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Abstract

In this paper, we examine the results of GDP trend-cycle decompositions from the
estimation of bivariate unobserved components models that allow for correlated trend
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and the cycle. We show that the key feature of unemployment that allows for precise
estimates of the cycle of GDP is that its nonstationary component is “small” relative
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1 Introduction

When can we trust trend-cycle output decompositions? Univariate studies, such as Mor-
ley, Nelson and Zivot (2003) (MNZ hereafter), find a large negative correlation between
the innovations of output’s trend and cycle as well as small and economically unimportant
business cycles. By contrast, studies that include additional variables such as inflation or
the unemployment rate typically find estimates of the cyclical component of output that
are to a large extent conventional, closely resembling, for example, estimates published by
the Congressional Budget Office (CBO). Early examples include Clark (1989), who added
the unemployment rate, and Roberts (2001), who incorporated inflation and hours in the
analysis. Moreover, both these studies found the output trend-cycle correlation to be small
and statistically insignificant. Other bivariate studies, such as Basistha and Nelson (2007)
and Basistha (2007), using inflation as an additional variable, find output trend-cycle cor-
relations that are negative and statistically significant, but smaller than in MNZ; they find
conventional business cycles estimates.

Basistha (2007) sheds some light on the source of these disparate results using a Monte
Carlo study. Basistha shows that a strong estimated trend-cycle correlation can be spurious
in a univariate setup. In particular, the correlation can be estimated to be large even when
it is zero in the data generating process. By contrast, in a bivariate setup with a variable
that resembles inflation, the estimated trend-cycle correlation coefficient is close, on average,
to the true correlation of zero.

In this paper, we use Monte Carlo experiments to explore under what conditions an
auxiliary variable in a bivariate unobserved components (UC) model of trend-cycle decom-
positions of output will be helpful for correctly estimating the trend-cycle correlation of
output and for identifying more precisely its cyclical component. We start by reviewing the
univariate estimation proposed by MNZ, which allows for correlated trend-cycle output in-
novations. We then assess the conditions under which an auxiliary variable in the UC model
will be helpful for estimating accurately the output trend-cycle correlation, for identifying
the business cycle, and for testing hypotheses with respect to the trend-cycle correlation
coefficient. We examine three specific set-ups, one using an auxiliary variable designed to
resemble the unemployment rate, another with a variable resembling inflation, and a third
that amounts to using two readings on output, meant to resemble the use of gross domestic
income (GDI) as an auxiliary variable.

We find that the univariate model’s estimation delivers an output trend-cycle correlation
sampling distribution that piles up at -1 and +1 and that the properties of the cycle are not
accurately obtained. We also find that there is considerable variation in the ability of the
auxiliary variables to distinguish the trend-cycle correlation coefficient and the business cycle.
In particular, for some auxiliary variables, the econometrician can obtain spurious estimates
of the correlation between trend and cycle, similar but not as bad as those obtained with the
univariate setup. For example, if both variables are nonstationary and resemble GDP—as
when the bivariate model included both GDP and GDI—spurious correlation results are
somewhat likely. We also consider a variable that resembles inflation. As with GDI, we
find that spurious correlations can obtain for parametrizations of the model that accord
with empirical results in the literature. Thus, simply adding an auxiliary variable does not
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appear sufficient to allow the proper identification of trend and cycle.
We find, however, that if the auxiliary variable in the bivariate analysis resembles the

unemployment rate, the estimation results can be trusted. Based on our experiments, it
appears that the key reason the unemployment rate is well-suited to help distinguish the
trend and the cycle is that the variance of its unit root component is relatively small compared
to the variance of its cyclical component.

Motivated by our Monte Carlo results, we use GDP and unemployment rate data to
estimate a bivariate UC model. As in other studies using the unemployment rate, we find
a conventional cyclical component of GDP, similar to that published by the CBO. The
estimated cycle has a pronounced hump-shaped pattern and complex roots, with a period of
11.1 years. Our empirical results suggest that there is a statistically significant correlation
between the output trend and cycle. However, unlike MNZ, we find that the correlation is
positive, not negative. That result is suggested by standard statistical tests, and we find in
our Monte Carlo work that the size of these tests is approximately correct and that we have
sufficient power to reject incorrect parameter values. The resulting business cycle estimates
are conventional and similar to those of CBO.

The paper is structured as follows: Section 2 presents a review of the literature on
trend-cycle decompositions with UC models. In Section 3, we present the characteristics
of the bivariate UC models we will examine. Section 4 presents the results of our Monte
Carlo experiments with respect to the estimators of the output trend-cycle correlation and
decomposition. The size and power of the LR test of hypothesis on the output trend-cycle
correlation coefficient appear in Section 5. Section 6 summarizes the results from the Monte
Carlo simulations. In Section 7, we estimate a bivariate UC model including GDP and
unemployment data for the U.S. and test for significance of the correlation between trend
and cycle components. Section 8 concludes.

2 Contacts with the Literature

Watson (1986) and Clark (1987) were among the first to use a UC model to decompose
GDP into independent nonstationary trend and stationary cycle components. The estimates
implied that much of the quarterly variability in U.S. economic activity can be attributed
to a stationary cyclical component. By contrast, Nelson and Plosser (1982), found that
most of the variation in U.S. economic activity can be attributed to a nonstationary trend
component. A central assumption of Clark’s estimation was the orthogonality between trend
and cycle components; the method of Nelson and Plosser (1982) places no restrictions on
the correlation between trend and cycle.

In a subsequent paper, Clark (1989) proposed considering GDP and the unemployment
rate in a bivariate UC model to decompose GDP into trend and cycle components, allowing
a nonzero correlation between trend and cycle innovations. In this case, the trend and cycle
disturbances are disentangled by assuming that the cyclical component of output also affects
the unemployment rate through an Okun’s law relationship. Clark’s results provide evidence
consistent with the hypothesis that innovations in the trend and cyclical components are
independent: the 90 percent confidence interval for the correlation is [-0.4,0.3].

Kuttner (1994) pursued an alternative bivariate approach, adding inflation as an ob-
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servable and linking inflation and the cycle through a Phillips curve relationship. Kuttner
found a business cycle that was similar to Clark (1989). However, Kuttner did not allow
for correlation between trend and cycle. Following Kuttner, Roberts (2001) also included
a Phillips-curve relationship and further decomposed output into hours and productivity
components. Hours and output per hour are each divided into trend and gap components,
and the gap affects inflation through a Phillips curve relationship. Both Roberts and Kut-
tner found that estimates of the trend-cycle decomposition were not much affected by the
addition of inflation. In addition, Roberts found that the correlations between trend shocks
and the cycle were not statistically significant at conventional levels.

Morley, Nelson and Zivot (2003) carefully explored identification in the univariate UC
model. They showed that an unrestricted ARIMA(2,1,2) model implies second moments
that can be matched uniquely to the second moments of the UC model. The estimation of
the cycle through both the Beveridge-Nelson decomposition of the ARIMA(2,1,2) model and
a univariate UC model allowing for correlation between trend and cycle yield estimates in
which the cycle is mostly noise and most of the variability in GDP occurs through its trend
component, similar to Nelson and Plosser (1982).

Basistha and Nelson (2007) estimate a bivariate UC model with inflation and GDP as
observable variables. They introduce the spread between inflation and a survey measure
of expectations, motivated by the New Keynesian Phillips curve. They allow for a dense
variance-covariance matrix of the shocks and find that the GDP trend and cycle innovations
are negatively correlated, as obtained by MNZ, albeit with a smaller absolute magnitude.
Their estimated cycle is nonetheless conventional. The authors extend the model to include
the unemployment rate as an additional observable via an Okun’s law relationship. Results
are similar to those when only inflation is included as an additional observable. As noted in
the introduction, Basistha (2007) performed a set of Monte Carlo simulations that showed
that while a univariate UC specification is not able to identify the correlation coefficient
between trend and cycle innovations, a bivariate setup similar to Basistha and Nelson (2007)
yields an estimated correlation coefficient that is close on average to the true correlation.

