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Abstract

This paper proposes a multivariate stochastic volatility-in-vector autoregression
model called the conditional autoregressive inverse Wishart-in-VAR (CAIW-in-VAR)
model as a framework for studying the real effects of uncertainty shocks. We make
three contributions to the literature. First, the uncertainty shocks we analyze are
estimated directly from macroeconomic data so they are associated with changes in
the volatility of the shocks hitting the macroeconomy. Second, we advance a new
approach to identify uncertainty shocks by placing limited economic restrictions on the
first and second moment responses to these shocks. Third, we consider an extension of
the sign restrictions methodology of Uhlig (2005) to uncertainty shocks. To illustrate
our methods, we ask what is the role of financial markets in transmitting uncertainty
shocks to the real economy? We find evidence that an increase in uncertainty leads to
a decline in industrial production only if associated with a deterioration in financial
conditions.
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1 Introduction

What are the real effects of uncertainty on the macroeconomy? This question has been chal-

lenging to analyze empirically because uncertainty is not observed. To tackle this empirical

problem, our paper takes the following approach. First, we propose a flexible econometric

model with stochastic volatility that allows for the volatility-in-mean effect. We then show

how to impose restrictions on the first and second moment responses to an uncertainty shock

of interest. These response restrictions could come from a priori theorizing and shape the

class of uncertainty shocks the researcher is investigating. Finally, we discuss how to estimate

and analyze the model.

We propose a multivariate stochastic volatility-in-vector autoregression model called the

conditional autoregressive inverse Wishart-in-vector autoregression (CAIW-in-VAR) model.

The model allows for a first-order effect of stochastic volatility, which gives a framework

to estimate and evaluate the real effects of uncertainty shocks. Our framework is especially

appropriate for a situation in which the researcher would like to impose economic restrictions

on the responses to the uncertainty shocks of interest. These can be in terms of the expected

responses of the observed economic variables to the uncertainty shocks, which we call first

moment restrictions, or the expected stochastic covariance responses, which we call second

moment restrictions. Our methodology can handle sign restrictions on either the first or

second moment responses, or both1.

Our new strategy for identifying the real effects of uncertainty shocks connects with our

conditional autoregressive inverse Wishart volatility process. This volatility process, intro-

duced into the financial econometrics literature by Golosnoy et al. (2012) and in macroeco-

nomics by Karapanagiotidis (2012), models time-varying volatility with the Wishart family

of distributions (See Philipov and Glickman, 2006; Gourieroux et al., 2009; Fox and West,

2013, for alternative autoregressive Wishart models.). The structure of the volatility dynam-

ics makes it such that the process can be written in a linear vector autoregressive form with

innovations that are martingale difference sequences. Upon writing the volatility process in

vector autoregressive form, it is possible to impose restrictions directly on the responses to

the volatility shocks without having to consider any explicit restrictions on the first moment

shocks. We emphasize, however, that our identification methodology does not require any

specific volatility process and is in fact amenable to many different reduced-form processes.

We use the conditional autoregressive inverse Wishart volatility process for its flexibility

1Sign restrictions impose conditions on the signs of the responses to an uncertainty shock at various
horizons.
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and attractive property that its estimation results do not depend on the ordering of the

observable variables in the system.

We develop a Markov chain Monte Carlo algorithm relying on a Metropolis-within-Gibbs

sampler to simulate from the posterior density. The algorithm builds off of the one developed

in Philipov and Glickman (2006) and Rinnergschwentner et al. (2011). It is complicated by

the fact that the stochastic volatility process also enters into the conditional mean equation,

which the previous papers do not consider. In analyzing the estimated model, we also show

how to construct impulse response functions to the uncertainty shocks of interest.

Our approach has three main novelties relative to the current literature. First, we have

an econometric model allowing for time-varying second moments, so we estimate uncertainty

directly from the macroeconomic data. This is unlike the literature that uses proxies such as

the VIX, Economic Policy Uncertainty Index, or forecast disagreement to identify uncertainty

shocks2 (Bloom, 2009; Leduc and Liu, 2012; Baker et al., 2013; Scotti, 2013; Bachmann

et al., 2013) and is closer to the approach taken in Jurado et al. (2015). One criticism of the

volatility proxy approach is that it is unclear what the uncertainty proxies truly capture3.

With our approach, we do not run into this interpretation issue. Relative to Jurado et al.

(2015), who first extract common fluctuations in stochastic volatility from a large panel of

macroeconomic and financial variables and then run a VAR on macroeconomic variables,

we have a one-step estimation procedure and identify different sources of uncertainty shocks

through economic restrictions.

Second, the form of our volatility process allows us to put economic restrictions directly

on the responses to the uncertainty shocks of interest. Specifically, we can place restrictions

on the expected responses of the first moments and second moments to uncertainty shocks.

Previous approaches in the literature to investigate the real effects of uncertainty shocks with

a stochastic volatility-in-vector autoregression model, such as Mumtaz and Zanetti (2013),

Creal and Wu (2014), Jo (2014), and Montes-Galdon (2015) initially identify first moment

structural shocks and then put stochastic volatility on those shocks. Our complementary

approach is arguably more appropriate when the researcher would like to restrict the uncer-

tainty shock under consideration through its first and second moment responses and does

not want to risk further misspecification. Importantly, the researcher can be explicit about

2There are ample papers in this category. The interested reader is referred to Bloom (2014) and papers
cited in that paper.

3For instance, it is unclear whether VIX measures macroeconomic uncertainty or just uncertainty in the
financial sector. Moreover, these approaches do not allow the volatility proxies to change the forecast error
variance of economic variables in the VAR system, which might not be consistent with the role of uncertainty
in the economy.
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the conditions imposed without fully identifying the entire set of first and second moment

shocks.

Third, we consider an extension of the sign restrictions approach of Uhlig (2005) and Arias

et al. (2014) to uncertainty shocks. Sign restrictions allow the researcher to impose directional

responses on a set of first and second moments to uncertainty shocks at various horizons while

remaining agnostic about the responses outside of the set. The previous literature on the real

effects of uncertainty shocks has not considered this identification strategy4. An example of a

first moment restriction is that an uncertainty shock transmitted through the financial sector

worsens a financial conditions indicator in expectation for a certain horizon. An example of

a second moment restriction is that an uncertainty shock increases the conditional variance

of the innovations to all variables in the economy in expectation for a certain horizon.

As an illustration of our empirical framework, we investigate the relationship between the

financial market and uncertainty shocks. We estimate a 4−variable version of our model on

monthly data with industrial production, the consumer price index, the federal funds rate,

and the excess bond premium (EBP) of Gilchrist and Zakrajsek (2012). We use two different

strategies to identify the real effects of an uncertainty shock. In the first case, we impose

only that uncertainty increases in the economy, which is a contemporaneous second moment

sign restriction that the conditional variances of all shocks hitting the economy increase.

There is some evidence of a decline in industrial production following an uncertainty shock,

but the response is not significant. Crucially, there does not seem to be any significant

change in financial conditions following the uncertainty shock. In our second exercise, we

further impose a multi-step first moment sign restriction that financial conditions worsen in

expectation for 3 months after the uncertainty shock. This additional restriction leads to

the uncertainty shock producing a significant decline in industrial production for 15 months.

The response is hump-shaped with a maximal posterior median decline of around −0.15%

following a 1 standard deviation uncertainty shock. These results complement the findings

of Caldara et al. (2016) and Ferreira (2014), who find that the financial channel is important

in transmitting uncertainty shocks.

We give theoretical grounding to our imposed sign restrictions using a calibrated version

of the Gertler and Karadi (2011) model. We discuss model-produced responses from two

sources of volatility shocks: capital quality volatility, which we interpret as financial sector

uncertainty, and permanent TFP volatility, which we interpret as real activity uncertainty.

Both volatility shocks lead to an increase in volatility in the observable variables, consistent

4There are papers that utilize the sign restriction identification approach to study the real effect of
uncertainty shocks in conjunction with volatility proxies (Ferreira, 2014). However, the sign restriction
approach is not studied in the context of a VAR model with time-varying volatility.
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with our second moment restriction. A capital quality volatility shock produces impulse

response functions consistent with our imposed first moment restriction as well. Higher

capital quality uncertainty increases the riskiness of capital, which decreases the incentive to

invest and the price of capital, leading to an increase in the spread. Moreover, the increased

uncertainty combined with the tightening of financial conditions leads to a decline in output,

consistent with our empirical results. On the other hand, a permanent TFP volatility shock

does not satisfy the first moment restriction. The precautionary savings channel generated

by higher TFP uncertainty increases the attractiveness of investment, which then leads to

an increase in the price of capital and a decrease in spreads. Therefore, we interpret our

responses as likely being driven by fluctuations in uncertainty in the financial sector, in line

with recent results by Ludvigson et al. (2015). This divergence of responses in spreads is

important because it shows that a reasonably calibrated dynamic equilibrium model produces

different comovements in observables following different uncertainty shocks.

We additionally compare our responses to proxy VAR results using the macro uncertainty

factor extracted in Jurado et al. (2015) and the VXO. We find tangible differences on impact

and over time between the results using our methodology and the results from both proxy

VARs. Moreover, using different uncertainty proxies also give different results.

Our work speaks to three main literatures. First, we contribute to the empirical liter-

ature investigating the real effects of uncertainty shocks. One strand of the literature, as

mentioned already, uses identified innovations to volatility proxies in vector autoregressions

to identify macroeconomic movements from uncertainty shocks. The second strand of litera-

ture, also previously addressed, uses the stochastic volatility-in-vector autoregression model

to analyze the real effects of uncertainty shocks. The third strand of literature, exempli-

fied by Fernandez-Villaverde et al. (2011), Leduc and Liu (2012), Born and Pfeifer (2014),

Basu and Bundick (2015), and Fernandez-Villaverde et al. (2015), uses a fully structural

dynamic equilibrium model to investigate these effects. One strategy is to first estimate the

stochastic volatility from a vector autoregression and then feed the extracted process into a

dynamic equilibrium model. Another strategy is to match impulse response functions from

uncertainty shocks in a dynamic equilibrium model to the same responses from a proxy VAR

regression. Relative to this work, we propose a new model that can investigate the real ef-

fects of uncertainty shocks while potentially limiting misspecification concerns via imposing

limited economic restrictions. We also consider sign restriction identification of uncertainty

shocks. We hope this model will become a useful tool to guide researchers in determining

the important sources of the real effects of uncertainty in the economy.

