated recursively via OLS. The data sample starts in 1926 and the OOS period is from 1947
to 2014. The lower panel depicts the corresponding OLS coefficient estimates.

turn frequencies. Following the equity premium OOS forecasting literature, monthly,

quarterly, and annual return frequencies are used. The “no prior” column reports

the R2
OOS for the case in which the single-variable predictive regression in equation

(1) is estimated via OLS. If the model-based prior leads to an increase in the R2
OOS,

then the figure is in bold. The last column of the table show the best-performing

prior for the respective frequency, predictor, and time period. Whether the differ-

ences in forecast errors between the predictive regression, estimated via OLS or the

model-based priors, and the historical average model are significant is tested with a

Diebold-Mariano test (see Diebold and Mariano (1995)).

Overall, the model-based priors help to improve the forecast accuracy of the

single-variable predictive regression relative to the OLS estimates. The gains in

R2
OOS are considerable compared with the literature (see, for example, Campbell

and Thompson (2008)). Out of the three asset pricing models, the priors derived
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from the LRR model perform consistently better than the priors derived from the HF

and PT models for three out of the four OOS periods. The LRR model-based priors

yield less accurate forecasts than the other model-based priors only for the 1947-1980

OOS period. In most cases, the LRR model-based priors outperform the historical

average model, which is shown by the positive R2
OOS values. The exception is the

1981-2014 OOS period, for which the LRR model-based priors improve the forecast

accuracy the most relative to the OLS estimates but fail to beat the historical average

model. The Diebold-Mariano test leads to statistically significant results only for

the 1947-1980 OOS period, for which we can reject the historical average model

at the quarterly and annual frequency. The difficulty of statistically rejecting the

historical average model when predicting the equity premium OOS is emphasized

by Welch and Goyal (2008).

Table 3 compares the model-based priors by assessing their forecast errors against

each other instead of comparing them to the forecast errors of the historical average

model. The differences in the R2
OOS (in percent) between the best-performing prior

and the other priors are reported for every return frequency, predictor, and sample

period. To test whether the difference in forecast errors is statistically significant,

I use a one-sided Diebold-Mariano test. Despite the difficult task to statistically

reject OOS forecasting models of the equity premium (see, for example, Campbell

and Thompson (2008) and Welch and Goyal (2008)), the differences are statistically

significant in several cases. For the log dividend-price ratio, the hypothesis of equal

predictive power of the model estimated with the LRR priors and the PT priors

can be rejected for the majority of data samples. The differences between the R2
OOS

of the LRR priors and the HF priors are generally smaller and, thus, significant

in fewer cases. When the log dividend yield acts as the predictor, the results are

not as pronounced as for the log dividend-price ratio, but the hypothesis of equal

predictive power can be rejected particularly at the monthly frequency, where more

data points are available and the power of the test is increased. The analysis in

20



T
a
b
le

2
:
M

o
d
e
l-
b
a
se
d

p
ri
o
r
fo
re
ca

st
p
e
rf
o
rm

a
n
ce

P
an

el
s

A
,

B
,

an
d

C
sh

ow
th

e
O

O
S

p
er

fo
rm

an
ce

of
th

e
m

o
d

el
-b

a
se

d
p

ri
o
rs

d
er

iv
ed

fr
o
m

th
e

th
re

e
co

n
su

m
p

ti
o
n

-b
a
se

d
a
ss

et
p

ri
ci

n
g

m
o
d

el
s:

H
F

,
L

R
R

,
an

d
P

T
.

T
h

e
p

ri
or

s
ar

e
im

p
os

ed
on

th
e

si
n

gl
e-

va
ri

ab
le

p
re

d
ic

ti
v
e

re
g
re

ss
io

n
g
iv

en
in

eq
u

a
ti

o
n

(1
).

R
ep

o
rt

ed
is

th
e
R

2 O
O
S

(i
n

p
er

ce
n
t)

fr
o
m

eq
u

a
ti

o
n

(1
3
),

w
h

ic
h

m
ea

su
re

s
th

e
ac

cu
ra

cy
of

O
O

S
lo

g
eq

u
it

y
p

re
m

iu
m

fo
re

ca
st

s
o
f

th
e

si
n

g
le

-v
a
ri

a
b

le
p

re
d

ic
ti

ve
re

g
re

ss
io

n
re

la
ti

ve
to

th
e

h
is

to
ri

ca
l

av
er

a
g
e

m
o
d

el
.

T
h

e
p

re
d

ic
to

rs
ar

e
th

e
lo

g
d

iv
id

en
d

-p
ri

ce
ra

ti
o

an
d

th
e

lo
g

d
iv

id
en

d
y
ie

ld
.

If
th

e
m

o
d

el
-b

a
se

d
p

ri
o
r

le
a
d

s
to

a
n

in
cr

ea
se

in
th

e
R

2 O
O
S

re
la

ti
ve

to
O

L
S

fo
re

ca
st

in
th

e
“n

o
p

ri
or

”
co

lu
m

n
,

th
e

fi
gu

re
is

in
b

ol
d

.
T

h
e

la
st

co
lu

m
n

d
en

o
te

s
w

h
ic

h
m

o
d

el
-b

a
se

d
p

ri
o
r

le
a
d

s
to

th
e

g
re

a
te

st
im

p
ro

ve
m

en
t

in
fo

re
ca

st
a
cc

u
ra

cy
.

T
h

e
st

at
is

ti
ca

l
si

gn
ifi

ca
n

ce
of

th
e

d
iff

er
en

ce
b

et
w

ee
n

th
e

fo
re

ca
st

er
ro

rs
o
f

th
e

h
is

to
ri

ca
l

av
er

a
g
e

m
o
d

el
a
n

d
th

e
p

re
d

ic
ti

ve
re

g
re

ss
io

n
is

te
st

ed
w

it
h

a
D

ie
b

ol
d

-M
ar

ia
n

o
te

st
(s

ee
D

ie
b

ol
d

an
d

M
ar

ia
n

o
(1

99
5)

).
A

si
g
n

ifi
ca

n
t

te
st

st
a
ti

st
ic

is
d

en
o
te

d
b
y

*
*

a
t

th
e

5
p

er
ce

n
t

le
ve

l
a
n

d
b
y

*
a
t

th
e

1
0

p
er

ce
n
t

le
ve

l.

P
a
n

e
l

A
:

A
n

n
u

a
l

re
tu

rn
s

S
a
m

p
le

st
a
rt

O
O

S
p

e
ri

o
d

P
re

d
ic

to
r

N
o

p
ri

o
r

H
F

1
H

F
2

L
R

R
1

L
R

R
2

P
T

1
P

T
2

B
e
st

p
ri

o
r

19
26

19
47

-2
01

4
L

og
D

P
ra

ti
o

0.
39

6
-1

.2
0
9

-1
.2

9
2

1
.1

3
7

0
.6

0
7

-4
.0

4
5

-7
.5

7
9

L
R

R
1

L
og

D
Y

-1
6.

28
0

-4
.9

2
3

-3
.0

6
0

0
.3

0
9

0
.4

4
3

0
.8

3
7

0
.7

8
8

P
T

1
A

ve
ra

ge
-7

.9
4
2

-3
.0

6
6

-2
.1

7
6

0
.7

2
3

0
.5

2
5

-1
.6

0
4

-3
.3

9
6

L
R

R
1

19
26

19
47

-1
98

0
L

og
D

P
ra

ti
o

11
.8

95
*

1
5
.3

4
2
*

1
4
.7

2
7
*
*

3
.9

2
7
*

5
.0

8
3
*

1
6
.3

5
5
*

1
6
.5

6
4

P
T

2
L

og
D

Y
-1

0.
25

5
1
1
.4

8
8

1
1
.5

3
0

4
.4

1
7

5
.4

4
9

6
.6

9
8

8
.3

8
9

H
F

2
A

ve
ra

ge
0.