The work of Perron and Wada (2009) is also related to our paper. As in our work, Perron
and Wada (2009) consider the estimation of the correlation between trend and cycle when
no correlation exists. They, however, look at a model with a deterministic trend whereas
our focus is on stochastic trends. The find that when the trend component is deterministic,
the estimated correlation between trend and cycle shocks is either -1 or +1, depending on
parameter configurations, because the correlation coefficient is not identified when the trend
is deterministic. Wada (2012) explores this issue further to offer a more detailed explanation
of the lack of identification.

The literature cited above emphasizes a common cycle linking GDP and other variables.
Sinclair (2009) pursues an alternative approach in which each variable is allowed to have
its own trend and cycle, specifically estimating the trends and cycles for GDP and the
unemployment rate in a bivariate UC model. Sinclair finds a statistically significant negative
correlation between the trend and cycle components of GDP, as well as in the corresponding
innovations of the unemployment rate. The resulting business cycle resembles that of MNZ,
with high volatility and relatively small amplitude. In our work, we follow the main body of
the literature, which emphasizes a common cycle linking GDP and other variables.
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3 UC Models for Trend-cycle Decompositions

We first present the basic structure of the unobserved components model for trend-cycle
decomposition. We then examine three specific bivariate extensions and posit a common,
nesting framework.

3.1 The basic UC model

yt = τyt + ct (1)

τyt = µy + τy,t−1 + ηyt (2)

ct = φ1ct−1 + φ2ct−2 + εt, (3)

In our analysis, {yt} is the log of GDP, {τyt} is its unobserved trend, assumed to be a random
walk with mean growth rate µy, and {ct} is the unobserved stationary cycle, assumed to
follow an AR(2) process. The roots of 1 − φ1z − φ2z

2 = 0 are outside the unit circle, and
{ηyt} and {εt} are potentially correlated disturbances with variance-covariance matrix given
by:

[

εt
ηyt

]

∼ iid N

(

02×1,

[

σ2
ε ρηyεσηyσε

ρηyεσηyσε σ2
ηy

])

.

As noted in the introduction, our main focus is the value of the correlation coefficient
ρηyε—that is, the correlation between the trend and cycle for output. When it is imposed
to be zero—as in Clark (1987) and Watson (1986)—or estimated to be near zero—as in
Clark (1989)—the resulting estimates of the cycle are conventional. By contrast, in many
univariate studies, such as Nelson and Plosser (1982) and MNZ, it is estimated to be close to
-1 and the resulting estimates of the cycle are unconventional, relative, for example, to the
output gap estimates of CBO. While the simulation results of Basistha (2007) have shown
that these univariate results can be spurious, a key question is when we can trust bivariate
results. We therefore consider several bivariate models for trend-cycle decomposition in the
presence of nonzero correlation between trend and cycle disturbances and estimation of the
correlation coefficient.

3.2 Bivariate UC Model: GDP and the unemployment rate

Clark (1989) proposed extending the univariate UC model for GDP in equations (1)-(3)
to include the unemployment rate in the following fashion:

ut = τut + θ1ct + θ2ct−1 (4)

τut = τu,t−1 + ηut, (5)
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and variance-covariance matrix:




εt
ηyt
ηut



 ∼ iid N



03×1,





σ2
ε ρηyεσηyσε ρηuεσηuσε

ρηyεσηyσε σ2
ηy

ρηyηuσηyσηu
ρηuεσηuσε ρηyηuσηyσηu σ2

ηu







 . (6)

In equation (4), {ut} is the unemployment rate, which is decomposed into a trend, {τut},
assumed to be a random walk with zero drift, and a cyclical component. The cycle of
output is allowed to affect the unemployment rate both contemporaneously and with a lag,
reflecting the well-known characterization of the unemployment rate as a lagging indicator
of the business cycle (see Stock and Watson, 1998). The model allows the correlations
between the cycle and trend innovations of GDP, ρηyε, and the unemployment rate, ρηuε, to
be nonzero, as well as the correlation between the two trend shocks, ρηyηu .

1

There are a number of ways to interpret this model. One is that the system of equa-
tions (1)-(3) and (4)-(6) forms a factor model, with {ct} the common factor, normalized
so that its effect on {yt} is contemporaneous with a coefficient of one. Another interpreta-
tion of equation (4) is Okun’s Law, with the unemployment gap related to the output gap
contemporaneously and with a lag.

3.3 Bivariate UC Model: GDP and Gross Domestic Income

Gross Domestic Income (GDI) is another plausible cyclical indicator. GDI is an alter-
native measure of exactly the same concept as GDP, but based on (largely) independent
sources of data. Fixler and Nalewaik (2007) and Nalewaik (2010) have shown that GDI is
at least as good a measure of aggregate economic activity as GDP; Fleischman and Roberts
(2011) find similar results in their multivariate trend-cycle model.

We introduce GDI into the UC model in equations (1)-(3) as follows:

zt = τzt + ct (7)

τzt = µz + τz,t−1 + ηzt, (8)

and




εt
ηyt
ηzt



 ∼ iid N



03×1,





σ2
ε ρηyεσηyσε ρηzεσηzσε

ρηyεσηyσε σ2
ηy

ρηyηzσηyσηz
ρηzεσηzσε ρηyηzσηyσηz σ2

ηz







 . (9)

In this specification, {zt} is (the log of) GDI, {τzt} is its unobserved trend, assumed
to be a random walk with mean growth rate µz, which is the same for GDP, and {ct}
is the common unobserved stationary cycle. The correlation coefficient ρηyηz captures the
co-movements between the trends, and the coefficients ρηyε and ρηzε allow for separate trend-
cycle correlations for GDP and GDI.

1When testing for statistical significance of the trend-cycle correlation coefficient of GDP, ρηyε, Clark
(1989) assumed that the other two correlation coefficients where zero, implying a less general framework
than the one presented here.
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3.4 Bivariate UC Model: GDP and the inflation rate

Another alternative introduces inflation in the UC model in equations (1)-(3):

πt = τπt + θct (10)

τπt = µπ(1− α) + απt−1 + ηπt, (11)

with α ∈ (0, 1], and





εt
ηyt
ηπt



 ∼ iid N



03×1,





σ2
ε ρηyεσηyσε ρηπεσηπσε

ρηyεσηyσε σ2
ηy

ρηyηπσηyσηπ
ρηπεσηπσε ρηyηπσηyσηπ σ2

ηπ







 . (12)

This model incorporates a Phillips curve relationship (equation (10)), where the cyclical
component of output helps predict the deviation of inflation, {πt}, from trend inflation, τπt.
The specification for trend inflation nests several alternatives. Kuttner (1994) assumed that
inflation followed a unit root process, and hence that α = 1. Kuttner also assumed that
the correlations between innovations were zero. Roberts (2001) also assumed that α = 1
but allowed for correlations between innovations. Basistha (2007, 2009), on the other hand,
allowed α < 1; he also allowed for correlated trend-cycle innovations.2

Stella and Stock (2016) take a different approach and specify the inflation trend as a
unit root process, similar to the unemployment rate trend in the GDP-unemployment rate
bivariate UC model of Section 3.2, as follows:3

τπt = τπ,t−1 + ηπt, , (13)

with the assumption of orthogonal disturbances. They also introduce measurement errors in
the observation equations and stochastic volatilities in all the error terms. The addition of
measurement errors makes the model of Stella and Stock (2016), strictly speaking, no longer
nested in the class of models we have been considering so far. We nonetheless consider a
variant of this specification as one of the alternative models for the sake of completeness;
we find that augmenting the model with measurement error does not have an important
impact on the results. Similarly, we do not formally consider stochastic volatility but rather
examine the implications of the model for the ability to discriminate trend and cycle under
different (constant) assumptions about the volatility of trend inflation.

3.5 Nesting the bivariate models

Here, we present a single bivariate UC model specification that encompasses the three
models laid out above. In our general specification, xt is the accompanying variable (the

2Another paper that incorporates a Phillips curve relationship in the estimation of the output gap is
Basistha and Nelson (2007). These authors included a survey measure of inflation expectations in equation
(11) along with lagged inflation.