The second literature with which we connect is the work on conditional heteroskedasticity-
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in-mean. This work begins with the ARCH-in-mean model proposed in Engle et al. (1987).

Other important work using the model includes Domowitz and Hakkio (1985). French et al.

(1987) first propose the GARCH-in-mean model in the financial economics context. Elder

(2004), for inflation uncertainty, and Elder and Serletis (2010), for oil price uncertainty,

use the model to investigate the volatility-in-mean effect in macroeconomic applications.

Working with a stochastic volatility-in-mean model allows us to consider impulse responses

to volatility shocks with no movements in the level innovations, which corresponds more

closely to the notion of an uncertainty shock. Because GARCH-in-mean models do not have

an independent source of variation driving volatility, they have a more cumbersome time

producing these impulse responses. Koopman and Uspensky (2002) propose the univari-

ate stochastic volatility-in-mean model. To answer many of our questions, a multivariate

extension to the model is required, which we provide.

Indeed, there are papers that develop and study the stochastic volatility-in-mean effect in

a multivariate framework. One approach imposes restrictions on the level structural shocks

to indirectly identify the uncertainty shocks (Mumtaz and Zanetti, 2013; Creal and Wu, 2014;

Jo, 2014; Montes-Galdon, 2015). In this paper, we propose a novel identification strategy

for the real effects of uncertainty shocks by imposing economic restrictions directly on the

uncertainty shock impulse response functions. A second approach assumes a common factor

structure in the volatility fluctuations of individual macroeconomic series. It is possible to

study the volatility-in-mean effect by first estimating this common factor outside of a VAR

system (Jurado et al. (2015)), treat it as a volatility proxy, and then put it into the VAR ex

post. Recently, Carriero et al. (2016) provide important methodological advancements by

developing a joint estimation approach where extraction of the common volatility factor and

estimation of the volatility-in-mean effect are done simultaneously in a large VAR system.

Our approach jointly estimates the volatility and other VAR parameters as well; however,

we do not assume a common volatility structure and try to give individual volatility shocks

an economic meaning.

Finally, our modeling framework builds off of a line of research modeling vector autore-

gressions with time-varying volatility, beginning with Uhlig (1997). Other important con-

tributions in this field include Cogley and Sargent (2005), Primiceri (2005), and Sims and

Zha (2006). These papers are concerned with whether stochastic volatility, representing

changes in the nature of shocks hitting the economy, or coefficient changes, representing

shifts in the underlying relationships in the economy, are more responsible for the evolving

nature of macroeconomic movements in the U.S. We also consider a vector autoregression

with stochastic volatility, but we allow the stochastic volatility to have a conditional mean

effect as well. Therefore, while our model builds off of this literature, the questions we aim



7

to answer are quite different. In principle, we can allow for coefficient drift as well, but for

clarity of presentation, we shut off that channel.

The plan of the paper is as follows. In section 2, we present the model and discuss our

framework for analyzing the real effects of uncertainty shocks. In section 3, we introduce

our Markov chain Monte Carlo sampler and our algorithms to compute impulse responses.

Section 4 contains our empirical application on the financial sector and uncertainty shocks

and section 5 concludes.

2 Model

In this section, we lay out our proposed conditional autoregressive inverse Wishart-in-vector

autoregression (CAIW-in-VAR) model. We begin by discussing our model specification. We

then provide details on our volatility process and discuss the advantages of our modeling

strategy. Finally, we introduce our novel identification strategy for the real effects of un-

certainty shocks. We note that our framework is especially amenable to the circumstances

where the researcher would like to impose only limited economic restrictions.

2.1 Model specification

We consider the following vector autoregression with multivariate stochastic volatility,

Yt = µ+ ΦYt−1 +Bf(Σt) + εt, εt|Σt ∼ N(0, Σt) (1)

where Yt and µ are k × 1 vectors, Φ is a k × k matrix, B is a k × l matrix (or vector), and

f(·) is a known function that maps a k × k matrix into an l × 1 vector. The forecast error

εt is conditionally multivariate normal with a k × k time-varying covariance matrix Σt.

The term Bf(Σt) captures the phenomenon called the “real effect of uncertainty shock”

in macroeconomics, which allows fluctuations in the volatility of the shocks to change the

conditional mean of the process. In a structural model with optimizing agents, this effect

would come from agents’ optimal responses to changes in risk in the economy. In our paper,

we present an econometric model that can allow for these effects.

The specification of the function f(Σt) is left up to the researcher as long as f(Σt) en-

ters in the conditional mean equation linearly through B. We list a few specifications for

f(Σt): log(diag(Σt)), diag(chol(Σt)), diag(Σt), and vech(Σt). In our empirical application,
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we present results for f(Σt) = log(diag(Σt)). We prefer this specification for the f(Σt) func-

tion because it mimics the way fluctuations in uncertainty impact the first moments in a

third-order perturbed dynamic equilibrium model.

Volatility process. We model the multivariate stochastic volatility with Wishart pro-

cesses as in Philipov and Glickman (2006), Golosnoy et al. (2012), and Karapanagiotidis

(2012),

Σt|ν, St−1 ∼ IW (ν, S−1
t−1), (2)

where ν > k + 1 is a scalar. The dynamics of the multivariate stochastic volatility are

modeled by a k × k matrix St, which is defined with two additional parameter matrices C

and A.

St =
1

(ν − k − 1)
(C + AΣtA

′)−1 (3)

C is a k × k positive definite matrix that governs the long-run mean of the multivariate

volatility process. A is a k × k matrix that governs the dynamic properties of the volatility

matrix process. ν is a degrees of freedom parameter that governs the conditional variance

of the Σt random variable. This formulation ensures that the resulting scale matrix St is

symmetric and positive definite.

Note that the process is formulated in a way that the conditional mean of the volatility

matrix has the following simple form

E[Σt|Ft−1] = C + AΣt−1A
′ (4)

and

Cov(Σij,t, Σlm,t|Ft−1) =
2Ψij,tΨlm,t + (ν − k + 1)(Ψil,tΨjm,t + Ψim,tΨlj,t)

(ν − k)(ν − k − 3)
(5)

where Ft−1 = {Σt−1,Σt−2, ...} and Ψt = C + AΣt−1A
′. This delivers a convenient linear

representation for the multivariate volatility process with innovations that are martingale

difference sequences,

σt = C + Aσt−1 + vt, E[vt|Ft−1] = 0 and E[vtv
′
s|Ft−1] = 0, ∀s 6= t (6)

where σt = vech(Σt), C = vech(C) and

A = Ln(A⊗ A)Dn

where vec(x) = Dnvech(x) and vech(x) = Lnvec(x).
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This formulation of the volatility model allows us to clearly pinpoint the time t shock to

volatility, vt, which we call the uncertainty shock. We focus our identifying restrictions on

this shock.

In addition, the VAR form of the volatility process proves key to deriving unconditional

moments and giving stationarity conditions, as discussed in Golosnoy et al. (2012).

2.2 Identification of uncertainty shocks

Our primary goal in this paper is to identify the effects of uncertainty shocks. Once we

obtain the posterior distribution of unknown parameters in the CAIW-in-VAR model, we can

analyze the impact of shocks (vt) that move uncertainty Σt. Identifying uncertainty shocks

brings along the usual challenges of identification present in the structural VAR literature. It

is difficult to interpret impulse response functions and variance decompositions in terms of vt

shocks because they are contemporaneously correlated with each other. That is, an increase

in one of the elements in vt from equation 6 (e.g., the volatility of the innovation to real

activity) is potentially due to different sources (e.g., either uncertainty originating in the real

economy or the financial markets). In this section, we discuss how we can distinguish various

sources of fluctuations in the economic variables’ forecast error variances and covariances.

We call these fluctuations changes in uncertainty. Our discussion in this section is based on

fixed parameters. We postpone a discussion of the estimation and computation method for

the unknown parameters in the CAIW-in-VAR model in section 3.

Given the linear representation of the volatility process, we can focus our attention on

equation 6. We write the time t uncertainty shock (vt) as a linear function of uncorrelated

unit-variance shocks (v∗t ), so we have

vt = Rtv
∗
t or R−1

t vt = v∗t , (7)

where Rt is a k × k invertible matrix. The conditional variance-covariance matrix of v∗t

is an identity matrix, V ar(v∗t |Ft−1) = Ik. We impose restrictions on the impulse response

functions to the uncertainty shocks v∗t . Note that there is an important difference between

our uncertainty shocks and structural first moment shocks (ε∗t ) identified from the reduced-

form level shocks (εt), which have the following relationship

εt = Htε
∗
t or H−1

t εt = ε∗t ,
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where Ht is a k × k invertible matrix. Unlike structural level shocks (ε∗t ), our uncertainty

shocks (v∗t ) have a contemporaneous impact on both the stochastic covariance matrix (Σt)

as well as the conditional mean of the observed variables (Yt).

It turns out that within the CAIW-in-VAR model framework, we can still utilize identi-

fication methods presented in the structural VAR literature. This possibility has not been

recognized so far in the literature and we view this as an advantage of our modeling frame-

work. To see this, recall the VAR representation of the CAIW process,

σt = C + Aσt−1 + vt, E[vt|Ft−1] = 0 and E[vtv
′
s|Ft−1] = 0, ∀s 6= t, E[vtv

′
t|Ft−1] = Ωt

where Ωt is the conditional variance of σt given the information set at time t−1 and is a closed-

form function of Σt−1. The VAR framework naturally allows us to use the identification

strategies developed in the structural VAR literature to identify uncertainty shocks. It

allows us to put identifying restrictions directly on the uncertainty shocks. In this manner,

we can focus on identifying uncertainty shocks, which are the objects we are interested in.

In this paper, we focus on the sign restrictions approach.

Another advantage of our model is that we can identify a subset of uncertainty shocks.

To see this, first note that the identification of an uncertainty shock is to choose a matrix

Rt that satisfies the following two conditions

R−1
t vt = v∗t and RtR

′
t = Ωt. (8)

where Rt is invertible for all t. Then, it is clear that to identify the ith shock in v∗t , it is

only necessary to restrict elements in the ith column of Rt. This is different from previous

approaches in the empirical literature investigating the real effects of uncertainty shocks

where the time-varying volatilities are modeled only after the structural level shocks are

fully identified.

Imposing economic restrictions on the responses to the uncertainty shocks v∗t involves

conditions on the set of impulse response functions that we consider. To fix ideas, we first

define our notion of an impulse response function. We use the generalized impulse response

function of Koop et al. (1996). We distinguish between first moment impulse response

functions and second moment impulse response functions.

