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Abstract

This paper presents accounting decompositions of changes in aggregate labor and capital
productivity. Our simplest decomposition breaks changes in an aggregate productivity ratio
into two components: A mean component, which captures common changes to firm factor
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second and higher moments of the log of marginal revenue factor productivities and reflects
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cycle, while the dispersion component plays a modest role.
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1 Introduction

What drives changes in aggregate productivity? One explanation that has been widely

used to explain the variation of aggregate productivity over the business cycle or over time

more generally is that frictions to the allocation of labor and capital between firms are time-

varying: Greater frictions to the distribution of capital and labor between firms reduce the

amount of output produced with a given amount of capital and labor and reduce measures

of aggregate productivity.1 This paper presents accounting decompositions of changes in

aggregate labor, capital, and total factor productivity that addresses this economic mecha-

nism, and can help to quantify the extent to which the changing distribution of labor and

capital drive fluctuations in aggregate productivity over time.

The accounting decompositions in this paper rely on the property that aggregate factor

productivity ratios can be expressed as the weighted sum of firm-level productivity ratios.

Our first decomposition splits changes in measures of aggregate factor productivities into

a mean component, changes in the weighted average of log productivities across firms,

and a dispersion component, which captures changes in the higher order moments of the

distribution of productivities across firms.2 The two components add up to the change in

a given aggregate factor productivity ratio. We compute the decomposition separately for

both aggregate labor and capital productivity. Crucially, for the decomposition of aggregate

labor productivity, we require only firm-level panel data on value added and labor, and for

the decomposition of aggregate capital productivity, we require firm-level panel data on

value added and capital.

The allocation of labor and capital may vary across firms not only due to distortions

but for technological reasons as well; the second decomposition allows us to group firms

(by industry or other categorical groups) to address this point. We implement our first

decomposition on each sector, resulting in sectoral mean and dispersion components. We

can then weight each sector’s mean and dispersion components by sectoral factor shares to

obtain aggregate mean and dispersion components. Thus, by an accounting property, the

change in aggregate factor productivities can be decomposed into three components: First,

1This economic mechanism plays a role in driving the dynamics of productivity and other macroeconomic
aggregates in a number of recent influential papers, including Arellano et al. (2012), Bloom et al. (2014),
Gilchrist et al. (2014), Khan and Thomas (2013), Midrigan and Xu (2014), and Moll (2014), as examples.

2To be precise, the dispersion component can be expressed as a function of the second and higher order
cumulants of the distribution of firm productivity measures, while the mean component is only a function of
the first cumulant.
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an aggregated mean component which captures changes in the weighted average of log

factor productivities within sectors. Second, an aggregated dispersion component which

captures changes in the dispersion of log factor productivities across firms within sectors.

Third, a sectoral-share component, which captures the changes in the distribution of inputs

between sectors.

Our decompositions, when applied to aggregate labor or capital productivity, are purely

accounting identities. To combine aggregate capital and labor productivity into a measure

of total factor productivity, we rely on the standard model assumptions that allow us to

compute the Solow residual. We then show that the Solow residual has the nice property

that we can express it as the weighted average of the mean, dispersion, and sectoral-share

components of capital and labor productivity.

Our decompositions are useful tools for researchers testing whether models where fric-

tions to the allocation of labor or capital across firms play a meaningful role in driving

aggregates are consistent with firm level behavior. We present a series of results to demon-

strate this point. In the model of Hsieh and Klenow (2009), we demonstrate how our

decomposition captures changes in the distribution of the log of marginal revenue factor

productivities. We prove that changes in the expected value of the log of marginal revenue

factor productivities, as well as changes in production function coefficients, drive changes

in the mean component of our decompositions. We prove that changes in the second central

moment and all higher order moments of the log of marginal revenue factor productivities

drive changes in the dispersion component of our decompositions.

We then use a more general model of production by heterogeneous firms to demon-

strate how distortions to firm capital and labor decisions are captured in our decomposition.

We demonstrate analytically that the dispersion component of our decomposition captures

changes in productivity due to heterogeneous distortions to firm-level input allocation. The

mean component of our decompositions captures changes in technology or common distor-

tions to firm capital or labor choices. We prove that this general model of production has a

mapping to a large number of macroeconomic models in the literature that utilize frictions

to the allocation of labor or capital across firms to help drive aggregate dynamics.

We compute our decompositions for aggregate labor productivity, capital productivity,

and TFP using firm-level data on U.S. nonfinancial public firms. To see if the results are

consistent for another large, developed nation, we perform a similar analysis for nonfinan-

cial public firms from Japan. The results for the United States and Japan from the second

decomposition applied to labor productivity show that the mean component is highly corre-
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lated with movements in aggregate labor productivity and are essentially solely responsible

for its cyclical variation. The magnitude of movements in the dispersion component are

small, and the dispersion component has a weak negative correlation with changes in ag-

gregate labor productivity. Our results are different for aggregate capital productivity. The

dispersion component moves much more closely with changes in aggregate capital produc-

tivity, and does play a role in contributing to cyclical variation in aggregate capital produc-

tivity. Our decomposition, when applied to TFP, yields the result that the mean component

is responsible for the vast majority of its cyclical variation, because much of the cyclical

movements in TFP are driven by changes in aggregate labor productivity.

Related Literature The contribution of this paper is to provide accounting decompositions

of aggregate labor and capital productivity, which can be implemented without structural

estimation, and can guide the specification of firm-level frictions to capital and labor allo-

cation in business cycle models. The fact that our decompositions only require measures of

firm-level value added, labor, and capital, and do not require estimation to be computed is

an attractive property, as it implies the use of our decomposition not only avoids potential

biases from estimation, but also means that our decomposition can be computed in both

data and heterogeneous firm models with relative ease. A large number of papers in the

literature work with production environments that map into the class of production envi-

ronments that we rely on to prove how our decomposition maps into models in Section 3.

The general class of models to which our theoretical results apply include the influential

models of Arellano, Bai, and Kehoe (2012), Bloom et al. (2014), Kehrig (2015), and Khan

and Thomas (2013), as only a few recent examples. Thus, the dispersion component of

our decomposition reflects changes in the distribution of distortions to firm input allocation

in such papers. Hence, the role of frictions to firm labor and capital allocation in a large

number of models can be compared to the data through the use of our decomposition. Our

empirical results alone can also help to guide model selection in standard, widely-used pro-

duction environments. In this sense, our decomposition is similar in spirit to Chari, Kehoe,

and McGrattan (2007).

Our paper is also related to a number of recent studies which examine the role of real-

location or allocative efficiency in driving aggregate productivity dynamics. One group of

papers estimate production function coefficients and firm-level total factor productivities to

assess the role of allocative frictions in driving productivity over the business cycle, such

as Oberfield (2013), Osotimehin (2013), and Sandleris and Wright (2014). Our approach
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differs from this set of the literature in that our decompositions are accounting identities

requiring only measures of firm-level value added, capital, and labor, and thus we do not

require the estimation of production function coefficients. Our method therefore avoids

the potential econometric biases in these estimation procedures (which are discussed in

Appendix C) and can be implemented immediately on a wide array of models and data.

The magnitude of the dispersion component of our decompositions can be viewed as an

approximation to the extent to which allocative efficiency affects aggregate productivity

in such models (we show this in Appendix C). Thus, our decomposition, if applied to the

respective datasets used in these papers, could be used to complement the paper’s struc-

tural approaches and potentially address concerns regarding the assumptions required for

estimation. Another group of papers examine the role of resource reallocation through

the use of aggregate productivity decompositions, such as Foster, Haltiwanger, and Krizan

(2001) and Basu and Fernald (2002). The sectoral share component of our second decom-

position also speaks to the role resource reallocation between sectors can play in driving

productivity dynamics. Differently from these papers, however, the dispersion component

of our decomposition captures the role allocative efficiency plays in driving productivity

dynamics.3 Additionally, our decomposition does not require the estimation of firm-level

TFP.

The rest of the paper proceeds as follows. Section 2 defines the components of our

decompositions for aggregate labor productivity, aggregate capital productivity, and TFP.

Section 3 discusses how shocks to firm-level wedges map into the components of our de-

composition. Section 4 applies our decomposition to data from U.S. and Japanese nonfi-

nancial public firms. Section 5 concludes.

2 Productivity Decompositions

In this section, we first present our decompositions of changes in aggregate labor and

capital productivity, and then we present how to combine these decompositions to perform

decompositions of changes in TFP. Decomposition I breaks changes in the log of each ag-

gregate productivity ratio into a mean and a dispersion component to help identify whether

it is changes in the mean or dispersion of the log of firm-level productivity ratios that are

driving changes in aggregate productivity. Decomposition II allows for groupings of firms

3Alternatively, adjustment costs could generate a dynamically efficient allocation that observationally is
consistent with static misallocation; this point is made in Asker et al. (2014), e.g.
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(sectors) to each have a mean and a dispersion component, and for the allocation of inputs

between each grouping of firms to change over time. In turn, when analyzing changes in

aggregate productivity, there is also a sectoral-share component, which reflects how input

shares are changing across sectors over time.

2.1 Decomposition I: Mean and Dispersion Components
We start with a static decomposition of aggregate labor productivity. We define L as

aggregate labor and l as firm-level labor. Aggregate labor is the sum of all firm-level labor.

We define K as the aggregate capital stock and k as the firm-level capital stock, where

the aggregate capital stock is the sum of all firm capital stocks. The decomposition below

holds for capital productivity as well, if we substitute K for L and k for l.

We define Y as aggregate output and v as firm value added, where aggregate output is

the sum of all firm-level value added. We have the following identity, which holds at each

time t:

Lt
Yt
≡
∑
i

li,t
vi,t

vi,t
Yt
, (1)

where i indexes the set of firms in the economy.

Building on (1), we can now perform a static version of our first decomposition:

log

(
Lt
Yt

)
=

∑
i

log

(
li,t
vi,t

)
vi,t
Yt︸ ︷︷ ︸

static mean component

+

(
log

(∑
i

li,t
vi,t

vi,t
Yt

)
−
∑
i

log

(
li,t
vi,t

)
vi,t
Yt

)
︸ ︷︷ ︸

static dispersion component

. (2)

Aggregate labor to output at each time t is now broken into a “mean component,” which

is the weighted average of the log of labor to value added, and a “dispersion component.”