3In fact, the model that Stella and Stock (2016) propose has the unemployment and the inflation rates
as observables, as opposed to GDP and the inflation rate. The aim, however, is the same as in the models
with GDP as observable: to disentangle the cyclical component of GDP.
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unemployment rate, GDI, or the inflation rate) whose trend can be modeled under two
alternatives, as shown below:

yt = τyt + ct, (14)

xt = τxt + θct, (15)

τyt = µy + τy,t−1 + ηyt, (16)

ct = φ1ct−1 + φ2ct−2 + εt, (17)

• Exogenous Auxiliary Trend:

τxt = µx + τx,t−1 + ηxt, (18)

• Endogenous Auxiliary Trend:

τxt = µx(1− α) + αxt−1 + ηxt, (19)

where α ∈ (0, 1],

and

var









εt
ηyt
ηxt







 =





σ2
ε ρηyεσηyσε ρηxεσηxσε

ρηyεσηyσε σ2
ηy

ρηyηxσηyσηx
ρηxεσηxσε ρηyηxσηyσηx σ2

ηx



 .

The Exogenous Auxiliary Trend alternative encompasses the bivariate specifications of
Sections 3.2 and 3.3, where GDP is accompanied by the unemployment rate and GDI,
respectively. It also encompasses the specification of the inflation trend in Stella and Stock
(2016). Note that this specification includes only one lag of the cycle entering xt, whereas the
GDP-unemployment rate case outlined in Section 3.2 includes two. To facilitate comparisons
across the bivariate models proposed in the literature, we keep one lag only. (In work not
presented, we explored using two lags instead of one; the results were very similar.)

When the inflation trend is specified as in equation (11), the Phillips curve cannot be
nested with the other models (because the trend is affected by the observation variable).
We therefore also consider the Endogenous Auxiliary Trend alternative, which is chosen
to encompass the bivariate specification of Section 3.4 where GDP is accompanied by the
inflation rate. Depending on the value of the parameter α, inflation can be a stationary
process or a process with a unit root.

4 Monte Carlo Exercises

In this section, we assess the properties of the different specifications described above
using Monte Carlo exercises. In our Monte Carlo experiments, we repeatedly simulate the
various UC models of Section 3 and estimate them by maximum likelihood using the Kalman
filter. We will evaluate the specifications along two main dimensions. First, we examine the
properties of the estimated trend-cycle correlation for output, ρ̂ηyε, in particular its sam-
pling distribution. We look at the sampling distribution because, as emphasized by Basistha
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(2007), standard univariate techniques can find large estimates of the correlation between
trend and cycle innovations, even when the true value is zero. The second dimension along
which we evaluate the specifications is the properties of the estimated cycle, in particular,
its period, which is computed from the estimates of φ1 and φ2, and the estimated proportion
of the variance of output that is accounted for by the variance of the cycle. We look at the
properties of the cycle because these properties can differ depending on the correlation be-
tween trend and cycle. For example, in MNZ’s baseline estimation, which allows correlation
between trend and cycle, the period of the cycle for the U.S. economy is about 10 quarters.
In contrast, the estimated periodicity of the cycle is considerably longer in bivariate speci-
fications that allow for correlation between trend and cycle. In Clark (1989), the period of
the cycle is estimated to be about 28 quarters; in Basistha and Nelson (2007), the period of
the cycle is infinite in their bivariate setup that includes GDP and inflation only, and about
20 quarters in their trivariate setup that also includes the unemployment rate.

We also look at how each specification characterizes the variance decomposition of output.
It is useful to consider the variance decomposition in this framework because it encompasses
several dimensions of the estimation that can be affected by the choice of one specification
or another, namely the proportion of the variance of output growth attributed to variations
in the trend or to variations in the cycle, as well as the impact of the correlation between
disturbances. We obtain the variance decomposition of output in the presence of potentially
correlated disturbances as follows:

% of var (∆yt) explained by var (∆ct) = 100×
var (E (∆yt|∆ct))

var (∆yt)

= 100×
var (∆ct)

(

1 +
ρηyεσηyσε

var(∆ct)

)

σ2
ηy

+ var (∆ct) + 2ρηyεσηyσε
, (20)

where the estimated parameters replace their theoretical counterparts to compute the esti-
mated variance decomposition. As can be seen, the output trend-cycle correlation influences
the variance decomposition.

The central question we aim to answer is whether standard maximum-likelihood tech-
niques can recover the correct value of the correlation between the trend and cycle for output,
ρηyε, as well as an accurate decomposition of output into trend and cycle. In particular, we
are interested in the features of the accompanying variable, xt, that make the estimation
of the correlation coefficient and the properties of the cycle precise. In discriminating these
features, it is useful to look at the variance decomposition of xt, that is, the percent of its
variance that is due to the variance of cycle. The variance decomposition for each of the
specifications can be written as follows:

• Exogenous Trend:

% of var (∆xt) explained by var (∆ct) = 100×
var (E (∆xt|∆ct))

var (∆xt)

= 100×
var (∆ct)

(

θ +
ρηxεσηyσε

var(∆ct)

)2

σ2
ηx

+ θ2 var (∆ct) + 2θρηxεσηx
σε

(21)

8



• Endogenous Trend:

– Nonstationarity [α = 1]:

% of var (∆xt) explained by var (ct) = 100×
var (E (∆xt|ct))

var (∆xt)

= 100×
var (ct)

(

θ +
ρηxεσηyσε

var(ct)

)2

σ2
ηx

+ θ2 var (ct) + 2θρηxεσηx
σε
, (22)

– Stationarity [α ∈ [0, 1)]:

% of var (∆xt) explained by var (ct) = 100×
var (E (∆xt|ct))

var (∆xt)

= 100×
var (ct)

(

θ +
ρηxεσηxσε

var(ct)
+ (α− 1) cov(xt−1,ct)

var(ct)

)2

var (∆xt)
,

(23)

where

var (∆xt) =
2

1 + α

(

σ2
ηx

+ θ2 var (ct) + 2θρηxεσηxσε + θ (α− 1) cov (xt−1, ct)
)

,

cov (xt−1, ct) = ρηxεσηxσε

∞
∑

i=0

αiψi+1 + θσ2
ε

∞
∑

i=0

αi

∞
∑

j=i+1

ψjψj−i−1,

and ψj , for j = 0, 1, 2, ..., are the coefficients of the Wold representation of the cycle.4 Notice
that as α → 1, the variance decomposition in Equation (23) converges to the variance
decomposition in Equation (22).

To explore the features of xt that makes it a good candidate to find an accurate trend-cycle
decomposition of output, we vary two parameters of the processes under the exogenous and
endogenous trend alternatives. First, when xt is nonstationary, we consider several values of
the variance of the innovation to the trend, σ2

ηx
, which will affect the variance decompositions

in equations (21) and (22). Second, when xt is stationary, and a persistent trend is absent, we
vary the persistence coefficient, α, which will change the variance decomposition in equation
(23). Given that our benchmark parametrizations assume that ρηxε = 0, we can achieve any
variance decomposition of xt by varying σ2

ηx
and keeping all the other coefficients fixed.

The models were estimated using the fmincon function in Matlab 2013a. A key constraint
on the correlation coefficients to guarantee positive definiteness of the variance-covariance
matrix of the innovations εt, ηyt, and ηxt is given by ρ2ηyε + ρ2ηxε + ρ2ηyηx + 2ρηyερηxερηyηx ≤ 1.
We used the interior-point algorithm.