A first moment impulse response function gives the expected change in the conditional

means of the observable variables from the jth uncertainty shock v∗t = ej conditional upon

a previous volatility level σ∗t−1 (ej is a column vector with a 1 in the jth element and zeros
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elsewhere). The dependence of the impulse response function on the rotation Rt is also made

explicit.

IRFt:t+S[Y |σt−1 = σ∗t−1, v
∗
t = ej;Rt] =

E(Yt:t+S|σt−1 = σ∗t−1, v
∗
t = ej;Rt)− E(Yt:t+S|σt−1 = σ∗t−1, v

∗
t = 0;Rt)

(9)

A second moment impulse response function gives the expected change in the variance

covariance matrix of the innovations to the observable variables (εt) from the jth uncertainty

shock v∗t = ej conditional upon a previous volatility level σ∗t−1.

IRFt:t+S[σ|σt−1 = σ∗t−1, v
∗
t = ej;Rt] =

E(σt:t+S|σt−1 = σ∗t−1, v
∗
t = ej;Rt)− E(σt:t+S|σt−1 = σ∗t−1, v

∗
t = 0;Rt)

(10)

These impulse response functions capture the expected effect on the first and second

moments of a one standard deviation movement to the uncertainty shock of interest.

In both cases, the impulse response functions are conditional upon two state variables:

the time t− 1 level of volatility σ∗t−1 and the uncertainty shock v∗t . In addition to being the

historical level of volatility, the time t − 1 level of volatility σt−1 also impacts the variance

covariance matrix Ωt of vt. Broadly speaking, a more volatile time period will in general

imply larger volatility shocks. A benchmark we use is to set σt−1 = E [σt], which is the

unconditional variance. We could also investigate the impulse response functions conditional

on a high volatility time period (such as the Great Recession) or a low volatility time period

(such as the Great Moderation).

These facts then suggest a straightforward procedure for restricting the set of impulse

response functions we consider. The economic restrictions are restrictions on the set of

impulse response functions following the jth uncertainty shock. Given a value σ∗t−1 that

the researcher fixes beforehand, these restrictions imply restrictions on the admissible set

of decompositions Rt. Finding the set of Rt that satisfies the conditions completes the

procedure.

We will discuss computational aspects of the impulse response functions in a later section.

First, we give concrete examples of how we impose sign restrictions.

2.3 Imposing sign restrictions in a simple model

In this subsection, we illustrate our identification strategy via examples. More specifically, we

consider a 2-variable CAIW-in-VAR model and illustrate two different approaches to identify
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the real effects of uncertainty shocks: first moment and second moment restrictions. First

moment restrictions impose conditions on the expected responses of the observed variables

(Yt) to an uncertainty shock. They involve restrictions on the first moment impulse response

functions. Second moment restrictions impose conditions on the expected responses of the

conditional variances and covariances of the innovations to the uncertainty shock. They

involve restrictions on the second moment impulse response functions. It is important to

note that although our examples only consider single first and second moment restrictions,

our framework can handle both types of restrictions simultaneously, or multiples of either

restriction.

2-variable CAIW-in-VAR model. Let us consider a simple 2-variable example.(
y1,t

y2,t

)
= Φ

(
y1,t−1

y2,t−1

)
+Bf(Σt)+

(
ε1,t

ε2,t

)
,

(
ε1,t

ε2,t

)∣∣∣(Σ11,t Σ12,t

Σ12,t Σ22,t

)
︸ ︷︷ ︸

Σt

∼ N

((
0

0

)
,Σt

)
. (11)

The volatility process is thenΣ11,t

Σ12,t

Σ22,t

 = C+A

Σ11,t−1

Σ12,t−1

Σ22,t−1

+

v11,t

v12,t

v22,t

 ,

v11,t

v12,t

v22,t

 ∼

0

0

0

 ,

Ω11,t Ω12,t Ω13,t

Ω12,t Ω22,t Ω23,t

Ω13,t Ω23,t Ω33,t


 . (12)

Example 1: Sign restriction on the second moment. A second moment restriction

puts conditions on the expected movements of the conditional variances and covariances to

the uncertainty shock. For example, one can consider the following restriction

The conditional variance of the innovation to y1,t increases in response to the uncer-

tainty shock v∗1,t contemporaneously (contemporaneous second moment restriction).

Although we present a contemporaneous condition in this example, the sign restriction can

be either contemporaneous or for multiple periods. The above restriction can be written in

terms of an impulse response function

E

Σ11,t+h

∣∣∣∣∣
Σ11,t−1

Σ12,t−1

Σ22,t−1

 = E


Σ11,t

Σ12,t

Σ22,t


 ,
v
∗
1,t

v∗2,t

v∗3,t

 =

1

0

0

 ;Rt

−

E

Σ11,t+h|

∣∣∣∣∣
Σ11,t−1

Σ12,t−1

Σ22,t−1

 = E


Σ11,t

Σ12,t

Σ22,t


 ,
v
∗
1,t

v∗2,t

v∗3,t

 =

0

0

0

 ;Rt

 > 0, for h = 0.
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where we set the time t− 1 value of volatility to its unconditional mean. There is no closed

form for the set of admissible decompositions Rt. However, it is possible to obtain them

through simulation-based methods as in Uhlig (2005) and Arias et al. (2014). Previous

results in the sign restrictions literature (e.g. Uhlig, 2005) justifies us fixing R̃t = chol(Ωt)

and checking all possible rotation matrices Q, where QQ′ = Q′Q = I3. This is because any

decomposition Rt can be written such that

Rt = R̃tQ. (13)

We keep the rotations Q that satisfy the above second moment sign restriction.

Example 2: Sign restrictions on the first moment. A first moment restriction puts

conditions on the expected responses of the observable variables to an uncertainty shock.

First moment restrictions could help provide a sharper identification. For example, if it is

suggested from economic theory the direction of an economic variable’s movement following

a certain source of uncertainty shock, imposing these restrictions could shrink the candidate

uncertainty shocks. In this example, we consider a multi-step first moment restriction

The expected value of y1,t increases in response to the uncertainty shock v∗1,t for the first

H periods (multi-step first moment restriction).

Again, this restriction can be written in terms of impulse response functions

E

y1,t+h

∣∣∣∣∣
Σ11,t−1

Σ12,t−1

Σ22,t−1

 = E


Σ11,t

Σ12,t

Σ22,t


 ,
v
∗
1,t

v∗2,t

v∗3,t

 =

1

0

0

 ;Rt

−

E

y1,t+h

∣∣∣∣∣
Σ11,t−1

Σ12,t−1

Σ22,t−1

 = E


Σ11,t

Σ12,t

Σ22,t


 ,
v
∗
1,t

v∗2,t

v∗3,t

 =

0

0

0

 ;Rt

 > 0, for h = 0, ..., H,

We can perform a simulation exercise similar to the previous example to find impulse

response functions that satisfy the appropriate sign restrictions.

Sign restrictions implementation We discuss our simulation methodology to construct

impulse response functions in a later section. Conditional upon being able to construct

impulse response functions, implementing the sign restrictions algorithm is straightforward

following the methodology of Uhlig (2005) or Arias et al. (2014). We draw the rotation
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matrix Q in equation 13 using a QR decomposition as in Arias et al. (2014) and keep the

IRFs that satisfy the imposed sign restrictions.

2.4 Discussion on our choice of volatility process

In principle, we have multiple options for the form of our reduced-form volatility process.

Modeling the reduced-form variance covariance matrix with the conditional autoregressive

inverse Wishart process, however, leads to important advantages in implementing our ap-

proach. In this section, we lay out a key advantage of using our proposed volatility process

in comparison to the popular model found in Primiceri (2005).

Primiceri (2005) models the volatility process Σt in the following fashion(
Σ11,t Σ12,t

Σ12,t Σ22,t

)
=

(
1 0

αt 1

)(
b1,t 0

0 b2,t

)(
1 αt

0 1

)
log b1,t

log b2,t

αt

 =

µb1µb2

µα

+

ρb1 log b1,t−1

ρb2 log b2,t−1

ρααt−1

+


v∗ηb1 ,t

v∗ηb2 ,t

v∗ηα,t

 ,


v∗ηb1 ,t

v∗ηb2 ,t

v∗ηα,t

 ∼ N


0

0

0

 ,


ζ2
ηb1

0 0

0 ζ2
ηb2

0

0 0 ζ2
ηα




(14)

The Primiceri (2005) model is attractive in some respects. For example, if one assumes a

Cholesky structure of the economy, the time-varying parameters can be nicely decomposed

into volatility shocks (b1,t, b2,t) and smooth changes in the structure of the economy (αt).

Under this setting, the identification of uncertainty shocks comes through the Cholesky

structure and interpretation of uncertainty innovations v∗ηb1 ,t
, v∗ηb2 ,t

, and v∗ηα,t are readily

available. If one views the volatility model as a description of volatility dynamics, however,

potentially coming from a non-Cholesky model economy, this interpretation does not hold.

That is, v∗ηb1 ,t
, v∗ηb2 ,t

, and v∗ηα,t are not structural uncertainty innovations anymore and the

assumption that they are independent from each other may not be appropriate.

We can easily apply our framework to the volatility process laid out in Primiceri (2005). To

study the effect of uncertainty shocks, we do not assume full identification of the VAR a priori.

Instead, we use a flexible model for the forecast error variance-covariance matrix and then

impose relevant restrictions directly on this volatility process to identify uncertainty shocks.
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One can adopt a flexible model for the volatility process in a similar way to equation 14,(
Σ11,t Σ12,t

Σ12,t Σ22,t

)
=

(
1 0

αt 1

)(
b1,t 0

0 b2,t

)(
1 αt

0 1

)
log b1,t

log b2,t

αt

 =

µb1µb2

µα

+ A

log b1,t−1

log b2,t−1

αt−1

+

vηb1 ,tvηb2 ,t

vηα,t

 ,

vηb1 ,tvηb2 ,t

vηα,t

 ∼ N (0,Ω)

(15)

where A and Ω are 3 × 3 matrices. Matrices A and Ω reflect the fact that the Cholesky

structure might not be the model that we are aiming to analyze. The Cholesky structure

is simply used to model the forecast error variance-covariance matrix, Σt, in a reduced-form

manner. Then, identification of uncertainty shocks is done by imposing restrictions on Ω

in conjunction with the assumption on the relationship between vt and v∗t , vt = Rv∗t as in

section 2.2. Under this modeling assumption, the identification strategy that we provided

in the previous section is still applicable.

