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Measuring the Informativeness of Market Statistics

Kyungmin Kim∗

Federal Reserve Board

September 14, 2016

Abstract
Market statistics can be viewed as noisy signals for true variables of interest. These sig-

nals are used by individual recipients of the statistics to imperfectly infer different variables
of interest. This paper presents a framework under which the ‘informativeness’ of statis-
tics is defined as their efficacy as the basis of such inference, and is quantified as expected
distortion, a concept from information theory. The framework can be used to compare the
informativeness of a set of statistics with that of another set or its theoretical limits. Also,
the proposed informativeness measure can be computed as solutions to familiar problems
under a range of assumptions. As an application, the measure is used to explain the differ-
ence in usage levels of temperature derivatives across different base weather stations. The
informativeness measure is found to be at least as effective as city size measures in explaining
the difference in usage levels.

∗E-mail: kyungmin.kim@frb.gov. I thank Kristin Meier for invaluable research assistance. The paper
expresses solely my own view, not those of the Federal Reserve Board or the Federal Reserve System.



1 Introduction

Market statistics convey information on a large number of variables. Individual recipients

use market statistics to infer their own variables of interest, but the inference is usually far

from perfect. If the set of statistics included all the variables that the recipients were inter-

ested in learning about, the statistics would perfectly satisty the recipients’ informational

need. However, the number of published statistics is typically small and not sufficient to

cover all the variables of interest.

Given this limitation, it is natural to ask for a measure to quantify the informativeness

of market statistics as an input for such inference. This paper proposes a framework under

which a measure of informativeness can be defined. It is based on the idea that if there are

M market statistics that convey information on K variables of interest, it is generally not

possible to recover the K variables precisely from the M statistics, especially if M < K.

Then, the expected distance between the K variables recovered from the M statistics and the

actual values of the K variables can serve as a measure of informativeness. A smaller distance

means that the statistics are more informative. This formulation of informativeness as the

expected distance between actual variables and recovered variables is known as expected

distortion in information theory.1

This definition of informativeness is distinct from two popular alternative ways to measure

the quantity of information in the economics literature: Price impact and entropy. Many

studies have measured the change in the price of an asset in response to new information, such

as changes in bond ratings (Goh and Ederington (1993) and Pinches and Singleton (1978))

and divident announcement (Aharony and Swary (1980)). This method can be applied to

the problem of this paper, by measuring the impact of changes in the market statistics on

each variable of interest. This paper’s contribution is to provide a framework under which

the impact on multiple variables can be interpreted.

Entropy (Shannon entropy, as in Shannon (1948), or derived measures such as transfer

entropy, as in Schreiber (2000)) is sometimes used as a general measure of the quantity of

information conveyed by a set of random variables, for example, by Dimpfl and Peter (2012).

Rate distortion theory relates entropy-related measures to informativeness, or expected dis-

tortion as it is known in information theory (see Cover and Thomas (2006), chapter 10).

However, the complex form of the relationship discovered by rate distortion theory is not

directly applicable within the scope of this paper.

The framework prposed by this paper consists of four elements: (i) The market statistics,

(ii) the variables of interest, (iii) the recovery rule, and (iv) the distance measure. The

1For example, Cover and Thomas (2006), chapter 10.
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framework can be used to evaluate a given set of statistics and to establish limits on the

expected distance. Specifying the variables of interest is essential, as there is no sense in

discussing informativeness without reference to which variables are being represented by the

statistics. The recovery rule is restricted to be either linear or discrete, and either L1 or L2

norm is used as the distance measure. With these assumptions, the informativeness measure

can be computed by routine methods.

The framework is useful both as a practical tool and as a component of empirical research.

The measures can be used to compare the informativeness of different statistics and can

tell how much potential improvement in informativeness is possible. Such measures can

inform a decision between competing choices of statistics to publish or communicate. Also,

they can be used to study how the informativeness of availabe statistics affects economic

decisions, as a source of information or as a reference value for financial contracts. The

use of informativeness measures can be readily extended to any economic problem in which

the distance between actual and recovered variables matters, for example, in assessing the

efficiency of insurance contracts.

As an application, this paper computes the informativeness of the temperature recordings

at certain weather stations to explain the variation in the trade volume of temperature

derivatives across weather stations. The informativeness measures are found to be as effective

as city size measures in explaining the variation.

