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Abstract

We study the term structure of default-free interest rates in a sticky-price model with an

occasionally binding effective lower bound (ELB) constraint on interest rates and recur-

sive preferences. The ELB constraint induces state-dependency in the dynamics of term

premiums by affecting macroeconomic uncertainty and interest-rate sensitivity to economic

activities. In a model calibrated to match key features of the aggregate economy and term

structure dynamics in the U.S. above and at the ELB, we find that the ELB constraint

typically lowers the absolute size of term premiums at the ELB and increases their volatility

around the time of liftoff. The central bank’s announcement to keep the policy rate at the

ELB for longer than previously expected lowers the expected short rate path, but its effect

on term premiums depends on the risk exposure of bonds to the macroeconomy; while the

announcement increases term premiums if bonds are a hedge against economic downturns,

it decreases them otherwise.
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1 Introduction

Since the onset of the recent global recession, many central banks have implemented various

unconventional policies to stimulate economic activities, as short-term nominal interest rates—

the conventional tool of monetary policy—hit the effective lower bound (ELB) constraint. Some

of these policies, such as policies aimed at providing more transparency in the likely path of

the policy rate (so-called “forward guidance” policies) and purchases of long-term government

bonds, are widely believed to stimulate the economy through their effects on the term structure

of interest rates. Accordingly, it is important to have a coherent understanding of the interaction

between the macroeconomy, the term structure of interest rates, and monetary policy actions

if we are to understand the recent dynamics of yield curves and evaluate the efficacy of these

unconventional policies.1 The ELB can affect this interaction in important ways.

In this paper, we study how the ELB constraint jointly affects the macroeconomy, the term

structure of interest rates, and monetary policy in a structural general equilibrium (DSGE)

model. Our model is a variant of a standard New Keynesian model featuring monopolistic

competition in the product market, sticky-prices, and an interest-rate feedback rule. Explicit

micro-foundations set our model apart from the existing term structure models with the ELB—

which are mostly statistical models with limited economic structure, as reviewed shortly. Our

analysis proceeds in two steps. In the first part of the paper, we analyze how the ELB constraint

affects the dynamics of term premiums using stylized versions of our model. In the second part

of the paper, we augment the stylized model with additional features to match key features

of macroeconomic data and the term structure of interest rates in the U.S. and analyze how

an alternative monetary policy strategy affects the dynamics of the macroeconomy and term

premiums at and away from the ELB.

Our main finding from the stylized models is that the ELB constraint generates state-

dependency in term premiums through two key factors affecting term premiums—macroeconomic

uncertainty and the sensitivity of interest rates to macroeconomic fluctuations. On the one hand,

macroeconomic uncertainty is higher when the policy rate is constrained by the ELB than when

it is not, as the ELB constraint prevents the central bank from counteracting the effects of

exogenous shocks to demand on consumption and inflation. This increased macroeconomic un-

certainty at and near the ELB constraint is a force that pushes up the absolute size of term

premiums. On the other hand, the sensitivity of interest rates to macroeconomic fluctuations is

smaller when the policy rate is at or near the ELB than when it is not, as the central bank faces

restrictions in adjusting its policy rate in the near term under such a circumstance. This reduced

1Policymakers have also reiterated the importance of understanding term premiums in the current environ-
ment. For example, former Fed Governor Jeremy Stein stated in a speech, “When policy works by moving term
premiums, as opposed to moving expectations about the path of short rates, the transmission to the real economy
may be altered in subtle yet important ways that can have implications for the benefits of a policy action, its costs,
and even its consequences for financial stability.”(Stein (2012)). Also, former Fed Chairman Ben Bernanke points
to the decline in term premiums as an important factor behind the decline in longer-term U.S. interest rates
(Bernanke (2015)).
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sensitivity of interest rates to macroeconomic fluctuations at and near the ELB constraint is a

force that compresses the absolute size of term premiums.

Which of these two effects dominates depends on the state of the economy and yield maturity.

When the economy is in a deep recession and the policy rate is expected to be at the ELB for

a long period of time, the second compression effect typically dominates the first amplification

effect, and the size of term premium is lower than when the policy rate is comfortably above

the ELB. When the economy is in a mild recession and the policy rate is expected to be at

the ELB for a short period of time, the first effect often dominates the second and the size

of term premiums is higher than when the policy rate is comfortably above the ELB. The

compressing effects of the ELB on term premiums induced by the reduced sensitivity of interest

rates is stronger for shorter-maturity yields that are more strongly affected by the presence

of the ELB than longer-maturity yields. Finally, the compressing effects of the ELB are also

stronger in the model with Epstein-Zin preferences as term premiums in that model depend less

on macroeconomic uncertainty and more on the sensitivity of interest rates to fluctuations in

the continuation value. Overall, the absolute size of term premiums is on average lower at the

ELB than away from the ELB for most variants of the stylized model.

This time-variation in term premiums implies that term premium uncertainty—conditional

volatility of term premiums—is particularly high when the policy rate is currently at the ELB

but is expected to be positive in the near future, or when the policy rate is currently positive

but is near the ELB. That is, term premium uncertainty is particularly high around the time

of liftoff. In contrast, term premium uncertainty is low when the policy rate is currently at

the ELB and is expected to stay at the ELB for a long period of time, as the interest rate is

not likely to move at all under such a circumstance. This result suggests that the dynamics of

term premiums may warrant more attention in a severe recession involving the ELB than under

normal circumstances.

After analyzing yield curve dynamics in the stylized model, we extend the model in several

directions to improve its ability to quantitatively match key features of consumption, inflation,

and the term structure of interest rates in the U.S. We introduce TFP shocks with tail risk and

stochastic volatility, which makes the conditional moments of our model while the policy rate is

away from the ELB consistent with those in the data. In particular, yield curves are on average

upward sloping and term premiums are positive, large, and volatile while the policy rate is away

from the ELB in our model, as in recent DSGE term structure models. Our yield curve is steeper

when the policy rate is constrained at the ELB than otherwise, as in the data. By introducing

stochastic volatility in the demand shock process, we also generate term premiums that are on

average small and negative at the ELB; Small and negative term premiums are consistent with

survey-based estimates of term premiums—as well as term premium estimates based on some

available term structure models—from the period in which the federal funds rate was at the

ELB.

A key benefit of working with fully structural models is that they allow us to conduct
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counterfactual policy experiments that are robust to the Lucas critique. In the final exercise

of the paper, we use our quantitative model to study the effects on the macroeconomy and the

term structure of interest rates of the central bank’s announcement to keep the policy rate at the

ELB for longer than previously expected. We model the effects of this announcement (“forward

guidance”) by comparing the economy under the baseline monetary policy rule with the economy

under an alternative monetary policy rule, called “the Reifschneider-Williams rule,” in which

the timing of liftoff depends on the cumulative shortfall in inflation and output in the past and

the policy rate is expected to stay at the ELB for longer. We find that this forward guidance

not only reduces the expected short-rate path, but also the absolute size of term premiums. In

our benchmark quantitative model in which term premiums are on average negative at the ELB,

this finding means that the forward guidance increases term premiums, partially offsetting the

declines in the expected short rate path. In an alternative quantitative model in which term

premiums are on average positive even at the ELB, this finding means that the forward guidance

reduces term premiums, amplifying the decline in the expected short-rate path.

One caveat in our analysis is that our model does not have an explicit role for the central

bank balance sheet, an ingredient that is likely to be important in understanding the effects of

unconventional policy measures such as large-scale asset purchases (LSAPs). Introducing such

an ingredient into our model is an important next step in our research agenda. We believe that,

since unconventional policy measures were typically taken while the policy rate was constrained

at the ELB, understanding how the ELB constraint affects the dynamics of the term structure of

interest rates is an essential first step towards understanding how unconventional policies affect

term structure of interest rates and the economy. Moreover, if balance sheet policies work mainly

by signaling to the private sector about the central bank’s commitment for accommodative policy

stance and thus affecting the expected path of short-term nominal interest rate, as suggested

by some recent studies, the analysis of forward guidance provided in our paper can be seen as

capturing some portions of the effects of balance sheet policies.

Literature Review

Our contribution is to present the first analysis of the yield curve and term premiums using

a DSGE model with an occasionally binding ELB constraint that is calibrated to match key

features of U.S. data including the recent ELB episode. Naturally, our work is related to several

strands of the literature.

First, our work builds on the rapidly expanding literature analyzing the implications of the

ELB constraint on the macroeconomy. In particular, our paper is closely related to a set of papers

that analyze the implication of the ELB constraint in fully nonlinear New Keynensian models

with an occasionally binding ELB constraint. Examples are Fernández-Villaverde, Gordon,

Guerrón-Quintana, and Rubio-Ramirez (2015), Gavin, Keen, Richter, and Throckmorton (2015),

Gust, Herbst, Lopez-Salido, and Smith (2016) and Nakata (2013), among many others. The key

difference between these papers and our paper is that they analyze the implications of the ELB
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constraint on macroeconomic variables, while we focus on the term structure of interest rates.

Reflecting this difference and our desire to build a quantitative model, our model includes some

features absent in these papers, such as recursive preferences, tail risks and stochastic volatilities

in exogenous shocks.

Second, our work is related to the relatively recent literature on term structure models with

the ELB. Examples are Bauer and Rudebusch (2015), Christensen and Rudebusch (2013), Ichiue

and Ueno (2007), Kim and Singleton (2012), Krippner (2012), Kim and Priebsch (2013) and

Wu and Xia (2014). As we noted above, the existing models are reduced-form in the sense

that that they impose very limited economic structure, such as lack of arbitrage opportunities.2

Although the flexibility afforded by the sparse economic structure allows these models to fit

yield data quite well, the driver of asset prices in these models consists of latent factors that

are not economically interpretable. In contrast, our general-equilibrium term-structure model

features explicit microfoundations and includes a description of how the central bank conducts

monetary policy, allowing us to give economic interpretations to the term structure of interest

rates.

Third, our paper extends the literature on equilibrium term structure models to incorporate

the ELB constraint. In particular, our paper is closely related to recent papers analyzing the

term structure of interest rate in a production economy. Examples are Andreasen (2012a,b),

Van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez (2012), Campbell, Pflueger,

and Viceira (2014), Dew-Becker (2014), Hsu, Li, and Palomino (2015), Kung (2015), Lopez,

Lopez-Salido, and Vazquez-Grande (2015), Rudebusch and Swanson (2008, 2012) and Swanson

(2014). These papers in turn build on earlier work by Piazzesi and Schneider (2007) and many

others that analyze equilibrium yield curves in endowment economies. Our main departure from

these models is to incorporate an occasionally binding ELB constraint on interest rates. We note

that, even though these papers have made substantial progress in fitting macro and yield data

jointly, they usually find it difficult to generate endogenous volatility in term premiums. In our

model, endogenous volatility in term premiums arises naturally from the presence of the ELB

constraint.

Before closing, we mention some recent developments of equilibrium term structure models

with the ELB constraint. Branger, Schlag, Shaliastovich, and Song (2015) introduce the ELB

constraint into an endowment-economy model and estimate it using U.S. data. In their model,

consumption and inflation dynamics are exogenously specified; we study a production economy in

which consumption and inflation are endogenous variables and there is a description for monetary

policy. Sakurai (2016) develops a term structure model with the ELB constraint that combines a

linearized New Keynesian economy and a reduced-form pricing kernel; the pricing kernel in our

model is internally consistent with the macroeconomic structure. Finally, most closely related

to our paper is a contemporaneous study by Gourio and Ngo (2016) that examines asset-pricing

2These papers, in turn, build on the vast literature on term structure models without the ELB constraint,
which we do not review here. Readers may refer to literature reviews such as Gürkaynak and Wright (2012) and
references therein for more information.
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implications of a DSGE model with the ELB constraint. One key distinction between our model

and theirs is that the differences in the dynamics of term premiums at and away from the ELB

are substantially more pronounced in our model than in their model.3

The structure of the paper is as follows. Section 2 presents the model in general form. We

start our discussion of equilibrium yield dynamics above and at the ELB in Section 3 using

stylized versions of the model. We then proceed to explore the quantitative potential of our

model to match certain features of U.S. data using a more careful calibration in Section 4. In

Section 5, we conduct monetary policy experiments at the ELB based on this model. Section 6

collects some further discussion of our results. Section 7 concludes.

2 The Model

In this section, we lay out our general equilibrium model of default-free interest rates.

There will be broadly two versions of the model—one stylized and one quantitative. The

stylized model is a variation of a plain-vanilla New Keynesian model with a single discount rate

shock and the ELB constraint; we will study a specification with power utility as well as one with

Epstein-Zin preferences, both of which will be used to describe key features of equilibrium yield

curves in a transparent way. The quantitative model introduces additional features—period

utility à la Greenwood, Hercowitz, and Huffman (1988) that features non-separability between

consumption and leisure (“GHH utility”), a more realistic monetary policy rule, and richer shock

structures—to the stylized model. This model will be calibrated to match key features of the

term structure of interest rates in the data, and will be used to conduct couterfactual monetary

policy experiments. Many elements of the model are the same across the two versions. The

differences are summarized in Table 1. We will discuss details of each feature in the following

sections.

Table 1: Summary of Model Features

Stylized Model Quantitative Model

Utility Separable labor + Pw or EZ GHH+EZ
Policy rule Inflation response Inflation/output response+policy inertia†

Shocks Discount rate Discount rate+TFP
Shock features Normal+homoskedastic Tail risk+heteroskedastic

† We further augment this rule following Reifschneider and Williams (2000) to conduct monetary policy experiments.

2.1 Households

The representative household’s value function Vt takes the following recursive form originally

proposed by Epstein and Zin (1989) (“Epstein-Zin (EZ) preferences”):

3While we focus on the term structure of interest rates, they focus on the correlation between equity prices
and inflation.
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Vt =

[
Ut(Ct, Nt) + βt

{
Et
[
V 1−γ
t+1

]} 1−χC
1−γ

] 1
1−χC

(1)

Ut(Ct, Nt) is the period utility function that satisfies UC ≥ 0, UN ≤ 0, twice differentiability

and strict concavity. In the stylized models considered in Section 3, the period utility function

is given by the standard log-separable form:

Ut(Ct, Nt) =
(
CχNt (1−Nt)

1−χN
)1−χC (2)

where χC > 0 is the inverse elasticity of intertemporal substitution and χN > 0. In the quan-

titative model used in Sections 4 and 5, the period utility function is given by the following

specification originally proposed by Greenwood, Hercowitz, and Huffman (1988) (“GHH util-

ity”):

Ut(Ct, Nt) =
1

1− χC

(
Ct − Zt

N1+χN
t

1 + χN

)1−χC

(3)

where χC > 0 captures the attitude towards intertemporal substitution of the consumption-

labor composite and χN ∈ (0, 1) is now the inverse Frisch elasticity. Zt is a deterministic trend

in total factor productivity. The scaling of labor disutility by Zt ensures the existence of a

balanced growth path in equilibrium.

Ct is the household’s aggregate consumption of final goods based on a CES aggregator of

intermediate goods Ct ≡
(∫ 1

0 Ct(i)
θ−1
θ di

) θ
θ−1

where θ > 1 is the elasticity of demand across the

intermediate goods. Nt =
∫ 1

0 Nt(i)di denotes the household’s total supply of labor, which is the

integral of labor Nt(i) supplied to each intermediate good producer i in a perfectly competitive

labor market given nominal wage Wt. βt is the stochastic time discount rate. We will specify the

dynamics of βt in detail below (Section 2.5). γ > 0 parameterizes the household’s risk aversion.

Note that γ = χC corresponds to the important special case of power utility.