We prefer the CAIW model for practical reasons. As stated in Primiceri (2005), the

estimated results from this decomposition are conditional upon the ordering of the variables.

Therefore, in our simple example, flipping the order of y1,t and y2,t and reestimating the

model will in theory lead to different results. In contrast, our conditional autoregressive

inverse Wishart process does not suffer from this potential drawback. Furthermore, the

autoregressive Wishart-type volatility specification is more parsimonious when compared to

the full Primiceri (2005) specification. The Wishart process has k2 + k(k−1)
2

+ k + 1 free

parameters while the full Primiceri (2005) model has k2 + k(k−1)
2

+ 2k parameters.

2.5 Caveats

Even though we believe that our approach adds important tools to the macroeconomists’

toolkit in analyzing the real effect of uncertainty shocks, we must also acknowledge some

caveats. First, our approach does not allow level shocks to impact current uncertainty. This

is an additional exclusion restriction that is implicitly assumed in our uncertainty shock

identification. Within our framework, it is complicated to allow this channel because our

reduced-form covariance matrices (Σt) need to be positive definite. In the literature, this

channel can be relaxed at the cost of full identification of all structural shocks (Creal and

Wu, 2014) or the use of a proxy variable5 (Bloom, 2009). Second, it is hard to find a case

5Recently, Carriero et al. (2015) pointed out that proxy variables in these VARs are subject to measure-
ment error and could potentially lead to biased parameter estimates.
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where our model exactly maps into a fully structural model such as a dynamic equilibrium

model with time-varying volatilities or a classical structural VAR. Insofar as our econometric

model is flexible and the economic restrictions we impose are limited, however, we believe our

toolkit can aid in the discovery of important comovements in the data that more structural

models with uncertainty shocks should be able to match.

3 Bayesian Analysis of CAIW-in-VAR Models

3.1 Posterior inference

Prior specification. As we take a Bayesian perspective, the presented CAIW-in-VAR

model is completed by specifying prior distributions on the unknown parameters. Parame-

ters in the conditional mean of the model, µ,Φ and B, are assumed to follow independent

multivariate normal distributions,

µ ∼ N (mµ, Vµ) , vec(Φ) ∼ N (mΦ, VΦ) , vec(B) ∼ N (mB, VB)

where vec(·) is the vectorize operator. The choice of this prior specification facilitates pos-

terior computation due to its conjugacy.

There are three types of parameters in the volatility equation (A,C, and ν). The param-

eter A governs the dynamic properties of the volatility matrix process. Each element of A

follows an independent normal distribution except the element in the far upper-left corner.

The prior distribution for the (1, 1)-th element in the A matrix is set to be a truncated

normal distribution defined on the positive real line to ensure identification (see Golosnoy

et al. (2012) for more details),

A(1, 1) ∼ TN(mA(1,1), VA(1,1), 0,∞)

A(i, j) ∼ N(mA(i,j), VA(i,j)) ∀ (i, j) 6= (1, 1).

The parameter C determines the long-run mean of the volatility process. We set the prior for

it as following an inverse Wishart distribution with scale matrix Ψ and degrees of freedom

parameter df . As the Wishart-type distribution is quite a popular prior in the Bayesian

literature for a variance covariance matrix, we believe it to be a natural choice for C,

C ∼ IW (df,Ψ) .
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Finally, ν, the degrees of freedom parameter in the inverse Wishart process, follows a gamma

distribution

ν ∼ Gamma(aν , bν)

where we truncate this distribution at ν > k + 3 so that the inverse Wishart process is well

defined and the variances of its elements exist.

Posterior simulator. We construct a Metropolis-within-Gibbs posterior simulator to draw

from the posterior distribution of our parameters. The algorithm runs on the following cycles:

1. p(Σt| others, Y ) for t = 0, 1, ..., T : multivariate stochastic volatilities

2. p(µ,B,Φ| others, Y ): parameters in the conditional mean equation

3. p(ν| others, Y ): degrees of freedom parameter in the inverse Wishart process

4. p(C| others, Y ): long-run mean parameter in the inverse Wishart process

5. p(A| others, Y ): dynamics parameter in the inverse Wishart process

where we define p(θ|others, Y ) as the conditional distribution of θ given Y1:T and all other pa-

rameters except θ. In the appendix, we provide details of the algorithm with full conditional

posterior distributions.

Our algorithm builds upon the specifications of Philipov and Glickman (2006) and Rin-

nergschwentner et al. (2011). Relative to their frameworks, our model has a complication in

that the stochastic volatility appears in the conditional mean equation as well and therefore

their posterior samplers are not directly applicable to our framework. Our algorithm adopts

the single-move state simulator in the same spirit of Jacquier et al. (1994), which is widely

used in the context of the stochastic volatility model (e.g., Cogley and Sargent, 2005; Clark,

2011, for macroeconomic applications).

3.2 Impulse response function

There are two types of impulse response functions that we consider, first moment impulse

response functions and second moment impulse response functions. As we have the linear

form for the volatilities in equation 6, calculating the second moment impulse response

function is straightforward and no simulation methods are needed conditional upon a time

t − 1 volatility level and time t uncertainty shock. Calculating the first moment impulse

response function to an uncertainty shock is complicated by the nonlinear nature of the
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system. Hence, conditional upon a parameter draw, we use simulation methods to compute

the impulse response function.

Continuing with our 2-variable CAIW-in-VAR example in equation 11, we present how to

calculate a first moment impulse response to an uncertainty shock. An extension to a larger

dimension is possible without further complication.

Algorithm 1 (IRF of the uncertainty shock of length S in the 2-variable CAIW-in-VAR

model).

1. Choose initial value Σ̃−1 for IRF, and set m = 1.

2. Consider 1 standard deviation increase of an element in v∗0 (here we present a 1 stan-

dard deviation increase of the third element in the vector v∗0),

v∗,10 =

0

0

1

 versus v∗,00 =

0

0

0

 .

3. Form reduced-form shocks in the initial period v1
0 and v0

0. The matrix R0 will depend

on the identification scheme. As the third shock is operative, only the third column of

R0 must be identified.

v1
0 =

R13,0

R23,0

R33,0

 versus v0
0 =

0

0

0

 .

4. Simulate two volatility paths indexed by (m) (using equations 2 and 3) conditional on

the initial shock and initial value Σ̃−1,

{Σ(m)
t (v1

0)}t=0,...,S versus {Σ(m)
t (v0

0)}t=0,...,S.

5. For each simulated volatility path, compute {Y (m)

t (v∗,10 )}t=0,...,S and {Y (m)

t (v∗,00 )}t=0,...,S

implied by the volatility paths where Y t is a mean conditional on Y
(m)

t−1 and Σ
(m)
t :

Y
(m)

t = µ̂+ Φ̂Y
(m)

t−1 + B̂f(Σ
(m)
t ).

Go to step 4 with m = m+ 1 if m < M ; otherwise go to step 6.
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6. Form impulse response by integrating out the simulated volatility paths:

IRF0:S[Yj|Σ̃−1, v
∗,1
0 ;R0] ≈ 1

M

M∑
m=0

Y
(m)

0:S (v∗,10 )− 1

M

M∑
m=0

Y
(m)

0:S (v∗,00 ).

Based on this algorithm, we can construct the posterior distributions for the IRFs of the

uncertainty shocks. Sign-restricted IRFs require an additional simulation algorithm.

Algorithm 2 (Posterior distribution sign-restricted IRFs).

1. Run the posterior sampler to obtain S draws from the posterior distribution of unknown

parameters in the CAIW-in-VAR model.

2. For each posterior draw, θs, repeat the following M times,

(a) Generate a candidate rotation matrix R∗ by the QR decomposition.

(b) Apply Algorithm 1 to obtain the impulse response function IRF0:S[Yj|Σ̃−1, v
∗,1
0 ;R∗].6

3. Among S ×M IRFs, keep those that satisfy the sign restrictions.

After running this algorithm, one obtains S∗ draws of IRFs where S∗ < S×M . These draws

form the posterior distribution of the IRFs, which can be used to construct point estimates

and credible sets.

4 Empirical Application: The financial market and un-

certainty shocks

Motivation. Since the Great Recession, a renewed interest has emerged on the role of

the financial sector in macroeconomic fluctuations. Our empirical application investigates

the relationship between the financial sector and uncertainty shocks. Heightened uncertainty

could interfere with banks’ willingness to lend, thereby disrupting efficient capital flows. This

could be a potential channel through which the financial sector would transmit uncertainty

to the real economy.

We view our empirical application as contributing to a fast growing literature on the

relationship between the financial markets and the macroeconomy. Jermann and Quadrini

(2012) and Christiano et al. (2014) find that shocks originating in the financial sector have

6Not all R guarantee a positive definite volatility processes. We discard IRF draws that are based on
non-positive definite volatility processes.
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significant macroeconomic effects. Fernandez-Villaverde and Rubio-Ramirez (2007) and Jus-

tiniano and Primiceri (2008) observe that volatility from shocks to the capital accumulation

equation, which may be interpreted as financial sector shocks (e.g., Justiniano et al., 2011),

are the main drivers of the time-varying volatility of macroeconomic fluctuations on U.S.

data. Using proxies for uncertainty and financial conditions, Caldara et al. (2016) find that

uncertainty shocks can lead to a significant recession only if they are transmitted through

the financial channel. Ferreira (2014) isolates the importance of financial uncertainty and

finds that it alone can account for 40% of the decline in GDP during the Great Recession.

This section is divided into three main parts. First, we discuss the empirical results

using our econometric model. Second, we present an exercise interpreting our empirical

results through the lens of a structural model. Specifically, we show that a capital quality

uncertainty shock produces comovements consistent with our identifying assumptions and

results whereas a permanent TFP uncertainty shock does not. This exercise also shows that

a reasonably calibrated dynamic equilibrium model does produce different comovements in

observables following different sources of uncertainty shocks, justifying our sign restrictions

identification approach. Finally, we also compare our empirical findings to those from a VAR

using two different proxies for uncertainty. We find not only that our results are different

from those using the uncertainty proxies, but also that the uncertainty proxies themselves

produce conflicting results.

Data. We use monthly data on log industrial production in the manufacturing sector, log

consumer price index, the federal funds rate, and the excess bond premium from 1973M1−
2012M12. We obtained the macroeconomic data from the Federal Reserve Bank of St. Louis

FRED and the excess bond premium data from Simon Gilchrist’s website. Figure 1 displays

the four monthly series.