4.1 Monte Carlo Exercises: xt nonstationary

The parametrizations of the nonstationary models we consider appear in Table 1. Num-
bers in curly brackets indicate the possible values that the parameters can take over the

4ψ0 = 1, ψ1 = φ1, ψ2 = φ1ψ1 + φ2, ψj = φ1ψj−1 + φ2ψj−2 for j ≥ 3.
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Table 1: Parameter Values - xt nonstationary

Parameter Value

µy 0.8

φ1 1.5

φ2 −0.6

σε 0.6

σηy 0.7

ρηyε {−0.9, 0, 0.9}

θ 0.5

µx 0

σηx {0.01, 0.1, 0.2, 0.35, 0.5, 0.7, 1.2, 1.7, 2.5, 3.0}

ρηxε 0

ρηyηx 0

T = {50, 100,200, 500, 1, 000}

simulations; bold numbers indicate our benchmark parametrization. The combinations of
these values will define the different cases to be explored in the Monte Carlo experiments.
This calibration for yt is similar to the results obtained by MNZ when they assumed no
correlation between trend and cycle (labeled UC-0 in MNZ). In particular, the values of φ1

and φ2 in the cycle process, ct, imply that it will display a hump-shaped pattern; in this
case, there are complex roots resulting in a duration of the cycle of about 25 periods. Under
the baseline variance decomposition, the variance of the cycle explains about 54 percent of
the variations of ∆yt. The mean growth rate, µy, is also chosen to match the MNZ results.
Notice that the coefficients of the process for yt, which is the process that represents (the log
of) GDP, are the same across experiments, keeping the properties of the cycle fixed across
simulations. For convenience, we assume that the cyclical component of yt enters xt with
a loading coefficient θ = 0.5.5 We also assume that the drift component of the auxiliary
variable is zero—that is, that µx = 0.6

As Basistha (2007) has emphasized, standard univariate techniques can find large esti-
mates of the correlation between trend and cycle innovations even when the true value is
zero. We therefore begin by assuming that in the data generating process, ρηyε is zero and
then change it to values in its boundary. In addition, because our emphasis is on the corre-
lation between the trend and cycle for output, we will assume throughout the experiments
that ρηyηx and ρηxε are zero.

5At first glance, it may appear that this loading factor is only appropriate when xt is the unemployment
rate (up to a sign change). However, an examination of equations (21) and (22) indicates that, for ρηxε = 0,
we can replicate any variance decomposition of xt through the appropriate choice of σηx

. We are therefore
able to encompass the parametrizations of inflation or GDI. That is what we do in the simulations, as can
be seen from Table 1 where σηx

takes on a large set of parameter values and θ is fixed.
6When xt corresponds to unemployment or inflation, this assumption is appropriate. In the case of GDI,

this coefficient should be equal to µy, but the results are not affected by the choice of µx.
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Figure 1: Frequency Distribution of ρ̂ηyε under ρηyε = 0

(a) Bivariate model
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(b) Univariate model
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4.1.1 Base case: Exogenous auxiliary trend

The first set of Monte Carlo experiments is designed to mimic the GDP-unemployment
rate setup of Section 3.2 and the GDP-GDI setup of Section 3.3; it can also be used to
interpret the Stella-Stock model of trend inflation discussed in Section 3.4. As stated before,
we assume that the trend component of the accompanying variable follows a random walk
process.

Figure 1a shows the distribution of the estimated correlation coefficient ρ̂ηyε obtained from
the simulations with benchmark parameter values for sample sizes T = 50, 100, 200, 500, 1, 000.
Under these assumptions, the trend and cycle for output are orthogonal (ρηyε = 0) and the
auxiliary variable has trend variability similar to that found for the unemployment rate
(σηx = 0.1) (see Clark, 1989; Fleischman and Roberts, 2011, for example).

The distribution of the maximum likelihood estimator of the correlation coefficient be-
tween the trend and cycle innovations of yt has a conventional shape, with the mass of the
distribution concentrated around the true coefficient value as the sample size increases. For
typical U.S. quarterly sample sizes of around 200, results are reasonably precise.

The shape of the distribution of the estimator of the trend-cycle correlation coefficient
under this bivariate setup contrasts sharply with the distribution of the same correlation
coefficient when a univariate estimation is used—as in MNZ. In Figure 1b, results are re-
ported based on data generated with the same benchmark parameter values as in Table 1,
but omitting xt as an observable in the estimation of the UC model. As can be seen, the
maximum likelihood estimation of the univariate model implies an estimated trend-cycle
correlation coefficient that has a distribution with masses close to -1 and +1. Even with
very large sample sizes, the fat tails of the distribution are evident. The results in Figures 1a
and 1b suggest that estimation of the bivariate model that includes an xt process with the
baseline features substantially improves the small sample properties of the estimator of the
trend-cycle correlation coefficient.

Table 2 reports some key statistics about the estimated cyclical properties—in particular,
the median estimated period of the cycle, the percent of simulations that the estimation
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Table 2: Features of the Estimated Period and Variance Decomposition under
ρηyε = 0

Bivariate model Univariate model

Sample Size Period % finite
simulated

var(E(∆yt|∆ct))
var(∆yt)

true
var(E(∆yt|∆ct))

var(∆yt)

Period % finite
simulated

var(E(∆yt|∆ct))
var(∆yt)

true
var(E(∆yt|∆ct))

var(∆yt)

T = 50 17 91 1.10 17 79 1.74
T = 100 21 94 1.07 19 67 1.69
T = 200 23 92 1.07 21 67 1.60
T = 500 25 96 1.05 23 81 1.28
T = 1, 000 25 98 1.02 24 91 1.12

Note: The true implied period is 24.8 quarters. The true implied variance decomposition
var(E(∆yt|∆ct))

var(∆yt)
is 54.2%.

% finite denotes the percentage of times that a finite period was obtained. Results based on 1,000 simulations.
Median statistics are reported, except for % finite.

delivers correctly a finite period, and the ratio between the median of the estimated variance
decomposition var(E(∆yt|∆ct))

var(∆yt)
and its true counterpart for different sample sizes. The results

in the second, third and fourth columns show that, in our baseline bivariate setup, the
estimated duration of the cycle is close to the implied true duration of about 25 periods
with a sample of 200 periods. The percentage of times that the estimation correctly obtains
a finite period is above 90 percent. The variance decomposition is reasonably similar to
that implied by the true parameters. As the sample size increases, both the period and the
variance decomposition approach monotonically their theoretical values, while the percentage
of times that a finite period is obtained approaches 100 percent.

The fifth, sixth and seventh columns of Table 2 report the results from the estimation
of the univariate setup that includes data on yt only. The univariate estimation tends
to deliver a shorter cyclical period, and the percentage of times that it correctly obtains
a finite period is substantially reduced. It also tends to overestimate the fraction of the
variation of ∆yt that is explained by the cycle. In particular, with a sample size of 200
observations, the estimated period is 16 percent lower than its theoretical value, compared
with 8 percent in the bivariate case. Also, while the median variance decomposition of the
bivariate specification is 7 percent above its theoretical counterpart, the univariate model
delivers a cyclical contribution that is about 60 percent higher. While the period rises toward
its theoretical counterpart as the sample size increases, it does it a slower rate than in the
bivariate model, and the estimated variance decomposition still overshoots its theoretical
value at the largest sample size considered. Thus, the addition of a nonstationary variable,
xt, with features implied by the benchmark parametrization in Table 1 not only helps reduce
the bias in the estimation of the trend-cycle correlation coefficient but also helps reduce the
overall bias in the estimation of the period and the amplitude of the cycle.

We also simulate the bivariate and univariate models of this section assuming that there
is important correlation between trend and cycle—that is, that the results of MNZ hold. In
particular, we simulate the model with the benchmark parametrization of Table 1, except
that we also assume that ρηyε = −0.9 (MNZ’s case) and that ρηyε = 0.9. Figure 2 reports the
results of the bivariate and univariate models estimations. The plots show that the bivariate
specification also does a good job at estimating the trend-cycle correlation coefficient of yt
when the trend and cycle are either negatively or positively correlated, as the peak of the
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Figure 2: Frequency Distribution of ρ̂ηyε under ρηyε ∈ {−0.9, 0, 0.9}

(a) Bivariate model
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(b) Univariate model
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distribution occurs close to the true values of -0.9 and 0.9, respectively. The univariate
specification, on the other hand, continues to give probability masses that are excessively
weighted in the tails. Thus, if the trend and cycle were correlated, the bivariate specification
would very likely detect it.

To assess how the estimates are affected by the relative contribution of trend and cy-
cle to the variability of the accompanying variable, we conduct a set of Monte Carlo ex-
ercises with the benchmark parametrization of Table 1, except that σηx varies in the set
{0.01, 0.1, 0.2, 0.35, 0.5, 0.7, 1.2}. Figure 3 shows the results.7

As can be seen, the simulation results imply that increasing the standard deviation of
the trend innovation of xt makes the estimation of ρηyε less accurate. In particular, the
distribution of the correlation estimates tends to pile up towards +1. The cyclical properties
of the model are also distorted: The cycle period tends to be underestimated; the percentage
of times that the estimation correctly delivers a finite period decreases significantly; and
the estimated fraction of the variation of ∆yt that is explained by variations in the cycle is
further above their theoretical counterparts. A key implication of these results is that adding
a variable with large trend variability would not help recover accurately the correlation
coefficient or to give precise estimates of the cycle.