The household maximizes (1) by choosing state contingent paths for Ct, Nt and asset holdings

subject to its initial wealth and the following sequence of flow budget constraints:

PtCt + Et [Mt+1Wt+1] ≤WtNt +Wt + Ξt + Tt

where the aggregate price level of the consumption basket Pt ≡
(∫ 1

0 Pt(i)
1−θdi

) 1
1−θ

is implied by

the household’s cost minimization problem (or equivalently, the optimization of a perfectly com-

petitive representative final good producer combining intermediate goods). Assuming complete

financial markets, Wt+1 is the household’s wealth portfolio of state contingent claims chosen by

the end of period t. These claims are priced by the unique nominal pricing kernel Mt+1 implied
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by the household’s problem:

Mt+1 = βt

(
UC,t+1

UC,t

) Vt+1[
Et
[
V 1−γ
t+1

]] 1
1−γ


χC−γ

1

Πt+1
(4)

where Πt+1 ≡ Pt+1

Pt
is the gross (aggregate) inflation rate. The term with squared brackets is the

additional term that appears by assuming EZ preferences instead of power utility, implying that

the household is sensitive to the distribution of future consumption (and labor supply) on top

of current consumption growth. Ξt is firms’ profit rebated back to the household. Tt denotes

lump-sum government taxes and/or transfers.

2.2 Intermediate Goods Producers

There are a continuum of monopolistically competitive intermediate goods producers indexed by

i ∈ [0, 1]. Each producer faces costly price adjustments, which is introduced via an adjustment

cost function proposed by Rotemberg (1982). The expected discounted value of each producer

i’s profit stream is:

E0

∞∑
t=0

Mt−1,t

[
Pt(i)Yt(i)−WtNt(i)−

ϕ

2

(
Pt(i)

Pt−1(i)Π̄
− 1

)2

PtYt

]
(5)

where ϕ > 0 measures the degree of costly price adjustment. We assume the producers adopt

a simple price indexation scheme where they index on steady state inflation Π̄ (or the central

bank’s inflation target) when setting prices. Each producer maximizes (5) by choosing a state

contingent path of {Pt(i), Yt(i), Nt(i)} subject to the demand and production functions:

Yt(i) =

(
Pt(i)

Pt

)−θ
Yt

Yt(i) = AtZtNt(i)

where At and Zt are two components of total factor productivity (TFP) that are both treated

as exogenous. We assume At is stationary and Zt is a deterministic trend which grows at a

rate of ζ (i.e., ζ = Zt
Zt−1

). This assumption implies that TFP in our model, AtZt, features trend

stationarity. Trend-stationarity of TFP is critical in obtaining an upward sloping nominal and

real term structure in our simple model. This modeling choice is also adopted by Rudebusch

and Swanson (2008, 2012).4 We will describe the exact specification of the process in Section

4We could alteratively assume that TFP growth is difference stationary, but our modeling choice helps to fit
the upward sloping term structure we observe in U.S. data on average. Since we focus on a relatively short sample
of the past two decades, it does not appear unreasonable to abstract from a stochastic trend compared to when
we analyze a longer sample period. The financial crisis may have shifted the perception towards long-run growth,
but if the shift is more in terms of the deterministic trend, our main results will be largely unaffected.
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2.5.

2.3 Monetary Policy

The central bank sets the nominal one-period interest rate, R
(1)
t , following a Taylor rule with

an occasionally binding ELB constraint:

R
(1)
t = max [RELB, R

∗
t ] (6)

where RELB is the ELB on the nominal short rate and the nominal shadow rate R∗t follows:

R∗t =
(
R∗t−1

)ρR (R̄ [Πt

Π̄

]φΠ
[
Yt
Ȳ Zt

]φY)1−ρR

(7)

where R̄ and Ȳ denote the steady state of R
(1)
t and normalized output Ŷt ≡ Yt

Zt
, respectively.5

In the two stylized models considered in Section 3, φR = φY = 0 so that there are neither

interest-rate smoothing nor response to the output gap. In the quantitative model, φR, φY > 0.

For the monetary policy experiment in Section 5, we further augment this rule based on the

work of Reifschneider and Williams (2000)—the “RW rule”—as follows:

R
(1)
t = max [RELB, R

∗
t − φRWJt]

Jt = Jt−1 + (R
(1)
t−1 −R

∗
t−1)

(8)

where the shadow rate R∗t follows the same feedback rule as in (7), and φRW ≥ 0 controls the

degree of extra accommodation at the ELB. Note when φRW = 0, the RW rule collapses to the

standard Taylor rule with the ELB constraint (6). Jt is the cumulative past deviation of the

policy rate from the shadow rate. Further details are deferred to Section 5.

2.4 Market Clearing

In equilibrium, the goods market, labor market, and asset market must clear at all dates and

states. The clearing condition for final goods is:

Yt = Ct +
ϕ

2

[∫ 1

0

(
Pt(i)

Pt−1(i)Π̄
− 1

)2

di

]
Yt

5The inertial rule is specified such that the shadow policy rate today depends on the lagged shadow policy
rate, as opposed to the lagged actual policy rate. The degree of history dependence in the policy rate is much more
pronounced under the lagged-shadow-rate specification than under the lagged-actual-rate specification, allowing
us to increase the expected ELB duration. For more detailed discussions on the distinction between the lagged-
shadow-rate and the lagged-actual-rate specifications, see Hills and Nakata (2014) and Gust, Herbst, Lopez-Salido,
and Smith (2016).
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Note the equilibrium is necessarily symmetric. We can aggregate the supply of intermediate

goods by integrating each producer’s supply to obtain:

Yt = AtZtNt

For the asset market, we make a standard assumption that state contingent claims are in

zero net supply.

2.5 Exogenous Stochastic Processes

In the stylized model, At is constant and the discount rate βt is the only exogenous process.

The discount rate process is given by:

lnβt = (1− ρβ) ln β̄ + ρβ lnβt−1 + εβ,t (9)

where εβ,t is i.i.d. normal with standard deviation of σ̄β.

In the quantitative model, we assume both At and βt follow AR(1) processes with time-

varying volatility and tail risk. For each exogenous process k ∈ {β,A}, the process is given

by

ln kt = (1− ρk) ln k̄ + ρk ln kt−1 + εk,t (10)

We assume that εk,t is drawn from an i.i.d. normal distribution with time-varying standard

deviation σk,t−1 with probability 1 − pk (the “normal” state) and takes an extreme value ϑk

with a small probability pk (the “crisis” state). That is, for each k we define,

ε̃k,t =

N (0, σ2
k,t−1) with prob. 1− pk

ϑk with prob. pk

and construct εk,t as εk,t = ε̃k,t − E[ε̃k,t] such that the innovation has mean zero.6 We further

specify time-varying volatility σk,t−1 as a logistic function of k as follows:

σk,t−1 =
θub,k

1 + θadj,k exp(θcv,k ln(kt−1/k̄))
σ̄k (11)

where we define σ̄k as the standard deviation of ε̃k,t conditional on the realization of the normal

state and when kt−1 is at its average level k̄. The term that multiplies σ̄k controls how much it

is scaled depending on the deviation of kt−1 from its average. θub,k is the upper bound of the

scaling and θcv,k controls the curvature of the function. Once θub,k and θcv,k are chosen, θadj,k is

set to guarantee that the scaling term equals 1, and hence σk,t−1 = σ̄k when ln k = ln k̄.7 Our

6The general formulation of tail risk is similar to Andreasen (2012b), but our model focuses on discount factor
shocks as well as TFP shocks, and simultaneously accounts for time-varying volatility.

7Note that θub,k and σ̄k are separately identified as we set θadj,k as a function of θub,k and not σ̄k. However,
this formulation is simply for the sake of exposition. In essence two free parameters are added to the model when
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structure is flexible and useful in jointly fitting macroeconomic data and features of the term

structure in the U.S. including the recent ELB period. We provide further motivation of this

specification and the exact parameterization in Sections 4.2 and 4.3.

2.6 Term Structure of Default-free Interest Rates

Given the equilibrium under complete markets, we can price the term structure of default-free

interest rates under our model economy using the pricing kernel. The equilibrium price of

a n−period zero-coupon nominal bond that pays one dollar at maturity P
(n)
t can be derived

recursively using the nominal stochastic discount factor from the DSGE model:

P
(n)
t = Et[Mt+1P

(n−1)
t+1 ].

where P
(0)
t = 1 for ∀t. The continuously compounded yield to maturity of this bond follows

directly from its price:

R
(n)
t = − 1

n
lnP

(n)
t

Following the large existing literature on the term structure of interest rates, we further

define the term premium of this bond as the difference between the yield and its “risk-neutral”

counterpart R
(n)Q
t :

tp
(n)
t ≡ R(n)

t −R
(n)Q
t =

1

n
(lnP

(n)Q
t − lnP

(n)
t )

where the risk-neutral price of a n−period zero-coupon nominal bond P
(n)Q
t can be derived

similarly as:

P
(n)Q
t = exp(−R(1)

t )Et[P
(n−1)Q
t+1 ].

where again, P
(0)Q
t = 1 ∀t. Note that the yield to maturity and the term premium of a n−period

zero-coupon real bond can be derived analogously, by simply replacing the nominal stochastic

discount factor and the nominal one-period interest rate used for discounting the risk-neutral

prices with their real counterparts.

2.7 Equilibrium Characterization

Given the initial condition {R∗−1, J−1} and the exogenous processes {βt, At, Zt}t≥0, a monopo-

listically competitive equilibrium is defined in a standard way as a set of stochastic processes

{Ct(i), Nt(i), Yt(i), Ct, Nt, Yt, Wt, Pt, Pt(i), R
(n)
t , R∗t , Jt}t≥0 such that (1) households maximize

utility, (2) firms maximize profits, (3) monetary policy follows the interest rate rule, (4) fiscal

policies satisfy the budget constraint and (5) goods, labor and asset markets clear.

we introduce heteroskedacticity, which can be defined in multiple ways.
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To obtain a stationary equilibrium we follow the standard procedure of normalizing all rele-

vant variables by the (deterministic) trend growth Zt. Defining the normalized variables using

hats and letting β̃t ≡ βtζ
−χC , the normalized equilibrium conditions, excluding the equations

for the term structure, are (for Ut ≥ 0):

V̂t =

[
Ût(Ĉt, Nt) + ζβ̃t

{
Et
[
V̂ 1−γ
t+1

]} 1−χC
1−γ

] 1
1−χC

(12)

Mt+1 = β̃t

(
ÛC,t+1

ÛC,t

) V̂t+1[
Et
[
(V̂t+1)1−γ

]] 1
1−γ


χC−γ

1

Πt+1
(13)

Et
[
Mt+1R

(1)
t

]
= 1

ŵt =
−ÛN,t
ÛC,t

(14)

Ŷt

[
ϕ

(
Πt

Π̄
− 1

)
Πt

Π̄
− (1− θ)− θ ŵt

At

]
= Et

[
ζMt+1Πt+1Ŷt+1ϕ

(
Πt+1

Π̄
− 1

)
Πt+1

Π̄

]
R

(1)
t = max [RELB, R

∗
t − φRWJt]

R∗t =
(
R∗t−1

)ρRR̄ [Πt

Π̄

]φΠ
[
Ŷt
Ȳ

]φY1−ρR

Jt = Jt−1 + (R
(1)
t−1 −R

∗
t−1)

Ŷt = AtNt

Ŷt = Ĉt +
ϕ

2

(
Πt

Π̄
− 1

)2

Ŷt

Equations (12) to (14) rely on the functional form of utility, and we spell them out in

Appendix A.

2.8 Solution Method

We solve the model globally using a time-iteration method in the spirit of Coleman (1991). It

is especially important to use a global solution method for our analysis, as opposed to a local

approximation method such as perturbation, since the model exhibits a strong non-linearity

around the ELB constraint, which, in turn, generates endogenous time-varying volatility as well

as time-varying term premiums. Similar methods are used in recent studies of the occasionally

binding ELB constraint, but in addition to the standard iteration on decision rules, we also

iterate on the value function due to recursive utility. The details of the solution method are

described in Appendix B.
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3 Equilibrium Yield Curves in the Stylized Models

In this section, we analyze the dynamics of equilibrium yield curves in two stylized models.

The first stylized model features power utility (i.e. γ = χC in the value function (1)) with

period utility (2). We further set χC = 1, which results in a standard preference with log

separability between consumption and labor. The setup is a plain-vanilla New Keynesian model

with the discount rate being the only exogenous process. Its macroeconomic dynamics at the

ELB has been studied in detail by Gavin, Keen, Richter, and Throckmorton (2015) and Nakata

(2013), among many others in a similar setting. The second stylized model features Epstein-Zin

preferences (i.e. γ 6= χC), but is otherwise identical to the first model.8 The goal of this section

is to describe how the ELB constraint affects equilibrium yield curves in a transparent way.

For the sake of brevity, we focus our discussion on the nominal term structure and relegate

the discussion on the real term structure as well as inflation compensation/risk premiums to

Appendices F and G. Parameter values for the stylized models are shown in Table 2. All values

are within the range found in the literature.

Table 2: Parameter Values for the Stylized Model

Parameter Description Parameter Value

β̄ Time discount rate at steady state 1
1.006

χC Inverse intertemporal elasticity of substitution 1
χN Preference over consumption vs leisure 0.25
γ Risk aversion [1, 4]
θ Elasticity of substitution among intermediate goods 6
ϕ Price adjustment cost 75
400(Π̄− 1) (Annualized) target rate of inflation 2.0
φπ Coefficient on inflation in the Taylor rule 2.5
φy Coefficient on the output gap in the Taylor rule 0
ρR Interest-rate smoothing in the Taylor rule 0
RELB Effective interest rate lower bound 1
ρβ AR(1) coefficient for the discount factor shock 0.77
σ̄β Standard deviation of shocks to the discount factor 0.39

100
*Implied prob. of policy rate being at the ELB (Power U.) 9%

3.1 Stylized Model with Power Utility

Figure 1 shows the equilibrium decision rules for consumption, inflation, the nominal short rate,

and the real rate as functions of the time discount rate β, which is the single state variable

in the model. In all panels, solid and dashed lines are for the models with and without the

ELB constraint. As shown in the top-left, top-right, and bottom-left panels, consumption,

inflation, and the policy rate decline as β increases. An increase in the discount rate means that

households want to save more for tomorrow and spend less today. Lower demand for the final

good by the households leads to lower marginal costs and inflation. According to our interest

8This requires taking the limit χC → 1 of equation (1) and boils down to the recursive specification used in
Tallarini (2000). See Appendix A for details.
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rate feedback rule, the policy rate declines in response to lower inflation (we set the coefficient

on output to zero), partially offsetting the contractionary effects of the discount rate increase.

For a sufficiently large realization of β, the policy rate hits the ELB. When the policy rate is

constrained at the ELB, the contractionary effects of an increase in β cannot be offset by a

decline in the policy rate. As a result, an additional increase in the discount rate leads to larger

declines in consumption and inflation when the policy rate is at the ELB than when it is not.

Note that the real short rate increases with β at the ELB.

Figure 1: Decision Rules for Macroeconomic Variables—Power Utility—
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*Solid lines indicate decision rules of the model with the ELB constraint, and dashed lines indicate decision rules of the
model without the ELB constraint. The solid vertical line indicates the threshold state where the ELB binds.

Figure 2 shows the decision rules for nominal yields, nominal term premiums, and their

conditional volatilities—or, “uncertainties.”9 As in the previous figure, solid and dashed lines

are for the models with and without the ELB constraint.