Model and prior specification. We use a 4-variable specification of our CAIW-in-VAR

model. Our preferred function linking the volatility to the mean portion of the model is

f(Σt) = log (diag(Σt))
7. We choose a VAR(12) for the conditional mean lag length, noting

that this lag length essentially removes all autocorrelation from the fitted residuals in a model

without stochastic volatility. For the CAIW process, we choose a lag length 1. In estimating

the model, we take 100, 000 Markov chain Monte Carlo draws from our Metropolis-within-

Gibbs sampler. We estimate all parameters in the model. Prior specifications can be found

7We also tried f(Σt) = diag(chol(Σt)). Our results are robust to this specification.
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Industrial production

Federal funds rate

Consumer price index

Excess bond premium

Figure 1 (Clockwise from top) Monthly log industrial production of the manufacturing sector,
log consumer price index, federal funds rate, and excess bond premium (bottom) 1973M1−
2012M12. Blue bars indicate NBER recession dates.

in the appendix. Estimates of the smoothed stochastic volatility process are also in the

appendix.

Impulse response functions – restrictions. We consider the real effects of uncertainty

shocks with and without a decline in financial sector conditions. To identify the two effects,

we propose two different identification strategies. For both identifications, we set Σ̃−1 to be

the steady state volatility matrix.

Assumption Au (Uncertainty shock only) The uncertainty shock, vt satisfy Au:

Au : (E[Σii,h|σ−1 = E(σ), v∗0 = e1;Rt]− E[Σii,h|σ−1 = E(σ), v∗0 = 0;Rt]) > 0 for h = 0

for i = 1, ..., k.

The uncertainty shock only identification specifies that a 1− standard deviation uncertainty

shock contemporaneously increases the volatility of all shocks hitting the economy, which is

a second moment restriction. This identification of an uncertainty shock is similar in spirit

to Jurado et al. (2015), which specifies that an uncertainty shock leads to an increase in the

volatilities of many economic series. This assumption imposes that we look at an aggregate

uncertainty shock.
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Assumption Auf (Uncertainty shock transmitted through the financial sector)

The uncertainty shock, vt, satisfy Auf,1 and Auf,2:

Au,f,1 :
(
E[Σii,h|Σ̃−1 = E(Σ̃), v∗0 = e1;R0]− E[Σii,h|Σ̃−1 = E(Σ̃), v∗0 = 0;R0]

)
> 0 for h = 0

for i = 1, ..., k.

Auf,2 :
(
E[Yf,h|Σ̃−1 = E(Σ̃), v∗0 = e1;R0]− E[Yf,h|Σ̃−1 = E(Σ̃), v∗0 = 0;R0]

)
> 0

for h = 0, ..., H.

Relative to identification Assumption Au, identification Assumption Auf additionally im-

poses that financial conditions worsen in expectation for H months. This is a first moment

sign restriction. We set H = 3, meaning that we restrict financial conditions to worsen for

1 quarter. The motivation for this additional restriction are the empirical results by Cal-

dara et al. (2016) and Ferreira (2014), which emphasize the importance of considering the

financial sector when discussing the macroeconomic effects of uncertainty shocks.

Results from Assumption Au (Uncertainty shock only). Consider the effects on the

macroeconomy of an uncertainty shock (1 standard deviation increase) as shown in figures

2 and 3. Consistent with the sign restriction, the volatilities of all four variables increase in

response to the uncertainty shock. The industrial production innovation volatility persists

the longest. It stays elevated for around 12 months following the uncertainty shock. The

CPI and excess bond premium innovation volatilities return to pre-shock levels after around

half a year. The federal funds rate innovation volatility declines the quickest, only lasting

for around 3 months. This increase in macroeconomic uncertainty has at best a marginal

impact on the economy. There is some evidence of a decline in industrial production, but any

marginally significant effect is quite transitory, disappearing after half a year. The maximal

posterior median decline is −0.1%. Otherwise, there is little effect on any other variables.

Overall, these results are consistent with uncertainty shocks having a small effect on the

economy.

Results from Assumption Auf (Uncertainty shock transmitted through the fi-

nancial sector). We impose a further restriction that financial conditions worsen for 3

months following the increase in uncertainty. We interpret this restriction as identifying an

increase in uncertainty that leads to a deterioration in financial conditions. This exercise

captures an effect similar to the one considered in Caldara et al. (2016). The results are
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Uncertainty shock on IP volatility

on FFR volatility

on CPI volatility

on Excess bond premium volatility

Figure 2 Effect of 1 standard deviation positive uncertainty shock with identification as-
sumption Au only. Dark lines give posterior median results. Bands indicate 80% posterior
intervals. Time period is in months.

presented in figure 48. Upon restricting the uncertainty shock to move financial conditions,

its impact on industrial production becomes more evident. Industrial production declines in

a hump-shaped manner and the estimate’s 80% credible band is below 0 for 15 months. Its

maximal posterior decline increases relative to the earlier case as well, now reaching around

−0.15%. These results are in line with Bloom (2009) in that an uncertainty shock leads to

a hump-shaped response in industrial production. Relative to Bloom (2009), the decline in

industrial production lasts longer by around 10 months and there is no evidence of a bounce-

back effect. There is little evidence of any change in the price level or federal funds rate.

The posterior median results show both series declining following the identified uncertainty

shock. Financial conditions continue to stay bad for around 4 months after the sign restric-

8Although in principle the additional sign restriction changes the set of admissable volatility responses,
the figures for the volatility responses look quite similar between the two identification schemes. We believe
it is more instructive to focus on the first moment responses so we suppress the volatility responses.
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Uncertainty shock on IP %

on FFR annualized

on CPI %

on Excess bond premium annualized

Figure 3 Effect of 1 standard deviation positive uncertainty shock with identification as-
sumption Au only. Dark lines give posterior median results. Bands indicate 80% posterior
intervals. Time period is in months.

tion ceases to hold. The excess bond premium increases by around 0.01% annualized. Its

response is of a similar magnitude to the response of the excess bond premium to an uncer-

tainty shock found in Caldara et al. (2016) when using more macro-based uncertainty proxies

(such as forecast disagreement measures and the Economic Policy Uncertainty Index).

Structural model We investigate the likely structural sources of the comovements we

identify with Assumption Auf by specifying a dynamic equilibrium model with an explicit

role for financial intermediaries, following Gertler and Karadi (2011). A key difference of

our model relative to Gertler and Karadi (2011) is the utility function of the agents, which

we have as Epstein-Zin in line with Basu and Bundick (2015). As the model is relatively

standard in the literature, we leave the details of it to the appendix. We solve the model

using a third-order perturbation with pruning.



25

Uncertainty shock on IP (%)

on FFR annualized

on CPI (%)

on Excess bond premium annualized

Figure 4 Effect of 1 standard deviation positive uncertainty shock with identification assump-
tion Auf . Dark lines give posterior median results. Bands indicate 80% posterior intervals.
Time period is in months.

The model has two sources of volatility shocks: permanent TFP volatility and capital

quality volatility. The TFP volatility shock captures macroeconomic uncertainty unrelated

to the financial sector whereas capital quality volatility captures uncertainty originating in

the financial sector. We ask the question whether real activity uncertainty or financial sec-

tor uncertainty is more likely to be transmitted through credit spreads. While our model

is arguably stylized when compared to the full suite of shocks considered by Smets and

Wouters (2007) and Justiniano et al. (2010), we view this exercise as an illustration of our

methodology. Also, we would like to emphasize that a reasonably calibrated dynamic equi-

librium model does produce different comovements in observable variables following different

uncertainty shocks.

One important point of discussion is our choice of the utility function parameters. We

set risk aversion to be 10 and the intertemporal elasticity of substitution to be 0.8. The risk
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aversion parameter is standard in the literature, whereas we follow Basu and Bundick (2015)

in calibrating the IES. This calibration of the IES implies that following an increase in TFP

volatility, households consume less and save more due to the precautionary savings effect.

We also choose the autoregressive persistence parameter of both volatility shocks to be 0.5,

which implies that after one year, most of the increased volatility in the economy from a

positive volatility shock has disappeared, consistent with our empirical results. The rest of

the calibration is standard for a model specified at the quarterly frequency. Details can be

found in the appendix.

As Born and Pfeifer (2014) discussed, there is a tension between generating large real

effects from uncertainty shocks and unrealistically large effects from first moment shocks

in dynamic equilibrium models. This is because many of the mechanisms that amplify

uncertainty shocks also amplify first moment shocks. We view this issue as an important

open question in the literature outside of the scope of this paper. Instead, we focus in this

section on the directions of the impulse response functions and do not try to quantitatively

match the responses. We use the same impulse response construction algorithms as in

Fernandez-Villaverde et al. (2015) and Basu and Bundick (2015).

Let us first consider the implications of our first and second moment sign restrictions.

Assumption Auf,1, which says that the conditional volatility of innovations to all variables

in the vector autoregression increases on impact, is generated by both structural aggregate

uncertainty shocks.

Assumption Auf,2, which says that the excess bond premium increases for 3 months fol-

lowing the uncertainty shock, rules out the permanent TFP uncertainty shock. As can be

seen in figure 5, following a permanent TFP uncertainty shock, the spread between the return

to capital and the risk free rate declines9. An increase in TFP uncertainty now makes invest-

ment in capital more attractive. The reason is with increased future uncertainty about TFP,

a higher capital stock helps agents smooth out consumption, which encourages investment

demand. The model does contain a moderate amount of nominal price rigidities, in line with

Basu and Bundick (2015). Previous versions of that paper showed that with nominal price

rigidities, it is possible to have both consumption and investment decline following a tran-

sitory TFP uncertainty shock through countercyclical markups. This effect is still present

in our model. The main difference is that with a permanent TFP uncertainty shock in our

model as opposed to a transitory TFP uncertainty shock, the precautionary savings channel

is much stronger. While overall investment still declines following the uncertainty shock,

investment net of capital replacement goes up because the utilization of capital declines as

9This spread is the closest match to the excess bond premium in the context of the model.
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TFP volatility shock on output %

on FFR annualized

on price level %

on spread (annualized %)

Figure 5 Effect of 1 standard deviation positive TFP volatility shock. Model time period is
in quarters.
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Capital quality volatility shock
on output %

on FFR annualized

on price level %

on spread (annualized %)

Figure 6 Effect of 1 standard deviation positive capital quality volatility shock. Model time
period is in quarters.

well, which lowers the amount of capital depreciation. In the Gertler and Karadi (2011)

model, it is movements in net investment that is relevant for the price of capital. Overall,

the price of capital increases and the expected return to capital declines. The financial ac-

celerator effect works in opposite, as the increase in the price of capital loosens the balance

sheet constraints of the banks. This makes the overall effect of the uncertainty shock on the

economy milder.

