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Yesol Huh Sebastian Infante
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December 12, 2016

Abstract

This paper models the important role that repurchase agreements (repos) play in bond

market intermediation. Not only do repos allow dealers to finance their activities, but they also

increase dealers’ ability to satisfy levered client demands without having to adjust their holdings

of risky assets. In effect, the ability to borrow specific assets for delivery allows dealers to source

large quantity of assets without taking ownership of them. Larger levered client orders imply

larger asset borrowing demands, thus increasing the borrowing cost for the asset (i.e., repo

specialness). Dealers pass on the higher intermediation cost to their clients in the form of

higher bid-ask spreads. Although this method of intermediation is optimal, the use of repos

significantly increases dealers’ balance sheets. Limiting one dealer’s balance sheet leverage,

leaving all else equal, reduces the affected dealer’s market making abilities and increases his

bid-ask spreads. The equilibrium effect of limiting all dealers’ balance sheet leverage on bid-

ask spreads is unclear, and depends on the intensity of clients’ demand and securities lenders’

sensitivity to repo specialness.

∗This paper was previously circulated under the title “Bond Market Liquidity and the Role of Repo.” We thank Erik
Heitfield, Jean-David Sigaux, and participants at the 12th Annual Central Bank Conference on Market Microstructure
of Financial Markets for their helpful feedback. The views of this paper are solely the responsibility of the authors
and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or
of any other person associated with the Federal Reserve System. Federal Reserve Board, 20th St. and Constitution
Avenue, NW, Washington, DC, 20551. Please send comments to: sebastian.infantebilbao@frb.gov.

1



1 Introduction

The perceived reduction in Treasury bond liquidity has become a highly debated topic among

market participants and policy makers. Many market participants have argued that regulations

such as the Supplementary Leverage Ratio (SLR) have made repurchase agreements (repos) more

expensive for dealers, and that this in turn has hurt liquidity in the cash Treasury market. While it

is well known that repos are widely used in cash market intermediation, especially for shorting, it is

not clear how limiting dealer leverage would translate to lower liquidity. Most market commentary

give matched book repos as an example of how leverage constraint would hurt the repo market.

However, given that funding is usually the driver of matched book repos, it is not clear whether it

should relate to cash market liquidity. In this paper, we aim to build a model that directly links

repo markets with cash market liquidity by modeling how dealers use repo to intermediate in the

cash market.

Repos give market makers the ability to finance and source assets without having to take

ownership of them. It has long been understood that dealers rely on repo as an important source

of funding, not only to finance their own positions, but also to finance counterparties’ activities. In

addition, repos, and more specifically, securities lending, play a critical role in enabling investors

to take short positions. In effect, a short sale requires a borrowed asset. This paper accounts

for these two roles that repo play, and also presents a third: to enable dealers to increase their

intermediation capacity without affecting their optimal portfolio choice. Figure 1 shows primary

dealers’ aggregate repo and trading volumes in the U.S. Treasury market. The high correlation

between these two series is suggestive of how important the repo market is for trading activity.

To show the above intuition, we present a two period model in which dealers service clients’

trading and financing needs by purchasing and borrowing a single risky asset. The model features

a continuum of dealers that intermediate for other investors, called clients, which seek to execute

trades. Each dealer is a monopolist to their clients, which submit levered long or short sale orders to

their dealer for execution. Client trade sizes are stochastic but depend on the bid/ask imposed by

the dealer: a larger markup lowers demand, reducing the probability of a larger order size. Dealers

trade in a centralized interdealer market to fill client orders, internalizing how trading affects their
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Figure 1: Trading and repo volume for Treasuries
This graph plots the standardized trading volume and repo volume for Treasury securities over
time. Both are calculated using the primary dealer statistics data on the NY Fed website. We
take the sum across all Treasury notes and bonds, and for repo volume, we include both repo
and reverse repo.
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optimal portfolio choice.

In addition, dealers can access two types of repo markets to borrow and lend cash and assets:

the general collateral repo (GC) and the specific issue repo (SI) market. The GC market allows

dealers to raise funds from cash investors who are indifferent to the specific asset used as collateral.

The SI market enables dealers to borrow and deliver specific assets, which are either used to cover

their own short positions or to service client trades, from each other or from securities lenders. The

rate at which the SI repo market clears is called the repo specific issue rate, and depends on the

securities lenders’ willingness to lend and dealers’ demand for SI collateral. If the specific issue rate

is lower than the prevailing GC interest rate, SI collateral is said to be trading on special. Repo

special rates are a cost borne by all counterparties who choose to borrow though in the SI market.1

By using these two repo markets simultaneously dealers can finance, hedge, and intermediate assets

between themselves and their clients.

1Even though the model considers just one risky asset, we assume that dealers cannot use assets received through
GC repos in order to fill client trades, since a priori counterparties in the GC market do not know what asset they
will receive.
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To satisfy client long or short demand, a dealer has to have the actual securities, either through

outright ownership or sourcing it via reverse repo. Dealers cannot write naked shorts or derivative-

like positions.2 This SI box constraint is a crucial friction in our model. In our model, clients do

fully levered long or short trades, that is, dealer will either sell the asset to the client and reverse

repo it in, or repo out the asset to the client and buy it back. Thus, the number of actual assets

that the dealer has in the box does not change after trading with the client. However, the SI box

constraint dictates that the dealer still has to have the asset in order to do this trade. Hence,

dealers may have to source in assets via the expensive SI repo market. The SI repo market

allows dealers to increase the amount of assets they can source—the amount of assets purchased

and borrowed—without compromising their risk adjusted return decision. That is, repos allow

dealers to maximize their market making ability, increasing market liquidity, while allowing them

to maintain an optimal risky asset position.

Figure 2 shows the differences between primary dealers’ aggregate box constraints for the 2-

year on-the-run U.S. Treasury note. It indicates that the SI box constraint is mostly positive.

This implies that assets which can be delivered into the SI market are either posted in the GC

market or not used at all. This behavior seems puzzling, since whenever the bond trades on special

this allocation implies an loss. That is, assets are used to raise cash at a higher rate than they

would otherwise if used in the SI market. This behavior is observed across U.S. Treasury securities

of other tenors, providing evidence that the nature of dealers’ SI box constraint results in an

intermediation cost that dealers must bear.

The main results of the baseline model is that dealers’ asset positions are driven solely by their

risk-return considerations, and intermediation is facilitated through repo. The model shows that

the fees dealers charge to their clients, which are modeled as a bid/ask spread, largely depend on the

degree of repo specialness. In effect, if the cost of sourcing assets increases, dealers will pass on the

cost to their clients. In addition, the model shows that filling client short orders involves sourcing

more assets than filling client longs. This is because dealers must first source assets to deliver to

their clients, and then source assets to hedge their position. Clients’ demand is crucial to determine

2We do not allow for derivatives in the model, but as long as there are clients who only trade in the cash market,
the results of our model should be applicable.
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Figure 2: SI box and global box for primary dealers.
SI box and global box is calculated from FR 2004 data downloaded from NY Fed website. SI
box is defined as net position plus the reverse repo on specific issue minus the repo on specific
issue. Global box is defined as SI box plus reverse repo on general collateral minus the repo on
general collateral. Panel A. calculates the SI box and global box for the 2 year Treasury note,
and Panel B. calculates for the 10 year Treasury note.
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the degree of asset specialness, the cost of intermediation, and ultimately market liquidity. We also

show that an increase in securities lenders’ willingness to lend decreases specialness and bid-ask

spreads.

Although this method of intermediation is optimal, it has its drawbacks. Specifically, it involves

engaging in various repos and reverse repos, which can substantially increase the size of a dealer’s

balance sheet. Motivated by the recent regulatory initiatives to limit the amount of leverage a large

bank holding company (BHC) can take, we impose an additional restriction that limits dealers’

balance sheet size. We show that this size limit reduces dealers’ incentives to intermediate large

trades, and dealers cap the amount of client orders they fill, thus limiting market depth. In the

partial equilibrium setting, dealers increase the bid-ask spread, although in the general equilibrium

setting the result is ambiguous since a cap on repo intermediation also puts downward pressure

on repo specialness, alleviating the direct cost of intermediation. Additionally, if the size limit

becomes tighter for a given dealer, it will increase the bid-ask spread that it quotes.

We do not attempt to make a statement about whether leverage restrictions are welfare im-

proving or deteriorating in this paper. Because we assume contract enforceability and no limited

liability, there are no negative consequences associated with large dealer balance sheets. Discussing

the benefits of leverage constraints is outside the scope of this paper; thus, the results that leverage

constraints decrease intermediation and potentionally market liquidity should be interpreted with

the above caveat in mind. We also do not include other possible sources of liquidity, such as high

frequency traders. However, to the extent that the intermediation in dealer-customer market in

Treasury securities are dominated by dealers, this omission is not a serious issue.