The rest of paper is organized as follows: Section 2 defines the informativeness measure

and discusses their theoretical limits. Section 3 shows that how the measure can be com-

puted as solutions to familiar problems, such as group means/medians, linear regression, k

means/medians clustering and principal component analysis (PCA) under L1 and L2 norms.

Section 4 applies the informativeness measure to explaining the cross-sectional variation in

the trade volume of temperature derivatives across weather stations. Section 5 concludes.

2 Framework

Market statistics imperfectly communicate variables of interest. The informativeness

measure represents the degree of imperfection.

Let I1, I2, ..., IM ∈ R be M market statistics and let z1, z2, ..., zK ∈ R be K variables

of interest. The statistics and the variables of interest follow a static joint probability dis-

tribution, whose density is denoted by p(I1, ..., IM , z1, ..., zK). Let g : RM → RK denote a

recovery rule, which is the value of (z1, ..., zK) inferred from (I1, ..., IM). For i = 1, 2, ..., K,

let gi denote the i-th component of g, which is the recovery rule for zi.

di : R2 → R, i = 1, ..., K, is the distance or penalty associated with the difference between
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recovered and actual zi. At this point, di can be any function, but for simplicity, di = αid

for every i = 1, ..., K and some metric d : R2 → R that is common across the K variables of

interest. αi is a positive real number representing the weight given to the i-th dimension.

With these di’s, the expected distance measure, D, is defined as follows:

D = E
K∑
i=1

αidi(zi, gi(I1, ..., IM)). (1)

As usual, E denotes expected value. The expected distance measure depends on three

sets parameters: p, the joint distribution of the M market statistics and the K variables

of interest; (α1, ..., αK , d), representing the penalty for an imperfect recovery; and the re-

covery rule g. Therefore, D can be viewed as a function of the parameters, and written as

D(p, (α1, ..., αK , d), g).

This formulation is known as expected distortion in information theory, as mentioned in

the introduction. However, this term will not be used in this paper because distortion has an

unrelated established meaning in economics. Instead, the measure D will be simply referred

to as informativeness measure or, sometimes, as expected distance.

The first two parameters, p and (α1, ..., αK , d), define the objective of communicating

market statistics. g can be interpreted both as the recovery rule that the individual recipients

use or the recovery rule that the publisher of statistics expect the recipients to use. Given

this ambiguity, there are alternative ways to choose a reasonable g. In this paper, g will be

defined as the minimizer of D among a class of simple functions. The following two types of

functions, or rules, are considered:

(i) Linear rule: g is a linear function of market statistics: For i = 1, ..., K, gi(I1, ..., IM) =

βi,0 +
M∑
j=1

βi,jIj.

(ii) Discrete rule: M partitions of R into n sets, S(i, j) for i = 1, ...,M and j = 1, ..., n, are

given: S(i, 1), S(i, 2), ..., S(i, n) form a partition, and i is an index that distinguishes

the M partitions. g is constant on each set
M∏
i=1

S(i, ji) for any j1, j2, ..., jM ∈ {1, ..., n}

In reality, the recipients may not achieve the minimum distance under either rule because

they do not know the joint distribution p. The measures are useful only if the recipients

are ‘smart enough’ to derive a reasonably good recovery rule. The simple forms that the

linear rule and the discrete rule force on g partially reflect this limitation. In addition, these

restrictions make D easily computable.

Let DL be the minimum of D under linear g: DL = mingD(p, (α1, ..., αK , d), g), where g is

a linear rule. Similarly, let DD be the minimum of D under discrete g, with given partitions.

DL and DD can be used to compare two sets of statistics in terms of their informativeness:
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The set of statistics with smaller DL or DD is a better basis of inference for the variables of

interest.

In absolute terms, how does a set of market statistics compare with the best possible

set and the worst possible set? These questions are useful in thinking about how much

improvement can be made by choosing more informative statistics and in interpreting the

magnitude of the expected distance DL and DD. With a fixed number of statistic M , the

expected distance of the best possible statistics, DL, is simply defined as the minimum of

D under linear g and under an arbitrary joint density p: DL = minp,gD(p, (α1, ..., αK , d), g).

Similarly, DD is defined as the minimum of D under discrete g for a given partition and an

arbitrary p.

The worst set of statistics is the set of statistics that does not help infer the variables of

interest at all. This happens if the statistics are statistically independent of the variables

of interest, or more simply, if the statistics are constant. This condition is equivalent to g

being a vector of constants.

Let D0 be the expected distance from using the worst set of statistics. Then,

D0 = min
g∈RM

K∑
i=1

αidi(zi, gi). (2)

Proposition 1. D0 ≥ DL ≥ DL and D0 ≥ DD ≥ DD.