The results shown in figure 6 provide evidence that uncertainty originating in the financial

sector, as opposed to uncertainty from real activity, is more likely to be the source of volatility

that leads to a deterioration of financial conditions. Uncertainty about future capital quality

increases the riskiness of investment. This channel greatly decreases the incentive to invest,

which causes net investment to decline even with a decline in utilization. The decline in net
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investment leads to a decline in the price of capital, an increase in spreads, and a tightening of

intermediary balance sheets. The financial accelerator effect amplifies the downturn, leading

to a fall in aggregate demand and a decrease in output and inflation.

It is important to remember that these sign restriction assumptions on the econometric

model are conditions imposed by the researcher. In this example, the first moment restriction

has imposed an important identifying restriction. Imposing more sign restrictions generally

decreases the set of structural uncertainty shocks consistent with the restrictions.

Comparison to proxy VAR To compare our results with the current literature, we also

consider two sets of vector autoregressions using uncertainty proxies. The first uses the

uncertainty factor proposed by Jurado et al. (2015). This uncertainty factor comes from the

cross-sectional average of the time-varying volatilities from the unpredictable components

of a large set of macroeconomic variables. It has been put forth as a measure of aggregate

macroeconomic uncertainty. The second is the VXO, which is a measure of the option-

implied expected volatility of the S&P100 for the following month. This measure of stock

market volatility has been quite popular in the literature as a proxy for macroeconomic

uncertainty.

For the results with the uncertainty proxy of Jurado et al. (2015), we estimate the data

from 1973M1− 2011M12 on the same set of variables as our empirical application with 12

lags in the VAR. The VXO data only begins in 1986M1, so we begin the estimation at that

point when using the VXO as the volatility proxy10. We impose flat priors on the VAR. We

use a Cholesky decomposition to identify the uncertainty shock, with the variable ordering

of the volatility proxy, excess bond premium, industrial production, consumer price index,

and the federal funds rate. This ordering allows the excess bond premium to respond to

uncertainty shocks contemporaneously. We consider a Cholesky identification because it is

by far the most popular in the empirical literature (several examples include Bloom (2009),

Baker et al. (2013), Fernandez-Villaverde et al. (2015), Basu and Bundick (2015), and Jurado

et al. (2015))11.

Figure 7 shows the effects of the identified uncertainty shock on the uncertainty proxies.

This gives a sense of the persistence of uncertainty implied by the different proxies. The

left panel shows the results for the VAR using the macro uncertainty factor whereas the

10As a robustness check, we also rerun the model with the Jurado et al. (2015) proxy beginning in 1986M1.
The qualitative results do not change.

11Note that we also tried to implement a similar sign restrictions identification strategy as in our baseline
results, namely imposing an increase in the uncertainty proxy on impact and an increase in the excess bond
premium for 3 months, but we did not get significant results for either proxy.
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Uncertainty shock on
macro uncertainty factor

Uncertainty shock on
VXO

Figure 7 Effect of 1 standard deviation positive uncertainty shock on uncertainty proxies
with Cholesky identification. The left panel shows the results for the VAR using the macro
uncertainty factor whereas the right panel shows the results for the VAR using the VXO.
Dark lines give posterior median results. Bands indicate 80% posterior intervals. Time
period is in months.

right panel shows the results for the VAR using the VXO. While uncertainty implied by

the Jurado et al. (2015) factor persists for 20 months, uncertainty implied the VXO persists

for only 8 months. Focusing on the increase in IP volatility from our identified uncertainty

shock, we find that volatility increases for 12 months, which is closer to the VXO results

than the Jurado et al. (2015) results.

Figure 8 shows the impact of a 1 standard deviation uncertainty shock on the macroe-

conomy using the macro uncertainty factor compared to the posterior median results from

the Auf identification. The uncertainty shock identified using the Jurado et al. (2015) factor

leads to a large, protracted decline in industrial production. Even 3 years after the shock,

industrial production is still below its original trend. The decline in industrial production is

also much steeper, bottoming out at around −0.7% as opposed to −0.15% with our results.

On impact, both inflation and the federal funds rate increase when using the uncertainty

proxy. With our identification strategy, there is little evidence of a movement in inflation

and the federal funds rate. The excess bond premium increases in the proxy VAR, consis-

tent with the interpretation that the identified uncertainty shock is transmitted through the

financial sector. The movement in the excess bond premium is around double in magnitude

when compared to our results. It persists for 10 months.
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Macro uncertainty factor shock on IP %

on FFR annualized

on CPI %

on Excess bond premium annualized

Figure 8 Effect of 1 standard deviation positive shock to the macro uncertainty factor with
Cholesky identification. Dark red lines give posterior median results. Bands indicate 80%
posterior intervals. Dark blue lines give the posterior median results from our identification
with Assumption Auf imposed. Time period is in months.

Figure 9 compares the results from using the VXO to proxy for uncertainty and our

results. A VXO-implied uncertainty shock actually leads to a transitory increase in industrial

production, counterfactual to much of the economic intuition regarding the real effects of

uncertainty shocks. Unlike the results from using the Jurado et al. (2015) uncertainty factor

and our results, inflation and the federal funds rate declines following a VXO uncertainty

shock. The excess bond premium increases for around 4 months following the uncertainty

shock.
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VXO uncertainty shock on IP %

on FFR annualized

on CPI %

on Excess bond premium annualized

Figure 9 Effect of 1 standard deviation positive financial uncertainty shock with Cholesky
identification. Dark red lines give posterior median results. Bands indicate 80% posterior
intervals. Dark blue lines give the posterior median results from our identification with
Assumption Auf imposed. Time period is in months.

These results suggest two important conclusions12. First, uncertainty proxies generally

give different results on the real effects of uncertainty shocks relative to the approach pre-

sented in this paper. Second, even amongst themselves, different uncertainty proxies can

give conflicting results. This is most likely because different proxies measure different types

of uncertainty fluctuations (financial uncertainty, political uncertainty, or a mixture of these

two). This further highlights the importance of having a joint econometric framework in

which the real effects of uncertainty shocks can be measured and identified internally.

12The conclusions are subject to one important caveat, which is that the proxy VAR approaches allow
the uncertainty proxy to respond to other macro shocks. As we discussed before, our econometric model
does allow for this channel.
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5 Conclusion and Future direction

We have advanced the conditional autoregressive inverse Wishart-in-vector autoregression

model to evaluate the real effects of uncertainty shocks. We discuss a novel empirical strategy

to analyze uncertainty shocks through the first and second moment responses they produce.

The strategy allows for the imposition of a limited number of economic restrictions on the

uncertainty shocks, thus potentially limiting concerns of misspecification. The paper also

presents algorithms to construct impulse response functions to uncertainty shocks. In an

empirical application, we evaluate the importance of the financial sector in transmitting

uncertainty shocks to the macroeconomy. Our results show that financial conditions are

important in transmitting uncertainty shocks to the real economy. The uncertainty shocks

we identify likely originate in the financial sector.
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Appendix

A Details of the posterior sampler

The algorithm runs on the following cycles:

1. p(Σ0| others): Multivariate stochastic volatility at the initial period.

2. p(Σt| others) for t = 1, ..., T : Multivariate stochastic volatilities.

3. p(ΣT | others): Multivariate stochastic volatility at the last period.

4. p(µ,B,Φ| others): Parameter in the conditional mean equation.

5. p(ν| others): Parameter in Wishart process.

6. p(C| others): Parameter in Wishart process.

7. p(A| others): Parameter in Wishart process.

where p(θ|others) means the conditional distribution of θ given Y1:T and all other parameters

except θ. We denote the previous draw as θold. Note that the joint posterior distribution is

p(µ,B,Φ, ν, C,A,Σ0:T |Y1:T ) ∝ p(Y1:T |µ,B,Φ,Σ1:T )p(Σ1:T |ν, C,A,Σ0)p(µ,B,Φ, ν, C,A,Σ0)

where the likelihood function can be decomposed as

p(Y1:T |µ,B,Φ,Σ1:T ) =
T∏
t=1

p(Yt|Yt−1, µ, B,Φ,Σt),

where we implicitly conditioned on first p observations, Y0 = [y0, y−1, ..., y(p−1)]. p is the

number of lags included in the VAR. To be able to construct an efficient MCMC sampling

algorithm, we break the joint posterior into multiple blocks. For example, the conditional
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posterior distribution for the multivariate stochastic volatility is decomposed into the fol-

lowing pieces,

p(Σ1:T |ν, C,A,Σ0, Y1:T ) =

(
T∏
t=1

p(Σt|Σt−1, ν, C,A, Yt)

)
and iteratively sample Σt from t = 1 to t = T .

Step 1: Σ0 We assume that the prior distribution of the initial covariance matrix as

Σ0 ∼ IW (v0, V
−1

0 ), V0 =
1

v0 − k − 1

{
(I − A)−1C

}−1
.

This prior specification assumes that Σ0 is centered around the long-run mean of Σt. v0

is an additional hyperparameter and we fix it to some number. The conditional posterior

distribution of Σ0 can be written as

p(Σ0|others) ∝ p(Σ1|Σ0, others
′)p(Σ0|others′)

where others is Θ(−Σ0) and others′ is Θ(−Σ0,−Σ1). Relevant terms are

p(Σ1|Σ0, others
′) ∝ |S0|−ν/2 exp

(
−1

2
trace(S−1

0 Σ−1
1 )

)

and

p(Σ0|others′) ∝ |Σ0|−
v0+k+1

2 exp

(
−1

2
trace(V −1

0 Σ−1
0 )

)
.

We generate draws from the conditional distribution of Σ0 by the random-walk-like proposal

distribution with the following proposal distribution,

Σ∗0 ∼ IW (w̃0 + k + 1, w̃0Σold
0 )

where w̃0 is a tuning parameter which governs the variance of the proposal distribution.