For the equilibrium nominal yields shown in the top-left panel of Figure 2, three features are

worth highlighting. The first feature is that for all maturities, nominal yields decrease with the

discount rate β. The second feature is that the longer the maturity is, the less sensitive nominal

9We use this terminology for conciseness. To avoid any confusion, we note that, within our rational ex-
pectations framework, this usage coincides with, for example, Jurado, Ludvigson, and Ng (2015) who define
“uncertainty” as the conditional volatility of the purely unforecastable component of the future value of a time
series.
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Figure 2: Equilibrium Term Structure—Power Utility—
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*Solid lines indicate results from the model with the ELB constraint, and dashed lines indicate results from the model
without the ELB constraint. The solid vertical line indicates the threshold state where the ELB binds.

yields are to changes in β, reflecting the natural consequence of stationarity that is built into

the model; In other words, the term structure of yield volatility is downward sloping. These two

features imply a third feature that the slope of the nominal yield curve is countercyclical: in

a boom when the discount rate is below its steady state, the nominal yield curve is downward

sloping with respect to maturity (as opposed to β).10 In a recession when the discount rate is

above its steady state, it is upward sloping. All of these features are well-documented features

of U.S. Treasury yield data.11

The ELB constraint affects yield dynamics for all maturities. Not surprisingly, shorter-

maturity yields are more affected by the presence of the ELB than longer-maturity yields. Notice

that, even when a longer-maturity yield is not constrained at the ELB, it can be influenced by

the ELB constraint if the shorter-maturity yield is constrained or is expected to be constrained

at the ELB. For example, the 5-year yield is above the ELB at the highest discount rate shown

in the figure. However, at high realizations of β the 5-year yield is somewhat higher in the

model with the ELB constraint than in the model without the ELB, reflecting the fact that the

10In other words, the level of yields are decreasing (increasing) with maturity for any ln(β/β̄) ≥ 0(< 0).
11To be precise, although the slope of the yield curve in the data is countercyclical, the slope is not as downward

sloping in the data as in the model in booms.
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short-rate in the model with the ELB does not fall as much as it would in the model without

the ELB.

The top-right panel of Figure 2 plots nominal term premiums. Here, we highlight three

features. First, nominal term premiums are negative regardless of the level of the discount

rate for both models with and without the ELB and for all maturities. Second, for any given

discount rate, the absolute size of term premiums increases with maturity. Third, while nominal

term premiums are virtually constant in the model without the ELB constraint, they are state-

dependent (or time-varying) in the model with the ELB constraint.

The nature of state-dependency in term premiums depends on maturity. For shorter ma-

turities, nominal term premiums exhibit an interesting non-monotonicity. As the discount rate

increases, term premiums decline away from the ELB and become most negative around the

state where the economy enters into or exits from the ELB state. At the ELB, term premiums

increase in response to a further increase in the discount rate and eventually reach zero. Note

that the ELB constraint affects term premiums even when the policy rate is away from the

ELB because it binds stochastically in our model. For the region shown in the figure, term

premiums for longer maturities decline monotonically as the discount rate increase, but would

exhibit a similar pattern if we were to include a state space larger than the one shown in the

figure. Interestingly, even when the discount rate is low and the policy rate is far above the ELB

constraint, long-maturity term premiums in the model with the ELB are different from those in

the model without the ELB.

The nonlinearities in yields and term premiums observed in the model with the ELB con-

straint imply state-dependence in their uncertainties of yields and term premiums. Naturally,

yield uncertainty is on average lower while the policy rate is at the ELB than when it is not, as

shown in the bottom-left panel of Figure 2. Meanwhile, the state-dependence of term premium

uncertainty is quite different. For shorter maturities, term premium uncertainty increases as

the discount rate increases from the steady state, but starts declining when the discount rate is

sufficiently high and the policy rate is expected to be at the ELB for a long period of time. That

is, term premium uncertainty peaks when the short rate is currently at the ELB but is expected

to be positive in the near future. For longer maturities, uncertainty peaks around the discount

rate where the ELB starts binding. In contrast, yield uncertainty is essentially constant and

term premium uncertainty is virtually zero in the model without the ELB, reflecting the near

linearity of decision rules for yields and term premiums, as shown by the dashed lines.

3.1.1 Mechanism

To understand the force behind the dynamics of equilibrium term premiums just described, it

is useful to decompose term premiums into their macroeconomic determinants. By taking the

first-order Taylor expansion of decision rules around an arbitrary β = β̂, the 2-period nominal
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term premium can be written as:

tp
(2)
t (β̂) ≡ R(2)

t −R
(2)Q
t ≈ 1

2
Covt(mt+1, rt+1)

∝ −Covt(∆ct+1, rt+1)− Covt(πt+1, rt+1)

= −
∑

x∈{∆c,π}

σx(β̂)︸ ︷︷ ︸
macro

uncertainty

× σr(β̂)× ρx,r(β̂)︸ ︷︷ ︸
interest-rate

sensitivity

(15)

where lower case variables (m, ∆c, r, π) correspond to the natural logarithms of the upper case

counterparts, σx and ρx,y denote the 1-period ahead conditional standard deviation of variable

x and conditional correlation of variable x and y, respectively.12

This expression decomposes term premiums into two components—macroeconomic uncer-

tainty and the sensitivity of interest rates to macroeconomic fluctuations.13 The sensitivity of

interest rates to macroeconomic fluctuations can further be decomposed into interest-rate un-

certainty and the correlation between interest rates and a macro variable (consumption growth

or inflation).

According to this decomposition, the sign of the term premium is determined by the cor-

relation between the policy rate and inflation/consumption growth. As shown in the bottom

panels of Figure 3, both correlations are positive for any discount rate in both models with and

without the ELB constraint.14 As a result, the term premium is negative for any discount rate

in both models with and without the ELB constraint.

The negative term premium can also be understood intuitively through the risk exposure

of bonds. Suppose we expect a positive shock to β next period. A positive β shock implies a

decrease in consumption growth and inflation next period. According to our monetary policy

rule, the expected decline in consumption and inflation means that the short rate is expected

to fall, or equivalently, the two-period bond price next period is expected to rise. Thus, the

two-period bond price next period is expected to rise when consumption is expected to fall,

implying that the two-period bond works as a hedge and the term premium must be negative.

We can also understand the state-dependency of nominal term premiums through this de-

composition by analyzing how macroeconomic uncertainty and the sensitivity of interest rates

to macroeconomic fluctuations vary with the underlying shock β. As shown in the top left

12The first relation follows from the normality of the logarithm of the decision rules, implied by the log-linear
approximation. Despite the ELB constraint that produces a kink in the policy rate decision rule, we could think
of approximating it with a polynomial of arbitrary order (the Weierstrass Theorem). In fact, popular numerical
solution techniques such as projection methods solve for the equilibrium in this way.

13Although we believe this decomposition is intuitive, alternatives are certainly conceivable. For instance, as
common in the asset pricing literature, we could decompose the term premium into “risk price” and “risk exposure
of bonds”. One case in which such a decomposition may be suitable is where one assumes an important role of
time-varying preference parameters. However, since our stylized model features log preferences, the price of risk,
as defined by the volatility of the real stochastic discount factor, would simply coincide with consumption growth
uncertainty.

14Note that the conditional second moments of consumption and consumption growth one-period ahead coin-
cide.
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Figure 3: Conditional Volatilities and Correlations of Macroeconomic Variables
—Power Utility—
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*Solid lines indicate either 1-quarter ahead standard deviation (‘uncertainty’) or correlation conditional on β of the respective
variables for the model with the ELB constraint, and dashed lines indicate those for the model without the ELB constraint.
The solid vertical line indicates the threshold state where the ELB binds.

and middle panels of Figure 3, two ingredients of macroeconomic uncertainty—consumption

(growth) and inflation uncertainties—do not depend on the level of β as along as the policy rate

is sufficiently above zero. However, when the policy rate is near or at the ELB, consumption

(growth) and inflation uncertainties increase with β, as the policy rate cannot be adjusted to

mitigate the effects of shocks. Thus, macro-uncertainty components of nominal term premiums

increase near and at the ELB.15

On the other hand, the sensitivity of interest rates to macro fluctuations decreases near and

at the ELB, as both interest-rate uncertainty and the correlation between the interest rate and

macro variables decrease—as shown in the top-right and bottom panels of Figure 3. As a result,

the reduction in the sensitivity of interest rates to macro fluctuations near and at the ELB acts

as a force that reduces the absolute size of nominal term premiums.

Whether nominal term premiums increase or decrease at and near the ELB thus depends

on which of the two conflicting forces—an increase in macro uncertainty versus a decrease in

15Plante, Richter, and Throckmorton (2014) point out the increased macro uncertainty at and near the ELB
and use this feature of the model to explain the negative correlation between macroeconomic uncertainty and real
GDP growth in the data. However, they do not analyze asset-pricing implications of time-varying volatilities.
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interest-rate sensitivity—dominates. In the stylized model with power utility, the amplifying

effect of higher macro uncertainty dominates the compressing effect of lower interest-rate sensi-

tivity near the ELB, and the size of the nominal term premiums increases for a certain range

of β. However, for a sufficiently large β, the compressing effect dominates the amplifying effect,

and the size of the nominal term premiums decreases and approaches zero.16

The forces that shape term premium dynamics of longer maturities are more complicated

than those of 2-period maturities. Yet, the basic tension is similar. As discussed in detail

in Appendix C, the nominal term premium for longer maturities is given approximately by the

product of macro uncertainty as well as the sensitivity of longer-term yields to macro fluctuations.

Since the ELB is typically not a binding constraint for longer-term yields, the ELB constraint

reduces the sensitivity of longer-term yields by less than the sensitivity of short rates. For the

5-year term premium shown in the bottom-left panel of Figure 2, the compressing effect of a

reduction in the yield sensitivity is dominated by the amplifying effect of an increase in macro

uncertainty, and the size of the term premium is higher at the ELB than away from the ELB.

Only when the shock size is sufficiently large does the former effect dominate the latter and the

size of the term premium declines.

3.2 Stylized Model with Epstein-Zin Preferences

One feature of the term structure model with power utility is that it generates very small

(in absolute terms) term premiums. The literature on equilibrium term structure models has

demonstrated that the introduction of EZ preferences can magnify the size of term premiums.17

Accordingly, we now analyze the implications of EZ preferences on macro variables, yields and

term premiums in the model with the ELB constraint.

Figure 4 presents the decision rules for consumption, inflation, and the policy rate, and the

real rate from the stylized model with EZ preferences with γ = 4. Solid and dashed blue lines are

for models with and without the ELB constraint. The thin light blue lines are the decision rules

from the model with power utility shown in Figure 1. According to the figure, the decision rules

in the model with EZ preferences are similar to those in the model with power utility when the

policy rate is above the ELB constraint. However, the difference between these two economies

can be noticeable when the policy rate is constrained. In particular, consumption and inflation

16Note this clear tension between macro uncertainty and interest-rate sensitivity depends somewhat on our
assumption that the stylized model contains only a “demand” shock. Although the literature largely agrees
such a shock is key in accounting for the recent ELB episode in the U.S., consumption and inflation near and
at the ELB will respond differently to a “supply” shock. For instance, consider an increase in TFP which
boosts consumption but also sends the economy towards the ELB as monetary policy accommodates the ensuing
deflationary pressure. As the economy approaches the ELB, the increase in consumption is curbed as limited
monetary policy accommodation leads to a rise in real rates. This can end up reducing consumption uncertainty.
However, it is unclear if such a mechanism, which implies higher productivity becoming contractionary at the
ELB, is empirically relevant. We discuss the implication of the model with both discount rate and TFP shocks
in Section 4.

17Piazzesi and Schneider (2007) highlighted this point in an early contribution. See also references in the
literature review.
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Figure 4: Decision Rules for Macroeconomic Variables
—Epstein-Zin Preferences—
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*Solid blue lines indicate decision rules of the model with the ELB constraint, and dashed blue lines indicate decision rules
of the model without the ELB constraint. For reference, the light blue lines indicate decision rules of the model with the
ELB constraint under power utility. The solid vertical line indicates the threshold state where the ELB binds.

are lower with EZ preferences than with power utility, and their differences increase with the

discount rate β.

The responses of nominal yields and their uncertainty in the model with EZ preferences—

shown in top-left and bottom-left panels in Figure 5—are qualitatively similar to those in the

model with power utility—shown in top-left and bottom-left panels in Figure 2. As long as the

ELB constraint is not binding, nominal yields decrease with β for all maturities and longer-

maturity yields are less sensitive to β than shorter-maturity yields. For all maturities, nomi-

nal yield uncertainty is not state-dependent in the model without the ELB, while it is state-

dependent in the model with the ELB. Nominal yields under EZ preferences are qualitatively

similar to those under power utility. However, there are non-trivial differences due to the dif-

ferences in term premiums between the two preference specifications, a topic we shall turn to

now.

The top-right panel in Figure 5 shows the term premium dynamics in the model with EZ

preferences. One important difference between EZ preferences and power utility is that the

absolute size of term premiums is substantially larger under EZ preferences than under power
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Figure 5: Equilibrium Term Structure—Epstein-Zin Preferences—
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*Solid lines indicate results of the model with the ELB constraint, and dashed lines indicate results of the model without
the ELB constraint. The solid vertical line indicates the threshold state where the ELB binds.

utility. Focusing our attention to the 5-year maturity in the model with the ELB, the term

premium is -22 basis points at the steady state under EZ preferences, versus -4 basis points

under power utility, as shown in the top-right panel of Figure 5. At the highest discount rate

shown in the figure where the policy rate is constrained at the ELB, the term premium is -20

basis points at the steady state under EZ preferences, versus -4.7 basis points under power

utility. As discussed in Section 4, the average 5-year term premium estimates at the ELB are

about 40 basis points. So, the amplification in the size of term premiums due to EZ preferences

is non-trivial.

Qualitatively, the behavior of term premiums under EZ preferences share many properties

with those under power utility. With or without the ELB constraint, nominal term premiums

are negative across states and maturities and the degree of negativity increases with maturity

at any given state.18 While term premiums are essentially constant without the ELB, they

18We recognize that the negativity result depends on our choice of calibration, in particular the EIS (1/χC).
In our exercise, term premiums become positive if the EIS is sufficiently greater than 1, consistent with the claim
by Albuquerque, Eichenbaum, Luo, and Rebelo (2015) that discount rate shocks combined with EZ preferences
can generate positive term premiums if the EIS is larger than one. However, even in a calibration with positive
term premiums, the key result of our paper—the ELB constraint creates state-dependency in the dynamics of
term premiums—survives. We also note that our choice of EIS=0.5 is closer to the substantial empirical evidence
documenting a very small EIS. The mechanism that generates positive term premiums with EIS> 1 is quite

20



are state-dependent due to the ELB constraint. For shorter maturities, term premiums in the

model with EZ preferences are non-monotonic as in the model with power utility, albeit less

pronounced. One key difference shows up in the 5-year maturity; while the term premiums are

more negative at the ELB than above the ELB under power utility, they are less negative under

EZ preferences.

According to the bottom-right panel, the conditional volatilities of term premiums for all

maturities peak when the policy rate is currently at the ELB, but is expected to be above the

ELB in the near future. For shorter maturities, this feature of the peak is consistent with that

under power utility. The peak for longer-maturity bonds occur at a larger discount rate—where

the expected duration until liftoff is longer— than that for shorter maturities. As in the model

with power utility, these dynamics of term premium uncertainty are distinct from those of yield

uncertainty, particularly near the entry to and exit from the ELB.

We can understand the effects of EZ preferences on term premiums by decomposing them

into their macroeconomic determinants, similar to what we did for the case of power utility. The

2-quarter term premium under EZ preferences can be written as:

tp
(2)
t (β̂) ≈ 1

2
Covt(mt+1, rt+1)

∝ −Covt(∆ct+1, rt+1)− Covt(πt+1, rt+1)− Covt(ṽt+1, rt+1)

= −
∑

x∈{∆c,π}

σx(β̂)σr(β̂)ρx,r(β̂) − σṽ(β̂)× σr(β̂)× ρṽ,r(β̂)︸ ︷︷ ︸
extra term

with EZ preferences

(16)

where ṽt denotes the continuation value relative to its risk-adjustment.19

Comparing (16) with (15) we observe that EZ preferences affects the 2-quarter term premium

through the additional term σṽσrρṽ,r, where following previous notation, σṽ is the uncertainty

of ṽt, and ρṽ,r is the conditional correlation between ṽt and the nominal short-rate.