By definition, DL ≥ DL and DD ≥ DD. Also, D0 ≥ DL because a constant recovery rule

is a linear recovery rule with zero slopes. Similarly, D0 ≥ DD because a contant recovery

rule is a discrete recovery rule with the same value on all the nM products of partitioning

sets.

Unfortunately, there is no closed-form solution for DL, DD, DL, DD or D0 in general, and

no general computational technique to approximate the solutions exists either. However, if

d is linear distance (Euclidean), d(x, y) = |x − y|, or if d is square distance, d(x, y) =

(x − y)2, there are known closed-form solutions or computational techniques. The next

section describes them in more detail.

3 Solutions to the Minimization Problems

In this section, (I1, ..., IM , z1, ..., zK) is assumed to follow a sample distribution of size T :

Given T vectors in RM+K indexed by t, denoted (It,1, ..., It,M , zt,1, ..., zt,K), the probability dis-

tribution of (I1, ..., IM , z1, ..., zK) is a discrete random variable over (It,1, ..., It,M , zt,1, ..., zt,K)

with uniform probability 1/T .

The following four subsections explain how to compute DL, DL, DD, DD and D0.
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3.1 Computation of DL

The minimum expected distance under a linear recovery rule, DL, can be computed by

linear regression. Let β̂i,j, 0 ≤ j ≤M denote the coefficients of the linear regression of zi on

I1, ..., IM . The coefficients solve the minimization problem for each i: min
β0,β1,...,βM

T∑
t=1

di(zt,i, β0+

β1It,1 + ... + βMIt,M). SRi is the sum of residuals transformed by d: SRi =
T∑
t=1

di(zt,i, β̂0 +

β̂1It,1 + ...+ β̂MIt,M).

Proposition 2. DL = ( 1
T

)
K∑
i=1

αiSRi.

Proof. By definition,

DL = min
βj,k

(
1

T
)

T∑
t=1

(
1

T
)

K∑
i=1

αid(zt,i, βi,0 + βi,1It,1 + ...+ βi,MIt,M). (3)

Since the term d(zt,i, βi,0 + βi,1It,1 + ... + βi,MIt,M) does not include any βj,k for j 6= i,

the minimization can be done before the summation, and the order of the summation can

be switched:

DL = (
1

T
)

K∑
i=1

αiSRi, (4)

where SRi = min
βj,k

T∑
t=1

d(zt,i, βi,0 + βi,1It,1 + ...+ βi,MIt,M). This completes the proof.

If d(x, y) = (x− y)2, SRi can be simply computed from the least squares regression of zi

on I1, ..., IM . If d(x, y) = |x− y|, SRi can be computed from median regression (see Portnoy

and Koenker (1997), for example). More generally, for d(x, y) = |x − y|p, p ≥ 1, the linear

regression is a convex optimization problem, also known as `p regression. For an example of

computational methods to solve the optimization problem, see Dasgupta et al. (2009).

3.2 Computation of DL

Computing DL requires finding It,i that minimize DL given zt,i. If M ≥ K, DL = 0

because the first K statistics, It,1, ..., It,K , can simply be set to equal zt,1, ..., zt,K and DL will

be zero as a consequence. Therefore, it is assumed that M < K in the following discussion

of DL.

The problem of DL can be transformed to a problem similar to principal component

analysis (PCA):
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Proposition 3. For z, w ∈ RK, let dv(z, w) =
K∑
i=1

αid(zi, wi), where the subscript i on a

vector denotes its i-th component. Then,

DL = (
1

T
) min
B0,B1

[
T∑
t=1

min
u
dv(zt, B0 +B1u)], (5)

where zt = (zt,1, zt,2, ..., zt,K), u ∈ RM , B0 ∈ RK and B1 is a K ×M matrix.

Proof.

DL = (
1

T
) min
B0,B1,It,i

[
T∑
t=1

dv(zt, B0 +B1It)], (6)

where It = (It,1, ..., It,M). Equation (5) is obtained by moving the minimum over It,i inside

the summation and replacing It by u.

In particular, with d(x, y) = |x − y|p for p ≥ 1, the minimum exists: B0 and u can be

bounded given the zt’s and the columns of B1 can be restricted to be orthonormal.

In addition, dv(zt,wt) =
K∑
i=1

αi|zt,i − wt,i|p =
K∑
i=1

|α1/p
i zt,i − α1/p

i wt,i|p for any zt,wt ∈ RK .