If we treat labor to value added as a random variable with a probability density function

(reflecting the number and size of firms with a given productivity ratio), the dispersion

component takes the form of the log of the expectation of firm-level labor to value-added

ratios less the expectation of the log of firm-level labor to value-added ratios. This term is

always non-negative due to Jensen’s inequality. This measure has useful statistical proper-

ties related to the measure of entropy in Backus, Chernov, and Zin (2014). Assuming some

regularity conditions on the distribution of firm labor to value-added ratios such that the

cumulant generating function exists, the dispersion component captures all higher-order
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cumulants of the distribution of firm-level labor to value-added ratios.4 This can be inter-

preted as the following: The dispersion component captures the effect of all second and

higher order moments of the distribution of firm labor productivity on aggregate labor pro-

ductivity.

We are interested in changes in labor productivity. We can recover changes in labor

productivity as:

∆ log

(
Yt
Lt

)
= −∆

∑
i

log

(
li,t
vi,t

)
vi,t
Yt︸ ︷︷ ︸

mean component

(3)

−∆

(
log

(∑
i

li,t
vi,t

vi,t
Yt

)
−
∑
i

log

(
li,t
vi,t

)
vi,t
Yt

)
︸ ︷︷ ︸

dispersion component

.

An increase in dispersion in firm-level labor to value-added ratios decreases aggregate

labor productivity. Similarly, an increase in the weighted average of firm-level labor to

value-added ratios decreases aggregate labor productivity. Our mean/dispersion decompo-

sition allows us to determine whether it is changes in the mean or the dispersion in the log

of firm-level labor to value added which is driving changes in aggregate labor productivity.

We present our second decomposition below, which allows each sector to have a mean and

dispersion component. Hence, changes in aggregate labor productivity can be driven by

changes in the mean of log firm-level labor to value-added ratios within sectors, changes in

their dispersion within sectors, or changes in the allocation of inputs between sectors.

2.2 Decomposition II: Mean, Dispersion, and Sectoral Share Compo-
nents

For a sector (or any given grouping of firms), the identity in (1) holds. Hence, if j

indexes a given sector, we have the following identity for aggregate labor to added value

ratio within that sector at time t:

Ljt

Y j
t

≡
∑
i

lji,t

vji,t

vji,t

Y j
t

. (4)

4Cumulants summarize the distribution of a random variable, as we explain in more detail in Section 3.
Backus, Chernov, and Zin (2014) also provide an excellent discussion of why functions of this form capture
all higher-order cumulants.
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In turn, for each sector at time t, we can decompose the aggregate labor to added value

ratio within a sector into a mean and dispersion component:

log

(
Ljt

Y j
t

)
=
∑
i

log

(
lji,t

vji,t

)
vji,t

Y j
t︸ ︷︷ ︸

Mj
t

+

(
log

(∑
i

lji,t

vji,t

vji,t

Y j
t

)
−
∑
i

log

(
lji,t

vji,t

)
vji,t

Y j
t

)
︸ ︷︷ ︸

Djt

, (5)

where M j
t is the static mean component in sector j and Dj

t is the static dispersion compo-

nent in sector j.

By an identity, aggregate labor productivity is equivalent to:

Yt
Lt

=
∑
j

e−M
j
t−D

j
t
Ljt
Lt
. (6)

This implies that aggregate labor productivity can be expressed as an aggregate of sec-

toral mean and dispersion components, weighted by the share of labor allocated to each

sector. Hence, when we look at changes in aggregate labor productivity, we have to ac-

count for the fact that input shares of different sectors can be changing over time. In turn,

we have a third component, which reflects changes in the input share of a given sector,

which we call the sectoral-share component:

log

(
Yt
Lt
Yt−1

Lt−1

)
= log


∑

j

(
e−M

j
t

)
Ljt−1

Lt−1∑
j

(
e−M

j
t−1

)
Ljt−1

Lt−1


︸ ︷︷ ︸

mean component

+ log

 ∑
j e
−Mj

t−D
j
t
Ljt
Lt∑

j e
−Mj

t−D
j
t
Ljt−1

Lt−1


︸ ︷︷ ︸

sectoral share

+ log

 ∑
j e
−Mj

t−D
j
t
Ljt−1

Lt−1∑
j e
−Mj

t−1−D
j
t−1

Ljt−1

Lt−1

− log


∑

j

(
e−M

j
t

)
Ljt−1

Lt−1∑
j

(
e−M

j
t−1

)
Ljt−1

Lt−1


︸ ︷︷ ︸

dispersion component

. (7)

In this decomposition, changes in aggregate labor productivity are broken into three

components. First, a mean component which captures changes in an aggregation of sectoral

mean log labor productivities. Second, a sectoral share component which captures the

effect of the changing allocation of labor between sectors. This second component will be
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positive if labor is flowing from low labor productivity sectors to high labor productivities

onces. Third, a dispersion component, which captures changes in the dispersion of firm log

labor productivities within sectors.

2.3 Decomposing Changes in TFP using Decomposition II
We measure TFP, At, as:

At =
Yt

Kα
t L

1−α
t

. (8)

We assume that capital’s share of output, α, is positive. We can thus rewrite (8) as:

log(At) = α log(
Yt
Kt

) + (1− α) log(
Yt
Lt

). (9)

Taking changes in (9),

∆ log(At) = α∆ log(
Yt
Kt

) + (1− α)∆ log(
Yt
Lt

). (10)

In (7), we showed that changes in log( Yt
Lt

) can be broken into mean, dispersion, and sectoral-

share components. Denote these components for labor as ML
t , D

L
t , and SLt , respectively.

Denote these components for capital as MK
t , D

K
t , and SKt , respectively. Hence,

∆ log(
Yt
Kt

) = MK
t +DK

t + SKt . (11)

In turn, we can rewrite changes in log TFP from (10) as changes in the weighted sum

of the mean components for capital and labor, the dispersion components for capital and

labor, and the sectoral-share components for capital and labor:

∆ log(At) = (αMK
t + (1− α)ML

t ) + (αDK
t + (1− α)DL

t ) + (αSKt + (1− α)SLt ). (12)

3 Decomposition Applied to Models

In this section, we demonstrate the economics of our decomposition in standard produc-

tion environments. First, in the production environment described by Hsieh and Klenow

(2009), we demonstrate that changes in the production technology, prices, or the expected

value of the log of marginal revenue products of capital will manifest themselves in the
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mean component of our decomposition. Second, changes in the variance or higher order

moments of the log of marginal revenue products of capital will be reflected in the disper-

sion component of our decomposition.

Building on the above results, we demonstrate in a standard production environment

how the components of our decomposition capture changes in the distribution of distor-

tions to firm labor and capital choices. We find that common changes to the frictions to

input choices facing firms are reflected in movements in the mean component. We also

derive conditions under which distributional changes in such frictions are reflected in the

dispersion component of our decomposition. Such results are derived in a more general

framework than that of Hsieh and Klenow (2009), and we identify a number of relevant

papers that can be mapped into our environment.

Our results are particularly relevant to the literature that studies the role financial fric-

tions play in amplifying movements in aggregates over the business cycle. We analytically

demonstrate how a change in a financial friction in a simple model of production will

present itself as a distortion. We then demonstrate that an increase in the extent to which

this financial friction affects firms will increase the dispersion in wedges.

3.1 Hsieh and Klenow (2009) Production Environment
The model consists of heterogeneous firms that produce differentiated goods. There are

S industries, and the outputs of each industry, YS , are aggregated into a final good (total

output), Y , using Cobb-Douglas technology in a perfectly competitive market. Hence,

aggregate output can be defined as:

Y = ΠS
s=1Y

θs
s , where

S∑
s=1

θs = 1. (13)

From standard arguments: PSYS = θsPY , where the price of industry output is Ps and

P is the price of the final good, which is set to be the numeraire.

There areMs firms in a sector s. Industry output, Ys is produced using CES technology:

Ys =

(
Ms∑
i=1

Y
σ−1
σ

si

) σ
σ−1

. (14)

Within an industry, firms are heterogeneous in a few dimensions. First, they vary in

aspects of their physical productivity. Second, they vary in the magnitude of frictions to
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their labor and capital choices. One can write these two distortions as distortions that

affect the marginal products of labor and capital evenly, which one can write as an output

distortion τY , and distortions that affect the marginal product of capital relative to labor,

which one can write as a capital distortion, τK . Firm i within sector s produces output, Ysi,

from its firm TFP, Asi, capital stock Ksi, and labor Lsi, using the following Cobb-Douglas

technology:

Ysi = AsiK
αs
si L

1−αs
si . (15)

Profits of firm i in sector S are thus:

πsi = (1− τYsi)PsiYsi − wLsi − (1 + τKsi)RKsi. (16)

From standard arguments, in this setup, the marginal revenue product of capital for a

firm, MRPKsi ,
∂PsiYsi
∂Ksi

, is a function of the rental rate of capital and firm level wedges:

MRPKsi = R
1 + τKsi
1− τYsi

. (17)

As in Hsieh and Klenow (2009), it is useful to define the marginal product of capital (in

total) for a sector as the following:5

MRPKs ,
R∑MS

i=1

1−τYsi
1+τKsi

Ksi
KS

. (18)

For our decomposition, it is also useful to define the weighted average of the log

marginal product of capital for firms in a sector, which is:

LMRPKs ,
MS∑
i=1

log(R
1 + τKsi
1− τYsi

)
PsiYsi
PSYS

. (19)

5There was an error in the specification of this object in the original paper of Hsieh and Klenow (2009).
The specification here corresponds to the form in the published corrections.
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3.1.1 Our Decomposition in this Production Environment

In the environment above, from (18) and (19) and the definition of the marginal revenue

product of capital, our decomposition applied to capital productivity for sector s can be

expressed as the following:

∆ log

(
P s
t Y

s
t

Ks
t

)
= ∆ log

(
1

αs

σ

1− σ

)
+ ∆LMRPKs︸ ︷︷ ︸

mean component

+ ∆ log
(
MRPKs

)
−∆LMRPKs︸ ︷︷ ︸

dispersion component

. (20)

We now demonstrate how the changing distribution of marginal productivities are re-

flected in our decomposition by demonstrating which cumulants of the distribution of log

marginal revenue productivities show up in which components of our decomposition. Cu-

mulants are similar to moments; the cumulant-generating function of a random variable

is an alternative specification of a probability distribution, similar to a moment-generating

function. The first cumulant is the expected value of the variable, the second cumulant is

its variance, and the higher order cumulants are polynomial combinations of centralized

moments. Consider the distribution of firm log marginal revenue products of capital, re-

flecting both the mass of firms at a given productivity and their relative output shares (to

be precise, the CDF would be written Gs (X) =
∫
i∈s 1 (MRPKsi ≤ X) PsiYsi

PSYS
di). Denote

the cumulants of this distribution as κs1, κ
s
2, .... Using properties of the cumulant generating

function, our decomposition can be expressed as the following function of the cumulants

of the distribution of log marginal revenue productivities of capital:6

∆ log

(
P s
t Y

s
t

Ks
t

)
= ∆ log

(
1

αs

σ

1− σ

)
+ ∆κs1︸ ︷︷ ︸

mean component

+−∆κs2
2!