To understand the behavior of this additional term, it is useful to investigate the value

function of the model. The value function—shown by the solid blue line in the left panel of

Figure 6—decreases with the discount rate. The negative relationship between the discount rate

and the value implies a positive correlation between the policy rate and the continuation value

(ρṽ,r ≥ 0). Perhaps somewhat surprisingly, the value function is relatively linear, regardless of

whether the economy is above or at the ELB. This near linearity is in stark contrast to the

nonlinearity seen in the decision rules of consumption and inflation. The near linearity of the

value function implies that the conditional volatility of ṽt is relatively constant, as shown in the

middle panel of Figure 6.

The value function is relatively linear compared to other macro variables because it is not

only a function of the current state, but also a function of the states of the economy into the

different from ours. It is interesting and worth further investigation.
19The actual expression is ṽt ≡ ln [exp(ξVt+1)/Et [exp(ξVt+1)]] after lnVt+1 is substituted by its linear approx-

imation. We will occasionally refer to this term simply as “continuation value” for brevity.
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Figure 6: Value Function—Epstein-Zin Preferences—
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*Left panel: Value function. Middle and right panels: 1-quarter ahead standard deviation (‘uncertainty’) and 1-quarter
ahead correlation of the continuation value and the nominal short rate conditional on β. Note for all panels the solid lines
are results for the model with the ELB constraint, and the dashed lines are for the model without the ELB constraint,
respectively. The solid vertical line indicates the threshold state where the ELB binds.

infinite future. Given the low frequency at which the ELB binds and the short duration of the

ELB states in our stylized model, the effects of the ELB on the value function are small even

when the policy rate is currently constrained, making the value function relatively linear. The

absence of noticeable impacts of the ELB on the value function at the ELB just described is

consistent with the fact that the value function of the model with the ELB is virtually equivalent

to that of the model without the ELB, shown by the dashed red line lying on top of the blue

line in the left panel.

The positive correlation between the policy rate and the continuation value (ρṽ,r > 0) means

that the additional term in equation (16) is negative and that term premiums under EZ prefer-

ences is more negative than under power utility. That is, nominal bonds provide an additional

hedge against changes in the continuation value for EZ households. Quantitatively, the size of

this additional term is much larger than the size of the first term. As a result, the time-variation

in term premiums in the model with EZ preferences is mainly determined by the time-variation

in the additional term. The quantitative importance of this term would increase further with

the degree of risk aversion.

Since the volatility of the continuation value σṽ is nearly constant, the decomposition in (16)

tells us that, under EZ preferences, the reduction in the sensitivity of interest rates to macroe-

conomic fluctuations is the key driver of term premium dynamics near and at the ELB. Indeed,

as shown in the right panel of Figure 6, the correlation of the continuation value and the policy

rate declines towards zero as the discount rate increases, and policy rate uncertainty declines

similar to the case of power utility near and at the ELB (not shown). As a result, the non-

monotonicity of the decision rule for shorter maturities under power utility is less pronounced

under EZ preferences. For the 5-year maturity, the term premium increases as the discount rate

increases under EZ preferences.
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The implications of EZ preferences on the dynamics of n-period term premiums can be

understood by a similar decomposition: they are discussed in the Appendix.

4 Equilibrium Yield Curves in the Quantitative Model

We now turn to the analysis of a quantitative model that incorporates additional features into

the stylized models so as to better capture key features of U.S. data. Our analysis proceeds in

two steps. First, we calibrate the quantitative model to match some key features of consumption,

inflation, yield data and term premium estimates20 at and away from the ELB (this section).

The exercise offers a coherent interpretation of macro and term structure dynamics of the past

two decades including the recent U.S. ELB episode through the lens of our model. Second, we

examine how alternative monetary policy strategies affect the dynamics of yield curves and their

decomposition into the expected short-rate path and term premiums at the ELB (Section 5).

We start this section by discussing key features of nominal yields and term premium estimates

which we are interested in fitting our model to.21 We then explain how the additional features in

the quantitative model help match key features of macro variables and yield curves, and present

the parameter values chosen. Finally, the various results will be reported.

4.1 Nominal Yields and the Estimates of Term Premiums

The top-left panel of Figure 7 shows 3-month, 2-year, 5-year, and 10-year Treasury yields over the

last two decades, from Jaunary 1997 until September 2015.22 Nominal yields are procyclical.

They are higher during the economic booms preceding the 2001 recession and the 2007-2009

recession than during those recessions and the subsequent periods of sluggish recovery from

them. The slope of the yield curve is countercyclical. During recessions and their aftermath, the

difference between the short-rate and the 10-year rate is large, while it is small, or even negative,

during economic booms. Finally, the term structure of yield volatility is downward sloping. The

volatility of shorter-maturity yields is generally higher than that of longer-maturity yields.

The top-right, bottom-left, and bottom-right panels of Figure 7 show estimates of term pre-

miums for 2-year, 5-year, and 10-year bonds, respectively. Since term premiums are unobserved,

there are various estimates for them. We show two estimates in this figure. One is calculated

using 3-month T-bill forecasts from Blue chip surveys as a proxy for future short-rate expec-

tations and is shown by black lines. The other is based on a term structure model developed

by Priebsch (2013) and Kim and Priebsch (2013), which modifies the widely-used no-arbitrage

20Term premiums are unobserved, and must be estimated using either model- or survey-based expectations.
21We defer details of other U.S. data used for our calibration, including consumption and inflation data, to the

Appendix.
22See the Appendix for details of the data. The somewhat recent starting date is motivated by (i) empirical

evidence suggesting distinct changes in U.S. Treasury bond risk with respect to the aggregate stock market since
the late 1990s (Campbell, Sunderam, and Viceira (2013)) and (ii) the relative stabilization of trend inflation
around a similar timing (for example, Mertens (2015)). Restricting our analysis to this shorter period makes it
less susceptible to misspecification from structural breaks in the economy.
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Figure 7: Nominal Yields and Term Premium Estimates
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* For term premium estimates, survey-based estimates (black lines) are computed using 3-month T-bill forecasts from Blue
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2009 (roughly the start of the ELB period), and the shaded grey areas correspond to NBER recession periods. Data are
at a monthly frequency for yields and model-based term premium estimates, and roughly quarterly for the survey-based
estimates.

affine term structure model of Kim and Wright (2005) to incorporate the ELB constraint, and

is shown by blue lines.23 The model- and survey-based estimates broadly comove, though they

diverge at times.

Term premium estimates were positive, large and were generally increasing in maturity in

the early part of the sample. Throughout the sample, term premiums appear to be following

a secular downward trend amid significant volatility. In the most recent years—when the ELB

was a binding constraint—the 2-year and 5-year term premiums became increasingly negative.

The 10-year term premium, which remained positive throughout most of the sample period,

has become smaller, and have frequently been negative in the last several years. All told, both

23These models contain latent factors as drivers of term structure dynamics, which make them very flexible
and offer excellent fit to yield data. The estimates from Kim and Priebsch (2013) above the ELB are similar to
the estimates from the well-known Kim and Wright (2005) model.
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survey-based and model-based estimates were on average positive across maturities during the

pre-ELB era, while negative—particularly up to intermediate maturities—during the ELB era.

One criterion of success for previous equilibrium term structure models has been to generate

realistically large, and volatile term premiums for longer-maturity bonds observed during the

pre-ELB era.

4.2 Model Features Elaborated

As discussed in Section 2 and summarized in Table 1, the additional features of the quantitative

model, relative to the stylized models, are GHH utility, interest-rate smoothing in the policy

rate, and richer shock processes—the introduction of an AR(1) TFP process, tail risks and

stochastic volatility in both TFP and discount rate shocks.

We use GHH utility to help the model generate sufficiently large and volatile nominal term

premiums. As discussed in Guvenen (2009), the non-separability of consumption and labor and

the absence of wealth effects on labor supply in the GHH specification mitigate the dampening

effect of endogenous labor supply on risk prices by preventing labor to serve as an effective hedge

against consumption fluctuations.24

An interest-rate-smoothing term is introduced to the policy rule to make it empirically

plausible. Most estimates of the interest-rate feedback rule find large weight on the lagged

interest rate.25 The introduction of policy inertia is also important in generating ELB episodes

that are ceteris paribus longer, and thus more realistic.

We introduce an AR(1) TFP process and tails risk in TFP to make the nominal term

premium sufficiently positive on average while the ELB is not binding. A TFP shock generates

negative comovement in consumption growth and inflation. As we have seen earlier, discount

rate shocks, or other “demand” shocks, do not have this feature, and hence the term premiums

are negative in the model with demand shock only. The use of TFP shocks to generate positive

term premiums is common in existing studies of term structures of interest rates based on DSGE

models.26

We include tail risk in TFP because the presence of the ELB constraint puts an important

restriction on how much we can rely on normally distributed shocks alone to generate positive

term premiums away from the ELB. If we were to simply increase the standard deviation of

a (normal) TFP shock to increase the size of term premiums, then at some point positive

realizations of TFP will become likely to push the policy rate to the ELB by lowering inflation.

24The combination of GHH period utility with EZ preferences has been also used by a few papers such as
Guvenen (2009) and Blanco (2016). However, to the best of our knowledge this combination has not been used
for DSGE term structure models. It is also worth mentioning that this specification does not add any endogenous
state variables, which reduces computational burden; a particularly convenient feature for our application.

25See for example, Smets and Wouters (2007) and Gust, Herbst, Lopez-Salido, and Smith (2016) (especially
the 2012 version that uses a model closer to ours).

26See, for example, Andreasen (2012a,b), Van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez
(2012), Dew-Becker (2014), Hsu, Li, Palomino (2015), and Rudebusch and Swanson (2008, 2012). Note that some
recent papers such as Albuquerque, Eichenbaum, Luo, and Rebelo (2015) and Creal and Wu (2015), emphasize
the role of discount rate shocks in explaining asset pricing facts. See also our discussion in Section 3.2.
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In ELB episodes induced by TFP shocks, inflation is lower but output is higher at the ELB than

above the ELB, contrary to the fact that both inflation and output were low during the most

recent ELB episode in the U.S. 27 Meanwhile, a negative tail risk in TFP that would lead to higher

inflation and lower output can increase the negative correlation among consumption growth and

inflation and push up the term premium without making the ELB episodes counterfactual. We

believe that the assumption of negative tail risk in TFP is sensible, as we can tie it to the Great

Inflation episode of the 1970s, for instance.28

We further introduce stochastic volatility in the TFP process to generate plausible volatility

in term premiums while the policy rate is away from the ELB. The use of stochastic volatility

to amplify volatilities in term premiums is also common in the literature.29

Now we turn to the specification of the discount rate process. We introduce tail risk in the

discount rate shock as a device to push the policy rate to the ELB without making average term

premiums negative while the policy rate is away from the ELB. As described in the previous

section and as we will elaborate more in Section 6.1, the presence of demand shocks pushes

down term premiums substantially when the household has EZ preferences and is highly risk

averse. If the main driver to push the policy rate to the ELB is a normally distributed demand

shock with a high standard deviation, it is difficult to keep the term premium positive when the

policy rate is away from the ELB. With the use of tail risk in the discount rate shock, we can

maintain positive term premiums away from the ELB, while making both average inflation and

consumption lower at the ELB than away from the ELB.

Finally, stochastic volatility in the discount rate process is introduced to account for the

difference between the average levels of empirical term premium estimates away and at the

ELB. As discussed earlier, the term premium estimates are on average negative at the ELB.

By allowing the variance of the discount rate shock to increase in the face of the crisis shock

that pushes the policy rate to the ELB, we can temporarily weaken the negative correlation of

consumption and inflation, and thus make the term premiums negative, while at the ELB. Note

that our modelling choice in this dimension is consistent with recent empirical evidence showing

that economic uncertainty increases in recessions.

4.3 Parameter Values

Parameter values for the quantitative model are summarized in Table 3.

The scaled time discount rate (β̃ ≡ β̄ζ−χC ) is set to 1/1.00625, implying a steady state real

short rate of 2.5% (annualized).30 The deterministic trend growth rate of TFP, ζ, is 2 percent

27Another restriction is that the volatilities of other equilibrium objects in our model—such as consumption
and inflation—need to be consistent with those in the data.

28This argument is somewhat heuristic, as we focus on a sample period that does not include the Great Inflation
episode. However, it is unclear that strictly relying on observed disaster events during the short sample period
we consider is a more sensible approach to calibrate the model.

29See, for example, Andreasen (2012b), Kung (2015) and Hsu, Li, and Palomino (2015).
30To calibrate this parameter, we first choose ζ and χC (as below), and set β̄ to be consistent with our target

β̃.
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Table 3: Parameter Values for the Quantitative Model

Parameter Description Parameter Value

Household and Firm

β̃ Scaled time discount rate 1
1.00625

400(ζ − 1) (Annualized) deterministic trend growth in TFP 2.0
χC Inverse elasticity of intertemporal substitution 9
χN Inverse Frisch elasticity 1

3
α Risk aversion (= 1− (1− γ)/(1− χC)) -100
θ Elasticity of substitution among intermediate goods 6
ϕ Price adjustment cost 80
Monetary Policy
400(Π̄− 1) (Annualized) inflation target parameter 2.2
φπ Coefficient on inflation in the Taylor rule 5
φy Coefficient on the output gap in the Taylor rule 0.5
ρR Interest-rate smoothing in the Taylor rule 0.9
Discount Rate Process
ρβ AR(1) coefficient for the discount rate process 0.85
σ̄β The standard deviation of shocks to the discount rate process 0.0001

100
pβ Tail risk prob. for the discount rate 10−30

ϑβ Tail risk size for the discount rate 0.07
θub,β Stochastic volatility for the discount rate (upper bound) 1050
θcv,β Stochastic volatility for the discount rate (curvature) -2000
TFP Process
ρa AR(1) coefficient for the TFP process 0.93
σ̄a The standard deviation of shocks to the TFP process 0.1

100
pa Tail risk prob. for TFP 0.5

100
ϑa Tail risk size for TFP -0.006
θub,a Stochastic volatility for TFP (upper bound) 5
θcv,a Stochastic volatility for TFP (curvature) 90

(annualized), which is consistent with the average per capita consumption growth over the last

two decades.

The inverse Frisch elasticity χN , the inverse of the elasticity of intertemporal substitution

χC , and the coefficient of relative risk aversion α are set to 1/3, 9, and -100, respectively.31 They

are chosen so that macro and term structure moments away from the ELB are broadly in line

with those in the data. The value for χN is well in line with many macroeconomic studies.32

Our values for χC and α are similar to those used in other studies of the term structure using

DSGE models.33 The parameters governing the production side of the economy (θ = 6 and

ϕ = 80) are also standard.

Moving on to the parameters governing the monetary policy rule, the inflation-target pa-

rameter is set to 2.2 percent, so that the model generates the average inflation rate prior to the

31Here we use α ≡ 1− (1− γ)/(1− χC) as the measure of risk aversion for ease of comparison with previous
papers in the literature such as Rudebusch and Swanson (2012).

32Most studies report numbers around 0.25 to 0.5. For example, King and Rebelo (1999) uses 0.25.
33For studies that use a high χC (low IES), see Hall (1988), Campbell (2003) and Beeler and Campbell (2012).

Our choice for the value of risk aversion α is very similar to Rudebusch and Swanson (2012). The equilibrium
term structure literature typically uses a risk aversion parameter that is substantially larger than those used when
the DSGE model is used only to examine macroeconomic variables.
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beginning of the ELB policy in our sample. The coefficient on inflation is set to 5. This high

value allows the model to fit the relatively stable inflation since mid-1990s.34 The coefficient

on output and the interest-rate smoothing parameters are 1 and 0.9, which are in line with the

values used in the literature.