Therefore, the weights αi can be moved inside the absolute value expression, which yields

DL = (
1

T
) min
B0,B1

T∑
t=1

[min
u

K∑
i=1

|α1/p
i zt,i − A(B0 +B1u)|p], (7)

where A is a K ×K diagonal matrix with Aii = α
1/p
i . By redefining B0 and B1 as AB0 and

AB1, respectively, A can be simply droppped from the expression for DL.

With p = 2, DL can be computed by PCA using the following procedure:2

(1) Set B0,i to equal the mean of zt,i over t for each i = 1, ..., K.

(2) Define z′t,i =
√
αi(zt,i −B0,i).

(3) Set B1 to be the matrix of the first M principal components of z′t, t = 1, ..., T .

(4) Let w′
t be the projection of z′t onto the column space of B1.

(5) Sum the square of the Euclidean distance between z′t and w′
t over t and divide by T

to obtain DL.

With p = 1, DL can also be computed by PCA generalized to L1 norm by finding an

M dimensional subspace that minimizes the sum of distance between zt and the subspace.

Some care must be taken with the use of the term PCA with L1 norm, as it has been used

2The equivalence between the problem of finding the first M principal components and that of finding
the minimum distance M -dimensional subspace follows from basic properties of PCA. See section 8 of Theil
(1983), for example.
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to describe at least three distinct optimization problems in recent studies.3 Step 2 must be

changed so that zt,i−B0.i is multiplied by αi, not by
√
αi. In addition, the objective function

to be minimized is not convex and there is no known process to obtain its exact solution, as

opposed to the ordinary PCA with square distance. Therefore, only computational solutions

of B0 and B1 are available. For example, both Ke and Kanade (2005) and Brooks et al.

(2013) develop methods to find B1 with a given B0. B0 is sometimes chosen to be the

vector consisting of medians of zt,i over t, but such a choice does not guarantee minimum in

general.4

3.3 Computation of DD

DD minimizes ( 1
T

)
T∑
t=1

K∑
i=1

αid(zt,i, gi(It,1, ..., It,M)) over all possible functions gi that is con-

tant on nM subsets of RM that are products M partitions of R into n sets. Let L = nM

and let P1, P2, ..., PL be the L sets that partition RM , where gi(Pj) is a singleton for any

i = 1, ..., K and j = 1, ..., L. With ci,j defined as gi(Pj), DD can be computed by minimizing

the objective function with respect to ci,j. This can be achieved by choosing ci,j to minimize

the sum of the distance between ci,j and zt,i for t such that It ∈ Pj.

Proposition 4.

DD = (
1

T
)

L∑
j=1

K∑
i=1

αi min
c

∑
It∈Pj

d(zt,i, c). (8)

Proof.

DD = (
1

T
) min
ci,j

T∑
t=1

K∑
i=1

αid(zt,i, ci,j(t)), (9)

where j(t) is the value of j such that It ∈ Pj. Dividing the summation over T into L groups

according to the value of j(t) and moving min inside the summations produce the equation

of the proposition.

If d(x, y) = |x−y|p and p ≥ 1, a minimizer c of
∑

It∈Pj

|zt,i−c|p exists because the minimand

is a convex function of c. Especially, if p = 1 or p = 2, the minimizer c is the median or the

3Ke and Kanade (2005) and Brooks et al. (2013) present computational techniques to find an approx-
imate minimal distance subspace, and their objective function is the same as that in equation (7). Kwak
(2008) analyzes the problem of maximizing L1 dispersion of Euclidean projection of given points. Euclidean
projection does not find the point on a subspace that is closest to the original point under L1 norm. In
addition, unlike with L2 norm, maximizing the dispersion of projections is not equivalent to minimizing the
distance between original points and their projections with L1 norm. Park and Klabjan (2014) studies the
same problem as Kwak (2008) and another problem of minimizing the L1 distance between given points and
their Euclidean projection into a subspace.

4For example, Brooks and Jot (2012) describes R codes that ‘center’ datapoints with their median.
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mean, respectively, of zt,i over t such that It ∈ Pj. In other words, c can be computed as

the group median or the group mean for each of the K dimensions of zt, and the group is

defined by the index j such that It ∈ Pj.