With these results, we can also explain why the correlation coefficient and the trend-cycle
decomposition would not be accurately estimated using the GDP-GDI bivariate model of
Section 3.3. In that setup, θ = 1 and µx = µy = µz. However, we know that, since GDI is
intended to measure the same concept of overall economic activity as GDP, it should have a
variance decomposition very similar to that of GDP. Hence, we can keep the coefficients θ and
µx at their benchmark values and modify σηx to achieve the same variance decomposition
of ∆yt. That parametrization corresponds to the case where σηx = 0.35 in the table of
Figure 3. The results in this case are inferior to those with σηx = 0.1, our benchmark case.
In particular, the simulated distribution of ρ̂ηyε has negative skewness and starts to gain mass

7In the benchmark parametrization, with σηx
= 0.1 and ρηxε = 0, the variance decomposition implies

that the variance of θ∆ct explains about 94 percent of the variance of ∆xt.
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Figure 3: Frequency Distribution of ρ̂ηyε under σηx ∈ {0.01, 0.1, 0.35, 0.7, 1.2}
(Exogenous Trend)
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true
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σηx = 0.01 99.9 22 96 1.02
σηx = 0.1 94.0 23 92 1.07
σηx = 0.2 78.4 23 84 1.16
σηx = 0.35 54.2 22 71 1.26
σηx = 0.5 36.7 21 69 1.37
σηx = 0.7 22.9 21 64 1.39
σηx = 1.2 9.2 20 67 1.45

Note: The true implied period is 24.8 quarters. The true implied variance decomposition
var(E(∆yt|∆ct))

var(∆yt)
is 54.2%.

% finite denotes the percentage of times that a finite period was obtained. Median statistics are reported, except
for % finite. Results based on 1,000 simulations with sample size T = 200.
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at positive values of the estimated correlation coefficient. Also, the fourth column of the table
shows that the percentage of times that the estimation delivers a finite cycle is 71 percent,
compared with 92 percent in the benchmark case. Additionally, the variance decomposition
attributes 26 percent more of the variations of ∆yt to the cycle than it should, as can be
seen in the last column, compared with only 7 percent in the benchmark parametrization.
These results suggest that using the unemployment rate as an auxiliary variable should lead
to superior results relative to using GDI. Nonetheless, it is worth noting that the bivariate
results with GDI would be more accurate than the univariate results. In particular, the
mass of extreme results is significantly smaller than in the univariate case, and the overall
performance of the estimates of the periodicity and variance decomposition is better.

We next turn to calibrations in which xt has properties similar to inflation as in Stella and
Stock (2016). As discussed above, Stella and Stock (2016) assume an exogenous inflation
trend, so that with appropriate unit transformations, we can use Figure 3 to assess the
usefulness of inflation as an auxiliary variable. In particular, their estimated Phillips curve
slope coefficient is about −0.37, using the unemployment rate as their cyclical variable.
Adjusting for an Okun’s law coefficient of −0.5 would imply θ = 0.19 in our setup. In terms
of the volatility of the trend component of the auxiliary variable, Stella and Stock (2016)
allow the variance of inflation to vary over time. They find that, for the period since 2010—
near the end of their sample—the variance of the permanent component of inflation has
been about 0.15, implying a standard deviation of a bit less than 0.4 percentage points. By
contrast, in the 1970s, the variance of the permanent component of inflation was considerably
larger, reaching as high as 13/4 percent in the middle of the decade, implying a standard
deviation of the permanent component as high as 1.3 percentage points.

According to equation (21), the cycle would account for around 12 percent of the variation
in inflation based on Stella and Stock (2016)’s recent estimate, and 11/4 percent when the
inflation trend was more volatile. Those values would put us at the bottom rows (and
beyond) of the table of Figure 3, where the variance decomposition of xt is between 23 and
9 percent. As can be seen, with these values of the standard deviation of the trend of xt, the
correlation between trend and cycle would be poorly estimated, as the sampling distribution
shows, and the features of the cycle would imply a lower estimated period and a much higher
contribution of the cycle to the variations of ∆yt, compared to their theoretical counterparts.
Additionally, the percentage of times that the estimation delivers a finite period is relatively
low.8

4.1.2 Endogenous auxiliary trend

Our second assumption about the trend in the auxiliary variable accommodates another
common model of the trend component of inflation, in which the cyclical component affects
the evolution of the trend (see Section 3.4). In this section, we consider the nonstationary
variant of the trend component of xt, assuming that α = 1; this specification of the inflation
trend has been used by Kuttner (1994) and Roberts (2001). As in Figure 3, we examine
the consequences of this particular UC model setup on the estimators of the trend-cycle

8As discussed in Section 3.4, Stella and Stock’s baseline specification included measurement error in
inflation. We explored adding measurement error to the auxiliary variable and found that, qualitatively, the
results still hold.
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Figure 4: Frequency Distribution of ρ̂ηyε under σηu ∈ {0.2, 0.7, 1.7, 2.5, 3} (En-
dogenous Trend)
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σηx = 0.1 99.1 22 94 1.02
σηx = 0.2 96.7 23 93 1.02
σηx = 0.5 82.3 23 91 1.07
σηx = 0.7 70.3 23 90 1.08
σηx = 1.2 44.6 23 85 1.13
σηx = 1.7 28.7 22 83 1.12
σηx = 2.5 15.7 22 78 1.23
σηx = 3.0 11.4 22 76 1.25

Note: The true implied period is 24.8 quarters. The true implied variance decomposition
var(E(∆yt|∆ct))

var(∆yt)
is 54.2%.

% finite denotes the percentage of times that a finite period was obtained. Median statistics are reported, except
for % finite. Results based on 1,000 simulations with sample size T = 200.

correlation and the cycle by varying σηx in the set {0.1, 0.2, 0.5, 0.7, 1.2, 1.7, 2.5, 3.0} and
leaving the other coefficients at their benchmark values. Figure 4 shows the results.

The parametrization of σηx in Figure 4 includes higher values than in Figure 3 to capture
the small contribution of the cycle to the variability of inflation that is found in the results of
the existing literature. For example, rough calculations of the variance decomposition based
on the results of Kuttner (1994) and Roberts (2001) imply numbers lower than 15 percent,
which correspond to the results reported in the last rows of the table in Figure 4. For
those values of σηx , the sampling distribution of ρ̂ηyε is relatively flat and tail events gain
in importance, as can be seen in the figure. The fourth column of the table shows that the
percentage of times that the estimation delivers a finite period, between 76 and 78 percent,
is higher than in the univariate case, but much lower than in our benchmark bivariate setup.
The last column shows that the cycle contribution to the variability of yt is overestimated in
the order of around 23 to 25 percent, again better than the univariate case but worse than
with a variable that resembles the unemployment rate.
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Table 3: Parameter Values - xt stationary

Parameter Value

µy 0.8

φ1 1.5

φ2 −0.6

σε 0.6

σηy 0.7

ρηyε 0

θ 0.5

µx 0

α {0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}

σηx {1, 3, 7}

ρηxε 0

ρηyηx 0

T = 200

4.2 Monte Carlo Exercises: xt stationary

In this case, we assume that the inflation trend is given by τxt = µx(1 − α) + αxt−1 +
ηxt, as in the Endogenous Trend alternative, except that here, we allow α ∈ (0, 1). We vary
the persistence coefficient α inside the unit circle and examine the properties of the trend-
cycle correlation and cycle estimates. We also consider three values for the variability of the
auxiliary variable, σηx . The parametrizations used appear in Table 3. Setting σηx = 3 makes
the results as α → 1 compatible with the results under the specification of the Endogenous
Trend in Section 4.1.2. As discussed in that section, our reading of the literature suggested
a relatively high value of σηx . To be consistent with the Monte Carlo exercise in Basistha
(2007), we also consider a value of σηx = 1. Basistha (2007) assumed α = 0.5, σηx = 1 and
that the influence of the cycle on the auxiliary variable, θ, is 0.4.