The paper is structured as follows. Section 2 reviews related literature, and Section 3 gives

some institutional background on the different repo markets in the United States and the role

dealers play. The following section describes the model setup, detailing the main agents and how

they interact. Section 5 presents the symmetric equilibrium and interpretation when dealer balance

sheets are unrestricted. Section 6 incorporates restrictions on the size of dealers’ balance sheet and

shows how this affects their markup decision.
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2 Literature Review

Our paper is related to the literature on Treasury market liquidity. Using high frequency data

from the interdealer market, Fleming and Remolona (1999) studies how price and bid-ask spreads

change around macroeconomic announcements. Fleming (2003) compares different liquidity mea-

sures, and finds that bid-ask spread and price impact measures are more informative than other

liquidity measures such as quote size and on-the-run/off-the-run yield spreads. Mizrach and Neely

(2006) studies how liquidity changed when the Treasury interdealer market transitioned from voice

to electronic markets, and Fleming (1997) documents the intraday patterns of Treasury market

liquidity. Goldreich et al. (2005) relates the on-the-run/off-the-run price difference to the auction

cycle. These papers study the cash market without considering repo markets and focus on the

interdealer markets, as there is very little data on the over-the-counter dealer-customer markets.

More directly related to our paper are the studies on repos and their specialness, and the asset

pricing implications. First documented by Duffie (1996), repo specialness refers to a significantly

low repo rate paid to borrow a security that is in high demand. Duffie (1996) shows that the

degree of repo specialness depends on the demand for short positions and the supply of loanable

collateral, and provides a theoretical relationship between bond prices and repo specialness. Jordan

and Jordan (1997) document this pricing relationship empirically. Krishnamurthy (2002) studies

the spread between newly issued U.S. Treasuries (termed on-the-run) and existing securities of

similar characteristics (termed off-the-run). He shows that trading profits from shorting on-the-

run securities and buying existing securities are close to zero due to different repo financing costs:

on-the-run securities can trade on special implying a significant shorting cost. D’Amico et al.

(2015) studies the supply and demand factors that drive repo specialness, focusing on the Federal

Reserve’s purchase programs.

The on-the-run/off-the-run price or yield differences that are studied in these papers are often

used as a measure of liquidity in Treasury markets, as the price difference may be due to the liquidity

premium embedded in the more-liquid on-the-run security. To that extent, these papers can be

thought of as studying how repo markets affect cash market liquidity and vice versa. However, as

Krishnamurthy (2002) points out, the price difference may simply due to cost of arbitrage stemming
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from repo specialness. Our main object of interest is the bid-ask spread, which is a more direct

measure of liquidity. We also allow price to change due to change in repo specialness, similar to

Krishnamurthy (2002); however, we only have one asset, so there is no arbitrage relationship, and

we do not model liquidity premium.

In terms of the model setup, our model is closest to the literature on how market makers’

inventory management affects their liquidity provision. In a setting where dealers are risk averse

or have constraints on the size of their inventory, dealers adjust their quotes to change order flow

so that they can bring the inventory size back to their optimal position. Amihud and Mendelson

(1986) model a monopolistic, risk-neutral dealer with inventory size constraints. Stoll (1978) model

a risk-averse monopolistic dealer, while Ho and Stoll (1983) model a market with multiple dealers.

In most of these models, while the prices that dealers quote will change the order arrival rate of

buy and sell trades, it is still probabilistic, and they have to wait until it arrives. In some models,

dealers may trade in the interdealer market to offset the inventory, as in Ho and Stoll (1983). Since

there is a finite number of dealers in that model, they behave strategically and may sometimes opt

to bear inventory risk instead of laying it off in the interdealer market.

Our model has some similarities and differences with other models in this literature. As in the

above papers, dealers are risk-averse and have to be compensated for deviating from their optimal

portfolio. Also, the bid and ask spreads set by the dealers affect customer demand, but in our

setup, dealer quotes alter the order size rather than the order arrival rate. Because our focus

is on the intersection of repo markets and market making, we simplify other dimensions relative

to the existing literature. We have a continuous mass of dealers and a frictionless interdealer

market, thus dealers can easily lay off inventory risk through the interdealer market. Frictionless

interdealer markets, and the ability to source assets through repo, allows dealers to intermediate

trades without compromising their optimal portfolio. For simplicity we assume each dealer has a

separate set of customers, therefore they do not compete to attract customer order flows. Another

crucial difference is that in our model, dealers first need to source the securities in order to facilitate

trade.

The paper is also related to the large literature on trading frictions in securities markets. In
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particular, Bottazzi et al. (2012) show how asset and repo markets coexist in a stylized general

equilibrium framework. In that paper the authors underscore a particularly relevant restriction

that securities dealers must satisfy: the box constraint. This constraint forces intermediaries to

borrow a security whenever they want to short. Our paper focuses on a particular market structure,

where clients pay dealers to service trades, which allows us to gauge the degree of market liquidity

through dealer markups. We also consider two distinct repo markets for the same underlying

collateral, SI and GC repo markets, which are used either to source or to finance assets and are

subject to different box constraints.

Lastly, securities lenders are also play an important role in the repo market. Foley-Fisher et al.

(2015) argue that securities lenders are not merely responding to the demand to borrow securities,

but they also use securities lending as a way to finance long-term asset positions. To this end,

we model the supply of assets from securities lenders as not only responding to changes in repo

specialness, but also as having a free parameter which reflects their willingness to supply assets.

We look at how the equilibrium changes with their willingness parameter.

3 Institutional Setting

In the United States, there are two distinct repo markets. The most commonly known is the U.S.

tri-party repo market. This market is considered a wholesale funding market, where financial firms,

typically large broker-dealers, can raise short term secured debt from cash investors. In this repo

market, given a certain collateral class, borrowers have the flexibility to choose from a range of

assets that they may post as collateral. In effect, cash lenders in this market only value collateral

as a back-stop to a borrower default, implying a wide variety of collateral is acceptable. This

makes the tri-party market a GC repo market. The tri-party market’s collateral flexibility is also

valued by cash borrowers, who can manage their collateral holdings by exchanging assets within

a collateral class whenever different asset demands arise. In this market, a clearing agent stands

between cash borrowers and lenders, providing clearing services and extending intraday credit to
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borrowers who may need to access their asset during the day.3

The second repo market is known as the bilateral repo market, where trades are made bilaterally

and can be tailored to accommodate specific needs. Importantly, trades in the bilateral market

can be against specific collateral, allowing investors to borrow a particular asset in order to short

sell or deliver to another counterparty. This makes the bilateral market an SI repo market. When

demand for borrowing a specific issue is high, the bilateral repo rate can be lower than the tri-

party repo rate. This incentivizes the original collateral owners to lend their securities to reap the

difference between GC and SI repo rates. It is important to note that bilateral repos are also an

important means of funding for investors who do not qualify to participate in the tri-party market.

These lower quality firms typically issue bilateral repos to large dealers, who in turn access the

tri-party market to raise funds for the initial repo; a process known as rehypothecation.

Dealers are the primary market participants who access both repo markets. They use the tri-

party market to raise funds and manage collateral, and use the bilateral market to source assets and

fill client demands. Dealer counterparties in the bilateral market are their client base who demand

trading and financing services, and securities lenders who effectively lend their securities to receive

cash at the special rate. Cash investors in the tri-party market are largely money market funds

and securities lenders who reinvest the cash received in their securities lending activities. Adrian

et al. (2013) have a more detailed overview on how these markets are related and the role securities

dealers play.

4 Model Setup

The model consists of 3 periods t ∈ {0, 1, 2}. In t = 0, dealers post their bid and ask to clients.

At t = 1, client orders are realized, and order sizes are smaller for larger bid/ask spreads. Dealers

receive both buy and sell orders, a fraction of which will be levered. That is, a portion of client

orders will be a cash and repo trade with the dealer simultaneously, establishing either levered long

or short positions. Throughout the model, we will assume SI repos will be trading special, which

3In recent years the tri-party market has been reformed to reduce the amount of intraday credit needed for dealers
to access their assets. More information on tri-party reform can be found in http://www.newyorkfed.org/banking/

tpr_infr_reform.html.
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t = 0

Dealers post bid/ask

t = 1

Client orders arrive
Dealers fill orders
Interdealer trade

t = 2

Asset uncertainty realized
Cash flows distributed

Figure 3: Model Timeline

implies that dealers have to bear a cost to source a specific asset.

4.1 Assets & Contracts

The risky asset will have a final payoff given by ṽ ∼ N(µ, σ). We assume that there is an unrestricted

secured lending market for GC repos with an exogenously specified one-period risk-free rate R. This

means there is an abundance of cash and GC assets from outside investors. Only secured debt is

allowed (i.e., repo) to raise funding.

The price of the risky asset p and the specific issue repo rate RS will be determined by market

clearing. We will consider settings where in equilibrium, the repo rate on SI repos are below the

risk free rate: RS < R. The main difference between SI and GC repos is that dealers can use SI

repos to establish short positions and deliver them to their clients.