3.4 Computation of DD

DD can be computed by finding It that minimizes DD, given zt and a partition of RK

into L = nM sets. As with DD, The number L can be any number, not just nM , but L = nM

is used to be consistent with earlier sections. Also, the shape of the partition, other than

the number of sets in it, is irrelevant because It can be chosen in an arbitrary way. Since

It is arbitrary, it is sufficient to consider a partition of {1, 2, ..., T} into L sets P ′
1, .., P

′
L.

Then, following proposition 4, computing DD reduces to a problem of finding a partition of

{1, ..., T} into L sets minimizing DD:

Proposition 5.

DD = (
1

T
) inf
P ′
1,...,P

′
L

L∑
j=1

K∑
i=1

αi min
c

∑
t∈P ′

j

d(zt,i, c) (10)

With d(x, y) = |x− y|p, the expression for DD can be rewritten as follows:

DD = (
1

T
) inf
P ′
1,...,P

′
L

L∑
j=1

K∑
i=1

inf
c

∑
t∈P ′

j

|α1/p
i zt,i − c|p (11)

This problem is an example of partitional clustering (see Chapter 3.3 of Jain and Dubes

(1988)). With p = 2, the minimizer c is simply the mean of
√
αizt,i over t ∈ P ′

j for each

i = 1, ..., K and j = 1, ..., L. Finding the partition P ′
1, ..., P

′
L that minimizes the square

distance between the group means and zt has no closed-form solution, but the solution can

be approximated by a k-means algorithm. Similarly, with p = 1, the minimizer c is the

median of αizt,i, and a computational solution can be found by a k-medians algorithm.

3.5 Computation of D0

D0 = DD = DD if n = 1 and hence, L = nM = 1. Therefore, D0 can be computed by

proposition 4.
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4 Use of Temperature Derivatives

4.1 Market Structure and Variation in Trade Volume

The purpose of this section is to demonstrate the usefulness of informativeness measures

in explaining the variation in trade volume in monthly HDD (heat degree days) options

across 24 cities in the US. Payoff from temperature derivatives depends on the temperature

recorded at certain weather stations. For example, Chicago Mercantile Exchange (CME)

has various options and futures listed, which are based on HDD and CDD (cold degree

days). HDD is the average of daily maximum and minimum temperature minus 65 degreees

Fahrenheit, if that number is positive, and zero otherwise. Similarly, CDD is 65 degrees

Fahrenheit minus the average of daily maximum and minimum temparature, if that number

is positive, and zero otherwise.5 HDD and CDD broadly represent the demand for energy

for heating and cooling, respectively.

CME first introduced these temperature derivatives between 1999 and 2000 on 10 weather

stations. As trade volume grew, they listed contracts on 14 additional weather stations by

2008. However, trade volume started declining rapidly after 2010, and derivatives on 16

stations have been completely or partially delisted. As of June 2016, only 8 stations have a

full range of derivatives, and 8 additional stations have only a limited range of derivatives.6

Table 1 lists the metropolitan areas, or cities, represented by these stations, and figure 1

shows the annual volume of trade on HDD monthly options, which account for a large part

of temperature derivatives trading on CME.

Firms whose profit is sensitive to temperature, such as gas and electricity untilities,

may trade these derivatives to insure themselves against the risk of too high or too low

temperature. Pérez-González and Yun (2013) provides evidence that some firms, especially

gas and electricity utilities, use temperature derivatives to hedge risk and argues that such

hedging increases the value of those firms.

The volume of trades on derivatives based on different weather stations varies wildly.

Across the 24 weather stations, the mean and the standard variation of the mean annual trade

volume of monthly HDD options between 2009 and 2014 are 994 and 1710, respectively. The

relatively large standard deviation is driven by a few weather stations with disproportionately

large volumes, such as New York.

This variation in trade volume across the weather stations cannot simply be explained

by the variation in the size of the cities represented. For example, the average trade volume

5This definition of HDD and CDD is from Chapter 403 of CME Rulebook.
6This history of CME temperature derivatives is based on Purnanandam and Weagley (2016) and public

announcements by CME.
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Full listing Partial listing Delisted

Atlanta, GA Des Moines, IA Baltimore, MD

Chicago, IL Philadelphia, PA Detroit, MI

Cincinnati, OH Portland, OR Salt Lake City, UT

New York, NY Tucson, AZ Colorado Springs, CO

Dallas-Fort Worth, TX Boston, MA Jacksonville, FL

Las Vegas, NV Houston, TX Little Rock, AR

Minneapolis-St. Paul, MN Kansas City, MO Los Angeles, CA

Sacramento, CA Washington, DC Raleigh-Durham, NC

Table 1: List of Represented Cities

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
10

1

10
2

10
3

10
4

10
5

10
6

Year

Volume (log scale)

Figure 1: Annual Trade Volume
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for Boston and that for Washington were both lower than that for Portland, Sacramento, or

Colorado Springs, even though Boston and Washington are both considerably larger than

any of the three cities with larger trade volume.