High w̃0 leans to less variable proposal distribution. As is usual random walk MH algorithm,
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this proposal distribution is centered on previous draw, Σold
0 . However, the proposal density

is not symmetric. The acceptance ratio is then,

r̃Σ0 =

{
p(Σ1|Σ∗0, others′)p(Σ∗0|others′)/q(Σ∗0|Σold

0 )

p(Σ1|Σold
0 , others′)p(Σold

0 |others′)/q(Σold
0 |Σ∗0)

, 1

}
=

{
p(Σ1|Σ∗0, others′)p(Σ∗0|others′)
p(Σ1|Σold

0 , others′)p(Σold
0 |others′)

(
|Σ∗t |
|Σold

t |

) (2w̃+3k+3)
2

...

...× exp

(
−w̃

2
tr
(
−Σold

t (Σ∗t )
−1 + Σ∗t (Σ

old
t )−1

))
, 1

}
.

Step 2: Σt for t = 1, 2, ..., T − 1 The conditional posterior is

p(Σt|others) ∝ |Σt|−(ν+k+1)/2 exp

(
−1

2
tr(S−1

t−1Σ−1
t )

)
× |Σt|−1/2 exp

(
−1

2
tr
(
ε′tΣ
−1
t εt

))
× |St|−ν/2 exp

(
−1

2
tr
(
S−1
t Σ−1

t+1

))

where we write

εt = Yt − µ− ΦYt−1︸ ︷︷ ︸
=et

−Bf(Σt) = et −Bf(Σt).

Then, we re-write the conditional posterior as

p(Σt|others) ∝ IW (Σt|ν, S̃−1
t−1) : proposal density

× |Σt|−1/2|St|−ν/2 exp

(
−1

2
tr
(
S−1
t Σ−1

t+1

))
: MH correction 1

× exp

(
−1

2
tr
(

[−2etg(Σt)
′ + g(Σt)g(Σt)

′] Σ−1
t

))
: MH correction 2

where

g(Σt) = Bf(Σt) and S̃t−1 =
(
S−1
t−1 + ete

′
t

)−1
.

We draw Σt based on the independent Metropolis-Hastings algorithm with the inverse

Wishart distribution as a proposal distribution, Σ∗t ∼ IW
(
ν, S̃−1

t−1

)
. The acceptance ra-
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tio is then,

rΣt =

{
|Σ∗t |−1/2|S∗t |−ν/2 exp(− 1

2
tr((S∗t )Σ−1

t+1)) exp

(
− 1

2
tr
(

[−2etg(Σ∗t )′+g(Σ∗t )g(Σ∗t )′](Σ∗t )−1
))

|Σoldt |−1/2|Soldt |−ν/2 exp(− 1
2
tr((Soldt )Σ−1

t+1)) exp

(
− 1

2
tr
(
[−2etg(Σoldt )′+g(Σoldt )g(Σoldt )′](Σoldt )−1

)) , 1}

and we set Σnew
t = Σ∗t with probability min(rΣt , 1), Σnew

t = Σold
t otherwise.

We also consider the random-walk-like proposal distribution with the following proposal

distribution,

Σ∗t ∼ IW (w̃ + k + 1, w̃Σold
t )

where w̃ is a tuning parameter which governs the variance of the proposal distribution.

High w̃ leads to less variable proposal distribution. We set w̃ = 100, which results in

20%∼30% acceptance rates for each Σt. As in usual random walk MH algorithm, this

proposal distribution is centered on previous draw, Σold
t . However, the proposal density is

not symmetric. The acceptance ratio is then,

r̃Σt =

{
p(Σ∗t |others)/q(Σ∗t |Σold

t )

p(Σold
t |others)/q(Σold

t |Σ∗t )
, 1

}
=

{
p(Σ∗t |others)
p(Σold

t |others)

(
|Σ∗t |
|Σold

t |

) (2w̃+3k+3)
2

exp

(
−w̃

2
tr
(
−Σold

t (Σ∗t )
−1 + Σ∗t (Σ

old
t )−1

))
, 1

}
.

In our application, we set our proposal distribution as a mixture of above two proposal

distributions. More specifically, we propose a candidate draw, Σ∗t :

Σ∗t ∼


IW (ν, S̃−1

t−1) with probability pΣ

IW (w̃ + k + 1, w̃Σold
t ) with probability (1− pΣ).
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Step 3: ΣT The full conditional posterior is

p(ΣT |others) ∝ |ΣT |−(ν+k+1)/2 exp

(
−1

2
tr
(
S−1
T−1Σ−1

T

))
× |ΣT |−1/2 exp

(
−1

2
ε′TΣ−1

T εT

)
∝ |ΣT |−(ν+k+1)/2 exp

(
−1

2
tr
(
S−1
T−1Σ−1

T

))
× |ΣT |−1/2 exp

(
−1

2
e′TΣ−1

T eT

)
× exp

(
−1

2

(
ε′TΣ−1

T εT − e′TΣ−1
T eT

))
∝ IW

(
ΣT

∣∣ ν + 1,
(
S−1
T−1 + eT e

′
T

))
: proposal density

× exp

(
−1

2

(
ε′TΣ−1

T εT − e′TΣ−1
T eT

))
: MH correction

where we define eT in the same as before. We draw ΣT based on the independent Metropolis-

Hastings algorithm with the inverse Wishart distribution as a proposal distribution, Σ∗T ∼

IW
(
ν + 1,

(
S−1
T−1 + eT e

′
T

))
and therefore the acceptance ratio is

rΣT =

{
exp

(
−1

2
((ε∗T )′(Σ∗T )−1ε∗T − e′T (Σ∗T )−1eT )

)
exp

(
−1

2

(
(εoldT )′(Σold

T )−1εoldT − e′T (Σold
T )−1eT

)) , 1}

where

ε∗T = YT − µ− ΦYT−1︸ ︷︷ ︸
=eT

−Bf(Σ∗T ) = eT −Bf(Σ∗T ).

We set Σnew
T = Σ∗T with probability min(rΣT , 1), Σnew

T = Σold
T otherwise. We consider a

mixture proposal distribution with the above proposal distribution and a random walk MH

type proposal distribution as in step 2.

Step 4: (µ,B,Φ) First we transform our model into the following multiple regression

form,

Ỹt = B̃X̃t + Σ
1/2
t εt, εt ∼ N(0, I)
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where p is the number of lags in VAR and

Ỹt = Y ′t

X̃t = [1, Y ′t−1, ..., Y
′
t−p, f(Σt)

′]′

B̃ = [µ,Φ1, ...,Φp, B].

Then, we can re-write the equation as

Σ
−1/2
t Ỹt =

(
X̃ ′t ⊗ Σ

−1/2
t

)
vec
(
B̃
)

+ εt,

which is a standard multiple regression with homoscedastic errors. The conditional posterior

distribution of (µ,B,Φ) is a multivariate normal distribution under the conjugate prior

assumption.

Step 5: ν The conditional posterior distribution of ν is

p(ν|others) ∝

(
T∏
t=1

|S−1
t−1|ν/2

2νk/2Γk(ν/2)
|Σt|−(ν+k+1)/2exp

(
−1

2
tr(S−1

t−1Σ−1
t )

))
pG(ν)1(k+1,Mν)(ν)

where S−1
t−1 = (v − k − 1)(C + AΣt−1A

′), Γk(·) is the multivariate gamma function, pG(ν)

is a prior distribution for nu, which is set to be Gamma distribution, and 1(k+1,Mν)(ν) is a

indicator function takes value 1 if ν ∈ (k+ 1,Mν) and 0 otherwise. To draw ν from this con-

ditional posterior distribution, we employ the random-walk Metropolis-Hastings algorithm

with a proposal

ν∗ = νold + eν , eν ∼ N(0, σ2
ν)

where the scale of the proposal distribution σ2
ν is adaptively chosen so that the resulting

acceptance rate is about 30% (Atchadé and Rosenthal, 2005).
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Step 6: C The conditional posterior distribution of C is

p(C|others) ∝

(
T∏
t=1

|S−1
t−1|ν/2|Σt|−(ν+k+1)/2exp

(
−1

2
tr(S−1

t−1Σ−1
t )

))
× pIW (C|df,Ψ)

× pIW
(
ν0, V

−1
0

)
, where V −1

0 = (v0 − k − 1)(I − A)−1C,

and S−1
t−1 = (v − k − 1)(C + AΣt−1A

′), and pIW is a density function of the inverse Wishart

distribution. In this step, we reparametrize C in the following fashion,

C =



d11 0 . . . 0

c21 d22 . . . 0

...
. . . 0

ck1 ck2 ck3 . . . dkk





d11 0 . . . 0

c21 d22 . . . 0

...
. . . 0

ck1 ck2 ck3 . . . dkk



′

.

This transformation ensures the positive definiteness of C. To draw C from this conditional

posterior distribution, we employ the random-walk Metropolis-Hastings algorithm with a

proposal

c∗ij = coldij + ec(i,j), ec(i,j) ∼ N(0, σ2
c(i,j))

log(d∗ii) = log(doldii ) + ed(i,i), ed(i,i) ∼ N(0, σ2
d(i,i))

for (i, j) = {i = 1, .., k; j = 1, ..., k, i ≥ j}. The scale of the proposal distribution σ2
c(i,j) and

σ2
d(i,j) are adaptively chosen so that the resulting acceptance rate is about 30% (Atchadé and

Rosenthal, 2005). Note that to compute the acceptance ratio, we need a Jacobian term due

to reparametrization,

|J | = 2k
k∏
i=1

dk+1−i
ii︸ ︷︷ ︸

cholsky decomp.

×
k∏
i=1

dii︸ ︷︷ ︸
log trans.

.
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Step 7: A The conditional posterior distribution of A is

p(A|others) ∝

(
T∏
t=1

|S−1
t−1|ν/2|Σt|−(ν+k+1)/2exp

(
−1

2
tr(S−1

t−1Σ−1
t )

))

× pTN
(
A11|mA(1,1), VA(1,1), 0,∞

) ∏
(i,j) 6=(1,1)

pN
(
Aij,mA(i,j), VA(i,j)

)
× pIW

(
ν0, V

−1
0

)
, where V −1

0 = (v0 − k − 1)(I − A)−1C.

and S−1
t−1 = (v − k − 1)(C + AΣt−1A

′), pTN is a density function of the truncated normal

distribution, and pN is a density function of the normal distribution. Note that the sign of

A(1,1) is not identified. Hence, we place the prior distribution over A(1,1) > 0.