82
0

1
3
.4

1
5

1
3
.1

2
9

4
.1

7
2

5
.2

6
6

1
1
.5

2
6

1
2
.4

7
6

H
F

1

19
26

19
81

-2
01

4
L

og
D

P
ra

ti
o

-1
2.

24
2

-1
8
.4

8
6

-1
8
.6

8
1

-3
.0

2
7

-2
.6

8
9

-2
5
.2

2
4

-3
4
.2

4
9

L
R

R
2

L
og

D
Y

-2
2.

90
2

-2
1
.7

7
7

-1
9
.7

6
3

-4
.7

6
0

-4
.2

5
7

-6
.1

1
5

-8
.0

7
3

L
R

R
2

A
ve

ra
ge

-1
7.

57
2

-2
0
.1

3
2

-1
9
.2

2
2

-3
.8

9
3

-3
.4

7
3

-1
5
.6

7
0

-2
1
.1

6
1

L
R

R
2

19
47

19
68

-2
01

4
L

og
D

P
ra

ti
o

-3
.5

2
1

-1
.8

3
1

-1
.6

0
6

2
.2

3
7

2
.3

1
3

-4
.9

7
8

-9
.1

6
8

L
R

R
2

L
og

D
Y

-1
.3

3
4

-0
.0

6
9

-0
.0

0
1

0
.7

8
5

1
.0

7
0

1
.8

9
9

2
.3

4
5

P
T

2
A

ve
ra

ge
-2

.4
2
8

-0
.9

5
0

-0
.8

0
3

1
.5

1
1

1
.6

9
1

-1
.5

3
9

-3
.4

1
1

L
R

R
2

21



T
a
b
le

2
:
M

o
d
e
l-
b
a
se
d

p
ri
o
r
fo
re
ca

st
p
e
rf
o
rm

a
n
ce

(c
o
n
ti
n
u
e
d
)

P
a
n

e
l

B
:

Q
u

a
rt

e
rl

y
re

tu
rn

s
S

a
m

p
le

st
a
rt

O
O

S
p

e
ri

o
d

P
re

d
ic

to
r

N
o

p
ri

o
r

H
F

1
H

F
2

L
R

R
1

L
R

R
2

P
T

1
P

T
2

B
e
st

p
ri

o
r

19
26

19
47

-2
01

4
L

og
D

P
ra

ti
o

-0
.8

1
5

-0
.6

0
7

-1
.0

2
0

0
.2

4
6

0
.0

5
2

-5
.0

3
2

-7
.5

5
1

L
R

R
1

L
og

D
Y

0.
34

0
0
.8

7
7

0
.6

4
2

0
.8

3
4

0
.8

5
9

0
.7

4
0

0
.4

1
6

H
F

1
A

ve
ra

ge
-0

.2
3
8

0
.1

3
5

-0
.1

8
9

0
.5

4
0

0
.4

5
6

-2
.1

4
6

-3
.5

6
7

L
R

R
1

19
26

19
47

-1
98

0
L

og
D

P
ra

ti
o

3.
75

3
4
.1

1
0

3
.6

8
0

3
.3

3
4

3
.3

7
5

1
.7

5
2

0
.3

0
6

H
F

1
L

og
D

Y
4.

74
0
*

4
.8

8
9
*
*

4
.2

5
3
*

3
.1

3
3
*
*

3
.6

2
1
*
*

4
.4

5
8
*
*

5
.0

3
5
*

P
T

2
A

ve
ra

ge
4.

24
7

4
.4

9
9

3
.9

6
7

3
.2

3
3

3
.4

9
8

3
.1

0
5

2
.6

7
0

H
F

1

19
26

19
81

-2
01

4
L

og
D

P
ra

ti
o

-4
.7

2
7

-4
.9

9
5

-5
.0

7
4

-2
.8

8
2

-2
.4

4
8

-1
1
.3

3
4

-1
4
.0

3
2
*

L
R

R
2

L
og

D
Y

-3
.4

2
9

-3
.0

3
1

-2
.6

4
6

-1
.7

0
6

-1
.8

9
2

-2
.4

4
2

-3
.2

2
5

L
R

R
1

A
ve

ra
ge

-4
.0

7
8

-4
.0

1
3

-3
.8

6
0

-2
.2

9
4

-2
.1

7
0

-6
.8

8
8

-8
.6

2
8

L
R

R
2

19
47

19
68

-2
01

4
L

og
D

P
ra

ti
o

-0
.3

9
1

-0
.5

4
1

-0
.5

4
2

0
.6

4
0

0
.6

1
9

-5
.0

6
0

-7
.1

3
5

L
R

R
1

L
og

D
Y

-0
.2

9
7

0
.4

9
5

0
.4

3
9

0
.7

0
2

0
.8

3
0

0
.6

0
6

0
.0

7
5

L
R

R
2

A
ve

ra
ge

-0
.3

4
4

-0
.0

2
3

-0
.0

5
1

0
.6

7
1

0
.7

2
4

-2
.2

2
7

-3
.5

3
0

L
R

R
2

P
a
n

e
l

C
:

M
o
n
th

ly
re

tu
rn

s
S

a
m

p
le

st
a
rt

O
O

S
p

e
ri

o
d

P
re

d
ic

to
r

N
o

p
ri

o
r

H
F

1
H

F
2

L
R

R
1

L
R

R
2

P
T

1
P

T
2

B
e
st

p
ri

o
r

19
26

19
47

-2
01

4
L

og
D

P
ra

ti
o

-0
.0

6
1

-0
.2

5
4

-0
.0

7
5

0
.0

9
2

0
.0

6
3

-1
.6

8
0

-1
.6

5
6

L
R

R
1

L
og

D
Y

-0
.3

9
3

-0
.3

0
0

-0
.3

1
0

-0
.2

1
1

-0
.2

6
7

-0
.3

5
6

-0
.4

3
5

L
R

R
1

A
ve

ra
ge

-0
.2

2
7

-0
.2

7
7

-0
.1

9
2

-0
.0

5
9

-0
.1

0
2

-1
.0

1
8

-1
.0

4
6

L
R

R
1

19
26

19
47

-1
98

0
L

og
D

P
ra

ti
o

1.
26

4
1
.1

0
9

1
.2

0
4

1
.0

8
0

0
.7

7
7

0
.7

4
0

0
.1

8
2

H
F

2
L

og
D

Y
1.

17
5

1
.1

4
9

1
.2

3
8

1
.0

1
4

1
.0

4
6

1
.0

2
6

1
.2

1
7

H
F

2
A

ve
ra

ge
1.