For parameters governing the TFP process, we choose the persistence parameter ρa to be

a high value of 0.93, in order to generate volatile longer-tem yields and large and volatile term

premiums away from the ELB. σ̄a, the conditional volatility at the steady state, is chosen to

match the volatility of consumption and inflation away from the ELB. We choose the size and

probability of the tail events (pa and ϑa) to be 0.5% and -0.006 such that it is a 6 standard

deviation negative shock occurring every 50 years on average. Stochastic volatility parameters

(θub,a, θcv,a) are chosen to generate nominal term premium volatility of a plausible magnitude

without severely affecting other moments away from the ELB. Note that θcv,a > 0 implies coun-

tercyclical uncertainty in TFP, which in turns implies countercyclical term premiums, features

that are widely accepted in the literature.35

Moving on to the parameters for the discount rate process, the persistence parameter ρβ is

set to 0.85, which implies an expected ELB duration of about 10 quarters. The size of the crisis

(ϑβ) is chosen to broadly capture the magnitude of average consumption and inflation as well

as their volatilities at the ELB. The probability of a crisis (pβ) is set to 10−30, an extremely

small value. We made this parameter choice because we find that even a tiny possibility of

a large increase in the discount rate reduces the average term premiums substantially below

zero while the policy rate is above the ELB (see Section 6.1 for more details). The extremely

low probability of a large discount rate shock makes our model closer to the perfect-foresight

model often used in the ELB literature in which the possibility of hitting the ELB is zero and

the liquidity trap episodes are completely unanticipated (Eggertsson and Woodford (2003) and

Christiano, Eichenbaum, and Rebelo (2011)).

We set the conditional volatility of β at the steady state, σ̄β, to be a very small number such

that the main drivers of economic dynamics away from the ELB are TFP shocks. This emphasis

on TFP shocks is consistent with other DSGE term structure studies in the literature. We set

the stochastic volatility parameters (θcv,β and θub,β) such that the discount rate volatility evolves

as if it follows a two-state Markov process, taking a negligible value in the “normal” state when

β is near its steady state value (the policy rate will be sufficiently away from the ELB in this

case) and a positive value in the “crisis” state when β is large (the policy rate will be at or

near the ELB in this case). The combination of σ̄β and θub,β determines the average volatility

34The estimate of this parameter in the 2012 version of Gust, Herbst, Lopez-Salido, and Smith (2016), whose
model is closer to ours, is also about 5.

35A convenient feature of our logistical specification of volatility (eqn. (11)) is that the conditional volatility
of TFP becomes exponentially small as TFP increases under this specification, making it unlikely that a large
increase in TFP pushes the policy rate to the ELB. As discussed earlier, a TFP-driven ELB episode in which
consumption is higher and inflation is lower than at the steady state is empirically uninteresting. Our specification
of the volatility is similar to an exponential function used in Hsu, Li, and Palomino (2015). Ours makes conditional
volatility bounded at the tails and is therefore better behaved numerically.
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of the discount rate at the ELB, which is set such that the 10-year nominal term premium is

on average slightly negative at the ELB, similar to the estimate of Kim and Priebsch (2013).36

To clarify the role of stochastic volatility in the discount rate, we also consider an alternative

calibration without stochastic volatility in Appendix E.

4.4 Results

4.4.1 Moments above and at the ELB

We now describe the ability of our model to fit the data by looking at selected statistical moments

of (detrended) consumption, inflation and the term structure of interest rates both above and

at the ELB. The moments of interest are averages and standard deviations for “above the ELB”

and “at the ELB” samples.37 To compute moments for the data counterparts, we define the

ELB period as starting from 2009:Q1, as the effective federal funds rate hit the ELB in the

middle of December 2008.

Table 4 presents the moments of consumption, inflation, and the term structure of interest

rates from the model and the data, while Table 5 presents the moments of the term premium

estimates based on Kim and Priebsch (2013) and the term premiums from our model. In each

table, the first two columns are for the moments when the policy rate is above the ELB and the

next two columns are for the moments when the policy rate is at the ELB. The final column

shows the moments from a version of our quantitative model without the ELB constraint when

the policy rate is below the ELB.

As discussed earlier, our ELB episodes are driven by a large increase in the discount rate

shock. This shock is also associated with an increase in the volatility of the discount rate. As a

result, the difference between the moments above the ELB and those at the ELB are not only

driven by whether the ELB constraint is binding or not, but also by the fact that the moments

at the ELB are computed conditional on the economy being hit by a crisis shock, as well as

by the difference in the degree of uncertainty regarding the future path of the discount rate.

The comparison of this column with the fourth column helps us isolate the effects of the ELB

constraint on the model’s moments from the effects associated with the large crisis shock in the

36Since our model does not include capital, a shock to the discount rate may, under some additional assump-
tions, also be interpreted as a shock to demand for particularly safe and liquid assets such as short-term Treasuries,
as suggested by Fisher (2015). This safety demand, in turn, could be influenced by some of the balance sheet
policies implemented during the crisis period, and may be an important driver of term premiums. Our calibration
strategy attempts to capture such dynamics as well, albeit in a reduced form manner.

37The model implied moments at the ELB is computed by averaging over many simulated ELB episodes. In
particular, the model is simulated 500 times with the tail shock in the discount rate, and averaged over all episodes
where the shock actually took the economy to the ELB. The initial values of the state variables at the time of the
shock are drawn from their stationary distributions. A more natural way to compute moments at the ELB is to
simply simulate the model and compute moments of interest conditional on the economy being at the ELB, i.e.
E[Xt | Rt = 1], where Xt is the equilibrium variable of interest. We do not take this approach for the following two
reasons. First, since the ELB binds only with an extremely small probability in our model, it is computationally
infeasible to implement this approach. Second, with some probability, a large positive TFP shock(s) can also
take the economy to the ELB. As discussed earlier, a TFP-driven liquidity trap is an empirically uninteresting
situation and our approach focuses on the average dynamics of demand-driven ELB episodes.
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Table 4: Macro and Yield Curve Moments at and above the ELB
—Model versus Data—

Above the ELB At the ELB Below the ELB

Data Model Data Model Model

w/o ELB

A. Macro Variables (Mean)

Consumption† — — -2.02 -1.45 -1.06
Inflation 2.13 2.09 1.45 1.15 1.24

B. Macro Variables (Volatility)

Consumption 2.93 2.20 4.18 8.04 6.76
Inflation 0.87 0.72 0.83 0.93 0.73

C. Nominal Yields (Mean)

3-month 3.44 3.92 0.08 0.13 -1.42
2-year 4.01 4.01 0.54 0.40 -0.66
5-year 4.49 4.21 1.57 1.40 0.94
10-year 5.10 4.43 2.79 2.51 2.28

D. Nominal Yields (Volatility)

3-month 1.71 1.77 0.06 0.00 1.04
2-year 1.57 1.69 0.25 0.34 1.23
5-year 1.14 1.38 0.55 0.56 0.99
10-year 0.79 0.95 0.74 0.42 0.63

*This table contains summary statistics for selected macroeconomic and term structure variables comparing data versus
model counterparts. The sample period is 1997:Q1-2008:Q4 for data above the ELB, and 2009:Q1-2015:Q3 for data at the
ELB.
†The “mean” reported for consumption at/below the ELB is the average deviation from either the trend (for data) or the
model implied consumption away from the ELB (for the model) in percentage points. We do not report statistics away
from the ELB as the model implied average deviation is zero by construction.

discount rate per se.

Moments above the ELB: As shown in the first two columns of the top two panels of Table

4, the average inflation as well as volatilities of consumption and inflation from our model are

in line with those in the data while the policy rate is above the ELB. According to the first

column of Panels C and D, yields are upward sloping and the term structure of yield volatility

is downward sloping on average when the policy rate is above the ELB. Our model successfully

replicates these patterns, as shown in the second column of panels C and D. The moments of the

yield curve from our model are not only qualitatively consistent with, but also quantitatively

close to, those from the data.

According to the first column of the top panel of Table 5, the empirical estimates of term

premiums are positive for all maturities and increases with maturity. According to the first

column of panel B, the volatility of the empirical estimates of term premiums increase with
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Table 5: Term Premium Moments at and above the ELB
—Model versus Estimates—

Above the ELB At the ELB Below the ELB

Estimates Model Estimates Model Model

w/o ELB

A. Nominal Term Premium(Mean)

2-year 0.11 0.10 -0.22 -0.04 -0.13
5-year 0.26 0.32 -0.39 -0.17 -0.24
10-year 0.61 0.58 -0.10 -0.05 -0.09

B. Nominal Term Premium (Volatility)

2-year 0.23 0.06 0.09 0.04 0.03
5-year 0.36 0.15 0.28 0.05 0.07
10-year 0.35 0.18 0.41 0.07 0.09

*This table contains summary statistics for selected term premiums comparing estimates versus model counterparts. The
sample period is 1997:Q1-2008:Q4 for estimates above the ELB, and 2009:Q1-2015:Q3 for estimates at the ELB. All variables
are in annualized percentage terms.

maturity. Term premiums from our model are consistent with these patterns. Quantitatively,

the average level of term premiums from our model is close to the empirical counterparts, while

the volatility of term premiums from our model is somewhat lower than the empirical estimates.

However, our model’s term premiums are quantitatively reasonable given that any estimates of

term premiums are surrounded by a nontrivial amount of uncertainty.

Moments at the ELB: We turn to the comparison of our model with the data at the ELB.

According to the first and third columns of the top panel of Table 4, consumption is 2 percent

lower and inflation is about 70 basis points lower on average at the ELB than above the ELB in

the data. These declines in consumption and inflation observed at the ELB are broadly in line

with those in our model. According to the first and third columns of panel B, the volatility of

consumption is higher at the ELB than away from the ELB, while the volatility of inflation at

the ELB is similar to that above the ELB. In our model, consumption volatility is substantially

higher at the ELB than above the ELB and inflation volatility is moderately higher at the ELB

than above the ELB. Consumption volatility from our model is about twice as large as that from

the data and inflation volatility from our model is only 10 basis point above that of the data.

The comparison of the fourth column with the fifth (last) column where we show the moments

from the model without the ELB shows that the existence of the ELB makes the recession caused

by the discount rate shock more severe.

According to the first and third column of panel C of Table 4, nominal yields are lower

across maturities and the yield curve is steeper on average at the ELB than above the ELB in

the data. According to the first and third column of panel D, the volatilities of nominal yields
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are lower at the ELB than above the ELB across maturities in the data. Also, while the nominal

yield volatility declines with maturity when the policy rate is above the ELB, the nominal yield

volatility increases with maturity when the policy rate is at the ELB. Our model captures all of

these features reasonably well.

Comparison of the moments of nominal yields from our model with those from our model

without the ELB constraint—shown in the last column—shows that nominal yields are on aver-

age higher in the presence of the ELB constraint than in the absence of it across all maturities.

Also, this comparison shows that the upward slope of the volatility term structure is a conse-

quence of the ELB. In the absence of the ELB constraint, the volatility decreases with maturity

during a severe recession in which the policy rate is negative.

As discussed earlier and as shown in the third column of panel A of Table 5, existing estimates

of nominal term premiums are negative on average while the policy rate is constrained at the

ELB. Our model similarly generates term premiums that are negative at the ELB (seen in the

fourth column of panel A).

Term premiums are largely a product of two forces in our quantitative model. The first force

is our assumption that the discount rate volatility increases with the size of the demand shock as

discussed in Section 4.2. With elevated demand uncertainty, correlation between consumption

growth and inflation becomes less negative and, as a result, term premiums are reduced. In

addition, bonds become a better hedge against future real uncertainty (Appendix F). This force

is present regardless of whether there is an ELB constraint in the model or not. Indeed, the last

column of panel A shows that term premiums become negative in the face of the crisis shock

even in the model without the ELB constraint.

The second force is the ELB constraint. As discussed in detail in Section 3, the ELB

constraint can either increase or decrease the size of term premiums depending on how much

the ELB constraint decreases the sensitivity of interest rates to macroeconomic fluctuations and

how much it increases macroeconomic uncertainty. According to the fourth and last columns

of panel A, the compressing effect of the ELB associated with reduced sensitivity of interest

rates dominates the amplifying effect associated with increased macroeconomic uncertainty and

the ELB constraint reduces the absolute size of term premiums. In our model, in which term

premiums are negative at the ELB, the reduction in the absolute size of term premiums means

an increase in term premiums.

In an alternative calibration discussed in Appendix E, we assume the conditional volatility

of the discount rate shock is homoskedastic and fixed at its level away from the ELB. Since

the volatility of the shock is assumed to be negligible away from the ELB, this specification

amounts to one in which TFP is essentially the only priced risk. This allows us to study an

economy in which term premiums are positive at the ELB, and also isolate the effect of the

ELB on the transmission of TFP shocks. In this economy, the reduction in the absolute size of

term premiums due to the compression effect of the ELB means a decrease in term premiums.

However, quantitatively, this effect appears to be masked by the effect of the ELB on term
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premiums through the discount rate shock.

We close our discussion of moments by briefly discussing the volatility of term premium

dynamics at the ELB. As shown in the first and third column of panel B of Table 5, the

volatilities of the empirical estimates of term premiums up to 5-year maturities are lower at

the ELB than above the ELB, albeit by a small amount for longer maturities. Our model is

consistent with this feature that the ELB constraint reduces the volatilities of term premiums,

though the size of the term premium volatility at the ELB is somewhat lower in our model

than the empirical estimates. The last column of this panel shows that the volatilities of term

premiums are small in a severe recession even in the absence of the ELB constraint.

4.4.2 Dynamics

We now describe the dynamics of our model in response to a crisis shock that sends the policy

rate to the ELB to gain further insights on how the ELB constraint affects the term structure

of interest rates. We are particularly interested in obtaining insights on how the term structure

behaves when the economy is near the entry to or exit from the ELB state, insights that cannot

be gleaned from comparing moments above and at the ELB.

Figure 8 plots the median responses of macroeconomic and nominal term structure variables

to a positive discount rate tail shock. For each variable, solid and dashed blue lines are for the

models with and without the ELB constraint.

As shown in the top left panel of Figure 8, in response to a large increase in the discount rate

(second row, right, blue line), the nominal short rate falls from the steady state level. Due to the

interest-rate smoothing in the policy rule, it takes some time—two quarters—for the short rate

to reach the ELB constraint. Consumption (second row, left) and inflation (second row, center)

initially drop by 7 percent and 3 percentage points, respectively. As the crisis shock fades,

consumption and inflation gradually return to their steady state. The recovery is supported by

an accommodative monetary policy wherein the central bank keeps the policy rate lower than its

steady state level even after consumption and inflation reach their steady-state values. Indeed,

the real short rate (top right) drops to negative territory and stays there for a prolonged period

even after policy rate liftoff. The liftoff occurs at quarter 12. As explained in Section 3, the

declines in consumption and inflation are larger in the presence of the ELB constraint than in

the absence of it.38

The responses of select nominal yields are shown in the third row.39 In the wake of the

38Compared to the model without the ELB, annualized inflation as well as the drop in consumption in the
model with the ELB are about 0.2% and 0.5% lower on average, over the first four quarters after the crisis
shock hits. Although there are very few studies that rigorously quantify the effect of the ELB on macroeconomic
variables, Gust, Herbst, Lopez-Salido, and Smith (2016) offers one such analysis. According to the mean estimates
of GHLSS, inflation and consumption were 0.3% and 1% lower on average, respectively, over the 2008-2012 period
due to the ELB. Our estimates of the effect of the ELB appear lower. However, note the estimates from our
impulse response exercise cannot be directly compared with those from GHLSS, which takes into account the
subsequent shocks that are more consistent with the data. Also, GHLSS reports fairly wide confidence intervals
around the effects, which encompasses a possibility of almost no effect of the ELB on consumption.

39We present results up to 5 years, which are most interesting in our model. Given the expected duration of
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Figure 8: Impulse Responses (to β shock)
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*We plot median[Xt+h | εdt = +ϑβ , X̄] for a given variable Xt. The solid blue lines are the responses from the model with
the ELB constraint, and the dashed blue lines are the responses from the model without the ELB constraint. The vertical
grey bars indicate the timing of liftoff from the ELB. The black line in the second row right panel indicates the path of
volatility σβ,t.
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crisis, nominal yields decline for all maturities. The 2-quarter yield is at the ELB until quarter

10, the 2-year, or 8-quarter yield stays below 25 basis point until quarter 4, and the 5-year, or

20-quarter yield gradually increases from about 1 percent at quarter 1 throughout the horizon.