In Figure 5, σηx = 1. With this setting, the results largely confirm the findings in the
simulation exercises of Basistha (2007): The distribution of ρ̂ηyε is well-behaved over a wide
range of values for α. As can be seen in Figures 6 and 7, however, as σηx increases and a
lower proportion of the variability of the auxiliary variable—inflation—is attributed to the
cycle, the distribution becomes less well behaved.9 The figures indicate that the distribution
of the estimated trend-cycle correlation coefficient tends to pile up at +1. Three additional
features of the estimation can be distinguished as σηx increases. First, the estimated period
of the cycle tends to decline. Second, the percentage of correctly estimated finite periods
also tends to decline. This percentage worsens as the persistence of the auxiliary variable

9Notice that the second column of the table in Figure 6 shows that, as the persistence coefficient ap-
proaches one, the contribution of the variance of the cycle to the variance of xt tends to the value when α = 1,
which can be seen in the second column of the last row of the table of Figure 4. In fact, the contribution of
the variance of the cycle to the variance of xt is 11.35% when α = 0.999.
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Figure 5: Frequency Distribution of ρ̂ηyε - xt stationary, σηx = 1

-1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
ρ̂ηyǫ

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
α = 0.1

α = 0.5

α = 0.7

α = 0.95

Persistence true 100× var(E(∆xt|ct))
var(∆xt)

Period % finite
simulated

var(E(∆yt|∆ct))
var(∆yt)

true
var(E(∆yt|∆ct))

var(∆yt)

α = 0.1 0.4 22 88 1.11
α = 0.3 1.0 23 87 1.14
α = 0.5 2.9 22 87 1.12
α = 0.7 9.2 22 89 1.13
α = 0.9 30.3 23 83 1.12
α = 0.95 40.6 23 81 1.08
α = 0.99 50.9 23 75 1.07

Note: The true implied period is 24.8 quarters. The true implied variance decomposition
var(E(∆yt|∆ct))

var(∆yt)
is 54.2%.

% finite denotes the percentage of times that a finite period was obtained. Median statistics are reported, except
for % finite. Results based on 1,000 simulations with sample size T = 200.

18



Figure 6: Frequency Distribution of ρ̂ηyε - xt stationary, σηx = 3
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α = 0.1 0.04 22 77 1.20
α = 0.3 0.1 21 76 1.25
α = 0.5 0.4 21 77 1.24
α = 0.7 1.4 22 77 1.22
α = 0.9 5.6 22 72 1.21
α = 0.95 8.1 22 71 1.21
α = 0.99 10.7 22 68 1.21

Note: The true implied period is 24.8 quarters. The true implied variance decomposition
var(E(∆yt|∆ct))

var(∆yt)
is 54.2%.

% finite denotes the percentage of times that a finite period was obtained. Median statistics are reported, except
for % finite. Results based on 1,000 simulations with sample size T = 200.

19



Figure 7: Frequency Distribution of ρ̂ηyε - xt stationary, σηx = 7
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α = 0.1 0.01 20 70 1.38
α = 0.3 0.02 21 68 1.39
α = 0.5 0.07 20 70 1.37
α = 0.7 0.3 20 68 1.43
α = 0.9 1.1 21 66 1.41
α = 0.95 1.6 21 64 1.45
α = 0.99 2.2 20 63 1.42

Note: The true implied period is 24.8 quarters. The true implied variance decomposition
var(E(∆yt|∆ct))

var(∆yt)
is 54.2%.

% finite denotes the percentage of times that a finite period was obtained. Median statistics are reported, except
for % finite. Results based on 1,000 simulations with sample size T = 200.
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increases for any value of σηx . Finally, the proportion of the variance of output attributed
to the cycle tends to be more overestimated.

We believe that the relevant distribution is the one shown in Figure 7. While the empirical
estimates in Basistha (2007) of α = 0.75 and σηx = 1.35 are not far from the values assumed
in his Monte Carlo exercise, crucially, he finds an estimate of θ = 0.11. This small value
for the influence of the cycle on the auxiliary variable, inflation in this case, dramatically
reduces its value as a cyclical indicator relative to his Monte Carlo exercise; the impact of the
parameter θ on the variance decomposition can be seen in Equation (23).10 In particular,
Basistha’s empirical evidence suggests that the contribution of the cycle to the variance
of inflation is on the order of 1⁄4 percent.11 Our simulations would be able to reproduce
that order of the variance decomposition for α = 0.7—close to the persistence obtained by
Basistha—with a standard deviation of the auxiliary variable’s trend, σηx = 7. In that case,
we would obtain results similar to those in the α = 0.7 row of the table in Figure 7. Those
results indicate that the distribution of ρηyε would be seriously distorted, the period would
be underestimated, only 68 percent of the times a finite period would be obtained, and the
cycle explains 43 percent more of the variations in GDP than it should.

It is an open question whether inflation should be modelled as a stationary process,
especially over long samples. In Basistha (2007)’s empirical application for the Canadian
economy, the results indicate a persistence coefficient of 0.75 with a conventional confidence
interval that does not include unity. However, Basistha requires three mean breaks in infla-
tion to obtain that result. Other authors have favored a unit-root specification for inflation.
For example, Basistha and Nelson (2007) find that the autoregressive coefficient on U.S.
inflation is about 0.88 and the 95% confidence interval includes unity. Along the same lines,
Stock and Watson (2007) find that U.S. inflation probably has a unit root.12 Hence, at
least for the case of the United States, inflation is probably nonstationary, in which case the
results imply that the trend-cycle correlation and the cycle using inflation as the auxiliary
variable would not be accurately estimated.

5 Size and Power of the Likelihood Ratio Test of Hy-

potheses about ρηyε

In this section, we investigate the performance of the Likelihood Ratio (LR) test under
nonstationarity of the accompanying variable and the three following assumptions:

• Univariate model and benchmark parametrization.

• Bivariate model under Exogenous Auxiliary Trend and benchmark parametrization.

10Basistha’s estimation also finds a statistically significant MA(1) term, which, along with the other
estimated parameters, implies a lower contribution of the variance of the cycle to the variance of inflation
compared with the case in which there is not such a term.

11The variance decomposition of the auxiliary variable under the benchmark parametrization in Basistha’s
Monte Carlo exercise is 5.8%.

12Other papers simply assume a unit root in inflation, such as Kuttner (1994), Roberts (2001) or Basistha
and Startz (2008)
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Under this parametrization, the auxiliary variable has properties similar to the unem-
ployment rate.

• Bivariate model under Endogenous Auxiliary Trend and high trend shock variance of
the accompanying variable. Under this parametrization, the accompanying variable
resembles inflation.

5.1 Size of the LR Test of Hypotheses about ρηyε

We first compute the frequency with which the LR test incorrectly rejects a true hy-
pothesized value—that is, the size of the test. We simulate the bivariate model 1,000 times
according to the specification in Table 1, except that we set ρηyε = ρ0ηyε for ρ0ηyε ∈ {−0.95,
−0.9,−0.8, . . . ,−0.1, 0, 0.1, . . . , 0.8, 0.9, 0.95}. We consider the null hypotheses in the uni-
variate and bivariate estimations as H0 : ρηyε = ρ0ηyε.

Figure 8 plots the size of the likelihood ratio test for the univariate and bivariate models
using a 5 percent significance level. Recall that, ideally, the test should lead to a horizontal
line at a size of 0.05—that is, for all values of ρηyε, the hypothesis would be rejected 5 percent
of the time. As can be seen, none of these models meets that ideal, although of the three, the
Bivariate Exogenous Trend alternative comes closest. In particular, the univariate estimation
delivers very low size for hypothesized values of the correlation coefficient above -0.3, such
that the test will not reject the hypothesized true value often enough. For correlations below
-0.5, the size is too large, meaning that the test of the null hypothesis will be rejected too
often. Based on their simulations, MNZ argue that the size of the LR test of the hypothesis
H0 : ρηyε = 0 is approximately correct. This interpretation is broadly consistent with our
findings because we find that at H0 : ρηyε = 0, the null hypothesis will not be rejected often
enough, making MNZ’s rejection of the hypothesis all the more convincing.