21
9

1
.1

2
9

1
.2

2
1

1
.0

4
7

0
.9

1
1

0
.8

8
3

0
.6

9
9

H
F

2

19
26

19
81

-2
01

4
L

og
D

P
ra

ti
o

-1
.1

4
2

-1
.3

6
9

-0
.9

9
6

-0
.9

3
7

-1
.1

2
1

-3
.2

6
8

-3
.4

5
0

L
R

R
1

L
og

D
Y

-1
.6

7
2

-1
.9

4
4

-1
.8

1
0

-1
.2

3
6

-1
.2

7
2

-1
.4

0
1

-1
.7

9
1

L
R

R
1

A
ve

ra
ge

-1
.4

0
7

-1
.6

5
7

-1
.4

0
3

-1
.0

8
7

-1
.1

9
7

-2
.3

3
5

-2
.6

2
0

L
R

R
1

19
47

19
68

-2
01

4
L

og
D

P
ra

ti
o

-0
.2

3
7

-0
.3

5
7

-0
.0

9
3

0
.1

2
6

0
.0

1
4

-2
.4

8
3

-2
.7

8
4

L
R

R
1

L
og

D
Y

-0
.1

6
6

-0
.2

5
3

-0
.1

2
9

-0
.0

8
7

0
.1

1
0

0
.1

5
3

-0
.0

3
8

P
T

1
A

ve
ra

ge
-0

.2
0
2

-0
.3

0
5

-0
.1

1
1

0
.0

1
9

0
.0

6
2

-1
.1

6
5

-1
.4

1
1

L
R

R
2

22



Section 4 shows that even small and statistically insignificant differences in R2
OOS

can lead to substantial utility gains for an investor with mean-variance preferences.

The strong performance of the LRR prior can be explained by the low model-

implied predictability. In Table 1, β∗0 and β∗1 are lower for all three frequencies and

both predictors compared with the empirical estimates and β∗0 and β∗1 of the HF and

PT models. Thus, imposing the LRR prior pushes the posterior estimates of β0 and

β1 down. Figure 2 shows the OLS estimates — that is, no prior is imposed on the

predictive regression — and the posterior estimates for the log dividend-price ratio

and quarterly returns for the 1968-2014 OOS period. The LRR 1 posterior estimates

are substantially lower than the OLS estimates and the posterior estimates of the

HF 1 and PT 1 models. However, the model-based priors derived from the HF 1

model lead to posterior estimates that are similar to the OLS estimates. The model-

based priors from the PT 1 model push the posterior estimates for both coefficients

higher than they are when ignoring any prior and simply relying on OLS estimates.

Figure 3 shows that the lower posterior estimates achieved through the LRR 1

prior are beneficial for an investor. The top panel depicts the difference between

the cumulative sum of squared errors (SSE) of the historical average model and the

single-variable predictive regression estimated via OLS or via model-based priors. I

subtract the cumulative SSE of the predictive regression from the cumulative SSE

of the historical average model. Hence, a positive value implies that the predictive

regression outperforms the historical average model. Until the beginning of the

1990s, the predictive regression performs better than the historical average model

regardless of the estimation method. The highest cumulative SSE value is achieved

for an investor who relies on the priors of the PT 1 model, which is due to the strong

predictive power of the log dividend-price ratio implied by the PT 1 model. In the

1970s, valuation ratios had strong predictive power, and the PT 1 model makes

the investor rely on this predictive power to a higher degree than an investor who

uses the HF 1 or LRR 1 model to form her priors. The LRR 1 prior leads to the

23
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lowest cumulative SSE value until 1994. However, during the dot-com boom from

1994 to 1999, the predictive power of the log dividend-price ratio collapses and the

cumulative SSE of the predictive regression turns negative for all four estimation

methods. The investor armed with the LRR 1 model is able to limit poor forecasts,

as her belief in the predictive ability of valuation ratios is qualified because of her

prior. The lower panel of Figure 3 provides further detail. The equity premium

forecasts for the OOS period from 1968 to 2014 are depicted. The posterior point

forecasts given in equation (11) of the LRR 1 model are close to zero during the

dot-com boom. The other two model-based priors and the OLS estimates result in

strongly negative forecasts. Hence, an investor relying on these forecasts to time the

market suffers losses during this bull market period.

Some papers in the equity premium prediction literature restrict the model esti-

mates to yield only non-negative predictions of the equity premium (see, for example,

Campbell and Thompson (2008) and Pettenuzzo et al. (2014)). Such a restriction

will lead to a result that is similar to imposing the LRR prior. However, an investor

who derives a prior belief about the predictability of the equity premium through

data simulated from the asset pricing models would conclude that valuation ratios

can forecast a negative equity premium. Particularly for the HF and PT models,

negative forecasts occur frequently when estimating the predictive regression solely

with simulated data (as in equation (12)). For simulated data from the LRR model,

negative forecasts of the equity premium are not as frequent, as less weight is placed

on the predictor variable: β1 is small.

Figure 4 shows the simulated posterior density of the quarterly log equity pre-

mium prediction given in equation (10) for the third quarter in 1998. The predictor

is the log dividend-price ratio, and the model-based priors are the same as in Figures

2 and 3. The densities are simulated with 10,000 draws. For all three model-based

priors, the posterior densities are similarly shaped and approximate a Normal dis-

tribution. Hence, there are no substantial differences in terms of the risk that the
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predictive densities imply. However, when imposing the LRR 1 prior, the density is

furthest to the right, corresponding to an equity premium forecast that is greater

than the forecast of the other two model-based priors. These posterior densities are

in line with the predictions during the dot-com boom shown in the lower panel of

Figure 3. Figure 5 shows the corresponding posterior densities of β0 and β1 given

in equation (6). As the predictive density of the log equity premium, the coefficient

densities approximate Normal distributions. For both coefficients, the LRR 1 prior

results in posterior densities that are centered to the left of the HF 1 and PT 1

priors, consistent with the higher posterior mean of the equity premium predictive

density shown in Figure 4. Hence, in the third quarter of 1998 at the height of the

dot-com boom, when the dividend-price ratio was low, an investor who believes in

the HF 1 or PT 1 model expects a negative equity premium to materialize in the

next period. However, an investor whose prior beliefs are in line with the LRR 1

model is more hesitant to draw this conclusion. This finding is related to Wachter

and Warusawitharana (2009), who show that an investor who is skeptical about the

predictive power of the dividend-price ratio and the yield spread performs better

when forecasting the equity premium OOS.

My paper focuses on how model-based priors from different consumption-based

asset pricing models perform without investigating the reasons behind empirical

fluctuations in valuation ratios. However, several papers analyze drivers of the

high equity prices during the 1990s. Some researchers propose that an increase

in stock market participation and diversification is at least partially responsible

for the higher equity prices (see, for example, Heaton and Lucas (1999)). Lettau,

Ludvigson, and Wachter (2008) estimate through a regime-switching model that the

low dividend-price ratios during 1990s are driven by a shift to substantially lower

consumption volatility. This decrease in macroeconomic risk led to a lower expected

equity premium. Lettau and Van Nieuwerburgh (2008) allow for shifts in the steady

state of the economy and find a structural break in the 1990s for the dividend-price
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Figure 4: Predictive posterior density of the equity premium
This figure shows the simulated posterior density of the quarterly log equity premium prediction
given in equation (10) for the third quarter in 1998 for three model-based priors: HF 1, LRR 1,
and PT 1. The predictor is the log dividend-price ratio. Data from the first quarter in 1947 to the
second quarter in 1998 are used to estimate the predictive regression. The densities are simulated
with 10,000 draws.

ratio. The authors show that while this structural break can be detected in-sample,

an investor could not have exploited it OOS. Based on a VAR framework, Campbell,

Giglio, and Polk (2013) find that during the dot-com boom, the discount rates of

investors were at a historically low level, but the boom preceding the financial crisis

of 2007-2009 was caused by positive cash flow news.

4 Utility of an investor

So far, I have analyzed how priors derived from the three consumption-based asset

pricing models affect the forecast accuracy of single-variable predictive regressions.

However, investors are ultimately concerned about utility, and thus, we need to com-

pute differences in utility gains when comparing the model-based priors. Further,

comparing utility gains takes the investors’ risk aversion into account.
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Figure 5: Posterior density of coefficients
This figure shows the simulated posterior density of the coefficients β0 and β1 given in equation (6)
for the third quarter in 1998 for three model-based priors: HF 1, LRR 1, and PT 1. The predictor
is the log dividend-price ratio. Quarterly data from the first quarter in 1947 to the second quarter
in 1998 are used to estimate the predictive regression. The densities are simulated with 10,000
draws.