Note that, while the 5-year yield is comfortably above the ELB throughout the horizon, it is still

affected by the presence of the ELB constraint; were it not for the ELB constraint, the 5-year

yield would be lower than otherwise, as shown in the dashed line (third row, right).

Turning to nominal term premium dynamics, we first note that due to our specification of

time-varying volatility in the discount rate, the tail shock increases its own conditional volatility

in the initial period, which stays constant at a high level throughout and even a bit after the

period when the economy is at the ELB (second row, right, black line). The hightened volatility

of the discount rate induces negative term premium for an extended period of time after the tail

shock hits, as nominal bonds become more attractive as hedging instruments when uncertainty

in “demand” increases. This can be seen from the responses of term premiums in the economy

without the ELB (bottom row, dashed blue lines). However, according to the bottom-left panel,

the 2-quarter term premium rises to zero at period 2 and stays there during most of the time

when the policy rate is constrained at the ELB. The near-zero term premium arises because

the sensitivity of the policy rate is minimal when the rate is at the ELB and is expected to

remain at the ELB for a while, as seen in the stylized model. When liftoff approaches, the

term premium starts falling back to normal and the decline continues until the policy rate is

sufficiently above the ELB. During this period, the policy rate can react to macroeconomic

risk and hence bonds become a better hedging instrument. Up to this point, the dynamics are

consistent with that for the stylized models in Section 3. Later on, when the discount rate is

sufficiently close to its steady state, the discount rate volatility declines and the effect of TFP

shocks starts to dominate. As a result, later in the recovery, nominal bonds become riskier and

the term premium increases.40

The 2-year term premium, shown in the middle panel, shows a qualitatively similar response,

but due to its longer maturity, the term premium starts to decrease at an even earlier stage of

the ELB period. The 5-year term premium (right panel) remains relatively stable at a negative

value after the initial shock as longer-term forward rates are less affected by the ELB given

its expected duration. We revisit these results in the context of the recent U.S. experience in

Section 6.2.

During the periods in which the policy rate is at the ELB, term premiums in the model

with the ELB constraint are more variable than they would be without the ELB constraint. In

the model without the ELB, there are no compressing effects of the ELB constraint on term

premiums during the periods of crisis. As a result, term premiums are negative and do not move

much in the crisis period. In the model with the ELB constraint, the compressing effects are

the ELB in our model, it will not have much bite at the 10-year horizon.
40We could reparameterize the discount rate volatility function to make the decline in discount rate volatility

and the increase in term premiums later in the recovery smoother (see Section 4.3). Our calibration, however,
provides a cleaner analysis of endogenous uncertainty due to the ELB.
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strong initially when the liftoff is not imminent. As time rolls on and the liftoff approaches, the

compressing effects of the ELB constraint slowly dissipate and term premiums decline, making

term premiums more volatile than they would otherwise be in the absence of the ELB constraint.

5 Monetary Policy and Equilibrium Yield Curves at the ELB

Our general equilibrium term structure model is a natural framework to study how monetary

policy affects the dynamics of yields and term premiums in a coherent manner. In this section,

we focus on how the central bank’s announcement to keep the policy rate at the ELB for longer

than previously expected (or, accommodative “forward guidance”) affects the dynamics of the

term structure of interest rates in our quantitative model.

We analyze the effects of the announcement to keep the policy rate at the ELB for longer

by examining the effects of adopting a policy rule in which the timing of liftoff depends on

the cumulative shortfalls in inflation and output more strongly than our baseline rule. The

alternative policy rule is given by equation (8) and is called the “Reifschneider-Williams rule”

(RW rule) in the macro literature due to Reifschneider and Williams (2000).41 In the model

without the ELB constraint, this rule is identical to our baseline policy rule. The parameter φRW

measures the additional degree of policy accommodation. We set φRW = 0.5 in our experiment,

a value taken from Reifschneider and Roberts (2006).

Figure 9 shows the dynamics of our model under the two rules. The responses of the model’s

key variables under the baseline rule and the RW rule are shown in dashed and solid blue lines,

respectively.

As shown in the top-left panel of Figure 9, the policy rate is kept at the ELB for longer—

by about 3 quarters—under the RW rule than under the baseline rule. With the nominal

rate staying at the ELB for longer, the path of real rates is lower, as shown in the top-right

panel. Since households are forward-looking, the lower path of future real rates stimulates

consumption (second-row left). An increase in consumption is associated with an increase in

output, which raises marginal costs of production and thus inflation (second row center). The

mechanism through which the RW rule stimulates economic activities at the ELB is the same as

the mechanism though which the central bank stimulates economic activities at the ELB under

optimal commitment policy, and is well known in the macro literature.42

Consistent with the lower path of short-term nominal interest rates, the paths of other

41A number of recent papers on the effects of forward guidance (e.g. Campbell, Evans, Fisher, and Justiniano
(2012), Del Negro, Giannoni, and Patterson (2015)) model forward guidance as exogenous “news” shocks to the
policy rule. We prefer our formulation for two reasons. One is that the timing of liftoff and the evolution of the
policy rate thereafter are state-contingent under the RW rule, consistent with the data-dependent nature of the
policy decisions repeatedly emphasized by FOMC participants. The other is a computational advantage of our
formulation; modeling forward guidance about the policy rate path by news shocks adds many state variables to
an already computationally burdensome model, whereas the RW rule adds only one state variable (Jt−1).

42Classic references discussing optimal commitment policy at the ELB include Eggertsson and Woodford (2003)
and Adam and Billi (2006). Jung, Teranishi, and Watanabe (2005) and Nakov (2008) compare the performance
of the RW rule and optimal commitment policy.
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Figure 9: Effect of Accommodative “Forward Guidance” at the ELB
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*We plot median[Xt+h | εdt = +ϑβ , X̄] for a given variable Xt. The solid blue lines are the responses from the model under
the RW rule, and the dashed blue lines are the responses from the model under the Taylor rule with the ELB constraint.
The vertical grey bars indicate the timing of liftoff from the ELB. The black line in the second row right panel indicates
the path of volatility σβ,t.
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nominal yields are lower under the RW rule than under the baseline rule for all maturities.

Notice that, while the difference in the short-term nominal rate between these two policy rules

emerges well after the initial shock, the difference in longer-maturity yields shows up at the

onset of the crisis, reflecting the forward-looking nature of longer-maturity yields.

The panels in the last row of Figure 9 plot the effects of adopting the RW rule on nominal

term premiums. In contrast to the effects on yields and the expected path of future short rates,

nominal term premiums at the ELB are higher under the RW rule than under the baseline rule.

For shorter maturities, the difference is most pronounced around the time of liftoff. As discussed

in Section 3, the ELB constraint reduces the absolute size of term premiums at the time of the

crisis by reducing the sensitivity of interest rates to macroeconomic fluctuations. The RW rule

extends the period at which the policy rate is at the ELB and thus the interest-rate sensitivity

is low. Accordingly, the absolute size of term premiums is lower, or in this case, term premiums

are less negative, under the RW rule than under the baseline rule.

Figure 10: Effect of Accommodative “Forward Guidance” at the ELB
—Case of Positive Term Premiums at the ELB—
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*We plot median[Xt+h | εdt = +ϑβ , X̄] for a given variable Xt. The solid blue lines are the responses from the model under
the RW rule, and the dashed blue lines are the responses from the model under the Taylor rule with the ELB constraint.
The vertical grey bars indicate the timing of liftoff from the ELB.

For all maturities, term premiums do not decline under the RW rule as much as under the

baseline rule as the liftoff approaches. As a result, term premiums are less volatile under the

RW rule than under the standard rule. For shorter maturities, the compressing effects of the

ELB are notably stronger under the RW rule than under the baseline rule around the time of

liftoff. Thus, these term premiums are particularly less volatile under the RW rule around the

time of liftoff.

In our baseline model in which term premiums at the ELB are negative to begin with,
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lower absolute sizes mean higher term premiums. In an alternative calibration in which term

premiums are positive at the ELB, the RW rule decreases term premiums. This case is shown in

Figure 10. Under this specification, term premiums will be near zero for the shortest maturities

and generally positive for the longer ones. Thus, the flattening effects of “forward guidance”

on the expectations of short-rate path can be either mitigated or amplified by changes in term

premiums, depending crucially on the risk exposure of bonds.

We used the forward guidance policy to motivate our analysis of the effects of adopting the

RW rule. However, our analysis may be useful in understanding the effects of the central bank’s

other unconventional policies, such as large-scale asset purchases (LSAPs). Some have argued

that LSAPs stimulate economic activities partly by signaling the central bank’s commitment to

an extended period of more accommodative policies in the future (Bhattarai, Eggertsson, and

Gafarov (2015); Bauer and Rudebusch (2014); Woodford (2012)). If that is the case, then the

RW rule can be seen as capturing this signaling effect of LSAPs.

6 Discussion

In this section, we present further results. We first discuss the quantitative importance of a key

parameter of our model—tail risk probability for the discount rate. Second, we argue that the

dynamics of our model are consistent with some aspects of the evolution of the yield curve and

term premiums during the recent ELB episode in the U.S.

6.1 Tail Risk and Term Premiums

Figure 11 shows how the tail risk probability of the discount rate affects the average nominal

term premium of the 10-year bond while the policy rate is above the ELB. According to the

figure, term premiums away from the ELB are quite sensitive to the probability of discount rate

tail risk. As the probability increases from the baseline value of 10−30 to 10−25—both extremely

small numbers—the 10-year nominal term premium drops from 60 basis points to less than -200

basis points on average. Term premiums away from the ELB are very responsive to the tail risk

probability because investors in our economy are very risk averse (α = −100). We need this

high degree of risk aversion to match the large positive term premium observed in the pre-ELB

sample.43 Note that, given the extremely small possibility of the tail event, the dynamics of

consumption and inflation at and away from the ELB are virtually unchanged in response to

the same parameter changes.

This result—that even a small increase in the crisis probability can lower the nominal term

premiums substantially and make them negative while the policy rate is away from the ELB

constraint—is interesting in light of the current uncertainty regarding long-run interest rates and

thus the frequency of hitting the ELB constraint in the future. It is possible that, while market

43Since average term premiums away from the ELB are positive in the data, this consideration forces us to
assign an extremely small value to the probability of tail risk.
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Figure 11: Term Premium Sensitivity with respect to Tail Risk Probability for β
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*The black circle indicates the value using the parameters of our quantitative model.

participants saw the probability of the ELB as being negligible prior to the Great Recession, the

recent ELB episode has led them to revise up their estimates of the ELB frequency. If that is

the case, this analysis suggests that term premiums may stay at current low levels going forward

and that long-term interest rates may converge to a level lower than the average level prior to

the Great Recession.

6.2 An Interpretation of the Recent U.S. Experience

The analyses in Section 4 and 5 point to a tight link between the expected time until liftoff

and term premiums for short-maturity bonds at the ELB. When the policy rate is expected to

remain at the ELB for a long time, term premiums are close to zero due to the compressing

effect from reduced interest-rate sensitivity. As liftoff approaches, the compressing effect fades

and term premiums decline. The link between the expected time until liftoff and term premiums

for longer-term bonds is weaker, as the sensitivity of longer-maturity yields is less affected by

the ELB.

We find some evidence supporting this link in the recent ELB episode in the U.S. Figure

12 shows the expected time until liftoff, nominal yields, and term premium estimates of 1-year,

2-year, and 5-year maturities since 2010, a bit more than one year before the introduction

of “calendar-based” forward guidance in August 2011. As shown in the left panel, from the

beginning of 2010 to July 2011, market participants expected that the liftoff would occur within

one year or so. After the FOMC meeting in August 2011, indicated by the grey vertical line, the

expectations changed dramatically as the FOMC explicitly stated that it was likely to keep the

policy rate at the ELB at least through mid-2013. From that point on to mid-2013, the market

expected that the policy rate would be at the ELB for at least two additional years. Since then,

the expected duration has gradually come down. The Federal Reserve eventually raised the
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policy rate off the ELB in December 2015. Consistent with this evolution of the expected ELB

duration, the 1-year, 2-year and 5-year nominal yields declined in August 2011 and remained

low for a period of time as the expected duration was elevated around its peak. The 1-year yield

started to increase around mid-2014, while the 2-year yield was gradually rising since as early

as mid- 2013. Meanwhile, the 5-year yield increased sharply circa mid-2013 (middle panel).

Figure 12: Nominal Yields and Term Premium Estimates at the ELB
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* Expected ELB duration in the left panel is computed as the time to the first quarter when the median federal funds
rate forecast exceeds 37.5 basis points. Data are at a monthly frequency for yields and 1-year survey-based term premium
estimates, quarterly for expected ELB duration, and roughly quarterly for survey-based term premium estimates of longer
maturities. The grey vertical lines indicate the timing of the August 2011 FOMC meeting.

According to the right panel of the figure, 1-year term premium estimates were on aver-

age slightly negative until August 2011, while 2-year term premium estimates were comfortably

below zero until August 2011. After the introduction of the calendar-based forward guidance,

both 1-year and 2-year term premium estimates increased to slightly above zero and around

zero, respectively, as the expected duration of the ELB jumped. Both term premium estimates

hovered around zero until mid-2013, after which they gradually declined into negative territory

as the expected duration of the ELB decreased. The joint dynamics of the expected duration

of the ELB and term premiums of short-term bonds observed in the data is broadly consistent

with the predictions of our model. For the 5-year term premium estimate, the link was ab-

sent: regardless of the expected time until liftoff, the 5-year term premium estimate remained

comfortably negative since 2010, despite a few episodes of high volatility.44 This lack of a link

between the expected ELB duration and term premiums of longer maturity is also consistent

with the prediction of our model.45

44For instance, the sharp rise in the 5-year term premium observed after mid-2013 corresponds to the “taper
tantrum” episode where term premiums of longer-term bonds reportedly became volatile as a result of uncertainty
about the tapering of LSAPs amplified by reduced market liquidity.

45We acknowledge such an interpretation of events comes with caveats. The quantitative variation in term
premiums from our model is small compared to that from the survey estimates. The estimates themselves are
subject to uncertainty and indeed the pattern is not as clear from the model-based estimates. The relationship
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7 Conclusion

We have studied the term structure of default-free interest rates in a New Keynesian model with

an occasionally binding ELB constraint. Using stylized models, we show that the ELB constraint

induces state-dependency in the dynamics of term premiums by affecting macroeconomic un-

certainty and the sensitivity of interest rates to macroeconomic fluctuations. In particular, the

absolute level of term premiums are on average lower at the ELB than away from the ELB and

the volatility of term premiums increases during the transition period when the policy rate de-

clines to the ELB or when the policy rate lifts off from the ELB. We find that these implications

of the ELB survive in a quantitative version of our model calibrated to match key features of

consumption, inflation, yield curves, and term premium estimates in the U.S.

We have also investigated how the central bank’s announcement to keep the policy rate

at the ELB longer than previously expected affects the term structure of interest rates. We

demonstrate that such an announcement reduces the expected short-rate path and the absolute

size of term premiums. That is, if bonds are a hedge against economic downturns and term

premiums are negative at the time of announcement, then the announcement increases term

premiums. Otherwise, it decreases term premiums.

As discussed in the introduction, central banks in the advanced economies have been pro-

viding various unconventional policies at a time when the short-term nominal interests are at

or near the ELB. Some of these policies, especially involving the central bank’s balance sheet

adjustments, are considered to stimulate economic activities by reducing term premiums on

longer-term bonds. Thus, we believe that understanding how the ELB constraint affects the

dynamics of the term structure of interest rates is an essential step towards understanding how

these unconventional policies affect the expected path of interest rates, term premiums and

the economy. Extending our model to explicitly include the central banks balance sheet is an

interesting avenue for future research.
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For Online Publication: Appendix

A Model Specific Equilibrium Conditions

Here we state the equilibrium conditions that rely on functional forms specific to the version of
the model.