The lack of close correlation between trade volume and city size may be explained by

the fact that there is a close substitute for Boston- or Washington-based contracts, which is

contracts based on New York. New York-based contracts can serve as a substitute because

trade volume on New York-based contracts is large and the deviation of daily HDD from

its monthly average shows a highly positive correlation between New York, Boston, and

Washington, reflecting their geographic proximity.

Given this highly positive correaltion, considering eastern US as a whole, rather than a

collection of individual cities, makes sense in understanding variation in trade volume. How-

ever, doing so involves an arbitrary choice of regional boundaries, and does not reflect varying

temperature correlation across different pairs of eastern cities. The informativeness measure

can address this problem by quantifying the amount of temperature variation represented

by any group of cities. Indeed, informativeness measure does as well as city size measures in

explaining the different levels of trade volume, as shown in the rest of this section.

4.2 Data and Method

Three types of data are used: (i) temperature, (ii) city size measures, and (iii) trade

volume, on each of the 24 cities. The historical daily HDD values are publicly available

on the CME website.7 Six different measures of city size are used, which are population,

GDP, annual and winter gas consumption, and annual and winter expenditure on gas.8 City-

level population comes from the Census Bureau,9 and GDP data from the the Bureau of

Economic Analysis.10 The data are reported for each Metopolitan Statistical Area (MSA)

and publicly available on the websites. State-level gas consumption and price are from the

Energy Information Administration, again available on its public website.11 State-level gas

consumption is converted to city-level consumption by multiplying state consumption by the

ratio of city population to state population. The list of cities in table 1 shows in which state

7CME Group Inc. ‘Heating Degree Day (HDD), Historical Daily Data.’ http://www.cmegroup.com/

market-data/reports/historical-weather-data.html (accessed August, 2016).
8Gas consumption is measured by the volume of gas consumed, while expenditure is volume times price.

These two measures are different because different prices apply to different cities. Winter is defined to be
seven months from October to April.

9US Census Bureau. ‘City-Level Population.’ http://www.census.gov/popest/ (accessed August,
2016).

10US Department of Commerce. ‘Gross Domestic Product.’ Bureau of Economic Analysis. http://www.
bea.gov/national/Index.htm (accessed August, 2016).

11US Energy Information Administration. ‘State-Level Consumption and Prices.’ http://www.eia.gov/
petroleum/data.cfm (accessed August, 2016).
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each city is located. However, assigning one state to each city ignores the fact that certain

city areas intersect with multiple states. As a consequence, the city-to-state population ratio

is close to one for New York and much greather than one for Washington. Trade volume has

been collected from a Bloomberg terminal.12

The general idea tested in this section is that the set of cities with large combined trade

volume should explain a large amount of variation in daily HDD across cities. More specif-

ically, let the integers 1, 2, ..., 24 denote the 24 cities, with U = {1, 2, ..., 24} denoting the

universe of cities. For a subset C of U , v(C) is the sum of trade volumes for the cities in

C, and D(C) is the informativeness of their HDDs in representing the HDDs of all the cities

in U for winter months. Using the language of previous chapters, the HDDs of the cities in

C are market statistics and those of the cities in U are variables of interest. This section

tests whether a high v(C) implies a small D(C) (small expected distance means more infor-

mative), while a low v(C) does not necessarily imply a large D(C). This hypothesis implies

both smaller mean and smaller standard deviation of D(C) for larger v(C), considering the

distribution of D(C) as functionally dependent on v(C).

Following is the logic behind this hypothesis: A large v(C) means that it is enough to

trade in C to hedge against a large part of temperature variation. Therefore, temperature

indices for C must capture a large part of temperature variation across U , leading to a small

D(C). At the same time, there can be alternative choices of C that have small D(C) but

do not have large v(C), so a small v(C) is compatible with both a small D(C) and a large

D(C).

In comparing different C’s, all possible choices of C as a six-element set has been con-

sidered. Sets that have too few or too many elements will automatically have both small

v(C) and D(C) or both large v(C) and D(C), respectively. Sets with six elements were

chosen because they generated a good mix of high v(C) and low v(C), and the number of

possibilities was small enough to require only modest computational power.