The Bayesian technique that I use to impose the economic constraints provides

the full predictive density of the equity premium. Based on the mean and the

variance of the predictive density, I can compute the portfolio allocation and util-

ity gains of an investor with mean-variance preferences (see, for example, Camp-

bell and Thompson (2008) and Wachter and Warusawitharana (2009)). The utility

gains of an investor achieved through the model-based priors will also give us an

estimate of how much an investor would be willing to pay to know the theory of one

consumption-based asset pricing model over another.

4.1 Asset allocation

An investor is assumed to have mean-variance preferences, and she chooses portfolio

weights for a risky asset and a risk-free asset. The return on the risky asset is the log
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equity premium rt+1 plus the log risk-free return rf,t, and the risk-free asset yields

rf,t. At time t, the investor solves the following maximization problem

max
αt

Et [Wt+1]− γ 1

2
V art [Wt+1] , (14)

subject to

Wt+1 = αt exp(rt+1 + rf,t) + (1− αt) exp(rf,t), (15)

where αt is the portfolio share of the risky asset, and γ is the risk aversion of the

investor. The solution to the maximization problem is

α∗t =
Et [exp(rt+1 + rf,t)− exp(rf,t)]

γV art [exp(rt+1)]
. (16)

For an investor who imposes model-based priors on the predictive regression to

forecast the equity premium, we can use the mean and the variance of the sampled

predictive density of rt+1 given in equation (10) to approximate α∗t . The optimal

risky asset portfolio share based on the model-based prior forecasts is denoted α̂∗t,m.

Based on α̂∗t,m and the realized equity premium, the realized wealth can be computed

Ŵt+1,m = α̂∗t,m exp(rt+1 + rf,t) + (1− α̂∗t,m) exp(rf,t). (17)

Solving for α̂∗t,m for t = t − 1, ..., T − 1 results in a sequence of
{
Ŵt,m

}T
t=t

. The

realized utility over the total OOS sample period is then given by

Ûm = Wm − γ
1

2

1

T − τ

T∑
τ=t

(Ŵτ,m −Wm)2, (18)

where Wm = 1
T−(τ−1)

∑T
τ=t Ŵτ,m.

When estimating the realized utility of portfolios N and A, a certainty equivalent

return (CER) can be computed. The CER is defined as a constant return that, when

added to the portfolio return of portfolio N , equates the realized utility of portfolios
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N and A. The CER is given by

CER = ÛA − ÛN . (19)

A more intuitive interpretation of the CER is a transaction cost or a management fee

that the investor is willing to pay each period to have access to the equity premium

forecasts used for portfolio A. For example, when portfolio N uses the model-based

prior from the HF model and portfolio A uses the model-based prior from the LRR

model, then the CER tells us how much the investor would be willing to pay each

period to have access to the LRR model instead of the HF model.

4.2 Utility results

I compute the CER given in equation (19) for each return frequency, predictor, and

OOS period. The share of the risky asset for portfolio A is computed based on

the predictions of the predictive regression when imposing the model-based prior

which results in the highest utility for the investor. The share of the risky asset

for portfolio N is computed based on the predictions when imposing one of the

remaining model-based priors, respectively. The results are shown in Table 4, which

is structured like Table 3 but with the R2
OOS figures replaced with the annualized

CERs. The risk aversion parameter γ is set equal to 5.

The CER results are even more favorable to the LRR prior than the R2
OOS

results reported in Table 2 and 3: an investor who derives her prior belief about

the predictability of the equity premium from the LRR model performs consistently

the best for three out of the four sample periods across all frequencies and both

predictors. The only OOS period during which the HF and PT priors dominate is

from 1947 to 1980. The CERs are economically significant with the maximum value

being 4.46%.

Panel D averages the CER for each prior pair across all frequencies, predic-
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tors, and sample periods. These values show how much on average an investor

would be willing to pay to have access to the model-based priors derived from the

consumption-based asset pricing model in the top row instead of any of the remain-

ing five model-based priors. For the LRR 1 prior, all the CER values are positive,

which implies that an investor who uses the LRR 1 prior to predict the equity pre-

mium and allocate her portfolio according to these predictions achieves the highest

average utility. The LRR 2 model is a close second with positive average CER values

against all model-based priors except the LRR 1 prior. The average CER values are

economically meaningful. Investors who rely on the HF 1 or HF 2 priors would pay

between 20 and 30 basis points per year to have access to the LRR priors. The in-

vestors who derive their prior beliefs about the predictability of the equity premium

from the PT model would on average need an additional 60 and 75 basis points per

year to achieve the utility level of the investor who uses the LRR priors.

Figure 6 shows the risky asset share of the portfolio given in equation (16) for

the HF 2, LRR 2, and PT 2 priors. The forecasts are at an annual frequency,

and the OOS period is from 1947 to 2014. The top panel shows the risky asset

share when the log dividend-price ratio is used as the predictor. For the bottom

panel, the log dividend-yield is the predictor. Generally, the LRR prior leads to a

more stable portfolio share of the risky asset, which is due to the low predictability

implied by the LRR model. The greatest difference between the priors is again

during the bull market of the late 1990s. For the dividend-price ratio, the HF 2 and

the PT 2 investors short the risky asset during this period, because they expect low

valuation ratios to predict strongly negative returns. However, the investor with

prior beliefs derived from the LRR 2 model is skeptical about the predictive power

of the low valuation ratios and maintains a positive weight on the risky asset. The

bottom panel is similar to the top panel with the difference being that the PT 2

investor is more bullish during the bull market of the late 1990s when predicting

with the dividend yield. This difference is explained by the prior means of the
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predictive regression coefficients reported in Panel A of Table 1. The model-implied

parameters of PT 2 for the dividend yield are smaller than for the dividend-price

ratio, which makes the investor more hesitant to believe that the low dividend yield

will predict an immediate downturn of the stock market.

5 Robustness

For the benchmark results shown previously, the consumption-based asset pricing

models used to derive the priors are calibrated as proposed by the respective authors,

that is, Campbell and Cochrane (1999), Barberis, et al. (2001), and Bansal and

Yaron (2004). To test whether the results are robust to calibrating the asset pricing

models with data from a time period that has no overlap with the OOS period, I

calibrate the parameters of the asset pricing models with data from 1926 to 1967.

In the OOS forecast exercise above, 1926 is the beginning of the return sample,

and 1967 is the end of the burn-in period for the postwar data sample. All three

asset pricing models are calibrated with annual data. Hence, using a shorter sample

for the calibration makes the task of matching empirical moments too challenging

for the models, as the empirical moments are likely distorted by outliers. I follow

the calibration methodology proposed by the respective authors: some parameters

are set equal to their empirical counterparts and others are chosen such that the

model simulated moments match the empirical moments, as, for example, the mean

and standard deviation of the dividend-price ratio or the equity premium. Details

regarding the calibration of the models can be found in Appendix A.

Table 5 reports the results for the priors derived from the asset pricing models

calibrated with data from 1926 to 1967. The OOS forecasts start in 1968. Panel

A shows the R2
OOS for each prior, predictor, and return frequency. The priors from

the LRR model perform consistently the best and improve the R2
OOS relative to the

“no prior” forecast in every case. In Panel B, the difference between the R2
OOS of

37
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the respective prior and the best performing prior is shown. The significance of the

difference in forecast errors is tested with a Diebold-Mariano test (see Diebold and

Mariano (1995)). The differences in forecast performance between the LRR priors

and priors derived form the HF and the PT model are generally significant at a

monthly and a quarterly frequency, where the higher number of observations leads

to more power compared to the annual returns.