For simplicity, we assume that repos do not have haircuts, yet are risk free, which happens

since we assume contract enforceability and no limited liability. This assumption simplifies the

analysis greatly and keeps the focus on dealers’ use of repo to borrow assets in order to deliver

them to clients. We can relax this assumption somewhat by incorporating haircuts to make GC

repos “virtually risk free”4 and by allowing dealers to charge different haircuts to their clients,

depending on whether they submit a levered long or short sale.5 Adding these features complicates

the analysis without significantly altering the results.6

The model’s state variables in t = 0 are dealers’ initial asset position D and dealers’ initial cash

holdings W . Although these initial variables are not crucial to the theoretical model, they allow us

to better interpret the data. In terms of notation, a repo using Q assets as collateral implies that

4The case of virtually risk free can be interpreted as repos with U.S. Treasuries that have a 2% haircut.
5Infante (2015) shows that SI repo haircuts can be negative whenever investors need to source an asset.
6The assumption on repos’ riskiness implies that the current version of the model is not well suited to study

systemic risks that come from rehypothecation.
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the cash borrower receives pQ in funds and distributes Q in risky assets to the cash lender. On the

closing leg of the repo, the cash lender of a repo receives R × pQ or RS × pQ in cash, depending

on whether it was a GC or SI repo, and returns the asset back to the cash borrower. It is useful

to denote repo contracts by the amount of assets delivered as collateral rather than total amount

borrowed or lent since it underscores the impact of box constraint.

4.2 Agents

There are three types of agents in the economy: dealers, securities lenders, and clients. Each client

con only interact with one dealer; thus, there is no outright competition between dealers. Dealers

are endowed with an initial portfolio in t = 0, but will have the ability to rebalance their position

once a client order is received. Dealers service their client orders, which may be be buys or sales,

or levered long or short positions. Securities lenders are long-term investors who already hold their

optimal portfolio in t = 0, but have the ability to lend their securities to dealers.

4.2.1 Dealers

There is a continuum of dealers with CARA utility and risk aversion γ which consume the payoff

from their portfolio in the final period. Specifically, their final payoff consists of cash flows from their

risky investments, payoff from their repos, and fees in the form of bid/ask from clients. Therefore,

a dealer’s final wealth takes the following form:

W̃2 = (ṽ − p)QD + (RS − 1)pQSR + (R− 1)pQGR

−(ṽ − φLRSp)Q̃L + (ṽ − φSRSp)Q̃S + (1− φL)pQ̃L − (1− φS)pQ̃S + apQ̃L + bpQ̃S

+ṽD +W

where QD is the dealer’s portfolio rebalancing in the cash market, QSR is the amount of assets

sourced through SI repos, and QGR the amount of assets received as collateral through GC repos

(i.e. cash lending); all are chosen in t = 1.7 Transactions with clients are not included in QD, Q
S
R,

7Since our model is a one-shot trading game, there are no rollover risks. If there are multiple periods where repo
trading happens, dealers face the risk that the cash borrower may not want to roll over the overnight repo, or roll
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and QGR. The second line in expression (1) highlights the effect of clients’ orders on the dealer’s

portfolio. The size of a client’s buy and sale orders are given by Q̃L and Q̃S , of which a fraction

φL and φS are accompanied by repo orders, respectively. Note that a client buy order implies a

negative position for the dealer, thus it is associated with a −(ṽ − p). D is the dealer’s initial

portfolio position and W is the amount of cash the dealer has initially. D and W characterize the

dealer’s initial portfolio endowment, and we assume W + pD > 0. Finally, apQ̃L and bpQ̃S are the

profits from the bid (b) and ask (a) spreads. The dealer chooses a and b at t = 0, and the tradeoff is

between spreads and intermediation quantity. Note that in this setup, dealers charge their clients

in the form of bid/ask spreads, but the model is equivalent to a case where dealers use other forms

of contracting arrangements to charge their clients, such as repo markups.

The main restrictions for dealers are their global and SI box constraint. The total amount

of assets (SI and GC) must always be non-negative, and the amount of SI assets the dealer can

access must be large enough to cover the clients’ levered orders. Specifically, we assume dealers’

SI box restriction is a function of levered orders: g(φQ̃L, φQ̃S) > 0. This assumption captures the

intuition that dealers need to, at least in part, access assets in order to establish client positions.8

Specifically, given client order sizes Q̃L = QL and Q̃S = QS , the dealer’s SI box constraint is given

by,

D +QD +QSR − (1− φL)QL + (1− φS)QS ≥ g(φQL, φSQS). (1)

That is, the total amount of SI assets the dealer can access—its initial holdings, its assets bought

in the interdealer market, assets source via SI repos, and unlevered buy/sell orders which alters

the dealer’s inventory—must be enough to deliver to its levered clients in the form of g. Note

that with levered long and short orders, the dealer will get back the asset it buys (sells) and lends

to (borrows from) their client, but we assume that the dealer must have g assets to facilitate

these levered trades. Without such an assumption, the dealer would be able to do infinitely many

levered trades with its clients.9 Although the presence of g implies a cost that dealers must bear to

over at unfavorable rates. This potentially may have a large effect.
8In effect, if g = 0, dealers would be able to write “naked” shorts and longs with their clients.
9This assumption incorporates a friction that will decouple the cash market from the SI repo market, similar to
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intermediate levered trades, there is suggestive evidence that the friction exists. In effect, Figure

2 shows the right hand side of U.S primary dealers SI and GC box constraint for 2 and 10 year

on-the-run Treasury note. The difference between the two lines is the empirical counterpart of g,

which is almost always positive.10 Table 1 shows summary statistics on the size of the SI and GC

box constraint, and the fraction of the time where the former is greater than zero.

4.2.2 Securities Lenders

We model securities lenders in a reduce form to focus on dealer behavior. Securities lenders lend

assets through SI repos based on a reduced form supply function SL(R−RS ; η) with ∂SL
∂(R−RS) > 0.

That is, the more the repo trades on special, the more securities lenders are willing to lend. We

also assume that the supply from securities lenders depends on η, which governs their willingness to

provide securities lending services. In effect, Foley-Fisher et al. (2015) show that securities lending

programs use funds from their activities to finance long dated assets, making their lending services

depend on factors beyond repo specialness. We capture these incentives in reduced form through

η, and assume ∂SL
∂η > 0.

4.2.3 Clients

Client order sizes are stochastic and exogenously specified. Specifically, the size of client orders are

independent and distributed Q̃L, Q̃S ∼ Exp(λ(x)) (x ∈ {a, b}), where λ is a function of the dealer’s

bid/ask quote. We assume λ, λ′, and λ′′ ≥ c > 0 where c is an arbitrarily small constant. Clients

can be interpreted as liquidity traders, who can only access one dealer, and are price sensitive to

the dealer’s markup: their trade sizes depend on their dealer’s bid/ask quote.

Note that a levered client order is in fact two transactions: an asset purchase (sale) with a client

repo (reverse repo).

Krishnamurthy (2002).
10Specifically, the difference shows the amount of on-the-run assets which are posted as collateral in the GC market,

which as we will show, constitutes an intermediation cost dealers must bear.
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4.3 Market Structure Summary

To summarize our setup, Figure 4 illustrates how dealers distribute collateral between all three

markets: cash, SI repo, and GC repo; and the role securities lenders and clients play. Clients will

approach a dealer and submit buy (QL) and sell (QS) orders, a fraction φL and φS of which will

be accompanied by repos and reverse repos, respectively. After clients order flow is realized, the

dealer will access three markets. The cash market will serve to buy and sell securities for dealers to

rebalance their risky asset position. The GC repo market will allow dealers to raise or invest funds

at the GC repo rate. The SI repo market will allow dealers to either source assets to satisfy their

SI box constraint or deliver assets to raise relatively cheap funding. Finally, securities lenders will

provide assets to the SI repo market as a function of repo specialness and their willingness to lend

assets.

5 Optimal Strategies and Symmetric Equilibrium in Unrestricted

Case

In this section, we solve for dealers’ optimal strategies in t = 1. Here we shall assume that

dealers have no balance sheet restrictions. For simplicity, we characterize the resulting symmetric

equilibrium. We then turn to the optimal bid/ask which determines the order intensity.

5.1 Optimal Strategies & Equilibrium in Interdealer Market

Given an initial total position D,W and order size Q̃L = QL and Q̃S = QS , the dealer’s final payoff

takes the expression in equation (1). Therefore, the dealer solves the following problem,

max
{QD,QSR,Q

G
R}

E(u(W̃2)|Q̃L = QL, Q̃S = QS),
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Figure 4: Model Market Structure
D stands for dealer, C stands for a dealer’s client, Sec Lender stands for the securities lender.
The dealer receives client long and sale ordersQL andQS , a fraction φL and φS are accompanied
by repos and reverse repos, respectively. GC Market stands for general collateral market, SI
Market stands for specific issue collateral market, and Cash Market stands for the underlying
asset market. Upon receiving client orders, a dealer chooses how much collateral to source
or deliver to the GC market (QGR) and the SI market (QSR), and how much to buy or sell in
the cash market (QD). Positive QGR or QSR means that the dealer is engaging in reverse repos.
Positive QD means that the dealer is buying the asset. Securities lenders supply SL assets to
the SI market. Only the asset movements (either through outright purchases and sales or as
repo collateral) are drawn. Straight arrows indicate outright sales, and curved arrows indicate
repo collateral movements.
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subject to

pQD + pQSR + pQGR − p(1− φL)QL + p(1− φS)QS ≤ W (2)

D +QD +QSR − (1− φL)QL + (1− φS)QS ≥ g(φQL, φSQS) (3)

D +QD +QSR +QGR − (1− φL)QL + (1− φS)QS ≥ 0. (4)

(2) is the dealer’s budget constraint, (3) is the SI box constraint, and (4) the global box constraint.