Stylized Models: For the stylized models, the value function takes the form:

Vt = χN ln(Ct) + (1− χN ) ln(1−Nt) + βtξ
−1 lnEt [exp(ξVt+1)]

where ξ ≡ (1−γ)(1− β̄). This “risk-sensitive recursion” follows Hansen and Sargent (1995) and
Tallarini (2000) while we also allow for a time-varying discount rate process. Note this value
function can be derived by taking the limit χC → 1 of a slightly modified version of the value
function (1):

Ṽt =

[
(1− β̄)

(
CχNt (1−Nt)

1−χN
)1−χC + β̄

{
Et
[
Ṽ 1−γ
t+1

]} 1−χC
1−γ

] 1
1−χC

and augmenting the continuation value with a discount rate shock. The nominal pricing kernels
and optimal labor supplies are characterized as:

Mt+1 = βt

(
Ct+1

Ct

)−1 [ exp(ξVt+1)

Et [exp(ξVt+1)]

]
1

Πt+1

wt =
1− χN
χN

Ct
1−Nt

The model with power utility sets γ = χC = 1 and the model with Epstein-Zin preferences sets
γ 6= χC = 1.

Quantitative Model: For the quantitative model, the value function, the nominal pricing
kernel and optimal labor supply are characterized as:

V̂t =
X̂1−χC
t

1− χC
− β̃tζ

{
Et
[
(−V̂t+1)1−α

]} 1
1−α

Mt+1 = β̃t

(
X̂t+1

X̂t

)−χC  −V̂t+1[
Et
[
(−V̂t+1)1−α

]] 1
1−α


−α

1

Πt+1

ŵt = NχN1
t

where X̂t ≡ Ct
Zt
− χN0

N
1+χN1
t

1+χN1
, V̂t ≡

(
Vt
Zt

)1−χC
, β̃t ≡ βtζ−χC , and α ≡ 1− (1− γ)/(1− χC).
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B Details of the Solution Method

We solve the model globally using a time-iteration method in the spirit of Coleman (1991).
Similar methods are used in recent studies of the occasionally binding ELB constraint, such as
Gavin, Keen, Richter, and Throckmorton (2015) and Nakata (2013). In addition to the iteration
on decision rules conducted by these papers, we also iterate on the value function due to recursive
utility.

The equilibrium conditions of our model laid out in Section 2.7 in the main text can
be cast in the general form: Et[f(Yt+1,Yt,Xt+1,Xt)] = 0, where Yt is a vector of non-
predetermined variables and Xt is a vector of predetermined variables. Note Xt can be de-
composed into an endogenous state vector XEND

t−1 and an exogenous state vector XEXO
t such

that Xt ≡ {XEND
t−1 ,XEXO

t }. In our quantitative model, XEND
t−1 ≡ {R∗t−1(Xt−1), Jt−1(Xt−1)}

and XEXO
t ≡ {βt, At, Zt}. To solve our model with recursive utility, it is convenient to ex-

pand the set of non-predetermined states Yt to include the value function Vt. Thus, Yt ≡
{Ct(Xt), Yt(Xt), Nt(Xt),Πt(Xt),Wt(Xt), Rt(Xt), Vt(Xt)}.46

The time iteration starts by discretizing the state space and providing an initial guess of
the decision rules and the value function for each node. The normally distributed shocks are
discretized using the Gaussian quadrature rule. We use the deterministic steady state as an
initial guess when we solve for the model with power utility, and the decision rules under
power utility for the model with EZ preferences. Via piecewise linear interpolation across
the nodes and linear extrapolation beyond, we obtain a guess for the continuous decision

rule vector Y
(1)
t . Given Y

(1)
t , XEXO

t and X
(1)
t−1 we can solve for Y

(1)
t−1 and X

END,(1)
t−1 through

Et−1[f(Y
(1)
t ,Y

(1)
t−1,X

(1)
t ,X

(1)
t−1)] = 0 for each node in the discretized state space. This functional

equation is solved by combining numerical integration with a non-linear equation solver. We

iterate this procedure of using a new guess Y
(τ+1)
t = Y

(τ)
t−1 to obtain {Y(τ+1)

t−1 ,X
END,(τ+1)
t−1 } for

τ = 1, 2, 3, ... until convergence.
Once the solution to the macroeconomic model is obtained, we can solve for the decision rules

of the stochastic discount factor. Under the assumption of complete markets, the solution for
the stochastic discount factor allows us to solve for equilibrium yield curves and term premiums.

We assess the numerical accuracy of our solution through the standard practice of examining
Euler equation errors (for the consumption Euler equation). The Euler equation error is defined
in the common form, which is normalized with respect to consumption: EEt ≡ log10|1− C̃t/Ĉt|
where C̃t denotes consumption (potentially normalized by trend) implied by the Euler equation
and the solutions to the decision rules other than Ĉt. Table B.1 summarizes the mean and 99.9
percent quantile of the error distribution generated from simulating the two stylized models and
the quantitative model respectively. Since the probability of the ELB binding due to a large
discount rate shock in the quantitative model is extremely low, the final row reports statistics
from an alternative simulation of the quantitative model where disaster shocks to the discount
rate (i.e. an episode where the economy hits the ELB) are forced to occur relatively frequently
within the sample.47 We find that the errors are sufficiently small for the stylized models. In
addition, although the errors from the quantitative model—which features high risk aversion,
tail risk and stochastic volatility along with the ELB—are somewhat larger, the accuracy of the
solution is still comparable to what is reported in the literature.48

46We exclude such variables as the stochastic discount factor and the term structure here since they are
unnecessary to obtain other equilibrium objects.

47In this simulation, the ELB binds about 10 percent of the time.
48For example, Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramirez (2015) reports errors

with a mean of -3.3 and 99.9 percent quantile of -2.2 for their New-Keynesian model with an occasionally binding
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Table B.1: Euler Equation Errors

Mean 99.9 Percentile

Stylized (Log) -6.5 -4.6
Stylized (EZ) -6.2 -4.5
Quantitative -5.6 -4.5
Quantitative (ELB) -5.4 -3.7

*Errors are for the consumption Euler equation and expressed in base 10 logarithms. “Quantitative (ELB)” reports errors
from a simulation of the quantitative model where disaster shocks to the discount rate are forced to occur within the sample.

C n−period Term Premiums

In this section, we illustrate the mechanism of how the n−period term premiums are determined
following a similar logic we used to understand the 2-period case. We focus here on nominal
term premiums under power utility since real term premiums and the case under EZ preferences
could be understood analogously. For this, we log-linearize the equilibrium n-period yields

R
(n)
t (βt) at β̄ and consider an approximation of the nominal term premium similar to (15). The

generalization of (15) to the n-period term premium is:

tp
(n)
t (β̄) ≡ R(n)

t −R
(n)Q
t = Et

[
n−2∑
i=0

n− i− 1

n
Covt+i(mt+i+1, r

(n−i−1)
t+i+1 )

]
+ u

(n)
t

=
n− 1

2

n−2∑
i=0

ωn−1−i(−ρ∆c,r(n−1−i)σr(n−1−i)σ∆c − ρπ,r(n−1−i)σr(n−1−i)σπ) + u
(n)
t

≡ −%∆c,r(1→n−1)σ∆c − %π,r(1→n−1)σπ + u
(n)
t

(C.1)

where σr(n−i−1) is the conditional volatility of the (n − i − 1)-period yield and ρx,r(n−1−i) is the
conditional correlation of the (n − i − 1)-period yield and x. The second equality slightly
rewrites this by using ωn−1−i, which are weights assigned to each ρ∆c,r(n−1−i)σr(n−i−1) and
ρπ,r(n−1−i)σr(n−1−i) that sum up to 1 and increasing in maturity. The last line simply defines

%x,r(1→n−1) ≡ n−1
2

∑n−2
i=0 ωn−1−iρx,r(n−1−i)σr(n−1−i) . Finally, u

(n)
t collects all terms arising from a

Jensen’s inequality effect, which we ignore here.49 According to equation (C.1), we can obtain
the (approximate) n-period nominal term premium by replacing the product of the nominal
short rate volatility and the correlation of macro-variables and the nominal short rate (ρx,rσr)
in (15) with a weighted average of analogous products for yields across the maturity spec-
trum, scaled by a constant term that linearly increases with maturity (%x,r(1→n−1)). Given

ρ∆c,r(1→n−1) , ρπ,r(1→n−1) ≥ 0 as implied by the left and right panels of Figure C.1,50 the negative
term premiums of n-period maturities follow naturally.

In terms of the dynamics of n-period term premiums, the bottom left panel of Figure 2
points to a difference in the shape of longer-maturity term premiums and shorter-maturity
term premiums. For instance, the fall in the 5-year nominal term premium is larger and more

ELB constraint.
49u

(2)
t = 0, hence this term did not appear in (15).

50Since 1-step ahead consumption growth is almost perfectly correlated with inflation (right panel of Figure
C.1), it is clear that interest-rate sensitivity to consumption growth and inflation are very similar.
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consistent as the discount factor increases compared to its 2-quarter counterpart. Recall the
non-monotonicity observed for term premiums of shorter maturities is due to the offsetting
effect of decreasing policy rate uncertainty and sensitivity as the economy moves further into
the ELB state. Instead, (C.1) implies that what matter for longer-maturity term premiums
are the uncertainty and sensitivity of longer-term yields.51 Compared to shorter-term yields,
conditional moments of longer-term yields depend less on the current state since they largely
reflect the economy’s eventual convergence to its ergodic distribution. This can be seen in the
bottom-left panel of Figure 2 and the left panel of Figure C.1 where the 5-year yield uncertainty
and correlation with consumption are relatively unchanged at the ELB. This, in turn, implies
that the change in longer-maturity term premiums near and at the ELB will be characterized
mostly by the increase in macroeconomic uncertainty until the economy hits an extremely severe
state where even longer-term yields cannot escape the influence of the ELB.

Figure C.1: Conditional Correlations—Power Utility—
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*Solid lines indicate conditional correlations (1 quarter ahead conditioned on β) of the respective variables for the model
with the ELB constraint, and dashed lines indicate uncertainty for the model without the ELB constraint. The solid vertical
line indicates the threshold state where the ELB binds.

D Data

For the short-term nominal interest rate, we use the 3-month T-bill rates from the Federal
Reserve Board’s H.15 statistical release. For nominal yields of 2-, 5- and 10-year maturities, we
use the zero-coupon yields from Gürkaynak, Sack, and Wright (2007). In Figure 7, we show
monthly averages of daily data. In Table 4 we use quarterly averages from 1997:Q1 to 2015:Q3
to calibrate our model. For 5- and 10-year real yields, we use zero-coupon yields interpolated
from TIPS by Gürkaynak, Sack, and Wright (2010). These yield data are widely used in the
literature. When we compare our model implied real term estimates away from the ELB with
those from empirical estimates, we use those derived from the 4-factor affine term structure
model of D’Amico, Kim, and Wei (2014).

For consumption data, we compute per capita consumption from Personal Consumption
Expenditures (nondurables+services, seasonally adjusted) and detrend it with an HP-filter for
the period away from the ELB. For the ELB period, we detrend it using a linear trend that

51To be more precise, the weighted average of changes in uncertainty of longer-term yields matter. However,
the coefficients ωs overweight longer-term maturities.
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implies the gap between consumption and its trend has about closed in 2015:Q3.52 We use the
quarterly change in the GDP deflator for our measure of inflation. Our choice of consumption
and inflation data are standard.

E Alternative Calibration with Positive Term Premiums at the
ELB

E.1 Moments at and above the ELB

In this section, we discuss an alternative calibration of our quantitative model where we assume
the conditional volatility of the discount rate shock is homoskedastic and fixed at its level away
from the ELB, i.e. σβ,t = σ̄β in equation (11). Since the volatility of the shock is assumed to
be negligible away from the ELB, this specification amounts to one in which TFP is essentially
the only priced risk. This allows us to study an economy in which term premiums are positive
at the ELB, and also isolate the effect of the ELB on the transmission of TFP shocks. Table
E.1 shows averages and standard deviation of consumption, inflation, and nominal yields, while
Table E.2 shows those of term premiums.

Comparison of the second column in Table E.1 with that in Table 4 in the main text shows
that, regardless of whether or not we have stochastic volatility in the discount rate process,
quantitative implications of our model for macro variables and nominal yields are similar when
the policy rate is above the ELB constraint. This result is intuitive since the tail risk probability
of the discount rate shock, which increases the shock volatility under our specification of stochas-
tic volatility, is extremely small. Similarly, comparison of the second column in Table E.2 with
that in Table 5 in the main text shows that the absence of stochastic volatility does not alter
the behavior of term premiums materially when the policy rate is above the ELB constraint.

Comparison of the fourth column in Table E.1 with that in Table 4 in the main text shows
that, even when the policy rate is constrained at the ELB, the stochastic volatility in the discount
rate does not alter the quantitative performance of the model substantially for macro variables
and nominal yields. A key difference between the models with and without stochastic volatility
is in term premiums. While term premiums are on average negative at the ELB in the model
with stochastic volatility (the fourth column of Table 5), they are on average positive at the
ELB in the model without stochastic volatility, which is essentially a model with only TFP as
a source of risk (the fourth column of Table E.2). Note that in the model without stochastic
volatility, term premiums are lower in the model with the ELB than they would otherwise be
in the absence of the ELB, implying that the compression effect of the ELB that decreases the
absolute size of term premiums also decreases the level of term premiums that arise from TFP
risk. However, in our benchmark model where variation in the time discount rate coexists with
that in TFP, it appears that the ELB constraint ends up increasing the level of term premiums
at the ELB, on average.

E.2 Dynamics

Figure E.1 shows impulse responses of the endogenous variables from the model without stochas-
tic volatility. Impulse responses of macro variables and nominal yields are not substantially
affected by the absence of stochastic volatility. However, unlike in the model with stochastic

52We assume the HP filtered consumption trend shifts to this linear trend continuously at 2009:Q1. Our trend
at the ELB is admittedly adhoc, but is simple and appears sensible.
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Table E.1: Macro and Yield Curve Moments at and above the ELB
–Case of Positive Term Premiums at the ELB, Model versus Data–

Above the ELB At the ELB Below the ELB
Data Model Data Model Model

w/o ELB
A. Macro Variables (Mean)

Consumption† — — -2.02 -1.64 -1.24
Inflation 2.13 2.09 1.45 1.25 1.33

B. Macro Variables (Volatility)
Consumption 2.93 2.21 4.18 7.66 6.60
Inflation 0.87 0.72 0.83 0.88 0.72

C. Nominal Yields (Mean)
3-month 3.44 3.90 0.08 0.13 -1.45
2-year 4.01 4.00 0.54 0.42 -0.58
5-year 4.49 4.20 1.57 1.62 1.21
10-year 5.10 4.42 2.79 2.91 2.71

D. Nominal Yields (Volatility)
3-month 1.71 1.77 0.06 0.00 1.06
2-year 1.57 1.69 0.25 0.34 1.23
5-year 1.14 1.38 0.55 0.59 1.00
10-year 0.79 0.95 0.74 0.44 0.63

*This table contains summary statistics for selected macroeconomic and term structure variables comparing data versus
model counterparts. The sample period is 1997:Q1-2008:Q4 for data above the ELB, and 2009:Q1-2015:Q3 for data at the
ELB.
†The “mean” reported for consumption at/below the ELB is the average deviation from either the trend (for data) or the
model implied consumption away from the ELB (for the model) in percentage points. We do not report statistics away
from the ELB as the model implied average deviation is zero by construction.

Table E.2: Term Premium Moments at and above the ELB
–Case of Positive Term Premiums at the ELB, Model versus Estimates–

Above the ELB At the ELB Below the ELB
Estimates Model Estimates Model Model

w/o ELB

A. Nominal Term Premium(Mean)
2-year 0.11 0.10 -0.22 0.04 0.07
5-year 0.26 0.33 -0.39 0.23 0.26
10-year 0.61 0.59 -0.10 0.49 0.51

B. Nominal Term Premium (Volatility)
2-year 0.23 0.06 0.09 0.03 0.02
5-year 0.36 0.15 0.28 0.07 0.06
10-year 0.35 0.18 0.41 0.08 0.08

*This table contains summary statistics for selected term premiums comparing estimates versus model counterparts. The
sample period is 1997:Q1-2008:Q4 for estimates above the ELB, and 2009:Q1-2015:Q3 for estimates at the ELB. All variables
are in annualized percentage terms.