For the benchmark analysis, the tightness parameters of the Gamma-Normal

prior, λ and v, are set equal to 1 and 0.1, respectively, as described in Section 2.2.

However, the results and the conclusions drawn in this paper are robust to tightening

or loosening the model-based priors.

Table 6 reports the results for the total sample, that is, the 1947-2014 OOS pe-

riod. Relative to the benchmark, the model-based priors are tightened and loosened

by a factor of 2 and 4. Tightening the priors further does not alter the conclusion,

and loosening the priors by more than factor of 4 leads to forecast results that are

not substantially different from the OLS estimates. Tightening (loosening) the prior

by a factor of 4 results in λ = 0.25 (λ = 4) and v = 0.4 (v = 0.025). The LRR

model-based priors yield the most accurate forecasts across the range of λ and v val-

ues. For the dividend-price ratio, a LRR model-based prior is the best performing

prior for all the hyperparameter values and return frequencies, with the exception

of the monthly return frequency when λ = 4 and v = 0.4. For the dividend-yield,

the LRR model-based priors outperform the other priors in half of the cases. As

in Table 3, the differences in OOS forecast errors are statistically significant based

on the Diebold-Mariano test (see Diebold and Mariano (1995)) in several cases at a

monthly and quarterly frequency.

The sensitivity to the prior tightness of the economic performance of a mean-

variance investor are shown in Table 7, which is stuctured similarly to Table 4 and

reports the CER given in equation (19) for each return predictor, prior tightness, and

return frequency, for the total sample OOS period, that is, from 1947 to 2014. An
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investor who forecasts the equity premium with an LRR model-based prior achieves

the highest utility in 23 out of the 24 cases. Panel D shows the average CER for

each model-based prior pair. Compared to an investor who times the market based

on forecasts from HF priors, an investor using the LRR priors generates a CER of

close to 20 basis point a year. The average CER of the LRR priors compared to

the PT priors is around 50 basis points per year. These results confirm that the

strong forecasting performance of an investor who derives her prior beliefs about

the equity premium predictability from the LRR model are robust to changes in the

prior tightness.

6 Conclusion

Different theories have been proposed to resolve the equity premium puzzle of Mehra

and Prescott (1985). Three prominent consumption-based asset pricing models that

provide different explanations for the existence of the equity premium puzzle are the

Habit Formation (HF), the Long Run Risk (LRR), and the Prospect Theory (PT)

models. I compare these asset pricing models based on whether they can profitably

guide the investment decisions of investors who try to time the stock market. I

propose a simple Bayesian framework in which investors reduce the uncertainty

about predictive regression parameters by imposing economic constraints derived

from the three asset pricing models. The predictor of the single-variable predictive

regression is a valuation ratio — that is, the log dividend-price ratio or the log

dividend yield.

The priors derived from the LRR model perform particularly well during the

dot-com boom in the late 1990s. During that period, low valuation ratios predicted

negative returns that failed to materialize for several years. The key to the strong

performance of the LRR priors is the weak implied predictive power of valuation

ratios for the equity premium. The weak predictive power is caused by the LRR
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model’s time-variation in the dividend growth forecasts, the long-run risk compo-

nent. Hence, an investor who uses the LRR model to guide her investment choices

is hesitant to conclude that low valuation ratios result in an immediate fall in stock

prices. The stronger predictability implied by the HF and PT models helps to im-

prove the forecast accuracy up to the 1980s. However, the performance deteriorates

quickly during the dot-com boom, as the investors who believe in the strong predic-

tive power of valuation ratios anticipate a sharp price decline much earlier than it

materializes. Because the performance during the dot-com boom dominates over the

total sample period, that is, from 1926 to 2014, an investor whose prior beliefs are

anchored in the LRR model would have outperformed investors whose prior beliefs

stem from the HF and PT models. These differences in forecast accuracy are not

only shown by the R2
OOS, but also translate into considerable utility gains for an

investor with mean-variance preferences.

By imposing model-based priors derived from consumption-based asset pricing

models on predictive regressions and showing how the forecast performances of these

priors differ, this paper makes a novel contribution to the equity premium prediction

literature. This paper also adds to our understanding of consumption-based asset

pricing models. The paper shows that over the 1926-2014 sample, an investor whose

beliefs had been rooted in an asset pricing model that implies weak equity premium

predictability would have outperformed investors who relied on priors from models

in which the equity premium is strongly predictable.
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Appendix A Asset pricing models

A.1 By force of habit: A consumption-based explanation of

aggregate stock market behavior

Campbell and Cochrane (1999) use a standard representative-agent consumption-

based asset pricing model but add a slow-moving habit to the basic power utility

function. This slow-moving habit leads to a time-varying risk premium that is higher

at business cycle troughs than at peaks.

The agents are identical and maximize their utility given by

E

[
∞∑
t=0

δt
(Ct −Xt)

(1−γ) − 1

1− γ

]
, (A.1)

where Ct is the consumption level, Xt is the level of habit, δ is the time discount

factor, and γ is the risk aversion. A surplus consumption ratio St ≡ (Ct − Xt)/Ct

is defined — a small value of St indicates that the economy is in a bad state. The

local curvature of this utility function is given by

ηt ≡ −
Ctucc(Ct, Xt)

uc(Ct, Xt)
=

γ

St
. (A.2)

A process is specified for st = ln(St), which ensures that Ct is always above Xt:

st+1 = (1− φ)s̄+ φst + λ(st)(ct+1 − ct − g), (A.3)

with φ reflecting habit persistence. The function λ(st) takes the form

λ(st) =


1
S̄

√
1− 2(st − s̄)− 1, st ≤ smax

0, st > smax,

(A.4)

with the parameter smax set equal to s̄+ 1
2
(1− S̄2). The steady state value s̄ is given
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by ln(σ
√
γ/(1− φ)). The evolution of st+1 is based on consumption growth being

an i.i.d. lognormal process

∆ct+1 = g + vt+1, where vt+1
i.i.d.∼ N(0, σ2

v). (A.5)

Stocks represent a claim to the consumption stream. The price-consumption

ratio for a consumption claim satisfies

Pt
Ct

(st) = Et

[
Mt+1

Ct+1

Ct

[
1 +

Pt+1

Ct+1

(st+1)

]]
. (A.6)

The underlying assumption is that dividend growth is perfectly correlated with

consumption growth in equation (A.5). Above, I denote this specification the HF

1 model.10 The intertemporal marginal rate of substitution (IMRS) Mt+1 takes the

form

Mt+1 ≡ δ

(
St+1

St

Ct+1

Ct

)−γ
. (A.7)

Because the term (St+1/St)
−γ correlates positively with asset returns, the HF model

generates a higher equity premium compared with the standard power utility model.

The log risk-free rate is given by

rft = −ln(δ) + γg − γ(1− φ)(st − s̄)−
γ2σ2

2
[1 + λ(st)]

2. (A.8)

The price-consumption ratio is correlated with the business cycles, as it depends

on st. The ratio is high at business cycle peaks and low at troughs. Why is the price-

consumption ratio procyclical? Suppose there is a positive shock to consumption

in period t. Higher consumption raises st and consequently Et[Mt+1], which results

in a higher asset price and price-consumption ratio. (Equation (A.2) shows how

an increase in st lowers the the local curvature of the utility function and makes

10The solution for the model specification which assumes imperfectly correlated consumption
and dividend processes (HF 2) is given in Campbell and Cochrane (1999).
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the agent less risk averse.) Because expected future cash flows remain constant, the

higher asset prices will lead to lower expected returns. Hence, the price-consumption

ratio and subsequent returns are inversely correlated.