+
∆κs3
3!
− ∆κs4

4!
+ ...︸ ︷︷ ︸

dispersion component

. (21)

Note that κs1 = LMRPKs is the weighted average of the log of firm marginal revenue

products of capital, while κs2 is the variance of the log of firm marginal revenue prod-

ucts of capital. The mean component captures only changes in technology or LMRPKs.

6See Appendix A for details of this derivation.
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Changes in the second cumulant (and thus second central moment), or higher order cumu-

lants (and thus all of the remaining higher order moments) of the distribution of the log of

firm marginal revenue products of capital are reflected in the dispersion component of our

decomposition.

Note that if firm marginal revenue products of capital are lognormally distributed, then

only the first two cumulants are non-zero. In that case, our decomposition is isomorphic to a

mean-variance decomposition. Increases in the expected value of the log of firm marginal

revenue productivities are reflected in the mean component of our decomposition, while

the negative effect of the greater variance of the log of firm marginal revenue products is

reflected in the dispersion component of our decomposition. This is apparent if in (21) the

dispersion component is further broken into variance and higher order terms as below:

∆ log

(
P s
t Y

s
t

Ks
t

)
= ∆ log

(
1

αs

σ

1− σ

)
+ ∆κs1︸ ︷︷ ︸

mean component

+

variance︷ ︸︸ ︷
−∆κs2

2!
+

higher-order terms︷ ︸︸ ︷
∞∑
n=3

(−1)n−1 ∆κsn
n!︸ ︷︷ ︸

dispersion component

. (22)

Notice, if we define κL,n as the n′th cumulant of the log of the marginal revenue product

of labor and κK,n as the n′th cumulant of the log of the marginal revenue product of capital,

we can apply our decomposition to changes in TFP using (12):

∆ log (TFPRs) = ∆ log

(
σ

1− σ
α−αss (1− αs)αs−1

)
+ (1− αs)∆κsL,1 + αs∆κ

s
K,1︸ ︷︷ ︸

mean component

variance︷ ︸︸ ︷
−

(1− αs)∆κsL,2 + αs∆κ
s
K,2

2!
+

higher-order terms︷ ︸︸ ︷
∞∑
n=3

(1− αs)∆κsL,n + αs∆κ
s
K,n

(−1)n−1 n!︸ ︷︷ ︸
dispersion component

.

(23)
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3.2 Simple Model of Production and Allocation
Given an increase in the dispersion of wedges likely results in a change in value added

shares, we demonstrate under what conditions we can analytically demonstrate that an

increase in the dispersion of wedges leads to an increase in the dispersion component of

our decomposition. Similarly, we demonstrate under what conditions we can analytically

demonstrate that an increase in the mean of wedges will increase the mean component of

our decomposition, all else equal. We present our results within a similar environment to

Hsieh and Klenow (2009), but more general technology.

As in Hsieh and Klenow (2009), the model consists of heterogeneous firms who pro-

duce differentiated goods, which are aggregated into a final good (total output), but now

with a more general aggregation technology to be described below. Firms are heteroge-

neous in the following dimensions: They vary in aspects of their physical productivity, zit,

and they vary in the magnitude of frictions to their labor and capital choices.

3.2.1 Intermediate Good Firm Technology

Firms are indexed by i and time by t. Firm i at time t produces yi,t units of an intermedi-

ate good using li,t units of homogeneous labor and ki,t units of capital with the production

function yi,t = zi,tl
γ
i,tk

ν
i,t. Labor and capital are homogeneous, therefore aggregate labor

and capital clearing imply that
∫
i
li,tdi = Lt and

∫
i
ki,tdi = Kt, where Lt and Kt denote

aggregate labor and capital.

3.2.2 Aggregation Technology and Value Added

Total output, Yt, is aggregated from firm output with technology Yt =
(∫

i
yϕi,tdi

)φ. Note

that this general form nests the two most common final good technologies considered in

the literature as special cases: The CES aggregator and heterogeneous firms producing a

single good. The final good sector is competitive and cost minimizing. Standard arguments

imply the price of each intermediate good, pi,t, is pi,t = Y
φ−1
φ Pt (yi,t)

ϕ−1, where Pt is the

price of the final good, which we set to be the numeraire. Therefore value added in real

terms, vi,t =
pi,t
Pt
yi,t, can be expressed as a function of prices and firm output:

vi,t = Y
φ−1
φ

t (yi,t)
ϕ . (24)

To compute our decomposition, one requires firm-level productivity ratios and firm-

level value-added shares. For a given firm, we can compute a firm-level value-added share

14



as: vi,t
Yt

.

3.3 The Optimal Allocation of Inputs and the Role of Firm-level Wedges
In this subsection, we solve the optimal allocation of resources in the planner’s problem,

and we demonstrate how firm-specific wedges can distort the allocation of labor and capital

between firms from this allocation.

We show that the optimal allocation of resources in the planner’s problem is such that

all firms have the same productivity ratios. This choice is unique and can be characterized

as a function of the distribution of firm-level TFP, F z
t (z). We then show that any allocation

of capital and labor between firms can be expressed as a function of the optimal input

choice and firm-specific wedges. We utilize this final result in the following subsection to

evaluate how shocks to firm-level wedges show up in our decomposition.

3.3.1 Optimal Allocation

We now present a proposition that highlights the known result that for any fixed amount

of total capital and labor, the optimal allocation of resources (to maximize static output)

is such that all firms with identical production function coefficients have the same factor

productivity ratios.

Proposition 1.

(i) Given a fixed amount of total labor and capital, Lt and Kt, the allocation of capital

and labor across firms that maximizes output is such that there are unique optimal

labor and capital productivity ratios, v
∗
t

l∗t
and v∗t

k∗t
, which are common among all firms

and only depend on the CDF of firm productivity, F z
t (z).

Proof. See Appendix A.

A full (static) planner’s problem maximizing current welfare could be split into two

parts: First, solve for the optimal allocation rule of capital and labor between firms for any

fixed amount of both capital and labor; and second, choose the total amount of capital and

labor to maximize current period utility. Therefore Proposition 1 implies that the allocation

which maximizes static utility is one where firms have constant productivity ratios. We do

not place any restrictions on the level of statically optimal total labor and capital.
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3.3.2 Firm-Level Wedges

We then use the optimal labor and capital productivity ratios to define firm-level wedges,

defined as the firm productivity ratio, vi,t
li,t

or vi,t
ki,t

, over the optimal productivity ratio, v
∗
t

l∗t
or

v∗t
k∗t

. We formally define firm level wedges as:

ωl,i,t ,
vi,t
li,t

l∗t
v∗t
, (25)

and

ωk,i,t ,
vi,t
ki,t

k∗t
v∗t
, (26)

for labor and capital, respectively.

These wedges capture how far a firm’s productivity ratio is from the one that maximizes

welfare in the social planner’s static optimization problem. They also capture aggregate

distortions, which distort every firm’s input decision and change aggregate labor or capital,

as well as changes in the relative distribution of resources between firms.

In the model of Hsieh and Klenow (2009), which is a special case of this production

environment, these wedges can be expressed as functions of the firm-level distortions in

their model, τY si and τKsi. The firm-level wedges are proportional to these distortions:

ωl,i,t ∝ 1
1−τY si

and ωk,i,t ∝ 1+τKsi
1−τY si

.

3.4 Shocks to Firm-level Wedges in our Decompositions
In this subsection, we illustrate how changes to the distribution of firm-level wedges

are captured in our decomposition and how such changes affect aggregates. The model

of production and allocation (from subsection 3.2) we consider only has a single sector of

production with identical production function coefficients, so we can perform our analysis

using Decomposition I. However, Decomposition II first applies Decomposition I individ-

ually to each sector and then aggregates up the sectoral mean and dispersion components.

Therefore, the way in which our components capture firm-level wedges will be similar for

a multi-sector version of our model with production function coefficients varying across

sectors. We perform our analysis of shocks to firm-level wedges only for Decomposition I

due to the greater tractability and cleaner demonstration of the economics of our decompo-

sition.

We begin without making parametric assumptions on the distribution of wedges. Let
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Y ∗
t

K∗
t

denote the undistorted (absent any idiosyncratic or common distortions) aggregate cap-

ital factor productivity ratio. Let Fω,k denote the density function of wedges to firm cap-

ital choices, which reflects both the mass of firms and their relative value added shares.

Formally, this can be expressed as an integral over firms (denoted by i): Fω,k (x) =∫
i
1(ωk,i≤x)

vi
Y
di. The cumulants of the log of firm-level wedges are denoted as: κk,1,t, κk,2,t,

κk,3,t, et cetera. Cumulants are similar to moments; we discuss their statistical properties in

subsubsection 3.1.1. Our decomposition of changes in aggregate capital productivity can

be expressed as:7

∆ log

(
Yt
Kt

)
= ∆ log

(
Y ∗t
K∗t

)
+ ∆κk,1,t︸ ︷︷ ︸

mean component

+

variance︷ ︸︸ ︷
−∆κk,2,t

2!
+

higher-order terms︷ ︸︸ ︷
∞∑
n=3

(−1)n−1 ∆κk,n,t
n!︸ ︷︷ ︸

dispersion component

. (27)

Equation (27) shows that the mean component captures changes in the undistorted pro-

ductivity ratio (capturing changes unrelated to distortions) and changes in the first cumu-

lant (which capture common changes in distortions). Changes in the variance of firm log

wedges (the second cumulant), or any higher moments of their distribution, are reflected in

the dispersion component. Such results easily carry over for labor productivity by replacing

capital for labor in (27).