In the case of the Bivariate Endogenous Trend model, the size is uniformly too large,
meaning that the LR test under this alternative would reject the null hypothesis too often,
in particular the hypothesis H0 : ρηyε = 0. While the size of the test under the Bivariate
Exogenous Trend alternative is too large for values of the correlation coefficient lower than
-0.7 and too small for values larger than 0.3, it performs almost uniformly better than the
other two cases contemplated.

5.2 Power of the LR Test of Hypotheses about ρηyε

We now consider the ability of the LR test to reject various false hypothesized values for
ρηyε—that is, the power of the test. Three exercises are performed in which we simulate the
bivariate model 1,000 times. First, we simulate the model according to the benchmark pa-
rameter specification in Table 1, that is, assuming that ρηyε = 0, and set the null hypotheses
in the univariate and bivariate estimations as H0 : ρηyε = ρ0ηyε, where ρ

0
ηyε

∈ {−0.95,−0.9,
−0.8,−0.7, . . . ,−0.1, 0.1, . . . , 0.7, 0.8, 0.9, 0.95}. In the second exercise, we set ρηyε = −0.9
to simulate the model and test the null hypotheses H0 : ρηyε = ρ0ηyε, where ρ

0
ηyε

∈ {−0.95,
−0.85,−0.8,−0.7, . . . ,−0.1, 0, 0.1, . . . , 0.7, 0.8, 0.9, 0.95}. Finally, we simulate the model set-
ting ρηyε = 0.9 and test the null hypotheses H0 : ρηyε = ρ0ηyε, where ρ

0
ηyε

∈ {−0.95,−0.90,
−0.8,−0.7, . . . ,−0.1, 0, 0.1, . . . , 0.7, 0.8, 0.85, 0.95}
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Figure 8: Size of the Likelihood Ratio Test
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Note: The size corresponds to a significance level α = 0.05.

Figure 9 reports the fraction of times the LR test rejects the false hypothesized value, for
the univariate and bivariate models, in the three exercises performed. When the true value
of ρηyε is zero, Figure 9b shows that the test based on univariate estimation has virtually
no power to reject hypothesized values of ρηyε greater than -0.5. The power increases as the
value of the hypothesized correlation coefficient approaches the left tail but still reaches only
37 percent for the null hypothesis H0 : ρηyε = −0.95. Hence, the test based on the univariate
estimation has very low power to reject the false null hypothesis of negative correlation
between trend and cycle. Better performance is obtained under a Bivariate Endogenous
Trend. The maximum power of the LR test is about 70 percent, and it is reached when
ρ0ηyε = −0.95. Better still is the Bivariate Exogenous Trend alternative, which has power
increasing to 100 percent as the hypothesized value moves away from the true correlation
coefficient of zero.

Figure 9a considers the case when the true value of ρηyε is -0.9. In this case, the univariate
estimation and Bivariate Endogenous Trend alternatives lack the ability to reject almost
any false hypothesized value, whereas the Bivariate Exogenous Trend alternative rapidly
approaches a rejection probability of one as the hypothesized values move above the true
value of the correlation. In particular, the Bivariate Exogenous Trend model would reject
with probability one a hypothesized value of zero for the correlation between trend and cycle
innovations if the true correlation were -0.9, compared with a power of around 10 percent
in the univariate estimation and 55 percent in the Bivariate Endogenous Trend assumption.
A similar performance of the LR test is obtained when the true value of ρηyε is 0.9, as can
bee seen in Figure 9c. Once again, the Bivariate Exogenous Trend alternative yields the
highest power of the test almost uniformly, and the worst performance is obtained from the
univariate specification.
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Figure 9: Power of the Likelihood Ratio Test

(a) ρηyε = −0.9
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(b) ρηyε = 0
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(c) ρηyε = 0.9
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Note: The power corresponds to a significance level α = 0.05.
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6 Summary of Monte Carlo Findings

Before proceeding to the empirical application to obtain the trend-cycle decomposition
of GDP for the U.S., we summarize the findings of the Monte Carlo exercises:

• Adding a second variable improves the econometrician’s ability to distinguish the trend
and cycle components of output correctly.

• For example, adding GDI—a second measure of the same concept as GDP—reduces
the distortion in the sampling distribution of the correlation between trend and cy-
cle. Nonetheless, in the case of GDI, the distortion in the estimated period remains
substantial.

• Performance improves as the variability of the auxiliary variable’s trend falls.

• In particular, when the variability of the trend is about the same as that typically
found for the unemployment rate, the distortion in the sampling distribution of the
correlation between trend and cycle for GDP is practically absent.

• When a stationary accompanying variable is considered with a parametrization that
leads to properties similar to inflation—the leading candidate considered in the litera-
ture (see Basistha, 2007; Basistha and Nelson, 2007)—the sampling distribution of the
correlation coefficient is distorted and the features of the estimated cycle are somewhat
far from its theoretical counterpart.

• When we consider treatments that correspond to nonstationary inflation, whether as
part of an “accelerationist Phillips curve” as in Kuttner (1994) or Roberts (2001), or as
an exogenous trend, as in Stella and Stock (2016), we find that inflation performs poorly
as an auxiliary variable. At best—when the variability of trend inflation is relatively
low, as Stella and Stock (2016) suggest is the case in relatively recent periods—inflation
performs better than GDI. In other settings, such as when the variability of trend
inflation is greater, its performance as an auxiliary variable deteriorates.

• The model with the best performance of the LR test of hypothesis on the trend-cycle
correlation coefficient in terms of size is the bivariate specification under an exogenous
trend and the benchmark parametrization—the specification that resembles the un-
employment rate. It is followed by the (realistically calibrated) bivariate specification
under an endogenous trend and the univariate model, in that order. The same ranking
is obtained when considering the power of the LR test.

• On balance, we find that the best of the three available auxiliary variables we consider
is the unemployment rate, with its relatively low trend volatility being the key to its
success.
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Table 4: Log-likelihood and BIC for Different Restrictions

Restriction Log-likelihood BIC

1 None -326.52 714.66
2 ρηyε = 0 -329.13 714.28
3 ρηuε = 0 -326.89 709.80
4 ρηyηu = 0 -328.22 712.46
5 ρηuε = ρηyε = 0 -329.56 709.54
6 ρηyε = ρηyηu = 0 -330.64 711.70
7 ρηuε = ρηyηu = 0 -328.37 707.16
8 ρηuε = ρηyε = ρηyηu = 0 -330.71 706.24

Note: BIC is Bayesian Information Criterion

7 Estimation Results of the GDP-Unemployment Bi-

variate Model

Based on the Monte Carlo exercises, we conclude that, among the three considered, the
nonstationary variable that would deliver the most reliable trend-cycle decomposition of
GDP is the unemployment rate. Consistent with this finding, we therefore adopt the model
of Section 3.2 that includes the unemployment rate, which we reproduce here for convenience.

yt = τyt + ct

τyt = µy + τy,t−1 + ηyt

ct = φ1ct−1 + φ2ct−2 + εt,

ut = τut + θ1ct + θ2ct−1,

τut = τu,t−1 + ηut,





εt
ηyt
ηut



 ∼ iid N



03×1,





σ2
ε ρηyεσηyσε ρηuεσηuσε

ρηyεσηyσε σ2
ηy

ρηyηuσηyσηu
ρηuεσηuσε ρηyηuσηyσηu σ2

ηu







 .

We use quarterly GDP and unemployment rate data from the St. Louis FRED database as
observable variables for the period 1948:1-2015:4 to estimate the unrestricted unobserved
components (UC-UR) model above to extract the trend and the cycle of GDP.

In our simulation work, we assumed that the two correlations involving the unemployment-
rate trend, ρηuε and ρηyηu , were equal to zero. In Table 4, we assess whether this hypothesis is
correct. By comparing lines 1 and 7, we see that the evidence suggests this hypothesis is not
rejected: Twice the difference in the log likelihood is 3.7, a difference that is not significant
at the 5 percent level for two degrees of freedom, indicating that we are safe in assuming
these correlations are zero.