A.1.1 Calibration and simulation of model

For my benchmark analysis, priors from the HF model are based on the parameter

values proposed by Campbell and Cochrane (1999). These parameter values are re-

ported in Table A.1. in the “original value” column. My recalibration of the model

with data from 1926 to 1967 results in parameter values reported in the “1926-

1967 value” column. For the recalibration, I follow the methodology of Campbell

and Cochrane (1999). Consumption data are real per capita consumption of non-

durables and services from the Bureau of Economic Analysis (BEA). The standard

deviation of log consumption growth is chosen such that annual log consumption

growth simulated from the model matches the empirical counterpart of 3.02%. The

risk-free rate time series is from Amit Goyal’s website and deflated with inflation

data from Federal Reserve Economic Data. Dividends are computed using CRSP

New York Stock Exchange (NYSE) data. The persistence of the log price-dividend

ratio is 0.82. Following Campbell and Cochrane (1999), I chose γ to match the

NYSE equity premium sharpe ratio, which is 0.33 for the 1926-1967 period, with

the HF 1 specification. The discount factor δ is selected such that the annualized

log risk-free rate matches the empirical value of 0.31.

I apply the fixed-point method to solve for the price-consumption and the price-

dividend ratio (see Wachter (2005)). The model is simulated at a monthly frequency

and time-aggregated to lower frequencies. Summary statistics of the simulation for

the model specification with perfectly (HF 1) and imperfectly (HF 2) correlated

log consumption and log dividend growth are given in Panel A of Table A.2. The

simulated moments match the moments obtained by Campbell and Cochrane (1999)

and Wachter (2005). The simulated moments based on the model recalibrated with
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data from 1926-1967 can be found in Panel B of Table A.2.

A.2 Prospect theory and asset prices

In the model of Barberis et al. (2001), the agent not only derives utility from

consumption but also from financial wealth fluctuations. There are two important

aspects in the way financial wealth fluctuations affect the utility of an economic

agent. First, the agent is loss averse. Second, the degree of loss aversion depends

on prior investment outcomes. Prior gains lead to less loss aversion, and prior losses

lead to more loss aversion. Hence, the risk aversion of the agent varies over time.

Aggregate consumption growth and dividend growth follow the i.i.d. lognormal

processes given by

∆ct+1 = gc + σcεc,t+1, where εc,t+1
i.i.d.∼ N(0, 1) (A.9)

and

∆dt+1 = gd + σdεd,t+1, where εd,t+1
i.i.d.∼ N(0, 1), (A.10)

with the correlation between εc,t+1 and εd,t+1 being denoted by ω.11

The agent’s maximization problem is set up as

E

[
∞∑
t=0

(
ρt
C1−γ
t

1− γ
+ b0C̄

−γ
t ρt+1v(Xt+1, St, zt)

)]
. (A.11)

The second term captures the fact that the agent’s utility is affected by fluctuations

in financial wealth. The variable Xt+1 denotes the change of the financial wealth

between time t and t+ 1 and is defined as

Xt+1 ≡ StRt+1 − StRf,t. (A.12)

11Barberis et al. (2001) consider two different specifications: Economy I, in which dividends
equal consumption, and Economy II, in which consumption and dividends follow separate but
positively correlated processes. The simulated moments of Economy II are much more successful
in matching the empirical moments; hence, I do not consider Economy I.
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Table A.1: Habit Formation model parameter values

The parameter values from Campbell and Cochrane (1999) are reported in the “original value”
column. The parameter values chosen for the calibration of the model based on data from 1926
to 1967 are reported in the “1926-1967 value” column. A * denotes that the value is annualized.

Description Variable Original value
1926-1967

value

Mean log consumption growth* g 1.89% 1.77%
Std. dev. log consumption growth* σ 1.50% 3.75%
Log risk-free rate* rf 0.94% 0.31%
Persistence coefficient* φ 0.87 0.82
Utility curvature γ 2.00 1.00
Std. dev. log dividend growth* σω 11.2% 14.3%
Corr. log cons. and log div. growth ρ 0.20 0.57
Subjective discount factor* δ 0.89 0.92

Table A.2: Habit Formation model simulated moments

Simulated moments at monthly, quarterly, and annual frequencies that are reported for the
specifications of the HF model that assume perfect (HF 1) and imperfect correlation (HF 2)
between log consumption and log dividend growth. For Panel A, the parameter values of Campbell
and Cochrane (1999) are used. For Panel B, the parameter values are calibrated based on a
sample with data from 1926 to 1967. The price-dividend ratio moments are annualized.

Panel A: Based on original parameter values
Model Freq. P/D Log P/D Log equity prem. Log Sharpe

Mean Std. dev. Mean Std. dev. ratio

HF 1 Annual 18.55 0.27 6.60% 15.06% 0.44
HF 2 Annual 19.00 0.30 6.52% 19.91% 0.33
HF 1 Quarterly 18.43 0.27 1.65% 7.73% 0.21
HF 2 Quarterly 18.92 0.28 1.63% 10.08% 0.16
HF 1 Monthly 18.39 0.27 0.55% 4.49% 0.12
HF 2 Monthly 18.89 0.28 0.54% 5.84% 0.09

Panel B: Based on 1926-1967 parameter values
HF 1 Annual 17.32 0.35 7.76% 23.71% 0.33
HF 2 Annual 17.14 0.40 7.92% 31.59% 0.25
HF 1 Quarterly 17.20 0.35 1.95% 12.26% 0.16
HF 2 Quarterly 17.01 0.37 1.97% 16.17% 0.12
HF 1 Monthly 17.12 0.34 0.65% 7.12% 0.09
HF 2 Monthly 17.03 0.37 0.66% 9.38% 0.07
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The variable St measures the value of the agent’s risky assets at time t. The variable

zt accounts for prior gains and losses up to time t and is defined as Zt/St, where Zt

is a historical benchmark level for the value of the risky asset. If zt is smaller than

one, the agent has prior gains; if zt is greater than one, the agent faces prior losses.

The time discount factor is ρ, and b0C̄
−γ
t is a scaling term, with γ being the risk

aversion over consumption. The form of the utility function over financial wealth

v(.) is different conditional on prior gains or prior losses.

The dynamics of zt are given by the process

zt+1 = η

(
zt

R̄

Rt+1

)
+ (1− η). (A.13)

This process ensures that the benchmark level Zt reacts sluggishly to changes in the

stock price. The parameter R̄ is chosen such that the median value of zt is around

one.

The price-dividend ratio is assumed to be a function of the state variable zt:

ft ≡ Pt/Dt = f(zt). (A.14)

The real stock returns are thus given as

Rt+1 =
1 + f(zt+1)

f(zt)
egd+σdεd,t+1 . (A.15)

Barberis et al. (2001) show that the equilibrium is characterized by a constant real

risk-free rate,

Rf = δ−1eγgc−γ
2σ2
c/2, (A.16)
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and a price-dividend ratio determined by the equation

1 =δegd−γgc+γ
2σ2
c (1−ω2)/2Et

[
1 + f(zt+1)

f(zt)
e(σd−γωσc)εd,t+1

]
+ b0δEt

[
v̂

(
1 + f(zt+1)

f(zt)
egd+σdεd,t+1 , zt

)]
,

(A.17)

where the utility function v̂(Rt+1, zt) is equal to v(Xt+1, St, zt)/St and specified for

zt ≤ 1 as

v̂(Rt+1, zt) =


Rt+1 −Rf,t, Rt+1 ≥ ztRf,t

(ztRf,t −Rf,t) + λ(Rt+1 − ztRf,t), Rt+1 < ztRf,t

(A.18)

and for zt > 1 as

v̂(Rt+1, zt) =


Rt+1 −Rf,t, Rt+1 ≥ Rf,t

λ(zt)(Rt+1 −Rf,t), Rt+1 < Rf,t,

(A.19)

where λ(zt) = λ+ k(zt − 1) with k > 0.