In computing v(C), the averge annual trade volume from 2009 to 2014 was used. In

computing D(C), the variables of interest were the deviations of daily HDD from its monthly

average for each city. One interpretation of this choice is that mean monthly temperature

can be perfectly predicted in advance, and the risk that needs to be insured against is the

deviation of daily HDD from the predicted monthly average. Daily HDD data from May 2008

to the end of 2015 are used, because May 2008 is the first month with available historical

data from the source. Finally, for normalization, each of the six city size measures for each

year betwen 2009 and 2014 is normalized by dividing an individual city’s measure by the

sum of the measure over the 24 cities. Then, the average of each city’s size measure over

12Bloomberg Finance LP. ‘Trade Volume.’ (accessed August, 2016).
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Population GDP Gas con.2 Gas exp.3
Gas con. Gas exp.
(winter) (winter)

Mean4 4.2 4.2 4.2 4.2 4.2 4.2

Median 2.4 2.4 2.4 2.5 2.5 2.4

St. dev. 4.3 4.8 5.2 5.4 5.2 5.4

Maximum
18.8 21.5 22.2 24.4 21.8 24.4

(New York)

1 Numbers are in percent.
2 Shorthand for consumption.
3 Shorthand for expenditure.
4 Mean is identical by construction.

Table 2: Statistics on Size Measures

from 2009 to 2014 is used as the city’s weight in computing D(C).

D(C) is computed as DL under linear distance, and divided by D0 for normalization.

The other choices of informativeness measure, DL with square distance or DD with linear or

square distance, had been tried as well for robustness and produced similar results.

For comparison, aggregate city size measures S(C) were also computed, simply as the

sum of city size measures over the cities in C.

4.3 Descriptive Statistics

The pairwise correlation between the six city size measures is close to one. Table 2 shows

that the mean size measure is larger than the median, which is consistent with the fact that

there are a few very large cities. New York is larger than any other city by far, and certainly

much larger than the mean. This can be seen from both tables 2 and 3, the latter of which

ranks the cities by their population.

Daily HDD minus its monthly average tends to show higher correaltion between cities

that are geographically closer. Table 4 shows the correlation matrix for the following six

cities: New York, Boston, Washington, Portland, Sacramento and Colorado Springs. The

highly positive correlation between New York, Boston and Washington is consistent with

the idea that temperature risks for Boston and Washington can be effectively insured by

New York-based contracts, while temperature risks for the other cities cannot be. Figure

2 plots daily HDD minus monthly average in Boston and Colorado Springs against that in

14



Under 2 Between 2 and 5 Over 5

Des Moine (0.6) Cincinnati (2.0) Atlanta (5.2)

Colorado Springs (0.6) Sacramento (2.1) Washington (5.5)

Little Rock (0.7) Portland (2.1) Philadelphia (5.7)

Tucson (1.0) Baltimore (2.6) Houston (5.8)

Salt Lake City (1.1) Minneapolis-St. Paul (3.2) Dallas-Fort Worth (6.4)

Raleigh-Durham (1.1) Detroit (4.1) Chicago (9.1)

Jacksonville (1.3) Boston (4.4) Los Angeles (12.4)

Las Vegas (1.9) New York (18.8)

Kansas City (2.0)

1 Numbers in parentheses are normalized population.
2 The cities are listed in the order of increasing population in each column.

Table 3: Population Ranking of Cities

New York.

The city size measures and informativeness measures for individual cities are weakly

correlated with trade volumes. The rank correlation between trade volume, v({i}), and pop-

ulation, S({i}), is 0.36, while the rank correlation between trade volume and informativeness,

D({i}), using population as weights, is −0.15. Figure 3 plots the rank of population and

that of informativeness measure against the rank of trade volume, which shows no strong

relationship.
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New York Boston Washington Portland Sacramento
Colorado
Springs

New York 1.00 0.91 0.89 0.10 0.05 -0.09

Boston 1.00 0.76 0.11 0.07 -0.08

Washington 1.00 0.07 0.01 -0.08

Portland 1.00 0.49 0.38

Sacramento 1.00 0.32

Table 4: Correlation Matrix of HDD
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Figure 2: Correlation in HDD between Cities
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Figure 4: Informativeness and Population as Functions of Trade Volume

4.4 Results

Figure 4 shows the distribution of informativeness and population as a function of vol-

ume. All the possible sets of 6 cities are divided into 20 equally-sized bins in the order

of increasing total trade volume, v(C). For each bin, the means of informativeness and

population are computed, along with standard deviation, which represents how dispersed

informativeness and popluation are for different levels of trade volume. As a reminder, the

measure of informativeness referred to in this section is DL (linear rule) with linear distance.