We can then use (12) to express total factor productivity as a function of undistorted

TFP, TFP ∗t , and the cumulants of wedges to capital and labor:8

∆ log (TFPt) = ∆ log (TFP ∗t ) + α∆κk,1,t + (1− α) ∆κl,1,t︸ ︷︷ ︸
mean component

(28)

variance︷ ︸︸ ︷
−α∆κk,2,t + (1− α) ∆κl,2,t

2!
+

higher-order terms︷ ︸︸ ︷
∞∑
n=3

α∆κk,n,t + (1− α) ∆κl,n,t

(−1)n−1 n!︸ ︷︷ ︸
dispersion component

.

7See Appendix A for details of this derivation.
8For this exercise, we make the standard assumption that TFP is measured as TFPt = Yt

Kα
t L

1−α
t

, where α
is constant over time.
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Equation (28) shows that the mean component captures changes in undistorted TFP and

changes in the first cumulants of log wedges (corresponding to the mean of log wedges).

The dispersion component captures changes in the variance or higher order moments of log

wedges.

In the remainder of this subsection, we present special cases of the results in (27) and

(28). We show how common changes in wedges and changes in technology are reflected in

the mean component of our decomposition. Finally, we show that changes in the variance

and higher-order moments of log wedges are captured in the dispersion component our

decomposition.9

3.4.1 Common Shocks to Distortions

We first show that common changes to distortions are reflected only in the mean compo-

nent of our decomposition. First, consider a shock, ξt+1, that affects firms evenly such that

ωk,t+1 = ξl,t+1ωk,t. This is the sort of shock that would arise, for example, from a distortion

to the rental rate of capital faced by all firms. Below, we show the effect of this shock on

aggregate capital factor productivity and TFP is reflected only in the mean component:

∆log(
Yt
Kt

) = log(ξk,t)︸ ︷︷ ︸
mean component

,

and

∆log(TFPt) = α log(ξk,t)︸ ︷︷ ︸
mean component

.

Only the mean component will change if the economy is hit by no other shocks. Such

results extend to the decomposition of labor productivity when we replace labor for capital.

3.4.2 Shocks to the Variance and Higher-order Moments of Distortions

Note that the second cumulant is the variance of log wedges, while all of the higher

order cumulants can be expressed as polynomial combinations of the second and higher-

order central moments. Therefore (27) and (28) imply that changes in the variance and any

higher-order moments of log wedges are reflected in the dispersion component, without

having to make any parametric assumptions.
9These results follow directly from our decomposition and properties of cumulant generating functions;

an outline of their derivation are found in Appendix A.
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To provide further intuition, we now demonstrate how shocks to the distribution of

wedges are realized in our decomposition under some standard parametric assumptions.

For example, if wedges to capital are lognormally distributed with mean µω,k,t and variance

σ2
ω,k,t, then changes in aggregate capital productivity can be decomposed as:

∆ log

(
Yt
Kt

)
= ∆ log

(
Y ∗t
K∗t

)
+ ∆µω,k,t︸ ︷︷ ︸

mean component

+ −
∆σ2

ω,k,t

2︸ ︷︷ ︸
dispersion component

.

With the lognormal assumption, only the first and second cumulant exist. A typical way of

adding variation in higher-order central moments (and thus higher-order cumulants) is to

create a mixture of lognormals. If wedges to capital are modeled as a mixture of lognor-

mals, with weights λk,n,t on lognormal distributions with means µk,n,t and variances σ2
k,n,t,

then we can express our decomposition as follows:

∆ log

(
Yt
Kt

)
= ∆ log

(
Y ∗t
K∗t

)
+ ∆

∑
n

λk,n,tµk,n,t︸ ︷︷ ︸
mean component

−
∆
∑

n λk,n,tσ
2
k,n,t

2
−∆ log

(∑
n

λk,n,te
(µk,n,t−

∑
j λk,j,tµk,j,t)e

1
2(σ2

k,n,t−
∑
j λk,j,tσ

2
k,j,t)

)
︸ ︷︷ ︸

dispersion component

.

The mean component captures changes in the weighted means of the lognormal distribu-

tions or in the undistorted factor productivity ratio. All other changes in the distributions

will be reflected in the dispersion component. Changes in the variances of the lognor-

mal distributions which make up the mixture will be reflected here, as will higher order

moments. For example, a skewed distribution is often parameterized as a mixture of log-

normals with different means, which will be reflected, via the term e(µk,n,t−
∑
j λk,j,tµk,j,t), in

the dispersion component. Kurtosis is often often parameterized as a mixture of lognormals

with different variances, which will be reflected, via the term e
1
2(σ2

k,n,t−
∑
j λk,j,tσ

2
k,j,t), in the

dispersion component.

3.5 Mapping to Other Models
In this subsection, we show that our model has a mapping to several models of frictions

to the allocation of labor and capital between firms. We then demonstrate how frictions in
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a simple model of financial frictions would be reflected in wedges, and then discuss how

our decomposition would capture changes in such frictions.

3.5.1 Mapping to Models of Labor or Capital Allocation

Our simple model consists only of a production environment with wedges representing

frictions to the allocation of labor and capital. Therefore, there is a mapping to any model

with a production environment consistent with ours. This includes the models of Khan and

Thomas (2013), Bloom et al. (2014), and Arellano et al. (2012), as well as numerous other

heterogeneous agent models considered in the macroeconomics literature.

We formally show this correspondence by proving that given the production environ-

ment in our model, aggregate output, employment, capital, and the full distribution of out-

put, labor, capital, and technology across firms can be characterized using wedges and

either firm-level technology or output shares for any allocation of labor, capital, and tech-

nological productivity across firms. We denote Gt (z, ωl, ωk) as the joint distribution of

firm technological productivity and firm-level wedges to labor and capital, Jt
(
v
Y
, ωl, ωk

)
as the joint distribution of firm output shares and firm-level wedges to labor and capital,

and Zt =

(∫
i

(
z
ϕ( 1

1−νϕ−γϕ)
i,t

)
di

)φ(1−νϕ−γϕ)

as an index of aggregate productivity. The

following proposition states that this representation can map any resulting allocation of

resources and aggregates using these firm-level wedges:

Proposition 2. The full distribution of labor, capital, and productivity across firms, Ft (z, l, k),

and aggregate output, employment, and capital have a 1-1 mapping with any of the follow-

ing:

(i) Gt (z, ωl, ωk).

(ii) Jt
(
v
Y
, ωl, ωk

)
and a measure of aggregate productivity Zt.10

Proof. See Appendix A.

3.5.2 Mapping to a Model of Financial Frictions

In this subsection, we show that a financial friction in a simple model map can be

redefined as a firm-level wedge. We then discuss how a tightening of the friction in the

model can generate a greater variance of wedges.

10More generally, it can be shown that Jt
(
v
Y , ωl, ωk

)
together with

(∫
zτdF z(z)

)
, for any τ 6= 0, is

sufficient to characterize output, employment, and capital at both the aggregate and firm level.
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Consider a simple model where heterogeneous firms produce a homogeneous consump-

tion good with technology yi,t = zi,tl
b
i,t, where b < 1. In this setting, value added is equiva-

lent to firm output, vi,t = zi,tl
b
i,t. Households have utility function U (C,L) = C1−σ

1−σ −
L1+ν

1+ν

and discount the future at rate β. Production in this simple model is a special case of the

production environment introduced in Subsection 3.2; thus, the planner’s problem states all

firms optimally have the same labor productivity ratios.

The friction in this model is a simple borrowing constraint: Firms have wealth ai,t,

which we consider exogenous for our analysis. Firms must pay their workers at the begin-

ning of the period but only receive cash flows from production at the end. The borrowing

constraint, li,tW ≤ ai,tρ, where W is the wage and ρ is a positive constant, restricts the la-

bor decisions of firms when it binds. Assume firms may also exogenously exit each period

with probability δ.

The optimization problem of firms can be expressed as the following Lagrangian:

L = max
li,t

zi,tl
b
i,t − li,tW + λi,t (ai,tρ− li,tWt) , (29)

where λi,t is the Lagrange multiplier on the borrowing constraint. The multiplier is 0

if the borrowing constraint does not bind, and positive otherwise. Taking the first-order

conditions of (29) and manipulating the labor-leisure condition allows us to express the

firm’s labor choice as the following:

li,t = z
1

1−b
i,t b

1
1−bY

− σ
1−b

t L
− ν

1−b
t (1 + λi,t)

− 1
1−b . (30)

From (30) we can derive firm-level wedges, ωl,i,t =
vi,t
li,t

l∗t
v∗t

, as a function of aggregates

and the Lagrange multiplier faced by the firm:

log (ωl,i,t) = σlog

(
Yt
Y ∗t

)
+ νlog

(
Lt
L

∗
t

)
︸ ︷︷ ︸

Aggregate

+ log (1 + λi,t)︸ ︷︷ ︸
FirmSpecific

. (31)

Note that the wedge can be expressed as a function of the distortion of aggregates

from their optimal value (which affect the wage rate) as well as the firm-specific distortion

captured by the Lagrange multiplier in the firm’s problem. We can express the Lagrange

multiplier as the following function of aggregates and each firm’s zi,t and ai,t:
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log (1 + λi,t) =

0 zi,tbY
−bσ
t L−bνt ab−1

i,t ρ
b−1 ≤ 1

log
(
bY −bσt L−bνt zi,ta

b−1
i,t ρ

b−1
)

zi,tbY
−bσ
t L−bνt ab−1

i,t ρ
b−1 > 1

. (32)

Note that the only way that there is no heterogeneity in Lagrangian multipliers is either

if (a) the borrowing constraint never binds, or (b) it binds for all firms, but wealth is propor-

tional to productivity (zi,t = a1−b
i,t ). This second condition implies no inefficiencies in the

distribution of resources between firms; all inefficiencies arise from the reduced aggregate

demand for labor.