In (2), we assume that fees reaped from intermediation do not alter the dealer’s budget. This

is a simplifying assumption merely for tractability: we do not want client order sizes to affect

the dealer’s budget constraint. In reality, this effect, if any, is likely to be negligible. Given an

asset price p, a GC repo rate R, and a specials rate RS , dealers will employ the following optimal

strategies.

Lemma 1 (Dealer’s Optimal Strategy — Unrestricted Case). Given asset price p, SI repo

rate RS, and secured funding rate R > RS; a dealer’s optimal rebalancing strategy after receiving

client orders Q̃L = QL and Q̃S = QS is:

Q∗D =
µ−RSp
γσ2

−D +QL −QS

QS∗R = g(φLQL, φSQS)− µ−RSp
γσ2

− φLQL + φSQS

QG∗R =
W

p
+D − g(φLQL, φSQS).

Proof. See appendix.

Lemma 1 shows how dealers react to client order flow. One important observation from this

result is that dealers’ final asset position is proportional to the asset’s risk adjusted return, which

is the optimal solution for a regular CARA investor. That is,

D +QS −QL +Q∗D =
µ−RSp
γσ2

. (5)

Because dealers have access to frictionless interdealer markets, it allows them to optimally
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adjust their portfolio to accommodate their clients’ trades. Figure 5 shows how dealers rebalance

portfolio. To better show the intuition, we consider a simple example where the dealer only receives

a buy or sale order. That is, either (QL, QS) = (Q, 0) or (QL, QS) = (0, Q). Additionally, assume

φL = φS = 1

D =
µ−RSp
γσ2

g(QL, QS) = Q.

Then, if the dealer receives a client short order, its optimal strategy will be

Q∗D = −Q

QS∗R = 2Q−D

QG∗R =
W

p
+D −Q.

This is shown in Panel (a) of Figure 5. To maintain its optimal portfolio, the dealer wants to sell

Q of the risky assets in the interdealer market. However, to do so, it has to source an additional Q

assets from the SI repo market because of g; thus, it will source 2Q −D assets. Note that in the

client long scenario, this does not happen as the dealer buys Q from the interdealer market.

Aggregating all interdealer cash market trades gives the following market clearing condition for

the cash market. Here we denote each dealer’s demand with a subscript i to highlight that the

equilibrium price is determined by aggregating across all dealers.

∫
i
QDidi = 0. (6)

The SI repo market, which also incorporates securities lenders’ asset supply, clears through the

following equation, ∫
i
QSRidi = SL(R−RS ; η). (7)

Denoting by
∫
iDdi dealers’ aggregate position at the beginning of period t = 0, and assuming
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Figure 5: Simple example

These diagrams show the dealer’s optimal solution in a simple case where W = 0, D = mu−RSp
γσ2 ,

φL = φS = 1, and clients either submit a levered long order (panel (a)) or a short order (panel
(b)). D stands for dealer, C stands for a dealer’s client, Sec Lender stands for the securities
lender. GC Market stands for general collateral market, SI Market stands for specific issue
collateral market, and Cash Market stands for the underlying asset market. Dealers optimally
choose how much collateral to source or deliver in the GC market, the SI market, and how
much to buy or sell in the cash market. Only the asset movements (either through outright
purchases and sales or as repo collateral) are drawn. Straight arrows indicate outright sales,
and curved arrows indicate repo collateral movements. g stands for g(QL) in panel (a) and
g(QS) in panel (b).
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symmetric strategies gives
∫
iDdi = D.

Proposition 1 (Interdealer Equilibrium — Unrestricted Case). Given dealers’ initial posi-

tion W and D, with W + pD > 0, GC repo rate of R, securities lending function sufficiently small

enough, and symmetric dealer bid and ask spreads a and b, dealers’ optimal strategies characterized

in Lemma 1 result in an asset price p and SI repo rate RS < R which solves the following system

of equations:

µ−RSp
γσ2

= D − P(CL)

λ(a)
+

P(CS)

λ(b)
(8)

SL(R−RS ; η) = E(g(φLQ̃L, φSQ̃S))−D +
(1− φL)P(CL)

λ(a)
− (1− φS)P(CS)

λ(b)
(9)

where P(CL) and P(CS) are the probability of a client long and short order, respectively.

Proof. The proof stems from considering dealers’ strategies in Lemma 1, imposing market clearing

conditions (6) and (7), and applying the law of large numbers for client orders.

Equation (8) shows how the price responds to client order flow: An increase in client longs

increases the price, whereas an increase in client shorts reduces the price. Equation (9) highlights

what drives repo specialness. Specifically, if there are larger frictions, namely if dealers need to hold

more assets to service levered longs and shorts, captured through a higher g, then dealers need to

source more assets in the SI market which puts upward pressure on repo specialness. In addition,

changes in φL orφS changes the amount of assets in the market due to unlevered client order flow;

giving a predictable effect on repo specialness.

It is interesting to note that considering the SI market clearing condition in isolation gives

SL(R−RS ; η) = E(g(φLQ̃L, φSQ̃S))−
(
µ−RSp
γσ2

)
− φLP(CL)

λ(a)
+
φSP(CS)

λ(b)
.

The above partial equilibrium equation highlights what market participants often comment regards

repo specialness: an increase in client short base increases repo specialness. In effect, if φS increases,

R−RS would need to increase to clear the market. But this observation neglects the effect of repo

specialness on the asset price. The general equilibrium solution in (9) shows that what matters
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is the total amount of assets added and subtracted from the interdealer market, along with any

frictions associated with intermediating levered trades.

Dealer’s final wealth when using the optimal strategy is gven by

W̃ ∗2 |{Q̃L = QL, Q̃S = QS} = (ṽ −RSp)
(
µ−RSp
γσ2

)
− (R−RS)pg(φLQL, φSQS)

+RpD +RW + apQL + bpQS .

That is, dealers’ final wealth consists of the upside from taking a levered position in the asset,

the fees charged to its clients, and the cost of having to source SI collateral to intermediate client

orders, i.e., g. A dealer’s final utility is

E(u(W ∗)|Q̃L = QL, Q̃S = QS) = − exp

{
−γ
[

1

2

(
(µ−RSp)2

γσ2

)
− (R−RS)pg(φLQL, φSQS)

+RpD +RW + apQL + bpQS

]}

where p and RS are given by Proportion 1.

5.2 Posting Bid/Ask at t = 0

Having the dealer’s optimal strategy and final expected utility, we turn to characterizing the dealers

optimal markup before receiving client orders. For simplicity assume that,

g(φLQL, φSQS) = φLQL + φSQS . (10)

This assumption implies that there is no internalization in dealer’s levered operations. In a way, this

stark assumption implies that dealers cannot offset client levered longs and shorts to intermediate

assets, but we adopt it for tractability. Therefore, the dealer’s expected payoff is given by,

E(u(W ∗)) = −ΓE
(

exp
{
γp[(R−RS)(φLQ̃L + φSQ̃S)− (aQ̃L + bQ̃S)]

})
(11)

where Γ = exp
{
−γ
[
1
2

(
(µ−RSp)2

γσ2

)
+RpD +RW

]}
> 0 is a constant. Although p is determined by
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market clearing in t = 1, p is already known in t = 0. This is because dealer know all other dealers’

strategies, and also know the actual client order distribution due to the law of large numbers.

Integrating over Q̃L and Q̃S gives,

E(u(W ∗)) = −Γ
λ(a)

(λ(a) + γpa− γp(R−RS)φL)

λ(b)

λ(b) + γpb− γp(R−RS)φS)
(12)

For the integral to exist, we need λ(a)+γpa−γp(R−RS)φL > 0 and λ(b)+γpb−γp(R−RS)φS > 0.

Recall that dealers do not internalize the effect of their optimal strategy on the price or specials

rate. This leads to the following Lemma on dealers’ optimal bid/ask.

Lemma 2 (Dealer’s Optimal Bid/Ask — Unrestricted Case). Given a dealer’s initial posi-

tion W and D, with W + pD > 0, GC repo rate of R, securities lending function sufficiently small

enough, and g as in (10); the dealer’s optimal bid and ask spread solve the following equations

λ′(a∗)a∗ − λ(a∗)− λ′(a∗)(R−RS)φL = 0

λ′(b∗)b∗ − λ(b∗)− λ′(b∗)(R−RS)φS = 0,

with a∗ > (R−RS)φL and b∗ > (R−RS)φS.