As mentioned earlier, using other informativeness measures, either with square distance or

with DD (discrete rule), produces similar results.

Consistent with the hypothesis proposed in section 4.2, informativeness measure D(C)

decreases with trade volume, while population increases with trade volume. Consistent with

the figure, the rank correlation between information distance and trade volume is −0.54,

and that between population and trade volume is 0.65. Also, the standard deviation tends

to be smaller for larger trade volume.

A potential problem with looking at every possible six-element set of cities is that New

York dominates all other cities both in trade volume and population. Therefore, the negative

relationship between informativenss measure and trade volume and the positive relationship

between population and trade volume may just reflect the difference between the sets of

cities which contain New York and those which do not. To address this issue, the exercise is

repeated only with all six-element sets that contain New York.
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Figure 5: Mean of Informativeness and Population with New York

The result of this second exercise is consistent with that from the first exercise. Figure

5 shows the mean of informativeness and population as a function of trade volume, and

figure 6 shows their standard deviation. The decrease in standard deviation is more evident

with informativeness measure. In addition, the rank correlation between informativeness and

trade volume is stronger at −0.48, compared with 0.28 between population and trade volume.

This result suggests that the dominating effect of New York is stronger with population than

with informativeness measure.

Among all the six-element sets, the mean value of informativeness for the top quintile of

trade volume is 0.35, compared with 0.44 on average for the other four quintiles. Similarly,

the mean population for the top quintile is 0.37, compared with 0.22 for the others. The

standard deviation of informativeness measure for the top quintile is 0.42, compared with

0.72 for the others. This decrease in the standard deviation is more pronounced than that

for population, with 0.59 for the top quintile and 0.65 for the rest. Table 5 shows the mean

and the standard deviation for each quintile.

Redoing the exercise only with sets containing New York produces similar results, and the

standard deviation of the informativeness measure decreases more consistently with trade

volume than that of population. Table 6 shows the mean and the standard deviation for

each quintile, using only the sets containing New York.

Overall, both the informativeness measure and population show behavior consistent with

the hypothesis that (i) smaller informativeness measure (more informative) and higher size

are associated with higher trade volume, and (ii) the variability in informativeness and size
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Figure 6: St. Dev. of Informativeness and Population with New York

All Sets

Quintiles Informativeness Population Trade Volume

Top
0.35 0.37 0.50

(0.042)1 (0.059) (0.057)

Second
0.41 0.26 0.31

(0.073) (0.074) (0.057)

Third
0.43 0.22 0.20

(0.076) (0.061) (0.017)

Fourth
0.44 0.21 0.15

(0.073) (0.062) (0.015)

Bottom
0.46 0.19 0.08

(0.066) (0.061) (0.029)

1 Numbers in ( ) are standard deviations.

Table 5: Informativeness and Population for Each Volume Quintile
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Sets Containing New York

Quintiles Informativeness Population Trade Volume

Top
0.33 0.39 0.58

(0.036)1 (0.054) (0.035)

Second
0.35 0.37 0.52

(0.038) (0.057) (0.013)

Third
0.36 0.36 0.48

(0.040) (0.058) (0.010)

Fourth
0.37 0.35 0.44

(0.042) (0.059) (0.012)

Bottom
0.39 0.34 0.39

(0.045) (0.057) (0.024)

1 Numbers in ( ) are standard deviations.

Table 6: Informativeness and Population for Each Volume Quintile for Sets Containing New
York

is smaller for higher trade volume.

5 Conclusion

This paper introduced a framework to quantify the informativeness of market statistics

under different assumptions on how the recipients of the statistics infer their variables of

interest from the statistics and how the deviation from true value is penalized. In particular,

linear and discrete inference rules and linear and square penalties for deviation were shown

to lead to easily computable measures for both informativeness and its theoretical bounds.

This paper also used the informativeness measures to explain the different levels of trade

volume in temperature derivatives across different weather stations within the US. Informa-

tiveness explains the variation in trade volume at least as well as city cize measures do. This

example shows that the proposed informativeness measures are useful in understanding why

some market statistics, or ‘numbers/variables’ more generally, are more frequently referred

to or adapted as bases of financial contracts.
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