A comparison of lines 7 and 8 provides a test of the restriction ρηyε = 0, which is the
hypothesis that is explored in detail in the main text. This restriction is strongly rejected.
Based on our Monte Carlo analysis, we can be confident that this test is valid. We will
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Table 5: Bivariate UC Model Estimates

ρηuε = ρηyηu = 0

Estimate Standard Error Z-statistic

µy 0.80 0.04 21.13

φ1 1.62 0.06 27.61

φ2 -0.67 0.06 -11.73

σε 0.41 0.07 5.76

σηy 0.60 0.04 14.20

ρηyε 0.48 0.18 2.64

θ1 -0.51 0.10 -5.29

θ2 -0.17 0.04 -3.85

σηu 0.16 0.02 9.98

ρηuε 0 - -

ρηyηu 0 - -

LogL = -328.37, BIC = 707.16

ρηyε = ρηuε = ρηyηu = 0

Estimate Standard Error Z-statistic

µy 0.79 0.04 20.96

φ1 1.56 0.06 26.56

φ2 -0.61 0.06 -10.50

σε 0.58 0.05 12.42

σηy 0.60 0.04 16.65

ρηyε 0 - -

θ1 -0.36 0.04 -8.59

θ2 -0.18 0.03 -5.63

σηu 0.15 0.02 9.93

ρηuε 0 - -

ρηyηu 0 - -

LogL = -330.71, BIC = 706.24

thus focus on the version of the model that does not impose the ρηyε = 0 restriction. We
will nonetheless also consider the version of the model with the restriction imposed, in part
because it is an important benchmark in the literature. In addition, as noted in the final
column, the version of the model with the restriction imposed is preferred according to the
Bayesian Information Criterion (BIC). (Although the difference relative to line 7 is “not
worth more than a bare mention” (see Kass and Raftery, 1995).)

The estimates of the two models appear in Table 5. In the results to the left, the corre-
lation between the output trend and cycle is estimated to be positive, about 0.5. Based on
our Monte Carlo results, we are confident that this result is robust. It stands in contrast to
the univariate results of MNZ, who found a strongly negative correlation between the output
trend and cycle. This result is also different from that of Clark (1989), who found a corre-
lation that was negative but not statistically different from zero at conventional significance
levels.

The positive correlation between trend and cycle innovations of GDP means that when
the UC model sees a surprising acceleration (deceleration) in GDP, it revises both the trend
and the cycle upward (downward). Thus, a positive (negative) perturbation to the trend
is likely associated with a positive (negative) perturbation to the cycle. Our model is, of
course, purely statistical and there are a number of theoretical interpretations of the positive
correlation between trend and cycle. One possibility is hysteresis: Long and pronounced
periods of economic slack may affect the trend—for example, as the skills of unemployed
workers atrophy (Haltmaier, 2012; Ball, 2014; Reifschneider, Wascher and Wilcox, 2015,
see).13

13The finding of a positive correlation between trend and cycle appears to be importantly affected by the
experience after the Great Recession. In fact, if the estimation were to be conducted with data ending in
2009:4 (or earlier), little statistical evidence would have been found to reject the null hypothesis ρηyε = 0.
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Figure 10: Smoothed GDP Cycle
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(b) ρηyε = ρηuε = ρηyηu = 0
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With respect to the other model parameters, the autoregressive coefficients of the cycle
imply a strong hump-shaped pattern of the responses to a business-cycle shock, similar to
the results of Fleischman and Roberts (2011) and of MNZ in the estimation of the con-
strained univariate unobserved components model, the case they label UC-0. The estimated
parameters imply complex roots, with a period of 11.1 years. The variance decomposition
indicates that about 65 percent of the variation in GDP growth is explained by the cycle.
The estimates of the coefficients that relate the cycle to the unemployment rate, θ1 and
θ2, suggest a conventional Okun’s law relationship, with the unemployment rate reacting
to cyclical shocks with a lag relative to GDP, and a total effect after two quarters of -0.68,
somewhat above in absolute terms from conventional estimates of -0.5 (see Abel, Bernanke
and Croushore, 2013).

Figure 10a plots the smoothed cycle obtained from the estimation of the model along
with the 95 percent confidence intervals. For comparison, we also plot the CBO GDP gap.
The CBO and our estimate of the cycle behave similarly, although the cycle obtained from
our model shows somewhat less variability than CBO’s. At the end of the sample (2015:Q4),
our bivariate model predicts that the output gap is still around negative 2 percent, in line
with the CBO estimate.

The results in the right-hand part of Table 5 consider the model with no correlations
among the trends and cycle innovations. The parameter point estimates are broadly similar
to those under the more-restrictive model. The point estimates of φ1 and φ2 indicate that
the period of the cycle would be 13.5 years. The variance decomposition would attribute
about 60 percent of the variations in GDP growth to variations in the cycle, and the long-run
Okun’s law coefficient would be about -0.54.

The estimate of the cycle in the absence of trend and cycle correlations appears in Fig-
ure 10b. This estimate of the cycle is broadly similar to the estimate when the correlation is
freely estimated; their unconditional correlation coefficient is 0.92. there are, however, two
key differences. First, the variability of cycle is greater in this version of the model. Second,
starting in the mid-1990s, the estimate of the cycle is shifted upwards. We view the smaller
variability of the cycle in the first case as a natural consequence of the positive correlation
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Figure 11: Observed real GDP and Unemployment Rate and Corresponding
Trends
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(b) ρηyε = ρηuε = ρηyηu = 0
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between trend and cycle, as a shock that pushes up the cyclical component of output will
also tend to raise the trend, softening the cyclical increase. We view the recent higher level
of the trend (lower cyclical component) in the model with the unconstrained trend-cycle
correlation as being the consequence of the longer recoveries that have been the norm since
the 1980s: A long recovery will be accompanied by upward revisions to trend output. Thus,
by 2007, the level of trend GDP was about 2 percent higher in the model with correlated
trend and cycle. It is interesting to note that in the succeeding recession, this difference
in trends was almost entirely eliminated, and in both models, output was about 6 percent
below trend at the trough. The gap re-emerged over the next several years, however, and at
the end of the sample, the estimated cycle is around zero in the model with no correlation,
compared with the 2 percent shortfall in the model with a correlated trend and cycle.

Figure 11 shows the observed (log of) GDP and unemployment rate series along with
their estimated trends for the two specifications whose results appear in in Table 5. Both
models predict relatively small increases in the trend component of GDP in the latter years of
the sample, as is apparent from the dashed blue lines in Figures 11a and 11b. The estimated
trend of the model with(out) correlated output innovations rises only at an annualized rate of
11/4 (1) percent on average from 2010 to 2015, compared with 21/4 (23/4) percent on average
from 2007 to 2009 and 23/4 (21/2) percent per year in the four years before that.

Figure 11 also shows the unemployment rate and its trend. The broad movements in the
trend unemployment rate are similar across the two specifications (with and without trend-
cycle correlation in ouptut): The unemployment rate trend moves up fairly steadily from the
beginning of the sample to the mid-1970s, reaching as high as 7 percent in the early 1980s.
After a temporary decline in the mid-1980s and a subsequent increase, the trend moves
down over the rest of the 1980s and through the 1990s, reaching as low as 51/2 percent in the
model with correlation and 6 percent in the model without correlation. From the mid-1990s
to 2007, the unemployment trend stays around 51/2 percent in the model with correlation
and 61/2 percent percent in the model without correlation. The trend unemployment rate
spikes in both models during the financial crisis but then moves down thereafter. As would
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be expected given Okun’s law, at the end of 2015, the model with correlation estimates a
trend unemployment rate of around 4 percent and thus an unemployment gap, whereas the
model without correlations obtains a trend unemployment rate of around 5 percent.

8 Conclusions

In this paper, we investigated the performance of different bivariate unobserved compo-
nents models in estimating the trend and cycle of GDP. We found that the best variable to
accompany GDP in the bivariate specification is the unemployment rate, which is superior
in performance to two alternatives, namely inflation and gross domestic income. Our results
suggest that the main reason the unemployment rate is especially helpful is that its unit
root component (trend) has a relatively small variance relative to its cyclical component.
We estimated the cycle using GDP and unemployment rate data for the U.S. and found that
there is evidence of positively correlated trend and cycle innovations and that the cycle has a
conventional shape, with a period of about 11 years. Overall, our Monte Carlo experiments
suggest that the results of our statistical tests could be trusted when the unemployment rate
is included in the model.
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