Proof. Taking the first order condition of expression (12), deduced from Proposition 1 with g as in

equation (10) gives the Lemma’s optimality conditions. In addition, note that a∗ > (R − RS)φL

and b∗ > (R−RS)φS because

∂E(u(W ∗))

∂a

∣∣∣
a=(R−RS)φL

= −Γ
λ(b)

λ(b) + γpb− γp(R−RS)φS
×

−λ((R−RS)φL)γp

(λ(a) + γpa− γp(R−RS)φL)2
> 0,

implying a∗ > (R−RS)φL. The same argument holds for b∗.

Note that each individual dealer’s bid and ask spread is increasing in repo specialness. Because

dealers need to source g assets in order to intermediate, forcing them to bear the cost of repo

specialness, they pass on those costs to their clients. That is, from a partial equilibrium setting,

22



client’s market liquidity is decreasing in repo specialness.

Note that the optimal bid and ask in Lemma 2 do not depend on the underlying asset’s price.

This feature will be useful when characterizing how liquidity changes with securities lending activity.

5.3 Sensitivity of Liquidity to Changes in Securities Lending

In this section, we can characterize how the equilibrium changes η, the willingness of securities

lenders to provide assets. To do this, we fist further simplify the model by setting φL = φS . This

simplifying assumption eliminates imbalances that affect repo specialness because of assets being

added to, or drained from, the SI repo market mechanically through client trades.

If φL = φS = φ, then from Lemma 2 we have that a∗ = b∗, and therefore, the probability of a

buy or sell order is equally likely—that is, P(CL) = P(CL). The equilibrium level of specialness,

R−RS , incorporating dealers’ optimal markup, is given by the following equations:

T1 := E(g(φQ̃L, φQ̃S))−D − SL(R−RS ; η) = 0

T2 := λ′(a∗)a∗ − λ(a∗)− λ′(a∗)(R−RS)φ = 0

Proposition 2 (Sensitivity of Liquidity to η — Unrestricted Case). Given the same as-

sumptions from Lemma 2, with φL = φS = φ, increases in securities lenders’ willingness to provided

assets decreases repo specialness and dealers’ optimal bid/ask. Specifically,

∂(R−RS)

∂η
=

1

|J |
(λ′′(a∗)(a∗ − (R−RS)φ))

∂SL
∂η

< 0

∂a∗

∂η
=

1

|J |
λ′(a∗)

∂SL
∂η

< 0,

where |J | < 0 is the determinant of the Jacobian matrix of partial derivatives of T1, T2 with respect

(R−RS) and a∗.

Proof. Proof involves applying the implicit function theorem to equations T1 and T2. See details

in the appendix.
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Proposition 2 shows that as securities lenders provide more assets into the market through repos,

the amount of repo specialness and dealers’ markup decrease. Both of these changes are intuitive.

More assets to borrow reduces the degree of repo specialness. And because repo specialness is a

cost borne by dealers, they pass those savings onto their clients. This result highlights the tight link

between repo specialness and market liquidity. This also implies that not only would reverse repo

operations by the Federal Reserve decrease repo specialness (D’Amico et al. (2015)), but would

also increase liquidity in the cash Treasury market.

6 Optimal Strategies and Symmetric Equilibrium in Restricted

Balance Sheet Case

The analysis in Section 5 assumed that dealers had the liberty to alter the size of their balance

sheets to accommodate arbitrarily large client orders. But since the financial crisis, broker-dealers

affiliated with Bank Holding Companies (BHCs) are subject to a number of regulatory restrictions in

an effort to make these BHCs more resilient. One of these regulatory initiatives, the Supplementary

Leverage Ratio (SLR), restricts the amount of leverage a large BHC can take.

In the context of our model, the specific functional form of the leverage ratio restriction used

in the SLR would be difficult to model. But, assuming the the BHC has a fixed level of equity, a

leverage restriction can be translated into a size restriction on the dealer’s balance sheet. In order

to understand how this restriction may affect the dealer’s intermediation activities, we first have

to translate the model’s outcome onto a balance sheet.

Given the additional complexity of incorporating a limit on dealers’ balance sheet, this section

will adopt a number of simplifying assumptions relative to the general model presented in Section

4. First, we assume that each dealer receives only one levered long or short order.11 These orders

can still be arbitrarily large, but the focus is on how each of them affect the dealer’s ability to

intermediate. Given that each dealer will receive one client order, g will be a function of that

order’s size.

11This implies that φL = φS = 1.
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Without loss of generality, we will assume that µ > RSp, which implies that dealers’ unrestricted

optimal asset position is positive. To simplify dealers’ initial size, we assume all dealers’ initial asset

position is D = 0, and their initial wealth W > 0 is arbitrarily small.

The innovation of this section is that dealers have an upper bound C on the size of their balance

sheet. Given that the dealer’s balance sheet composition is different for long and short orders, a

convenient form to express the constraint is to impose that total assets and liabilities must be

smaller than 2C. In addition, dealers have an additional choice variable: how much of the order to

intermediate QI . In its general form, the balance sheet restriction can be written as,

W

p
+ |QD +QI(1CS − 1CL)|+ |QSR|+ |QGR|+QI ≤ 2C. (13)

Similar to the the assumption adopted for dealers’ budget constraint, we assume that dealers’

markups do not affect the size of their balance sheet. These cash flows are likely to be negligible

relative to the total size of a BHC’s balance sheet. In this notation 1CL is an indicator function that

equals 1 if the client order is a levered long and zero otherwise. 1CS is defined similarly for client

shorts. The five components of equation (13) are a dealer’s initial wealth, its final asset position,

its interdealer SI and GC repos, and finally the repo (or reverse repo) issued to its client.

6.1 Optimal Strategies & Equilibrium in Interdealer Market

Given a levered long order Q̃L = 1CLQ or a levered short order Q̃S = 1CSQ, the dealer’s final

payoff takes the expression in equation (1). Therefore, the dealer solves the following problem,

max
{QD,QSR,Q

G
R,QI}

E(u(W )|Q̃L = 1CLQ, Q̃S = 1CSQ)
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subject to,

pQD + pQSR + pQGR ≤ W

QD +QSR ≥ g(QI)

QD +QSR +QGR ≥ 0

W

p
+ |QD +QI(1CS − 1CL)|+ |QSR|+ |QGR|+QI ≤ 2C

QI ≤ Q

That is, the dealer’s problem is the same as Section 5 except now dealers face a balance sheet

restriction (equation (13)) and must also decide how much to intermediate (QI ≤ Q). The above

problem gives way to the following solution,

Lemma 3 (Dealer’s Optimal Strategy — Balance Sheet Restricted Case). Given an asset

price p, SI repo rate RS, secured funding rate R > RS, and µ > RSp, then upon receiving a client

long order Q̃ = Q1CL the dealer’s optimal portfolio is equal to the solution of Lemma 1 with QI = Q

whenever Q < C − µ−RSp
γσ2 := Q

L
1 . If Q ≥ QL1 then the dealer’s optimal strategy is

Q∗D =
µ−RSp
γσ2

+Q
L
1

QS∗R = g(Q∗I)−
µ−RSp
γσ2

−QL1

QG∗R =
W

p
− g(Q∗I)

Q∗I = min{Q,QL2 }

where Q
L
2 solves Q

L
2 = Q

L
1 + ap−p(R−RS)g′(QL2 )

γσ2 .

Upon receiving a client short order Q̃ = Q1CS, the dealer’s optimal portfolio is equal to the solution

of Lemma 1 with QI = Q whenever Q < Q
S

which solves g(Q
S

) + Q
S

= C. If Q ≥ Q
S

, then the
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Figure 6: Client short with restricted balance sheet when W = 0

(a) Q < Q
S

Asset Liability

risky asset
µ−RSp
γσ2

SI rev repo
g(Q)

+Q− µ−RSp
γσ2

client repo
Q

GC repo
g(Q)

(b) Q+ ε ≤ QS

Asset Liability

risky asset
µ−RSp
γσ2

SI rev repo
g(Q+ ε)

+Q+ ε− µ−RSp
γσ2

client repo
Q+ ε

GC repo
g(Q+ ε)

dealer’s optimal strategy is,

Q∗D =
µ−RSp
γσ2

−QS

QS∗R = g(Q∗I)−
µ−RSp
γσ2

+Q
S

QG∗R =
W

p
− g(Q∗I)

Q∗I = Q
S
.

Proof. See appendix.