Now consider what a shock to borrowing constraints does. Assume that at time t = 0,

ρ is high enough such that the constraint binds for no firms. Then the mean and variance of

log (1 + λi,0) is 0. A decrease in ρ to the point where the constraint binds for some but not

all firms leads to a rise in both the mean and variance of log (1 + λi,t). At the same time, the

borrowing constraint reduces Yt and Lt, as some firms cannot hire the amount of labor they

would prefer were they unconstrained. Therefore the change to the mean of firm wedges,

log (ωl,i,t), as a result of this shock is ambiguous, as the aggregate component and the mean

of the firm-specific component move in opposite directions. However, the direction of the

change in variance of the firm-level labor wedge is unambiguous, increasing in response to

such a shock.

4 Decomposition Applied to Data
In this section, we apply our decompositions of aggregate productivity described in

Section 2 to data on U.S. public firms and Japanese public firms. In our discussion of the

results applied to U.S. public firms, we also include a comparison of our measures of labor

productivity, capital productivity, and TFP to those from the national income and product

accounts (NIPA). In Appendix B, we describe how we clean our data on U.S. nonfinancial

public firms, and measure the objects of interest.

4.1 Discussion of results — Data from the United States
Figures 1 and 2 display results of year-over-year changes in aggregate labor productivity

and its components from Decompositions I and II, respectively. From the eye test alone it

should be clear that in the recent recession, aggregate labor productivity and its dispersion

component have a negative correlation, and the mean component is highly correlated with
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aggregate labor productivity. Figures 3 and 4 further demonstrate this point: Over four

recession periods, the mean component moves closely with aggregate labor productivity.

In Decomposition II, the dispersion component has very little cumulative change over any

of the four episodes in our sample.

Figures 5 and 6 display results from Decompositions I and II of year-over-year changes

in aggregate capital productivity, and tell a different story. The dispersion component is

positively correlated with aggregate capital productivity over the past two business-cycle

episodes. For previous episodes, the mean component moves more closely with aggregate

capital productivity. These results are more starkly apparent in Figures 7 and 8, which show

cumulative changes in aggregate capital productivity and its components from Decompo-

sitions I and II. In the recent episodes, for either decomposition, the dispersion component

moves much more closely with aggregate capital productivity.

As we describe in the previous subsection on measurement, to compute TFP, by the

nature of our assumptions on the production function and values for its coefficients, changes

in labor productivity get more weight (65 percent) than changes in capital productivity (35

percent). Hence, as should be expected, we see that the results for TFP are much more

qualitatively consistent with the results from what drives changes in labor productivity.

This is apparent in the year-over-year changes charts from Decompositions I and II in

Figures 9 and 10, as well as the cumulative changes charts from Decompositions I and II

in Figures 11 and 12.

Table 1 displays correlations between the components of Decomposition II and their

respective aggregates. The results from the figures are further codified in this table. The

correlation between the dispersion component and sectoral share components and labor

productivity are especially striking. Movements in labor productivity are much more cor-

related with the mean of firm-level log labor to value-added ratios than with their disper-

sion. These results are dampened when looking at TFP because capital productivity has a

positive correlation with its dispersion component. However, the relationship between TFP

and its dispersion component is ultimately close to zero.

Our sample represents a significant slice of the U.S. economy; in 2011, it accounted

for over 15 percent of GDP and over 17 million employees. To understand the extent to

which our sample reflects the mechanisms responsible for driving aggregate productivity

changes, we compare the time-series behavior of each aggregate productivity ratio as ag-

gregated from Compustat to that of the respective productivity ratio computed from NIPA.

Figures 16 and 17 show that the time-series properties of TFP computed from both Com-

23



pustat and NIPA are similar both in their cyclical dynamics and long-term trends. These

figures suggest that some of the key forces driving TFP over time are likely present in Com-

pustat data. If there were significant factors driving TFP over the business cycle that existed

only in small, private firms, we would expect systematic differences in the behavior of TFP

and our measure computed from publicly listed firms over time. However, there are some

differences in the measures. TFP from Compustat is more volatile, which is unsurprising

given the documented greater volatility of corporate profits measured with generally ac-

cepted accounting principles (GAAP) than corporate profits as measured in NIPA.11 There

are also some slight timing differences, particularly in the timing of the trough (of TFP) of

the 2007—2009 recession. These timing differences may be due to the reporting dates of

firms in Compustat. However, the measure of TFP for the United States in the Penn World

Tables (8.0) has the trough in 2009, so the timing differences may also be due to some tech-

nical adjustments made in the NIPA aggregation. In Figures 18 and 19, we look at changes

in each productivity ratio and its NIPA equivalent. We see the timing and volatility issues

are present for each productivity ratio separately.

4.2 Discussion of results - Data from Japan
In Figures 13 and 14, we display results from Decompositions I and II of year-over-year

changes in aggregate TFP in Japan. The results from the second decomposition are more

consistent with those from the United States for the recent recession in that the dispersion

component is not correlated with movements in TFP. The results from the first decomposi-

tion, however, show the dispersion component to be more highly correlated with aggregate

TFP over the recent episode. This result is true for labor productivity as well.

5 Conclusion
This paper presents decompositions of changes in aggregate labor productivity, capital

productivity, and TFP. We demonstrate how the dispersion component of our decomposi-

tions reflects changes in the degree to which frictions affect firms in many heterogeneous

firm models that attempt to explain the nature of the business cycle. In turn, computing

the components of our decomposition in data and comparing them to the same metrics in a

given model of the class we consider will help to assess whether such a model is consistent
11Hodge (2011) compares the properties of corporate profits computed from the GAAP accounting state-

ments of firms in the S&P 500 index with the corresponding measure from NIPA, finding significantly greater
volatility in the S&P measure.
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with firm-level behavior. As we demonstrate in this paper, it is not only useful to com-

pute our decompositions on models that have already been solved; one can also compute

our metrics in the data before writing down a model to help motivate which mechanisms

should be key in driving patterns over the business cycle.

Appendix A

Proof for Proposition 1
Given the model of production in Subsection 3.2, we can define the following La-

grangian for the social planner to solve supposing she gets to allocate a fixed amount of

labor and capital across firms, which are indexed by i:12

L = max
li,ki

(∫
i

(zil
γ
i k

ν
i )ϕ di

)φ
+ λ1

(
K −

∫
kidi

)
+ λ2

(
L−

∫
lidi

)
. (33)

We want to show that there exists optimal labor and capital productivity ratios that are

shared by all firms that share the same production function coefficients. From the first-order

conditions of (33):

νϕφY
1−φ
φ

(zil
γ
i k

ν
i )ϕ

k
= λ1, (34)

and

γϕφY
1−φ
φ

(zil
γ
i k

ν
i )ϕ

l
= λ2. (35)

Also, the planner will fully allocate labor and capital to all firms, so:

K =

∫
kidi, (36)

and

L =

∫
lidi. (37)

12To economize on notation, time subscripts are omitted.
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With some algebra, it can be shown that:

vi = ki
λ1

νϕφ
, (38)

and

vi = li
λ2

γϕφ
. (39)

Hence, summing over i in (38) and (39):

Y = K
λ1

νϕφ
, (40)

and

Y = L
λ2

γϕφ
. (41)

In turn, from (38) and (40):

Y

K
=
vi
ki
. (42)

Also, from (39) and (41):

Y

L
=
vi
li
. (43)

In turn, all firms will optimally have the same firm-level capital and labor productivity

ratios.

We can now express optimal productivity ratios v∗

l∗
and v∗

k∗
as a function of L, K, and

Y ∗.

From the production technology, (42), and (43):

ki = Y
−1
φ zϕi l

ϕγkϕνi K∗ (F z(z)) , (44)

and

li = Y
−1
φ zϕi l

ϕγkϕνi K∗ (F z(z)) . (45)
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Combining the production technology with (44) and (45), along with some algebra, yields:

Y ∗ = LϕφγKφϕν

(∫
i

(
z
ϕ( 1

1−νϕ−γϕ)
i

)
di

)φ(1−νϕ−γϕ)

. (46)

Note that this optimal output is just a function of the distribution of productivity, F z(z),

and total labor and capital.

Thus, we can express the optimal productivity ratios as:

v∗

l∗
=
Y ∗

L
, (47)

and

v∗

k∗
=
Y ∗

K
. (48)

Proof for Proposition 2
This proof is done in the following parts:

(i) F (z, l, k) fully characterizes output, employment, and capital.

(ii) F (z, l, k) has a 1-1 mapping with G(z, ωl, ωk).

(iii) G(z, ωl, ωk) has a 1-1 mapping with J( v
Y
, ωl, ωk) and a measure of aggregate pro-

ductivity Z =

(∫
i

(
z
ϕ( 1

1−νϕ−γϕ)
i

)
di

)φ(1−νϕ−γϕ)

.

Part (i): F (z, l, k) fully characterizes output, employment, and capital.

This must be true, by the definition of production technology and the clearing con-

ditions L =
∫
ldF (z, l, k) and K =

∫
kdF (z, l, k). Thus, F (z, l, k) fully characterize

aggregate output, employment, and capital.

Part (ii): F (z, l, k) has a 1-1 mapping with G(z, ωl, ωk).

The portion of the proof has the following parts:

(a) F (z, l, k) has a unique mapping χ1 into G(z, ωl, ωk).

(b) G(z, ωl, ωk) has a unique mapping χ2 into F (z, l, k).