To draw A from this conditional posterior distribution, we employ the element-wise

random-walk Metropolis-Hastings algorithm with a proposal,

A∗(i,j) = Aold(i,j) + wi,j, wi,j ∼ N
(

0, σ2
A(i,j)

)
,

where the scale of the proposal distribution σ2
A(i,j) is adaptively chosen so that the resulting

acceptance rate is about 30% (Atchadé and Rosenthal, 2005) for each (i, j).
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B Prior specification

In this section, we present the prior distributions used for the application section. Our

benchmark model is the CAIW(1)-in-VAR(12) model with log(diag(Σt)) as a linking func-

tion. Parameters in the conditional mean of the model, µ,Φ and B, are assumed to follow

independent multivariate normal distributions,

µ ∼ N
(
04, 102 · I4

)
, vec(B) ∼ N

(
04, 102 · I4

)
, vec(Φ1) ∼ N

(
vec(I16), 102 · I16

)
vec(Φi) ∼ N

(
016, 102 · I16

)
for i = 2, ..., 12.

where vec(·) is the vectorize operator, 0# is a # × 1 vector of zeros, and I# is a # × #

identity matrix. There are three types of parameters in the volatility equation (A,C, and

ν). The parameter A governs the dynamic properties of the volatility matrix process. Each

element of A follows an independent normal distribution except the element in the far upper-

left corner. The prior distribution for the (1, 1)-th element in the A matrix is set to be a

truncated normal distribution defined on the positive real line to ensure identification.

A(1, 1) ∼ TN(0.9, 0.12, 0,∞), A(i, i) ∼ N(0.9, 0.12) for i = 2, 3, 4

A(i, j) ∼ N(0, 0.12) for i 6= j.

The parameter C determines the long-run mean of the volatility process. We set the prior for

it as following an inverse Wishart distribution with scale matrix Ψ and degrees of freedom

parameter df . We set the scale matrix to be Ψ = diag([0.9, 0.15, 1.0, 0.3]/20) and the degrees

of freedom parameter to bet df = 15. As the Wishart-type distribution is quite a popular

prior in the Bayesian literature for a variance covariance matrix, we believe it to be a natural

choice for C and C ∼ IW (4, I4). Finally, the prior distribution for ν follows a Gamma

distribution with mean 40 and standard deviation 1.
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C Posterior estimates

C.1 Stochastic volatility estimates

Estimated stochastic volatility series are presented in figures A-1 through A-4.

Figure A-1 Estimated Stochastic Volatility, IP

Note: Estimated stochastic volatility for IP based on the CAIW(1)-in-VAR(12) model.

Figure A-2 Estimated Stochastic Volatility, CPI

Note: Estimated stochastic volatility for CPI based on the CAIW(1)-in-VAR(12) model.



A-11

Figure A-3 Estimated Stochastic Volatility, Federal funds rate

Note: Estimated stochastic volatility for the federal funds rate based on the CAIW(1)-in-

VAR(12) model.

Figure A-4 Estimated Stochastic Volatility, Excess bond premium

Note: Estimated stochastic volatility for the excess bond premium based on the CAIW(1)-

in-VAR(12) model.
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C.2 Details on the structural model

The dynamic equilibrium model emphasizes the mechanism highlighted in Gertler and Karadi

(2011). The setup is quite similar to the baseline Gertler and Karadi (2011) model, but with

three main differences: agents have Epstein-Zin utility, the government does not follow any

credit policy, and price setters face Rotemberg (1982) as opposed to Calvo adjustment costs.

Please refer to Gertler and Karadi (2011) for a discussion of model details13. This exposition

will be a general sketch of the model.

There are two types of households: workers and bankers (financial intermediaries). House-

holds have Epstein-Zin utility over consumption and leisure. Workers maximize consumption

(Ct), labor (Lt), one period real deposit holdings (Bt), and one period nominal deposit hold-

ings (Bn
T ). Pt is the price level, Wt is the real wage rate, Rt is the real return on one period

risk free deposits, irt is the nominal risk free rate on one period deposits, Πt are profits from

firms, and Tt are transfers.

Ut = max
Ct,Lt,Bt

[(
Cη
t (1− Lt)1−η) 1−σ

θU + β
(
EtU

1−σ
t+1

) 1
θU

] θU
1−σ

(A.1)

subject to

Ct = WtLt + Πt + Tt +RtBt −Bt+1 + irt−1
Bn
t

Pt
−
Bn
t+1

Pt

Financial intermediaries obtain deposits from households and use the funds raised as well

as their own net worth to lend to non-financial firms. An intermediary j has the following

balance sheet constraint, where Qt is the price of a claim on non-finanical firms, Sj,t is the

quantity of claims, Nj,t is the net worth, and Bj,t+1 is the amount of deposits:

QtSj,t = Nj,t +Bj,t+1 (A.2)

Intermediary net worth has the following law of motion, where Rk,t+1 is the realized return

13The appendix of Foerster (2015) also contains a useful discussion of the derivations.
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to capital in period t+ 1:

Nj,t+1 = Rk,t+1QtSj,t −Rt+1Bj,t+1 = (Rk,t+1 −Rt+1)QtSj,t +Rt+1Nj,t (A.3)

Intermediary j’s objective function is to maximize expected terminal wealth adjusted by the

household stochastic discount factor (βiΛt,t+i)

Vj,t = maxEt

(
∞∑
τ=1

(1− θ)θτβτΛt,t+τ [(Rk,t+τ −Rt+τ )Qt+τ−1Sj,t+τ−1 +Rt+τNj,t+τ−1]

)
(A.4)

A banker has the following incentive compatibility constraint, motivated by a desire to divert

assets, only 1− λ of which can be recovered by the households

Vj,t ≥ λQtSj,t (A.5)

Now we discuss the non-financial side of the macroeconomy. Intermediate goods firms are

competitive and produce the goods that are sold to retail firms. They issue St claims to

capital Kt+1. The following arbitrage relation holds between the value of claims and the

value of capital:

QtKt+1 = QtSt (A.6)

The production function of the intermediate goods firms is Cobb-Douglas and perturbed by

a permanent TFP shock (At) and capital quality shock (ζt):

Yt = (UtζtKt)
α (AtLt)

1−α (A.7)

where Ut is capacity utilization.

Before selling previously purchased capital back on the competitive market, intermediate

goods firms also pay a unity cost per unit to repair depreciated capital. Therefore, the
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realized return to capital Kt+1 is

Rk,t+1 =

[
Pm,t+1α

Yt+1

ζt+1Kt+1
+Qt+1 − δ(Ut+1)

]
ζt+1

Qt

(A.8)

where Pm,t+1 is the price of intermediate goods. In addition to purchasing capital, interme-

diate goods firms also decide on a capital utilization rate and labor supply.

Competitive capital producing firms purchase capital from intermediate goods firms. They

repair depreciated capital, build new capital, and sell it on the competitive market. In line

with Gertler and Karadi (2011), we assume that adjustment costs are on investment net

of depreciated capital. Therefore, capital producing firms only pay a unit cost to repair

depreciated capital. Their profits are as follows:

proft = δ(Ut)ζtKt−1−QtζtKt−1+QtKt−(Kt−(1−δ(Ut))ζtKt−1)−S
(

In,t + IssAt
In,t−1 + IssAt−1

)
(In,t + IssAt)

(A.9)

We define net investment as

In,t = It − δ(Ut)ζtKt (A.10)

Rewriting the profits of capital producing firms in terms of net investment, the maximization

problem is as follows:

max
In,t

Et

(
∞∑
τ=0

βτΛt,t+τ

[
(Qτ − 1) In,τ − S

(
In,τ + IssAτ

In,τ−1 + IssAτ−1

)
(In,τ + IssAτ )

])
(A.11)

The function S is quadratic with respect to changes in net investment. Iss is the trend-

adjusted steady state level of investment. Capital good producers choose net investment

levels In,τ to maximize the expected future discounted value of firm profits.

Retail firms are monopolistically competitive. They buy inputs from intermediate goods
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firms. The final output is a CES aggregate of each retail firm f product:

Yt =

[∫ 1

0

Y
ε−1
ε

ft df

] ε
ε−1

(A.12)

Retail firms face quadratic price adjustment costs and have the objective function

maxEt

∞∑
τ=0

βτΛt,t+τ

((
pf,t+τ
pt+τ

− Pm,t+τ
)(

pf,t+τ
pt+τ

)−ε
yt+τ −

φp
2

(
pf,t+τ

Πpf,t+τ−1

− 1

)2

yt+τ

)
(A.13)

Monetary policy follows a standard Taylor rule with interest rate smoothing that reacts to

inflation and output growth deviations from steady state.

irt
ir

=

(
irt−1

ir

)ρR ((Πt

Π

)ρπ (∆ log Yt
ΛA

)ρY)1−ρR
(A.14)

The Euler equation for nominal bonds holds:

βEt

(
Λt,t+1

irt
Πt+1

)
= 1 (A.15)

The government fiscal policy is Ricardian. Goods market clearing implies, where G is a

fixed, exogenous level of government spending:

Yt = Ct + It +
φp
2

(
Πt

Π
− 1

)2

Yt + S

(
In,t + IssAt

In,t−1 + IssAt−1

)
(In,t + IssAt) +G (A.16)

The capital accumulation equation is:

Kt+1 = (1− δ(Ut))ζtKt + It (A.17)

Depreciation δ(Ut) is a function of the amount of utilization

δ(Ut) = δ + γ1 (Ut − 1) + γ2 (Ut − 1)2 (A.18)
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The two exogenous shocks and their stochastic volatilities follow autoregressive processes:

∆ logAt = ρA∆ logAt−1 + εA,t, εA,t ∼ N(0, h2
A)

hA,t = (1− ρh,A)σA + ρh,AhA,t−1 + εhA,t, εhA,t ∼ N(0, σ2
h,A)

log ζt = ρζ log ζt−1 + εζ,t, εζ,t ∼ N(0, h2
ζ)

log hζ,t = (1− ρh,ζ)σζ + ρh,ζ log hζ,t−1 + εζ,t, εζ,t ∼ N(0, σ2
h,ζ)

(A.19)
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Table A-1 Parameter values of the dynamic equilibrium model considered in the main text

Parameter Value Parameter Value

α 0.33 ρA 0.2

β 0.994 σA 0.007

ΛA 0.004 ρζ 0.66

Π 0.0092 σζ 0.01

ε 6 ρh,A 0.5

δ 0.025 σh,A 0.5

η 0.32 ρh,ζ 0.5

σ 10 σh,ζ 0.5

ψ 36 G 0.19Yss

γ2 0.01 Rk,ss −Rss 0.01/4

S ′′ 3

φp 160

ρR 0.75

ρπ 1.5

ρy 0.5

θ 0.972

λ 0.381