The intuition for the dealer’s optimal response to a client short order is illustrated in Figure

6. For a relatively small order (Q < Q
S

), the dealer intermediates the trade as in the unrestricted

case. If the client order size increases by ε as in Panel (b), dealer has to increase the size of

his balance sheet in order to accommodate the increase. This expansion happens because of the

increase in repo it issues to its client and the increase in the amount needed to intermediate the

trade g(Q). The dealer can do this until the balance sheet size reaches the limit C, which happens

when g(Q) + Q = C, that is, when Q = Q
S

. Once the balance sheet limit is reached, the dealer

will only intermediate Q
S

.
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Figure 7: Client long with restricted balance sheet when Q < Q
L
1 and W = 0

(a) Q < Q
L
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(b) Q+ ε ≤ QL1

Asset Liability

risky asset
µ−RSp
γσ2

client rev repo
Q+ ε

SI repo
µ−RSp
γσ2 +Q+ ε

−g(Q+ ε)

GC repo
g(Q+ ε)

The difference in dealers’ intermediation of long orders stem from the assumption that the un-

restricted optimal portfolio is positive, i.e., µ > RSp. This implies that a dealer may accommodate

larger client orders without increasing its balance sheet by compromising its risky asset position.

As illustrated in Figure 7, if a client order is small (Q ≤ QL1 ), the dealer will intermediate trades as

in the unrestricted case. The dealer will increase its balance sheet size if client order size increases.

However, when the balance sheet reaches the size limit C when Q = Q
L
1 , the dealer stops buying

more assets in the interdealer market. This can be seen through the optimal rebalancing of risky

assets in the interdealer market,

Q∗D =
µ−RSp
γσ2

+Q
L
1 = C

For order sizes large than Q
1
L the dealer can still continue to intermediate client orders, but

it cannot be done by expanding the balance sheet. Instead, as outlined in Figure 8, the dealer

starts compromising its optimal asset position by decreasing its asset exposure to µ−RSp
γσ2 +Q

L
1 −Q

for Q ∈ (Q
L
1 , Q

L
2 ). The dealer is willing to alter its optimal position because it receives payments

through b for intermediating large orders. The dealer will stop intermediating more when the
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Figure 8: Client long with restricted balance sheet when Q
L
1 = Q < Q

L
2 and W = 0
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GC repo
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benefit from doing so is equal to the cost of altering its portfolio. That is, when Q solves

(µ−RSp)− γσ2 (Q∗D −Q)︸ ︷︷ ︸
Risky Asset Position

= ap− p(R−RS)g′(Q)

which defines Q
L
2 .

For both client long and short, a constraint on dealer’s balance sheet limits the amount of orders

it can intermediate, which we will later show leads to an increase in the markup. But first, we

characterize the equilibrium in this setting.

As before, both the cash and SI repo market clears. To ensure that the µ > RSp, we will

assume there is an exogenous supply of assets, D > 0, provided to the interdealer market. This

can be thought of as U.S. Treasury issuance. Thus, the cash market clearing condition is

∫
i
QDidi = D. (14)

And the SI repo market clears though equation (7), just as in the previous section. This gives the

following interdealer equilibrium,
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Proposition 3 (Interdealer Equilibrium — Balance Sheet Restricted Case). Given deal-

ers’ initial position W with W > 0 arbitrarily small, GC repo rate of R, securities lending function

sufficiently small enough, supply of assets in the cash market D sufficiently large enough, and sym-

metric dealer bid and ask spreads a and b; dealers’ optimal strategies characterized in Lemma 3

result in an asset price p and SI repo rate RS < R which solves the following system of equations:

µ−RSp
γσ2

= −P(CL)

λ(a)
[1− e−λ(a)Q

L
1 ] +

P(CS)

λ(b)
[1− e−λ(b)Q

S

] +D (15)

SL(R−RS ; η) +D = P(CL)

[∫ Q
L
2

0
g(q)λ(a)e−λ(a)qdq + g(Q

L
2 )e−λ(a)Q

L
2

]
+

P(CS)

[∫ Q
S

0
g(q)λ(b)e−λ(b)qdq + g(Q

S
)e−λ(b)Q

S

]
(16)

where P(CL) and P(CS) are the probability of a client long and short order, respectively.

Proof. The proof stems from considering dealers’ strategies in Lemma 3, imposing market clearing

conditions (14) and (7), and applying the law of large numbers for client orders.

From Proposition 3, it can be appreciated how constraints on dealers’ balance sheet can have a

direct impact on the underlying asset’s price and repo specialness. On the one hand, given a fixed

bid and ask, limited dealer intermediation skews prices depending on whether Q
L
1 is larger or smaller

than Q
S

. On the other hand, reducing dealers’ balance sheet reduces the demand for interdealer

repos, reducing repo specialness. This last effect depends on frictions in dealer intermediation given

by g.

6.2 Posting Bid at t = 0

As before, having characterized a dealer’s optimal strategy given clients’ order flow, we get the

expression for their final wealth. In this case, the calculation is slightly more involved since for

relatively large client long orders, the dealer alters its portfolio position, effectively changing its

expected payoff from its asset exposure.

Note that this does not occur for client shorts.12 In effect, for a client short we only have to be

12Recall the reason behind the asymmetry is µ > RSp.
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concerned with dealer costs and benefits to intermediating more assets, rather than the effect of its

rebalancing on its portfolio. This gives,

E(u(W ∗)|Q̃S = 1CSQS) =

 −Γ exp
{
−γ
[
bQS − (R−RS)g(QS)

]
p
}

if QS < Q
S

−Γ exp
{
−γ
[
bQ

S − (R−RS)g(Q
S

)
]
p
}

if QS ≥ Q
S

where in this case Γ = exp
{
−γ 1

2

(
(µ−RSp)2

γσ2

)}
> 0 is as before, but with the section’s simplifying

assumption, and p and RS are given by Proportion 3. That is, the payoff is as in the unrestricted

balance sheet case, but it is capped at Q̃S = Q
S

.

For tractability we will assume that g(Q) = g0Q, with g0 a constant between 0 and 1.13 Note

that in this case, from Lemma 3 we have Q
S

= C
1+g0

. Integrating over Q̃S gives,

E(u(W ∗)|CS) = −Γ

(∫ C
1+g0

0
λ(b) exp

{
−γp[b− g0(R−RS)]q − λ(b)q

}
dq+

∫ ∞
C

1+g0

λ(b) exp

{
−γp

[
b− g0(R−RS)

] C

1 + g0
− λ(b)q

}
dq

)

= −Γ

(
λ(b)

λ(b) + γp(b− g0(R−RS))
+

γp(b− g0(R−RS))

λ(b) + γp(b− g0(R−RS))
e
−[λ(b)+γp(b−g0(R−RS))] C

1+g0

)

Defining w(b,Q) := e−[λ(b)+γp(b−g0(R−R
S))]Q which is between 0 and 1, we have the following Lemma

for the restricted dealer’s optimal bid,

Lemma 4 (Dealer’s Optimal Bid — Balance Sheet Restricted Case). Given dealers’ initial

position W with W > 0 arbitrarily small, GC repo rate of R, securities lending function sufficiently

small enough for RS < R (from Proposition 3), supply of assets in the cash market D sufficiently

large enough for µ > pRS (from Proposition 3), and g(Q) = g0Q; dealer’s optimal bid solves the

13Assumption g′ ≤ 1 is to take into account that the dealer may not need the entire asset to intermediate a client’s
levered order.
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following equation

0 =
(
λ′(b∗)b∗ − λ′(b∗)g0(R−RS)− λ(b∗)

) [
1− w

(
b∗,

C

1 + g0

)]
(17)

−(b∗ − g0(R−RS))(λ(b∗) + γp(b∗ − g0(R−RS)))(λ′(b∗) + γp)

(
C

1 + g0

)
w

(
b∗,

C

1 + g0

)

with b∗ > b∗∞ where b∗∞ is the optimal bid with any unrestricted balance sheet given prices (p,RS).

Proof. See Appendix

Lemma 4 shows how the balance sheet constraint affects a dealer’s decision when setting its

optimal bid. Equation (17) can be interpreted as a weighted average of two considerations. The

first is identical to the optimality condition of Lemma (2), which takes into account the tradeoff

between larger fees, adjusted for the cost of specialness, with smaller expected order flow. The

second highlights the limit on how much a dealer can intermediate. Note that that as C increases,

the second term disappears14, reducing the optimality condition to the unrestricted case. The

Lemma also shows that for the same pair of prices (p,RS), the optimal restricted markup is larger,

which we interpret as a less liquid market.

Turning to dealers’ expected payoff when intermediating a client long, the dealer must internalize

the distortion to its optimal portfolio whenever Q̃L ≥ Q
L
1 . We can obtain a relatively simple

expression of dealers’ expected payoff conditional on a client order size whenever g(Q) = g0Q,

E(u(W ∗)|Q̃L = 1CLQL) =


−Γ exp

{
−γ
[
(a− (R−RS)g0)pQL

]}
if QL < Q

L
1

−Γ exp
{
−γ
[
(a− (R−RS)g0)pQL − 1

2γσ
2(Q

L
1 −QL)2

]}
if QL ∈ [Q

L
1 , Q

L
2 )

−Γ exp
{
−γ
[
(a− (R−RS)g0)pQ

L
2 − 1

2γσ
2(Q

L
1 −Q

L
2 )2
]}

if QL ≥ Q
L
2

That is, the payoff is similar to that of a client short, but for relatively large trades, dealers’ inter-

nalize the increased risk by altering their optimal portfolio position. Integrating over realizations

of Q̃L gives dealers’ expected payoff in t = 0, which can then be used to characterize the optimal

14limC−→∞
C

1+g0
w
(
b∗, C

1+g0

)
= 0.