(c) χ2 = χ−1
1 .
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F (z, l, k) has a unique mapping χ1 into G(z, ωl, ωk):
(24) combined with the production technology gives us vi as a function of only z, l, k:

vi =

(∫
zϕlγϕkνϕdF (z, l, k)

)φ−1

zϕi l
γϕ
i kνϕi . (49)

Combining (25), (26), and (49) yields:

ωk (zi, li, ki, F ) =

(∫
zϕlγϕkνϕdF (z, l, k)

)φ−1
zϕi l

γϕ
i kνϕi

ki

k∗

v∗
, (50)

and

ωl (zi, li, ki, F ) =

(∫
zϕlγϕkνϕdF (z, l, k)

)φ−1
zϕi l

γϕ
i kνϕi

li

l∗

v∗
. (51)

These equations characterize the wedges implied by a given distribution of capital,

labor, and productivity. We can rearrange (50) and (51) to solve for labor and capital as a

function of wedges:

k (zi, ωl,i, ωk,i, F ) =

((∫
zϕlγϕkνϕdF (z, l, k)

)φ−1
zϕi
(
l∗

v∗

)γϕ (k∗
v∗

)1−γϕ

(ωl.i)
γϕ (ωk,i)

1−γϕ

) 1
1−γϕ−νϕ

, (52)

and

l (zi, ωl,i, ωk,i, F ) =

((∫
zϕlγϕkνϕdF (z, l, k)

)φ−1
zϕi
(
l∗

v∗

)1−νϕ (k∗
v∗

)νϕ
(ωl,i)

1−νϕ (ωk,i)
νϕ

) 1
1−γϕ−νϕ

. (53)

(52) and (53) allow us to obtain the unique mapping from F to G:

G (z̄, ω̄l, ω̄k) =

∫ z̄,ω̄l,ω̄k

z,ωl,ωk=0

dF (z, l (z, ωl, ωk, F ) , k (z, ωl, ωk, F )) . (54)

G(z, ωl, ωk) has a unique mapping χ2 into F (z, l, k):
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Combining (50) and (51) allows us to express F (z, l, k) as the following:

F
(
z̄, l̄, k̄

)
=

∫ z̄,l̄,k̄

z,l,k=0

dG (z, ωl (z, l, k, F ) , ωk (z, l, k, F )) . (55)

This expression is not sufficient to characterize F (z, l, k) as a function of G(z, ωl, ωk),

as the functions ωl() and ωk() on the right-hand side depend on the term(∫
zϕlγϕkνϕdF (z, l, k)

)φ−1
φ . Note that

(∫
zϕlγϕkνϕdF (z, l, k)

)φ−1
φ = Y

φ−1
φ . All we have

to do now is express Y as a function of G. Plugging (52) and (53) into the aggregate

production function yields:

Y =

(k∗
v∗

)ϕφν (
l∗

v∗

)ϕφγ (∫
z

ϕ
1−γϕ−νϕ

ω
γϕ

1−γϕ−νϕ
l ω

νϕ
1−γϕ−νϕ
k

dG (z, ωl, ωk)

)φ


1−γϕ−νϕ
1−φ(γϕ+νϕ)

.

(56)

Y (G (z, ωl, ωk)) can thus be defined as a function of z and wedges.

(55) and (56) can be combined to obtain the functions ωl (z, l, k, G) and ωk (z, l, k, G).

Thus, we can obtain the unique mapping:

F
(
z̄, l̄, k̄

)
=

∫ z̄,l̄,k̄

z,l,k=0

dG (z, ωl (z, l, k, G) , ωk (z, l, k, G)) . (57)

χ2 = χ−1
1 :

Combining (54) and (57) yields the result that F (z, l, k) = χ2 (χ1 (F (z, l, k))) for any

F (z, l, k). It follows that χ2 = χ−1
1 .

Part (iii): Claim: G(z, ωl, ωk) has a 1-1 mapping with J( v
Y
, ωl, ωk) and a measure of

aggregate productivity Z =

(∫
i

(
z
ϕ( 1

1−νϕ−γϕ)
i

)
di

)φ(1−νϕ−γϕ)

.

The portion of the proof has the following parts:

(a) G(z, ωl, ωk) has a unique mapping χ3 into J( v
Y
, ωl, ωk) and pins down Z.

(b) J( v
Y
, ωl, ωk) and Z has a unique mapping χ4 into G(z, ωl, ωk).

(c) χ3 = χ−1
4 .
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G(z, ωl, ωk) has a unique mapping χ3 into J( v
Y
, ωl, ωk) and pins down Z:

(49), (52), (53), and (56) can be combined to characterize v
Y

:

vi
Y

=
z

ϕ
1−γϕ−νϕ
i (ωl,i)

−γϕ
1−γϕ−νϕ (ωk,i)

−νϕ
1−γϕ−νϕ∫

z
ϕ

1−γϕ−νϕ (ωl)
−γϕ

1−γϕ−νϕ (ωk)
−νϕ

1−γϕ−νϕ dG(z, ωl, ωk)
, (58)

and thus express z as a function of v
Y

, ωl, ωk, and G:

z
(vi
Y
, ωl,i, ωk,i, G

)
= ωγl,iω

ν
k,i

(
vi
Y

∫
z

ϕ
1−γϕ−νϕ

ω
γϕ

1−γϕ−νϕ
l ω

νϕ
1−γϕ−νϕ
k

dG (z, ωl, ωk)

) 1−γϕ−νϕ
ϕ

.

(59)

(59) can be used to characterize J( v
Y
, ωl, ωk):

J
( v̄
Y
, ω̄l, ω̄k

)
=

∫ v̄
Y
,ω̄l,ω̄k

v
Y
,ωl,ωk=0

dG
(
z
( v
Y
, ωl, ωk, G

)
, ωl, ωk

)
. (60)

G (z, ωl, ωk) trivially maps into a unique Z.

J( v
Y
, ωl, ωk) and Z has a unique mapping χ4 into G(z, ωl, ωk):

(59), rearranged and integrated, yields:

∫
z

ϕ
1−γϕ−νϕ

ω
γϕ

1−γϕ−νϕ
l ω

νϕ
1−γϕ−νϕ
k

dG (z, ωl, ωk) =
Z

1
φ(1−νϕ−γϕ)∫ (

v
Y

)
ω

γϕ
1−νϕ−γϕ
l ω

νϕ
1−νϕ−γϕ
k dJ

(
v
Y
, ωl, ωk

) .
. (61)

Combining (59) and (61) yields:

z
(vi
Y
, ωl,i, ωk,i, J, Z

)
= ωγl,iω

ν
k,i

 vi
Y
Z

1
φ(1−νϕ−γϕ)∫ (

v
Y

)
ω

γϕ
1−νϕ−γϕ
l ω

νϕ
1−νϕ−γϕ
k dJ

(
v
Y
, ωl, ωk

)


1−γϕ−νϕ
ϕ

. (62)

(62) implies that we can express G(z, ωl, ωk) as a function of J( v
Y
, ωl, ωk) and Z:

G (z̄, ω̄l, ω̄k) =

∫ z̄,ω̄l,ω̄k

z,ωl,ωk=0

dJ
( v
Y

(z, ωl, ωk, J, Z) , ωl, ωk

)
. (63)
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χ3 = χ−1
4 :

These two mappings are trivially inverses of each other.

Other Derivations

Decomposition as a Function of Cumulants

Consider the cumulative density function of firm log capital productivity, weighted

by output shares, G (X) =
∫
i
1

(
log
(
vi
ki

)
≤ X

)
vi
Y

. The mean component expressed

as a function of this distribution is: −
∫
x
−xdG (x), while the dispersion component is:

−
(∫

e−xdG (x)−
∫
−xdG (x)

)
.

We know, by definition, that the first cumulant can be written as:
∫
x
xdG (x). A prop-

erty of the cumulant generating function is that E [etx] =
∑n

t=1 t
n κn
n!

, which yields:

∫
e−xdG (x) =

n∑
t=1

(−1)n
κn
n!

= −κ1 +
n∑
t=2

(−1)n
κn
n!
.

Therefore the mean component can be written as:

−
∫
x

−xdG (x) = κ1.

While the dispersion component is:

−
(∫

e−xdG (x)−
∫
−xdG (x)

)
= −

(
−κ1 +

n∑
t=2

(−1)n
κn
n!

+ κ1

)

= −
n∑
t=2

(−1)n
κn
n!

=
n∑
t=2

(−1)n+1 κn
n!
.

This means our decomposition can be expressed as:

log

(
Y

K

)
= κ1︸︷︷︸

Mean Component

+−κ2 +
n∑
t=3

(−1)n+1 κn
n!︸ ︷︷ ︸

Dispersion Component

.

Now note that for any variable of the form zi = c vi
ki

(such as capital wedges or marginal

products in a Hsieh and Klenow case) yields log (zi) = log (c) + log
(
vi
ki

)
. Standard

properties of cumulants imply that κ1,z = κ1, v
k

+ log (c), and κn,z = κn, v
k

for all n > 1.
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Therefore for such variables, our decomposition implies

log

(
Y

K

)
= κ1,z − c︸ ︷︷ ︸

Mean Component

+−κ2,z +
n∑
t=3

(−1)n+1 κn,z
n!︸ ︷︷ ︸

Dispersion Component

.

(21) and (27) follow immediately from this derivation.

Our Decomposition for Different Models and Shocks

Common changes in firm revenue products, whether driven by technology or distor-

tions, are reflected only in the mean component of our decomposition. Consider a change

in revenue products such that vi,t+1

ki,t+1
= x

vi,t
ki,t

. Then, our decomposition implies that:

log

(
Yt+1

Kt+1

)
= −

∫
log

(
ki,t
vi,t

1

x

)
vi,t
Yt
di︸ ︷︷ ︸

mean component

−
(
log

(∫
ki,t
vi,t

1

x

vt
Yi,t

di

)
−
∫
log

(
ki,t
vi,t

1

x

)
vt
Yt
di

)
︸ ︷︷ ︸

dispersion component

= log(x)−
∫
log

(
ki,t
vi,t

)
vi,t
Yt
di︸ ︷︷ ︸

mean component

−
(
log

(∫
ki,t
vi,t

vt
Yi,t

di

)
−
∫
log

(
ki,t
vi,t

)
vt
Yt
di

)
︸ ︷︷ ︸

dispersion component

.

The results in subsubsections 3.4.1 immediately follow from the above. The results in

subsubsection 3.4.2 can be derived by using standard formulas for the expectation of log-

normally distributed variables.

Specifically, consider the case where the output-share weighted distribution of wedges

is a mixture of lognormals. The pdf of wedges is thus g (log (ω)) =
∑N

n=1 λnφn (log (ω)),

where φn, where φn are normal pdfs and
∑

n λn = 1. Note that lognormal wedges is

the special case of this with N = 1. Standard formulas for expectations over lognor-

mal distributions imply that
∫
log (ω) g (log (ω)) dω =

∑
n λnµn and

∫
ωtg (log (ω)) dω =∑

n λne
tµn+ 1

2
t2σ2

n . The results in subsubsection 3.4.2 immediately follow.

Appendix B

Measurement of Objects — Data from the United States
For the empirical analysis in Section 4 on U.S. firms, we use annual data on firms that

exist in the Compustat database. We take the following steps, in order. First, firms must
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be headquartered in the United States and have a U.S. currency code. We then keep only

firms with December fiscal year-ends. We then drop firms if their employment, property,

plant, and equipment — net of depreciation, sales, or our measure of firm-value added —

are missing or negative. We then exclude firms with 4-digit SIC codes between 4000 and

4999, between 6000 and 6999, or greater than 9000, as our model is not representative of

regulated, financial, or public service firms. We then clean the data by winsorizing each

series at the 1st percentile over the entire sample. For our analysis, we lastly only keep data

from 1971 to 2011.