The PT model generates an equity premium that is predictable by the dividend-

price ratio. The mechanism works through time-varying risk aversion. A positive

period t shock to dividends in equation (A.10) increases the return of the asset

and leads to a lower zt through equation (A.13). A lower zt implies that the agent

is less loss averse as shown in equations (A.18) and (A.19). Hence, the price of

the asset will increase, which reduces the agent’s loss aversion further, leading to

a higher price-dividend ratio. Because of the higher prices and unchanged cash

flow expectations, the expected returns are lower. Price-dividend ratios and future

returns are therefore negatively related.
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A.2.1 Calibration and simulation of model

The parameter values from Barberis et al. (2001) are reported in Table A.3. in the

“original value” column. My recalibration of the model with data from 1926 to 1967

uses the parameter values in the “1926-1967 value” column. For some parameters,

two values are given. In these cases, the first value corresponds to the PT 1 model.

The recalibration follows the methodology of Barberis et al. (2001). The PT 1 model

is calibrated such that the average effective loss aversion of the model is 2.25.12 The

second value corresponds to the PT 2 model, which is calibrated such that the log

equity premium of the model matches the empirical moment. When calibrating the

model with the 1926-1967 data sample, I use the the same consumption, dividend,

and return data as for the calibration of the HF model, described previously.13 The

parameters γ, ρ, and δ are chosen to bring the risk-free rate close to the empirical

value of 0.31%. The prior outcome parameter k and the time discount factor ρ are

set to 4 and 0.98, respectively, for the PT 1 model such that the annual average

effective loss aversion is 2.25. For the PT 2 model, the parameter values are chosen

to be 18 and 0.99, respectively, to bring the annual simulated equity premium close

to 7.42%. The persistence parameter η is set such that the persistence of the log

price-dividend ratio is close to the empirical value of 0.82. The remaining parameters

are not estimated with empirical data and set equal to the values of Barberis et al.

(2001).

I solve the model by following the process laid out by Barberis et al. (2001).

The moments in Panel A of Table A.4. are generated by simulating the model with

the parameter values proposed by the authors, particularly b0 = 100 and k = 3 for

PT 1 and b0 = 100 and k = 8 for PT 2. The moments match the moments obtained

by Barberis et al. (2001). Panel B reports the simulated moments based on my

12This value is chosen by Barberis et al. (2001) based on experimental evidence.
13I set σD equal to 12% for the 1926-1967 parameter values, as in Barberis et al. (2001), instead

of 14.2% as in the HF model, as a convergence of the numerical solution was not achieved with a
more volatile log dividend growth process.
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recalibration of the parameter values with data from 1926 to 1967.

A.3 Risks for the long run: a potential resolution of asset

pricing puzzles

Bansal and Yaron (2004) propose a solution to the equity premium puzzle through

a consumption-based asset pricing model with Epstein and Zin (1989) preferences.

Their model differs from other consumption-based asset pricing models in two ways.

First, they include a small persistent expected growth rate component in the con-

sumption and dividend growth rate processes. This component causes consumption

and the return on the market portfolio to covary positively, and hence, the eco-

nomic agents require a higher risk premium. Second, they allow for time-varying

volatility, which accounts for fluctuating economic uncertainty, in both processes:

this additional source of systematic risk increases the risk premium further.

The asset pricing restriction for the real return on the market portfolio Rm,t+1,

according to the Epstein and Zin (1989) preferences, is

Et

[
δθG

− θ
ψ

c,t+1R
−(1−θ)
c,t+1 Rm,t+1

]
= Et [Mt+1Rm,t+1] = 1, (A.20)

where Gc,t+1 is the aggregate gross growth rate of consumption, Rc,t+1 denotes the

real return on an asset that pays aggregate consumption as dividends, δ is the time

discount factor, and Mt+1 is the IMRS. The parameter θ is defined as (1−γ)/(1− 1
ψ

),

where γ is the risk aversion parameter, and ψ accounts for the intertemporal elas-

ticity of substitution (IES). To derive the real returns, the authors use the standard

approximation of Campbell and Shiller (1988). The real log return for the claim to

aggregate consumption is

rc,t+1 = κ0 + κ1zt+1 − zt + gc,t+1, (A.21)
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Table A.3: Prospect Theory model parameter values

The parameter values from Barberis et al. (2001) are reported in column “original value”. The pa-
rameter values chosen for the calibration of the model based on data from 1926 to 1967 are reported
in the “1926-1967 value” column. When two values are given for the same parameter, then the first
value stands for the PT 1 model and the second value for the PT 2 model. All values are annualized.

Description Variable Original value
1926-1967

value

Mean log consumption growth gc 1.84% 1.77%
Mean log dividend growth gd 1.89% 1.77%
Std. dev. log consumption growth σc 3.79% 3.02%
Std. dev. log dividend growth σd 12.0% 12.0%
Corr log cons. and log div. growth ω 0.15 0.57
Utility curvature γ 1.00 1.00
Time discount factor ρ 0.98 0.98 / 0.99
Loss aversion λ 2.25 2.25
Prior outcome parameter k 3 / 8 4 / 18
Prospect utility weight b0 100 100
Persistence factor η 0.90 0.90

Table A.4: Prospect Theory model simulated moments

Simulated moments at monthly, quarterly, and annual frequencies are reported. In Panel A, the
parameter values of Barberis et al. (2001) are used, particularly b0 = 100 and k = 3 for the PT 1
specification and b0 = 100 and k = 8 for the PT 2 specification. For Panel B, the parameter values
are estimated based on a sample with data from 1926 to 1967, particularly b0 = 100 and k = 4
for the PT 1 specification and b0 = 100 and k = 18 for the PT 2 specification. The price-dividend
ratio moments are annualized.

Panel A: Based on original parameter values
Model Freq. Price-dividend ratio Log equity prem. Log Sharpe

Mean Std. dev. Mean Std. dev. ratio

PT 1 Annual 17.30 2.38 3.74% 20.23% 0.19
PT 2 Annual 12.73 2.21 5.87% 23.87% 0.25
PT 1 Quarterly 9.46 0.54 2.13% 9.00% 0.24
PT 2 Quarterly 7.45 0.60 2.84% 10.79% 0.26
PT 1 Monthly 6.30 0.14 1.15% 4.48% 0.26
PT 2 Monthly 5.05 0.16 1.47% 5.05% 0.29

Panel B: Based on 1926-1967 parameter values
PT 1 Annual 16.99 2.48 3.90% 21.18% 0.18
PT 2 Annual 12.30 2.54 7.47% 28.54% 0.26
PT 1 Quarterly 9.45 0.57 2.12% 9.34% 0.23
PT 2 Quarterly 6.73 0.67 3.51% 12.99% 0.27
PT 1 Monthly 6.32 0.16 1.15% 4.65% 0.25
PT 2 Monthly 4.35 0.18 1.85% 5.85% 0.32
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where gc,t+1 is the log consumption growth, and zt denotes the log price-consumption

ratio. The specification for the real log return on the market portfolio is

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1, (A.22)

where gd,t+1 is the log dividend growth rate, and zm,t denotes the log price-dividend

ratio. The values for κ0, κ0,m, κ1, and κ1,m are constants that are derived through

the approximation of Campbell and Shiller (1988).14

The dynamics of log consumption growth and log dividend growth — which

incorporate a small persistent predictable component xt, the long run risk compo-

nent, and a time-varying volatility component σt, reflecting fluctuating economic

uncertainty — are

xt+1 =ρxt + ϕeσtet+1

gc,t+1 =µc + xt + σtηt+1

gd,t+1 =µd + φxt + ϕdσtut+1

σ2
t+1 =σ2 + v1(σ2

t − σ2) + σwwt+1,

(A.23)

with et+1, ut+1, ηt+1, and wt+1 having i.i.d. standard Normal distributions.15 The

state variables, which determine the price-consumption and price-dividend ratios,

are xt and σt. The solutions for zt and zm,t are

zt =A0 + A1xt + A2σ
2
t

zm,t =A0,m + A1,mxt + A2,mσ
2
t .