32



ask.

6.3 Sensitivity of Liquidity to Changes in Balance Sheet Constraints

To understand the aggregate effects of balance sheet restrictions, we would like to see how the gen-

eral equilibrium changes with tighter balance sheet constraints. This analysis involves taking into

account how dealers’ optimal bid and ask change, as well as p and RS , which implies incorporating

the changes in market clearing conditions (15) and (16).15 To understand better how the balance

sheet constraint might work, we first characterize how individual dealer’s balance sheet constraint

affects its own bid decision. That is, we will only explore a partial equilibrium change. This gives

way to the following Lemma:

Lemma 5 (Sensitivity of Dealer’s Optimal Bid to Changes in Individual Restriction).

Given the assumptions of Lemma 4 with C sufficiently large enogh, a tightening of an individual

dealers balance sheet constraint leads to in increase in its optimal bid. That is,

∂b∗

∂C
< 0.

Proof. See Appendix.

The result from Lemma 5 shows that—at least in a partial equilibrium setting—tighter balance

sheet constraints induce dealers to increase their markups, effectively reducing liquidity for its

clients. Intuitively, given that dealers are restricted from filling large client orders, they opt to

increase the revenue from filling smaller ones. This increases clients’ intermediation cost, making

the underlying cash market less liquid.

If balance sheet restrictions tighten for all dealers, that is, if C decreases for all dealers, it

is not clear whether bid/ask spreads will increase or decrease in equilibrium. On the one hand,

all else equal, a decrease in C will decrease Q
S

, Q
L
1 , and Q

L
2 , thus decreasing the amount of

intermediation that dealers do. This in turn will decrease the demand to borrow assets through

the SI repo market, thus decreasing specialness and in effect the cost of intermediation. This will

15And also, changes in the optimal ask.
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induce dealers to decrease bid/ask spreads. On the other hand, decrease in Q
S

, Q
L
1 , and Q

L
2 means

that dealers cannot intermediate large orders, so they will increase bid/ask spreads to get more

revenue from small orders. The overall effect depends on the relative sensitivity of securities lenders

to repo specialness and clients sensitivity to dealers’ markups.

7 Concluding Remarks

This paper presents a model of dealers’ bond market making activities, specifically taking into

account the importance of repo markets, and shows how repo markets are closely linked to the

underlying asset market. Repos allow dealers to source and finance assets in order to fill client

orders. We show that filling client orders is balance sheet intensive. The fees dealers charge are

proportional to the cost of sourcing specific assets, which is captured by the repo special rate. This

explains why the dealers are seemingly willing take a loss by lending cash at the specials rate (i.e.

source assets) and borrow at the GC rate—satisfying the SI box constraint.

In addition, in a world where the size or the leverage of dealers’ balance sheet is limited, dealers

have reduced incentives to service large trade orders and increase the costs they pass onto their

clients. Balance sheet limits reduces dealers’ ability to intermediate large trades, reducing market

depth. In the partial equilibrium setting with fixed prices, reducing dealers’ balance sheet size

increases the bid-ask spreads that dealers charge, thus decreasing market liquidity. In the general

equilibrium, the effect on bid-ask spreads is less clear.

The potential negative externalities of large dealer balance sheets, which are what leverage

regulations aim to curb, are not modeled in this paper. Hence, discussing the optimal level of

leverage constraint or the overall social benefit and cost of leverage regulations are outside of the

scope of this paper. However, the negative effect of leverage constraints on intermediation and

market liquidity that we show in this paper should be weighed against the potential positive effect

on financial stability.
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A Appendix

Proof of Lemma 1:

Given a realization Q̃L = QL and Q̃S = QS , the dealer’s optimization problem has the following Lagrangean,

L = γ
[
(µ− p)QD + (RS − 1)pQSR + (R− 1)pQGR

−(µ− φLRSp)QL + (µ− φLRSp)QS + (1− φL)pQL − (1− φS)pQS + apQL + bpQS

+µD +W ]

−1

2
γ2σ2(QD +D −QL +QS)2

+λ

[
W

p
− {QD +QSR +QGR − (1− φL)QL + (1− φS)QS}

]
+ξS [D +QD +QSR − (1− φL)QL + (1− φS)QS − g(φLQL, φSQS)]

+ξG[D +QD +QSR − (1− φL)QL + (1− φS)QS +QGR]

Giving the following FOC:

Q∗D : γ(µ− p)− γ2σ2(QD +D −QL +QS)− λ+ ξS + ξG = 0

QS∗R : γ(RS − 1)p− λ+ ξS + ξG = 0

QG∗R : γ(R− 1)p− λ+ ξG = 0

Using the 3rd FOC in the 2nd gives, ξS = γ(R−RS)p > 0, therefore the box constraint is binding. Directly from

the 3rd FOC we can note that λ > 0, implying that the budget constraint is binding. Finally, using the 2nd FOC in

the first gives an expression for the optimal portfolio. Therefore, the dealer has the following optimal strategies,

Q∗D =
µ−RSp
γσ2

−D +QL −QS

QS∗R = g(φLQL, φSQS)− µ−RSp
γσ2

− φLQL + φSQS

QG∗R =
W

p
+D − g(φLQL, φSQS)

�

Proof of Proposition 2: The result is derived from applying the implicit function theorem. Consider the two equilib-

rium equations,

T1 =
1

λ(a∗)
−D − SL(R−RS ; η) = 0

T2 = λ′(a∗)a∗ − λ(a∗)− λ′(a∗)(R−RS)φ = 0
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The sensitivities of T1 and T2 respect to equilibrium variables R−RS and a∗ are,

∂T1

∂(R−RS)
= −∂SL(R−RS ; η)

∂(R−RS)

∂T1

∂a∗
= − λ

′(a∗)

λ(a∗)2

∂T2

∂(R−RS)
= λ′′(a∗)(a∗ − (R−RS)φ)

∂T2

∂a∗
= −λ′(a∗)φ

Therefore, the determinant of the Jacobian is,

|J | =
∂T1

∂(R−RS)

∂T2

∂a∗
− ∂T1

∂a∗
∂T2

∂(R−RS)

= −∂SL(R−RS ; η)

∂(R−RS)
λ′′(a∗)(a∗ − (R−RS)φ)− (λ′(a∗))2

λ(a∗)2φ
< 0

And the partial derivatives of T1 and T2 respect η are,

∂T1

∂η
= −∂SL(R−RS ; η)

∂η

∂T2

∂η
= 0

Applying the implicit function theorem gives the result.

�

Reminder:  ∂(R−RS)
∂η

∂a∗

∂η

 = −

 ∂T1

∂(R−RS)
∂T1
∂a∗

∂T2

∂(R−RS)
∂T2
∂a∗

−1

︸ ︷︷ ︸
:=J−1

 ∂T1
∂η

∂T2
∂η



Proof of Lemma 3:

Given a realization Q̃L = 1CLQ or Q̃S = 1CSQ, the dealer’s optimization problem has the following Lagrangean,

L = γ
[
(µ− p)QD + (RS − 1)pQSR + (R− 1)pQGR +W + (µ−RSp)QI(1CS − 1CL) + apQI

]
−1

2
γ2σ2(QD +QI(1CS − 1CL))2

+λ

[
W

p
− {QD +QSR +QGR}

]
+ ξG[QD +QSR +QGR] + ξS [QD +QSR − g(QI)]

+ψ

[
2C −

{
W

p
+ |QD +QI(1CS − 1CL)|+ |QSR|+ |QGR|+QI

}]
+ ψm[Q−QI ]
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Giving the following FOC:

QD : γ(µ− p)− γ2σ2(QD +QI(1CS − 1CL))− λ+ ξS + ξG − ψ sgn(QD +QI(1CS − 1CL)) = 0 (18)

QSR : γ(RS − 1)p− λ+ ξG + ξS − ψ sgn(QSR) = 0 (19)

QGR : γ(R− 1)p− λ+ ξG − ψ sgn(QGR) = 0 (20)

QI : γ(µ−RSp)(1CS − 1CL)− γ2σ2(QD +QI(1CS − 1CL)) sgn(1CS − 1CL) + γap

−ξSg′(QI)− ψ sgn(QD +QI(1CS − 1CL))(1CS − 1CL)− ψ − ψm = 0 (21)

where sgn(·) is the operator which is either 1 or -1 depending on whether the argument is positive or negative,

respectively. Note that whenever ψ = 0,then we have the original FOC which are characterized in Lemma 1.

Intuitively, given that a − (R − RS) > 0, the dealer would want to intermediate as much as possible, that is, from

the final FOC we have ψm > 0.

We separate the analysis between client longs and client shorts. In each case, the sign of dealers interdealer repos

will give different representations of the balance sheet constraint. It is reasonable to assume that the restricted model

will be some sort of “continuation” of the unrestricted case. Therefore, we assume that dealers will have the same

type of interdealer repo trade and verify that in fact it is an equilibrium.