Firm-level value added, firm-level capital stock, and firm-level employment are the

only firm-level objects we need for our decomposition. When computing year-over-year

changes in the components of our decomposition, we also adjust for entry and exit by only

keeping data on firms that exist in consecutive years. In the second decomposition, firms

are grouped into sectors by two-digit SIC codes.

We measure labor as the number of employees reported in Compustat. We measure

capital as the firm’s plant, property, and equipment, adjusted for accumulated depreciation.

The aggregate capital stock is annual, taken from the Penn World Tables. To adjust for

potential changes in the valuation of capital over time, we construct a perpetual inventory

measure of the aggregate capital stock and use the ratio of this measure to the value of the

aggregate capital stock to deflate the firm-level measure of capital. The investment measure

used in the perpetual inventory method is annual gross private domestic investment from

the Bureau of Economic Analysis (BEA). To construct our measure of capital using the

perpetual inventory method (starting from 1959), we use a depreciation rate of 4.64 percent

and growth rate of technology of 1.6 percent, following Chari, Kehoe, and McGrattan

(2007). Our measure is then deflated by the December value of the monthly CPI, which is

CPI for All Urban Consumers, seasonally adjusted, from the Bureau of Labor Statistics.

We create a measure of value added in public firms using income accounting. GDP has

an income equivalent, GDI, which has similar time-series properties. The major compo-

nents of this measure have equivalents to income statement measures that are required on

10-K forms for U.S. public firms. In order of magnitude, GDI is made up of the follow-

ing components: compensation of employees, net operating surplus, consumption of fixed

capital (depreciation), and taxes on production and imports less subsidies. While we do not

observe the taxes or subsidies on production and imports firms pay in our dataset, we do

observe measures of the other three components, all of which make up over 90 percent of

GDI for all years in our sample. We observe labor compensation in Compustat annually.
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If labor compensation is missing, we replace it with selling, general, and administrative

expenses. We also observe net operating profits before depreciation, which is the sum of

a firm’s net operating surplus and its capital consumption. We define a firm’s contribution

to output as the sum of labor compensation and operating profits before depreciation. In

practice, the BEA uses a similar, more detailed approach, where they use firm tax data to

aggregate up the components of domestic income and make adjustments for differences

between accounting and economic treatment of factors such as capital consumption and

inventory valuation.

To compute TFP, following Chari, Kehoe, and McGrattan (2007), we set capital’s share

of income, α = .35 and back it out from (9). When we compare our measure against

the NIPA-equivalent, we require a NIPA equivalent measure of our value-added measure,

a measure of aggregate labor, and a measure of aggregate capital. To compute our NIPA

equivalent of our pseudo-GDI measure, we use data from NIPA table 1.12 on National

Income by Type of Account. We take compensation of employees (line 2) and subtract

government (line 4), then add to this measure corporate profits with inventory valuation

adjustment and capital consumption adjustment less taxes on corporate income (line 43).

Finally, we add to this measure consumption of fixed capital, which comes from the BEA.

All measures are quarterly, and we only use the fourth-quarter values of these measures.

We put this measure in per-capita terms using population including armed forces overseas.

This measure is mid-period and monthly. We only keep its December value. We then put

this measure in real terms using the CPI measure described in this subsection. Our measure

of the real aggregate capital stock was already described in this subsection. This measure is

also put in per-capita terms. Our measure of aggregate labor is total non-farm employment

and is monthly. We only use the December observation of this variable.

Measurement — Data from Japan
Our data on Japanese public firms comes from the Compustat global database, and our

firm-level variables are measured annually. We clean the data as we do for data from the

United States, except we only keep firms with currency codes corresponding to the Japanese

Yen and country headquarter codes corresponding to Japan. Also, the years of our sample

are different: They only cover 2001 to 2011. Consistent with our application to U.S. data,

when computing year-over-year changes in the components of our decomposition, we also

adjust for entry and exit by only keeping data on firms that exist in consecutive years. In

Decomposition II, firms are grouped into sectors by two digit SIC codes
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As for the U.S. data, we measure firm-level labor as the number of employees reported

and firm-level capital as the firm’s plant, property, and equipment, adjusted for accumulated

depreciation. We deflate the firm-level Japanese capital stock by the U.S. capital deflater.

To put the capital stock in real terms, we deflate it by the OECD’s measure of the quarterly

CPI in Japan. We only keep the fourth-quarter value of this measure.

In a manner consistent with our application to U.S. data, we create a measure of value

added in public firms using income accounting, which is the sum of labor compensation

and operating profits before depreciation. As for the U.S. data, if labor compensation is

missing, we replace it with selling, general, and administrative expenses. We eventually

deflate by the same Japanese CPI measure as for capital. To compute TFP, we again set

α = .35 and back it out from (9).

Appendix C

Our Decomposition in the Context of Other Methodologies

To apply our decomposition to data, one does not need to estimate firm-level TFP or

sectoral production function coefficients. There is already potential for measurement is-

sues biasing the results from our decompositions, as measures of labor, value added, and

capital can all be measured incorrectly. Further, we could be incorrectly grouping firms

with our sectoral definitions. However, it is easy enough to check different measures of

labor, capital, or value added, if available, and see if the results change. Also, one could

add measurement error to firm variables and test the extent to which the results change.

Similarly, one can check the results from our second decomposition on different definitions

of “groupings” or sectors. However, to compute sectoral production function coefficients,

as is commonly done in papers assessing the role of labor and capital allocation on pro-

ductivity over the business cycle, some issues cannot be “checked.” Data from 30 years

prior can be crucial in providing “correct” estimates of sectoral production function coef-

ficients. But what if such data are unavailable to the researcher? In addressing the role of

resource reallocation in productivity dynamics over the business cycle, the literature has

relied on the estimation of these technological measures for all sectors in the economy. In

this section, we will demonstrate how some of the econometric biases associated with such

an approach can lead one to produce quantitatively and qualitatively different results on the

role of allocative efficiency over the business cycle.
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We first demonstrate the most difficult-to-correct econometric bias associated with mea-

suring production function coefficients, which is the fact that data for the entire sector over

the entire sample are needed to estimate them. We also show that different definitions of

factor prices can crucially affect one’s results. Second, we show that our decomposition can

help to assess the role of resource reallocation in productivity dynamics over the business

cycle. In particular, in a relatively general setting, we demonstrate that the within-industry

component of our decomposition is reflective of within-sector allocative efficiency. Ulti-

mately, this section is meant to demonstrate that our decomposition can, at the very least, be

a useful check on such attempts at measuring the role of resource allocation over the busi-

ness cycle that require estimates of sectoral production function coefficients and firm-level

TFP.

Illustrating issues with identification
In Figure 15, we demonstrate one possible issue with identification that can severely

change the interpretation of the qualitative and quantitative importance of the role of real-

location over the business cycle. We show that our results change substantially when we

follow a standard procedure and only slightly vary the estimation procedure for production

function coefficients.13 Figure 15 shows the cumulative change in the contribution of al-

locative efficiency to TFP over the recent recession for three different standard “versions”

of estimating production function coefficients.14 We estimate production function coeffi-

cients as the average of the ratio of capital expenditures to labor expenditures, rk
wl

, across

firms within a sector over time, where r is the rental rate, k is the capital stock in the firm,

w is the wage, and l is labor utilization in the sector. In Version 1, the baseline version, we

drop all observations before 1972, use capital and labor utilization from our firm-level data,

and estimate the rental rate and wage following Chari, Kehoe, and McGrattan (2007).15

We see that in Version 1 of our estimation of production function coefficients, there

seems to be a decrease in allocative efficiency from pre-recession levels to the trough in
13Specifically, we implement the approach of Oberfeld (2013) to measure changes in allocative efficiency

in our sample of U.S. publicly listed firms. This model of production and aggregation is identical to that in
Hsieh and Klenow (2009). Details of our dataset construction and measurement can be found in section 4
and Appendix B. As in Oberfeld (2013) and Hsieh and Klenow (2009), we set the elasticity of substitution
within sectors to 3.

14Positive changes indicate an increase in the extent of allocative efficiency.
15Following Chari, Kehoe, and McGrattan (2007) entails setting r = α∗ YK and w = (1− α)∗ YL , where α

is defined in the measurement subsection above and come directly from Chari, Kehoe, and McGrattan (2007).
Our measures and Y , L, and K are all computed as describe in subsection 5. These measures are computed
differently from how Y , L, and K are computed in Chari, Kehoe, and McGrattan (2007).
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2008 to 2009. In Version 2, we take capital, k, and labor expenditures, wl, from the firm-

level data, but still estimate r following Chari, Kehoe, and McGrattan (2007). Estimating

labor expenditures using firm-level data changes the year-over-year behavior of the con-

tribution of allocative efficiency to TFP. In Version 3, we follow the same procedure as in

Version 1 but drop all observations before 1976. In this version, which is only different

from Version 1 in that we assume there is slightly less data available decades prior to the

recession we are examining, we find an increase in allocative efficiency from 2006 to the

trough of the recession. These results demonstrate just one of the potential problems with

identification to which the standard model-based approaches are susceptible, a problem that

can substantially change the qualitative and quantitative implications of the role of reallo-

cation over the business cycle. Other issues with identification remain; another example is

that we find that when we vary the elasticity of substitution across firms between 3 and 10

(standard values used in the literature as noted in Hsieh and Klenow (2009)), the qualitative

and quantitative nature of our results change substantially.

Relation to Models of Allocative Efficiency
This appendix demonstrates how the dispersion component of our decomposition re-

lates to the aggregate productivity loss suffered from misallocation in a standard static

model of allocative efficiency. We show that the dispersion component directly enters this

loss and discuss the relative magnitude of the the social losses and the dispersion compo-

nents.