(A.24)

The derivation of A and Am can be found in Bansal and Yaron (2004) and Bansal

et al. (2010 and 2012).

14Bansal et al. (2010) show that κ1 is equal to exp(z̄)/(1 + exp(z̄)), and κ0 is equal to ln(1 +
exp(z̄)) − κ1z̄, where z̄ is the mean log price-consumption ratio. Accordingly, κ1,m is given by
exp(z̄m)/(1 + exp(z̄m)), and κ0,m is equal to ln(1 + exp(z̄m)) − κ1,mz̄m, with z̄m being the mean
log price-dividend ratio.

15Bansal and Yaron (2004) also simulate a version of their model without time-varying volatility
of consumption growth, which is less successful in matching empirical data moments.
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The model generates excess returns that are predictable by the price-dividend

ratio, but the predictability is weak. The predictability is affected by the two state

variables σ2
t and xt. A negative shock to σ2

t results in a lower Et[Rc,t+1], which

causes Et[Mt+1] to increase. Consequently, asset prices and price-dividend ratios

are both higher. The higher prices cause a decrease in expected returns, and thus, a

negative correlation between the price-dividend ratio and future returns. A positive

shock to xt also causes an increase in Et[Mt+1] as Et[Gt+1] goes up: asset prices and

price-dividend ratios increase. However, dividends in subsequent periods will be

higher because of the positive shock to the growth rate. Thus, high price-dividend

ratios are followed by higher cash flows which weakens the negative correlation of

price-dividend ratios and subsequent returns.

A.3.1 Calibration and simulation of model

The parameter values used by Bansal and Yaron (2004) are reported in Table A.5.

in the “original value” column. My calibration of the model over the 1926-1967

sample uses the parameter values in the “1926-1967 value” column. For the risk

aversion parameter γ two values are given. The first value corresponds to the LRR

1 model. The LRR 1 model yields a simulated price-dividend ratio that is close to

the empirical moment. The second value corresponds to the LRR 2 model, which

matches the empirical log equity premium closely. For the calibration with the

1926-1967 sample, I use the same consumption, dividend, and return data as for the

calibration of the HF model, described previously.16 Following Bansal and Yaron

(2004), the parameters µ, µd, ρ, ϕe, φ, ϕd, and σ, are chosen such that the model

can replicate the log consumption growth and log dividend growth dynamics of the

annual empirical data, as well as producing a price-dividend ratio (LRR 1) and an

equity premium (LRR 2) that are close to their empirical counterparts of 22.34 and

7.42%, respectively. For the 1926-1967 sample, log consumption growth has a mean

16Bansal and Yaron (2004) assume consumption takes place at the end of a period. I assume
the same timing convention.
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of 1.80% and a standard deviation of 3.08% with an autocorrelation of 0.32. The

variance ratios at the 2, 5, and 10 year horizon are 1.35, 1.32, and 1.37, respectively.

The log dividend growth has a standard deviation of 14.27% and an autocorrelation

of -0.03. The correlation between log consumption and log dividend growth is 0.57.

The parameters of the economic uncertainty process v1 and σw are selected such that

predictable variation of consumption volatility with the log price-dividend ratio is

3% as in the empirical data.

Panel A of Table A.6. reports the moments of the simulated data from the LRR

model for γ = 7.5 (LRR 1) and γ = 10 (LRR 2) when the Bansal and Yaron (2004)

parameter values are used. The simulation is based on the analytical solutions of

the model. The analytical solutions are considered more reliable than the numerical

solutions (see, for example, Bansal et al. (2010 and 2012) and Beeler and Campbell

(2012)). The model is simulated at a monthly frequency and time-aggregated to

lower frequencies. The obtained data moments match the data moments in Bansal

and Yaron (2004) and Beeler and Campbell (2012). Panel B of Table A.6. reports

the simulated moments based on my recalibration of the model with data from 1926

to 1967.
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Table A.5: Long Run Risk model parameter values

The parameter values from Bansal and Yaron (2004) are reported in the “original value” column.
The parameter values chosen for the calibration of the model based on data from 1926 to 1967 are
reported in the “1926-1967 value” column. When two values are given for the same parameter,
then the first value stands for the LRR 1 model and the second value for the LRR 2 model. A *
denotes that the value is at a monthly frequency.

Description Variable Original value 1926-1967 value

Mean log consumption growth* µc 0.0015 0.0015
Mean log dividend growth* µd 0.0015 0.0015
Persistence of xt* ρ 0.979 0.977
Volatility multiple of xt* ϕe 0.044 0.049
Dividend leverage* φ 3.00 3.70
Dividend volatility multiple* ϕd 4.50 4.80
Unconditional mean of σt* σ 0.0078 0.0083
Persistence of σt* v1 0.987 0.987
Baseline volatility* σw 0.23×10−5 0.23×10−5

Risk aversion γ 7.5 / 10 7.5 / 10
IES ψ 1.50 1.50
Time discount factor* δ 0.9880 0.9885

Table A.6: Long Run Risk model simulated moments

Simulated moments at monthly, quarterly, and annual frequencies are reported for the specifica-
tions of the LRR model with γ = 7.5 (LRR 1) and γ = 10 (LRR 2). For Panel A, the parameter
values of Bansal and Yaron (2004) are used. For Panel B, the parameter values are estimated
based on a sample with data from 1926 to 1967. The price-dividend ratio moments are annualized.

Panel A: Based on original parameter values
Model Freq. P/D Log P/D Log equity prem. Log Sharpe

Mean Std. dev. Mean Std. dev. ratio

LRR 1 Annual 26.86 0.20 2.70% 16.75% 0.16
LRR 2 Annual 20.61 0.20 4.08% 16.46% 0.25
LRR 1 Quarterly 26.68 0.17 0.67% 8.32% 0.08
LRR 2 Quarterly 20.43 0.17 1.03% 8.22% 0.13
LRR 1 Monthly 26.65 0.16 0.23% 4.81% 0.05
LRR 2 Monthly 20.44 0.16 0.35% 4.76% 0.07

Panel A: Based on 1926-1967 parameter values
LRR 1 Annual 23.10 0.27 4.13% 21.10% 0.20
LRR 2 Annual 16.46 0.26 6.17% 20.50% 0.30
LRR 1 Quarterly 22.79 0.23 1.04% 10.56% 0.10
LRR 2 Quarterly 16.31 0.22 1.58% 10.30% 0.15
LRR 1 Monthly 22.72 0.22 0.35% 6.09% 0.06
LRR 2 Monthly 16.27 0.21 0.52% 5.95% 0.09
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