Client Short

In the unrestricted model, dealers’ optimal strategies are,

QD =
µ−RSp
γσ2

−QI

QSR = QI + g(QI)−
µ−RSp
γσ2

QGR =
W

p
+D − g(QI)

QI = Q

Because we expect QI to be relatively large whenever the balance sheet constraint binds, it is natural to assume that

sgn(QGR) = −1, sgn(QSR) = 1. Also, because µ > RSp, we expect the dealer’s final cash position to be positive, that

is, sgn(QD + QI) = 1. We denote Q
S

as the maximum amount intermediated which is to be determined. In that

case, because sgn(QD +QI) = sgn(QSR) =, from FOC (18) and (19) we have,

Q∗D =
µ−RSp
γσ2

−QS .

Because sgn(QGR) = −1 FOC (20) implies that λ > 0, making the budget bind. In addition, because sgn(QGR) =

− sgn(QSR) = −1, FOC (19) and (20) imply that ξ = γ(R−RS)p+ 2φ > 0, making the SI box constraint bind. The
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above observations imply,

QS∗R = g(Q∗I)−
µ−RSp
γσ2

+Q
S

QG∗R =
W

p
− g(Q∗I)

Finally, the total amount intermediated is Q∗I = Q
S

and is determined by the balance sheet constrain, which in this

case is,

W

p
+Q∗D +Q∗I +QS∗R −QG∗R +Q

S
= 2(Q∗I + g(Q∗I)) = 2C

pining down Q
S

, characterizing the optimal position.

Client Long

In the unrestricted model, dealers’ optimal strategies are,

QD =
µ−RSp
γσ2

+QI

QSR = g(QI)−
µ−RSp
γσ2

−QI

QGR =
W

p
− g(QI).

As before, because we expect QI to be relatively large whenever the balance sheet constraint binds. Because g′ ∈ (0, 1]

and µ > RSp it is natural to assume that sgn(QGR) = −1, sgn(QSR) = −1. And that the dealer’s final cash position to

be positive, that is, sgn(QD −QI) = 1

Using FOC (19) and (20) we have ξS = γ(R−RS)p and λ > 0, therefore both the SI box constraint and the budget

constraint bind.

QS∗R = g(Q∗I)−Q∗D

QG∗R =
W

p
− g(Q∗I)

In this case, the balance sheet restriction takes the following form,

W

p
+Q∗D −Q∗I −QS∗R −QG∗R +Q∗I = 2Q∗D = 2C

that is, the total cash trades in the interdealer market is the total size of the balance sheet.

From FOC (21), and expressions for Q∗D and ξ we have,

−γ(µ−RSp) + γ2σ2(C −QI) + γap− γ(R−RS)g′(QI) = ψm.

Therefore, the optimal solution has Q∗D = µ−RSp
γσ2 +Q, until Q∗D = C which defines Q

L

1 = C − µ−RSp
γσ2 . For Q > Q

L

1
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the optimal interdealer cash purchase stays constant at C, but the dealer keeps on intermediateing client orders,

altering SI and GC interdealer repos, until ψm = 0. That is,

γap− γ(R−RS)g′(QI) = γ(µ−RSp)− γ2σ2(C −QI)

which pins down Q
L

2 . For any Q > Q
L

2 the dealer just intermediates Q
L

2 . Therefore,

Q∗I = min{Q,QL2 }

characterizing the optimal position.

�

Proof of Lemma 4:

We first calculate the partial derivatives of w(b,Q),

wb = −(λ′(b) + γp)Qw

Equation (17) simply stems from taking the FOC of E(u(W ∗)|CS) with respect to b. To ensure that this equation

has a solution, consider the solution to limit of ∂E(u(W
∗)|CS)

∂b
when Q −→∞. That is, the solution of the unrestricted

balance sheet case, b∗∞.16 ∂E(u(W∗)|CS)
∂b

evaluated in b = b∗∞ is negative, because the term associated with 1 − w is

zero and the remaining expression is strictly less than zero (b∗∞ > (R−RS)).

Because λ′′(b) > c > 0, λ′(b)b − λ′(b)(R − RS) − λ(b) strictly increases to infinity, implying there exists a b∗ > b∗∞

which solves equation (17).

�

Proof of Lemma 5

We first calculate the partial derivatives of w(b,Q),

wb = −(λ′(b) + γp)Qw

wQ = −(λ(b) + γp(b− (R−RS)))w

wbQ = (λ′(b) + γp)w + (λ′(b) + γp)(λ(b) + γp(b− (R−RS)))Qw

wbb = −λ′′(b)Qw + (λ′(b) + γp)2Q2w

Denoting H :=
(
λ′(b)(b− (R−RS))− λ(b)

)
[1− w]+(b−(R−RS))(λ(b)+γp(b−(R−RS)))wb, from the implicit

16Note that limb−→∞(b−(R−RS))(λ(b)+γp(b−(R−RS)))wb(b,Q) = 0 where wb(b,Q) = −(λ′(b)+γp)Qw(b,Q) is
the partial derivative of w with respect to b, because the exponential term converges faster to zero than a polynomial
to infinity.
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function theorem we have that ∂b∗

∂Q
= − ∂H

∂Q

/
∂H
∂b

. Therefore, we must sign H’s sensitivity to both Q and b. In effect,

∂H

∂Q
= −

(
λ′(b)(b− (R−RS))− λ(b)

)
wQ(b,Q) +

(b− (R−RS))(λ(b) + γp(b− (R−RS)))wQb(b,Q)

where wQ(b,Q) is the partial derivative of w with respect to Q, and wQb is the partial derivative of wa with respect

to Q. Using the equilibrium expression for b∗, i.e., equation (17), we can solve for λ′(b∗)(b∗ − (R − RS)) − λ(b∗) =

− wb
1−w [(b∗ − (R−RS))(λ(b∗) + γp(b∗ − (R−RS)))], we have the following equality,

∂H

∂Q
= (b∗ − (R−RS))(λ(b∗) + γp(b∗ − (R−RS)))

[
wb(b

∗, Q)wQ(b∗, Q)

1− w(b∗, Q)
+ wQb(b

∗, Q)

]
therefore the sign of ∂U

∂Q
is equal to the sign of

wbwQ

1−w +wQb.
17 That is, we have to sign wbwQ +wQb(1−w) which is

equal to

(λ′(b∗) + γp)w(b∗, Q)
[
w(b∗, Q) + (λ(b∗) + γp(b∗ − (R−RS)))Q− 1

]
.

The above expression is positive since the bracket term takes the form e−x + x− 1 which is positive whenever x > 0.

18

Turning to H’s sensitivity to b give,

∂H

∂b
= λ′′(b)(b− (R−RS))(1− w(b,Q)) +

(λ(b) + γp(b− (R−RS)))[2wb(b,Q) + (b− (R−RS))wbb(b,Q)]

where wbb is the partial derivative of wb with respect to b. Note that wbb = −λ′′(b)Qw+ (λ′(b) +γp)2Q2w. Grouping

terms accompanying λ′′ gives

λ′′(b)(b− (R−RS))(1− w(b,Q)− (λ(b) + γp(b− (R−RS)))Qw(b,Q))

That is, the exponential term is 1− e−x − xe−x, which is positive for x > 0. Grouping the remaining terms gives,

(λ(b) + γp(b− (R−RS)))(λ′(b) + γp)Qw(b,Q)[(b− (R−RS))(λ′(b) + γp)Q− 2]

which holds for Q sufficiently large, by assumption.19

17Because b∗ > b∗∞ > (R−RS).
18The expression is equal to zero for x = 0 and is strictly increasing for x > 0.
19The intuition behind this condition is that if the restriction is small, by increasing the ask, more orders are

concentrated on the short end, increasing profitability. Mathematically, it depends on when the
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Therefore, ∂H
∂Q

and ∂H
∂b

> 0 implying that ∂b∗

∂Q
< 0. Finally, note that Q = Q

S
= C

2
, thus ∂b∗

∂C
= ∂b∗

∂Q
1
2
, completing

the proof.

�
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Table 1: Summary statistics of SI box
This table shows summary statistics for SI box and global box for each tenor. SI box is
calculated as net position plus SI reverse repo position minus the SI repo position for the
on-the-run treasury. Global box is calculated as SI box plus the reverse repo position in the
GC market that uses the on-the-run security for the underlying, minus the repo position in
the GC market with the on-the-run as underlying collateral. Data is weekly, reported as of
end of Wednesday, from March 2007 to April 2015.

For each week, we calculate the average SI box and average global box across primary dealers.
We then report the summary statistics for this time series data. Third and fourth column
report the average SI box and global box, and the fifth column calculates what fraction of the
time SI box is positive.

Tenor N avg SI box avg global box % pos SI box

2 year 424 188.14 25.74 89%
3 year 424 166.64 27.78 90%
5 year 424 140.45 26.67 80%
7 year 320 214.53 32.55 94%
10 year 424 191.04 57.57 88%
30 year 424 176.8 44.05 95%
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