We consider the one-sector economy introduced in subsection 3.2, and derive two statis-

tics commonly used as measures of productivity loss due to distortions. First, we derive

the difference between efficient and observed log TFP. This difference may be driven by

misallocation or frictions to the total amount of capital/labor used. Second, we compute

the difference between the log TFP implied by the output-maximizing allocation of the

observed total labor and capital and observed TFP. This difference will be driven only by

misallocation.
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Difference from Optimal Allocation Note that an analogue (in levels instead of differ-

ences) to (28) yields:

log (TFPt) = log (TFP ∗t ) + ακk,1,t + (1− α)κl,1,t︸ ︷︷ ︸
static mean component

(64)

+

variance︷ ︸︸ ︷
−ακk,2,t + (1− α)κl,2,t

2!
+

higher-order terms︷ ︸︸ ︷
∞∑
n=3

(−1)n−1 ακk,n,t + (1− α)κl,n,t
n!︸ ︷︷ ︸

static dispersion component

,

where κk,n,t, κl,n,t are the cumulants of log wedges in capital and labor to firms productivity

ratios, as defined in subsection 3.3. This implies that we can express the difference between

efficient and realized log TFP as the following:

log (TFP ∗t )− log (TFPt) = −ακk,1,t − (1− α)κl,1,t − αDK
t − (1− α) DL

t .

Where DK
t and DL

t are the dispersion components of labor and capital in our decomposi-

tion. The first cumulants are the output-share weighted averages of log wedges, and are the

only terms other than the dispersion components to enter these losses.

Total Labor and Capital Fixed Consider a firm optimization problem, with fixed stock

of total capital and labor within the production environment defined in subsection 3.2.

Firms take the wage and rental rate as given, and clearing conditions Kt =
∑

i ki,t and

Lt =
∑

i li,t are satisfied. Firm labor and capital choices are distorted from their optimal

allocation by θli,t and θki,t, respectively.

max
ki,t,li,t

pi,tyi,t − ki,tθki,trt − li,tθli,twt. (65)

The equilibrium decision rules imply that firm marginal revenue products are the following:

vi,t
ki,t

= θki,t
rt
ϕγ

, (66)

and

vi,t
li,t

= θli,t
wt
ϕφ

. (67)
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We can then express the losses due to misallocation in this fixed environment as a function

of the rental rate, efficient rental rate, and cumulants of firm-level distortions θki,t and θli,t.
16

We derive the following expression for log
(

ˆTFP t

)
− log (TFPt):

log

(
ˆTFP t

TFPt

)
= α

(
log

(
r̂t
rt

)
− κk,1,t

)
−DK

t ) + (1− α)

(
log

(
ŵt
wt

)
− κl,1,t −DL

t

)
,

where ˆTFP t is TFP if labor and capital are allocated efficiently but total labor and capital

are fixed at the observed levels, and ŵt and r̂t are the wage and rental rate required to keep

total capital and wages fixed if distortions are removed.
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Tables

Table 1: Correlations between Changes in Aggregates and Changes in their Components from
Decomposition II — U.S. Data

TFP Labor productivity Capital productivity

Mean component 0.974 0.955 0.955

Dispersion component 0.042 -0.346 0.399

Sectoral share component -0.245 -0.329 0.259

Notes: Sample period is from 1972 to 2011. Data are from U.S. nonfinancial
public firms. Firms are grouped by two digit SIC codes. Changes in aggregate
measures (TFP, labor productivity, and capital productivity) and components of our
decompositions are measured year over year.



Figures

Figure 1: Decomposition I Applied to Aggregate Labor Productivity: Year-over-Year Changes
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Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate labor
productivity and its components from Decomposition I using data from U.S. nonfinancial public firms.
Because there is no grouping by sector for Decomposition I, the sectoral share component (the yellow
line) is, in turn, flat.



Figure 2: Decomposition II Applied to Aggregate Labor Productivity: Year-over-Year Changes
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Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate labor
productivity and its components from Decomposition II using data from U.S. nonfinancial public firms.
Firms are grouped by two digit SIC codes.



Figure 3: Decomposition I Applied to Aggregate Labor Productivity: Cumulative Changes
over Four Business Cycle Episodes
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Note: Sample period is from 1972 to 2011. We compute cumulative changes in aggregate labor pro-
ductivity and its components from Decomposition I using data from U.S. nonfinancial public firms over
four business cycle episodes, with the pre-recession index year in the title of the plot. Because there is
no grouping by sector for Decomposition I, the sectoral share component (the yellow line) is, in turn,
flat.



Figure 4: Decomposition II Applied to Aggregate Labor Productivity: Cumulative Changes
over Four Business Cycle Episodes
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Note: Sample period is from 1972 to 2011. We compute cumulative changes in aggregate labor pro-
ductivity and its components from Decomposition I using data from U.S. nonfinancial public firms over
four business cycle episodes, with the pre-recession index year in the title of the plot. Firms are grouped
by two digit SIC codes.



Figure 5: Decomposition I Applied to Aggregate Capital Productivity: Year-over-Year
Changes
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Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate capital
productivity and its components from Decomposition I using data from U.S. nonfinancial public firms.
Because there is no grouping by sector for Decomposition I, the sectoral share component (the yellow
line) is, in turn, flat.



Figure 6: Decomposition II Applied to Aggregate Capital Productivity: Year-over-Year
Changes
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Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate capital
productivity and its components from Decomposition II using data from U.S. nonfinancial public firms.
Firms are grouped by two digit SIC codes.



Figure 7: Decomposition I Applied to Aggregate Capital Productivity: Cumulative Changes
over Four Business Cycle Episodes
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Note: Sample period is from 1972 to 2011. We compute cumulative changes in aggregate capital pro-
ductivity and its components from Decomposition I using data from U.S. nonfinancial public firms over
four business cycle episodes, with the pre-recession index year in the title of the plot. Because there is
no grouping by sector for Decomposition I, the sectoral share component (the yellow line) is, in turn,
flat.



Figure 8: Decomposition II Applied to Aggregate Capital Productivity: Cumulative Changes
over Four Business Cycle Episodes
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Note: Sample period is from 1972 to 2011. We compute cumulative changes in aggregate capital pro-
ductivity and its components from Decomposition I using data from U.S. nonfinancial public firms over
four business cycle episodes, with the pre-recession index year in the title of the plot. Firms are grouped
by two digit SIC codes.



Figure 9: Decomposition I Applied to Aggregate TFP: Year-over-Year Changes
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Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate TFP and
its components from Decomposition I using data from U.S. nonfinancial public firms. Because there is
no grouping by sector for Decomposition I, the sectoral share component (the yellow line) is, in turn,
flat.



Figure 10: Decomposition II Applied to Aggregate TFP: Year-over-Year Changes

-5
0

5
10

Ye
ar

-o
ve

r-
ye

ar
 p

er
ce

nt
 c

ha
ng

e

1970 1980 1990 2000 2010
Year

Public firm TFP Mean component
Dispersion component Sectoral share component

Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate TFP and its
components from Decomposition II using data from U.S. nonfinancial public firms. Firms are grouped
by two digit SIC codes.



Figure 11: Decomposition I Applied to Aggregate TFP: Cumulative Changes over Four Busi-
ness Cycle Episodes
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Note: Sample period is from 1972 to 2011. We compute cumulative changes in aggregate TFP and its
components from Decomposition I using data from U.S. nonfinancial public firms over four business
cycle episodes, with the pre-recession index year in the title of the plot. Because there is no grouping by
sector for Decomposition I, the sectoral share component (the yellow line) is, in turn, flat.



Figure 12: Decomposition II Applied to Aggregate TFP: Cumulative Changes over Four Busi-
ness Cycle Episodes
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Note: Sample period is from 1972 to 2011. We compute cumulative changes in aggregate TFP and its
components from Decomposition I using data from U.S. nonfinancial public firms over four business
cycle episodes, with the pre-recession index year in the title of the plot. Firms are grouped by two digit
SIC codes.



Figure 13: Decomposition I Applied to Aggregate TFP: Year-over-Year Changes
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Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate TFP and
its components from Decomposition I using data from Japanese nonfinancial public firms. Because there
is no grouping by sector for Decomposition I, the sectoral share component (the yellow line) is, in turn,
flat.



Figure 14: Decomposition II Applied to Aggregate TFP: Year-over-Year Changes

-1
0

-5
0

5
10

Ye
ar

-o
ve

r-
ye

ar
 p

er
ce

nt
 c

ha
ng

e

2000 2005 2010
Year

Public firm TFP Mean component
Dispersion component Sectoral share component

Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate TFP and
its components from Decomposition II using data from Japanese nonfinancial public firms. Firms are
grouped by two digit SIC codes.



Figure 15: Three Estimation Techniques for the Contribution of Allocative Efficiency to TFP
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Version 1
Version 2
Version 3

Note: We can express TFP as a function of the hypothetical efficient productivity, TFP efft , at time t,
and the allocative efficiency of resources at such that TFPt = atTFP

eff
t . The figure shows log(at)−

log(a2006). The lines can thus be interpreted as the cumulative percent change in TFP over 2006 levels
due to changes in allocative efficiency. The estimation of the different “versions” only differs in the
estimation of production function coefficients as follows: (1) Version 1 is the baseline version, (2)
Version 2 uses wage data from Compustat rather than from NIPA, and (3) Version 3 uses data back to
1976 instead of 1972.



Figure 16: Trend in Aggregate TFP: NIPA vs. Compustat
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Note: Sample period is from 1972 to 2011. This figure depicts the trend in the natural logarithm of
aggregate TFP computed from two different samples. The blue line corresponds to a measure computed
from public firm data. The red line corresponds to a measure computed from NIPA.



Figure 17: Changes in Aggregate TFP: NIPA vs. Compustat
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Note: Sample period is from 1972 to 2011. This figure depicts changes in the natural logarithm of
aggregate TFP computed from two different samples. The blue line corresponds to a measure computed
from public firm data. The red line corresponds to a measure computed from NIPA.



Figure 18: Changes in Aggregate Labor Productivity: NIPA vs. Compustat
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Note: Sample period is from 1972 to 2011. This figure depicts changes in the natural logarithm of
aggregate labor productivity computed from two different samples. The blue line corresponds to a
measure computed from public firm data. The red line corresponds to a measure computed from NIPA.



Figure 19: Changes in Aggregate Capital Productivity: NIPA vs. Compustat
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Note: Sample period is from 1972 to 2011. This figure depicts changes in the natural logarithm of
aggregate capital productivity computed from two different samples. The blue line corresponds to a
measure computed from public firm data. The red line corresponds to a measure computed from NIPA.