53



volatility, nominal term premiums are positive throughout the simulation in the model without
stochastic volatility. For all maturities, the path of term premiums are lower in the model with
the ELB constraint than in the model without the ELB constraint, as seen in the final row of
the figure.

Figure E.1: Impulse Responses (to β shock)
—Case of Positive Term Premiums at the ELB—
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*We plot median[Xt+h | εdt = +ϑβ , X̄] for a given variable Xt. The solid blue lines are the responses from the model with
the ELB constraint, and the dashed blue lines are the responses from the model without the ELB constraint. The vertical
grey bars indicate the timing of liftoff from the ELB.

F The Real Term Structure

In this section, we analyze the term structure of real interest rates both in the stylized and
quantitative models.
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F.1 The Real Term Structure in the Stylized Model

F.1.1 Power Utility

Figure F.1: Equilibrium Real Term Structure—Power Utility—
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*Solid lines indicate results from the model with the ELB constraint, and dashed lines indicate results from the model
without the ELB constraint. The solid vertical line indicates the threshold state where the ELB binds.

When the policy rate is above the ELB constraint, or in the model without the ELB con-
straint, the dynamics of real yields—shown in the top-left panel of Figure F.1—are qualitatively
similar to those of nominal yields. Real yields decline with β. The longer the maturity is, the
less sensitive the yield is to fluctuations in β. The term structure of yield volatility is downward
sloping and the real yield curve is countercyclical. Key differences with nominal yields show
up when the nominal short rate is at the ELB. When the nominal short rate is at the ELB,
an increase in β leads to a decline in inflation, pushing up real yields of short maturity bonds.
Real yields of longer maturities decline, but do not decline as much as they would in the model
without the ELB in response to an increase in β.

As shown in the top-right panel of Figure F.1, similarly to nominal term premiums, real
term premiums are state-dependent in the model with the ELB, but not in the model without
the ELB. When the policy rate is above the ELB, real term premiums are roughly constant
at negative values. When the policy rate is at the ELB, an increase in β pushes up real term
premiums. For shorter maturities, the correlation between real yields and consumption growth
is negative while at the ELB, as shown in the right panel of Figure C.1. As a result, for a
sufficiently large β, real term premiums are positive. For longer maturities, the correlation
between real yields tends to remain positive at the ELB (right panel of Figure C.1) and thus
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real term premiums remain negative at the ELB.

Figure F.2: Conditional Volatilities and Correlations of Macroeconomic Variables
—Power Utility—
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*Solid lines indicate either 1-quarter ahead standard deviation (‘uncertainty’) or correlation conditional on β of the respective
variables for the model with the ELB constraint, and dashed lines indicate those for the model without the ELB constraint.
The solid vertical line indicates the threshold state where the ELB binds.

According to the bottom-left panel of Figure F.1, the behavior of real yield uncertainty is
similar to that of nominal yield uncertainty when the policy rate is above the ELB or is expected
to be above the ELB in the near future. However, when the policy rate is at the ELB and is
expected to remain at the ELB for a while, real yield uncertainty increases with β. Finally, real
term premium uncertainty is higher when the ELB is binding than when it is not, similarly to
nominal term premium uncertainty, as shown in the bottom-right panel.

The dynamics of real term premiums can be intuitively understood by decomposing real
term premiums into macro uncertainty and real interest-rate sensitivity. We can decompose the
2-period real term premium as follows:

tp
r(2)
t (β̄) ≡ Rr(2)

t −Rr(2)Q
t ≈ 1

2
Covt(mr

t+1, r
r(1)
t+1 )

∝ −Covt(∆ct+1, r
r(1)
t+1 )

= − σ∆c︸︷︷︸
macro

uncertainty

× ρ∆c,rr × σrr︸ ︷︷ ︸
real-rate

sensitivity

(F.1)

where σrr and ρ∆c,rr are the conditional volatility of the real short rate and the conditional
correlation of consumption growth and the real short rate, respectively.

This decomposition is analogous to the one derived for nominal term premiums in (15).
As described above and shown in the top-right panel of Figure F.1, a key feature of real term
premiums is that they could turn positive from negative at the ELB, especially for shorter
maturities. Through the lens of equation (F.1), this feature must come from the change in
ρ∆c,rr . Indeed, the conditional correlation reported in the middle panel of Figure F.2 confirms
this. Above the ELB, the reason why term premiums are negative is similar to that for nominal
term premiums, as accommodative monetary policy lowers the real rate as well as the nominal
rate. At the ELB, the rise in the real rates (or lower bond prices) described above implies that
holding a real bond will only increase the volatility of the household’s wealth. Thus, real bonds
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are risky, implying a positive term premium.
The non-monotonic pattern of shorter-maturity nominal term premiums is less pronounced

for real term premiums. Following an argument similar to the one we used to understand
nominal term premiums, one reason for the less pronounced non-monotonic pattern is that real
term premiums do not involve inflation uncertainty. Another reason is the expected change in
correlation between the short rate and macroeconomic variables at the ELB.53

F.1.2 Epstein-Zin Preferences

According to the top two panels of Figure F.3, the dynamics of real yields and real term premiums
under EZ preferences are qualitatively similar to those under power utility. Quantitatively, the
absolute size of real term premiums is larger under EZ preferences than under power utility,
consistent with what we saw in nominal term premiums. The differences in the size of real term
premiums between the two preference specifications spill over to the differences in real yields.
Finally, real yield uncertainty and real term premium uncertainty are also amplified under EZ
preferences compared to power utility, as shown in the bottom two panels.

Figure F.3: Equilibrium Real Term Structure—Epstein-Zin Preferences—
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*Solid lines indicate results of the model with the ELB constraint, and dashed lines indicate results of the model without
the ELB constraint. The solid vertical line indicates the threshold state where the ELB binds.

53In contrast to nominal yields, real yields becomes riskier near and at the ELB. Then the effect of increased
macro uncertainty on real term premiums could reverse.
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F.2 The Real Term Structure in the Quantitative Model

F.2.1 Moments at and above the ELB

We compare the moments of real yields and term premiums implied by our model with their
data counterparts and their empirical estimates, respectively. Due to poor liquidity of shorter-
maturity TIPS, we focus only on the 5-year and 10-year maturities.

Moments above the ELB: The average real yields for 5-year and 10-year maturities above
the ELB are around 2 percent in our model and are similar to those in the data (first two
columns of panel A in Table F.1). The volatility of real yields declines with maturity both in
the data and in our model (first two columns of panel B). Real yield volatility is higher in our
model compared to the data, but note that our model is calibrated to a sample period longer
than the TIPS data sample. In particular, since the TIPS data excludes the earlier sample
period of 1997 to 2003 when nominal yields were more volatile compared to the more recent
sample, this discrepancy is somewhat expected. Real term premiums increase with maturity and
they are positive, but smaller than nominal term premiums. Empirical estimates also indicate
that real term premiums are increasing in maturity (first two columns of panel A in Table F.2).
The volatility of real term premiums increases with maturity and is smaller than the volatility
of nominal term premiums. They are similar to the size of the empirical estimates (first two
columns of panel B).

Table F.1: Real Yield Moments at and above the ELB
—Model versus Data—

Above the ELB At the ELB Below the ELB
Data Model Data Model Model

w/o ELB
Real Yields (Mean)

5-year 1.67 1.97 -0.20 -0.52 -0.98
10-year 2.04 2.15 0.59 0.48 0.25

Real Yields (Volatility)
5-year 0.65 1.03 0.87 0.38 0.82
10-year 0.36 0.72 0.79 0.30 0.51

*This table contains summary statistics for selected real yields comparing data versus model counterparts. The sample
period is 2004:Q1-2008:Q4 (starting date restricted by the availability of TIPS data) for data above the ELB, and 2009:Q1-
2015:Q3 for data at the ELB.

Moments at the ELB: Real yields are on average lower at the ELB than above the ELB,
both in the data and in our model. Also similarly to nominal yields, the average 5-10 year yield
spread is significantly larger at the ELB both in the data and in our model (third and fourth
columns of Table F.1, panel A). In contrast to nominal yields, the ELB increases average real
yields (the fourth and last columns of panel B), consistent with the intuition discussed for the
stylized models. While real yield volatility is higher at the ELB than above the ELB in the
data, it is lower at the ELB in our model (third and fourth columns of panel B). The absolute
size of real term premiums and their volatilities are lower on average at the ELB than above the
ELB in our model (the fourth and last columns of panel B, Table F.2).
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Table F.2: Real Term Premium Moments at and above the ELB
—Model versus Estimates—

Above the ELB At the ELB Below the ELB
Estimates Model Estimates Model Model

w/o ELB

Real Term Premium(Mean)
5-year 0.31 0.18 — -0.19 -0.27
10-year 0.57 0.38 — -0.12 -0.16

Real Term Premium (Volatility)
5-year 0.14 0.08 — 0.05 0.06
10-year 0.18 0.12 — 0.05 0.07

*This table contains summary statistics for selected term premiums comparing estimates versus model counterparts. The
real term estimates away from the ELB are derived from the term structure model of D’Amico, Kim, and Wei (2014).
The sample period is 2004:Q1-2008:Q4 for estimates above the ELB, and 2009:Q1-2015:Q3 for estimates at the ELB. All
variables are in annualized percentage terms.

F.2.2 Dynamics

As shown in the top row of Figure F.4, real yields dip below zero for all maturities, reflecting the
fact that inflation is positive during most of the simulation. The paths of real term premiums—
shown in the bottom row—are qualitatively similar to those of nominal term premiums for all
maturities. In particular, term premiums are compressed while the ELB constraint is binding.
One key difference with nominal term premiums is that, while nominal term premiums can get
stuck at zero for short maturity bonds when the policy rate is expected to remain at the ELB
for long, real term premiums do not necessarily get stuck at zero.

F.3 The RW rule and the Real Term Structure

As discussed in the main body of the paper, the nominal short rate is kept at the ELB for longer,
and the path of inflation is higher, under the RW rule than under the baseline rule. Thus, the
paths of real yields are lower under the RW rule than under the baseline for all maturities, as
seen in the top row of figure F.5. This is also true for the version of our model in which term
premiums are positive on average at the ELB, as shown in the top row of figure F.6.
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Figure F.4: Impulse Responses of the Real Term Structure (to β shock)
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*We plot median[Xt+h | εdt = +ϑβ , X̄] for a given variable Xt. The solid blue lines are the responses from the model with
the ELB constraint, and the dashed blue lines are the responses from the model without the ELB constraint. The vertical
grey bars indicate the timing of liftoff from the ELB.

Figure F.5: Effect of Accommodative “Forward Guidance” at the ELB
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*We plot median[Xt+h | εdt = +ϑβ , X̄] for a given variable Xt. The solid blue lines are the responses from the model under
the RW rule, and the dashed blue lines are the responses from the model under the Taylor rule with the ELB constraint.
The vertical grey bars indicate the timing of liftoff from the ELB.

The effect of adopting the RW rule is intricate. As shown in the bottom-left panel of Figure
F.5, the real term premium for the 2-quarter bond is lower and higher in the first and second
half of the ELB episode, respectively. For the 2-year maturity, the opposite is the case. The
RW rule lowers the real term premium for the 5-year bond in the first several quarters, but
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leaves them essentially unchanged thereafter. Interestingly, the effects of adopting the RW rule
on real term premiums are opposite of the effects just described in the version of the model with
positive nominal term premiums at the ELB, as seen in the bottom row of Figure F.6.

Figure F.6: Effect of Accommodative “Forward Guidance” at the ELB
—Case of Positive Nominal Term Premiums at the ELB—
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*We plot median[Xt+h | εdt = +ϑβ , X̄] for a given variable Xt. The solid blue lines are the responses from the model under
the RW rule, and the dashed blue lines are the responses from the model under the Taylor rule with the ELB constraint.
The vertical grey bars indicate the timing of liftoff from the ELB.

G A Note on Inflation Compensation and Risk Premium

In this section, we briefly discuss the model implications for inflation compensation and inflation
risk premium. We keep the discussion short based on our stylized model since, by definition, their
dynamics are largely implied by our discussion above on the nominal and real term structures.

Inflation compensation is defined as the difference between nominal and real yields. Anal-
ogous to the decomposition of nominal and real yields, we can further decompose inflation
compensation into expected inflation and inflation risk premiums. A simple and standard way
to compute n-period inflation risk premiums (irp(n)) is by taking the difference between nominal
and real term premiums, i.e. irp(n) = tp(n)−tpr(n). In Figure G.1 we plot inflation compensation
as well as inflation risk premiums derived from our stylized model with Epstein-Zin preferences.
Note that results using power utility are qualitatively similar.
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Figure G.1: Inflation Compensation and Risk Premium
—Epstein-Zin Preferences—
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*Solid lines indicate results from the model with the ELB constraint, and dashed lines indicate results from the model
without the ELB constraint. The solid vertical line indicates the threshold state where the ELB binds.

The top-left panel plots inflation compensation of different maturities both from the model
with (solid lines) and without (dashed lines) the ELB constraint. Similar to nominal yields
(see top-left panels of Figures 2 and 5), inflation compensation is decreasing with respect to the
discount rate β, the volatility of inflation compensation is decreasing with respect to maturity
and the slope of the term structure of inflation compensation is countercyclical. These features
are observed regardless of the ELB constraint. In contrast, inflation compensation decreases
more sharply as the discount rate increases when the ELB constraint is present, and the decrease
is largest for shorter maturities.

The decline in inflation compensation near and at the ELB is attributable to declines in
both inflation expectations and inflation risk premiums. As discussed in Section 3, inflation
decreases more at the ELB, which is reflected in the agents’ inflation forecasts particularly when
the economy is more likely to be in the ELB state. In addition, as shown in the top-right panel
of Figure G.1 (solid lines), inflation risk premiums are also lower when the economy is subject
to an ELB constraint. Specifically, in contrast to the constant (and negative) inflation risk
premium under the economy without the ELB (dashed lines), inflation risk premiums under
the economy with an ELB are generally lower, and decreasing with respect to β particularly
strongly near and at the ELB. This result can be understood by recalling that while nominal
term premiums eventually approach zero as β increases due to the compressing effect of the ELB
(see the top right panels of Figures 2, 5), real term premiums are increasing with respect to β
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at the ELB (see the top-right panels of Figures F.1 and F.3). Another way to understand the
mechanism of an increasingly negative inflation risk premium is by noticing that inflation risk
premiums are approximately the covariance between the n−period real stochastic discount factor
(mr

t,t+n) and n−period inflation (πt,t+n), i.e. irp(n) ≈ Covt(mr
t,t+n, πt,t+n). When the economy is

predominantly driven by demand shocks that cause positive comovement in marginal utility and
inflation, a hypothetical asset with a return equivalent to inflation becomes increasingly valuable
as uncertainty in consumption and inflation rise at the ELB. Finally, the stronger non-linearity
in inflation compensation and risk premium naturally leads to an increase in uncertainty of both
objects near and at the ELB, as shown in the bottom two panels of Figure G.1.

U.S. data on inflation compensation, measured from either the difference between nominal
Treasury yields and TIPS yields or inflation swaps, suggests that inflation compensation has
been lower on average since the U.S. economy hit the ELB compared to when it was above the
ELB. Moreover, as most measures of longer-term expected inflation have been largely stable
since the late 1990s including the ELB episode, a significant part of the decline in inflation
compensation is likely to reflect a decline in inflation risk premiums. Although many factors
could be behind these declines, our analysis suggests one potential factor of interest, which is
the changing macroeconomic dynamics due to the presence of the ELB.
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