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Estimating dynamic macroeconomic models:

How informative are the data?

Daniel O. Beltran1

Federal Reserve Board of Governors, USA

and David Draper

University of California, Santa Cruz, USA

August 2016

Summary. Central banks have long used dynamic stochastic general equilibrium (DSGE) mod-
els, which are typically estimated using Bayesian techniques, to inform key policy decisions. This
paper offers an empirical strategy that quantifies the information content of the data relative
to that of the prior distribution. Using an off-the-shelf DSGE model applied to quarterly Euro
Area data from 1970:3 to 2009:4, we show how Monte Carlo simulations can reveal parameters
for which the model’s structure obscures identification. By integrating out components of the
likelihood function and conducting a Bayesian sensitivity analysis, we uncover parameters that
are weakly informed by the data. The weak identification of some key structural parameters
in our comparatively simple model should raise a red flag to researchers trying to draw valid
inferences from, and to base policy upon, complex large-scale models featuring many parameters.

Keywords: Bayesian estimation, econometric modeling, Kalman filter, likelihood, local identifi-
cation, Euro Area, MCMC, policy-relevant parameters, prior-versus-posterior comparison, sensi-
tivity analysis.

JEL codes: C11, C18, F41.

1. Introduction

Large-scale time series models have played a major role for the last several decades in the
setting of macro-economic policy in advanced and emerging economies. In particular, one
class of such models — dynamic stochastic general equilibrium (DSGE) models (e.g., Kydland
and Prescott (1982), Rotemberg and Woodford (1997)) — has gained increasing prominence
in macroeconomics and econometrics over the past 25 years. DSGE models, which describe
macro-level economic phenomena using micro-economic principles, are used in parallel with
other models by central banks worldwide to inform policy decisions. These models typically
examine inter-relationships over time among key economic indicators such as output, inflation,
and interest rates.

When studying the properties of DSGE models, one needs to assign values to the pa-
rameters. Recognizing that maximum-likelihood estimation may well not be straightforward
(because the likelihood function may contain many local maxima), and that estimation often
produces counterintuitive results (because any DSGE model is a stylized — and thus misspeci-
fied — representation of real-world interactions between economic variables), researchers have
long preferred to calibrate these models by placing point-mass distributions on parameter val-
ues, based on a-priori information or long-term features of the data. However, as DSGE models

1Address for correspondence: Federal Reserve Board, 20th and C St. NW, Mail Stop 38, Washington, DC.
20551. E-mail: daniel.o.beltran@frb.gov
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have grown in complexity to incorporate more realistic features of the data, it has become less
obvious how to calibrate many of the new parameters that have emerged. Furthermore, anal-
yses of calibrated DSGE models are not always robust to alternative calibrations. Bayesian
techniques are well suited to address this calibration problem, because they provide a formal
way to estimate the parameters by combining prior information about them with the data, as
viewed through the lens of the model being analyzed. This offers hope that calibration may
no longer be needed, as long as the data do indeed have something to say about plausible
parameter values.

As surveyed in Schorfheide (2011), researchers estimating DSGE models are generally aware
that identification problems can prevent certain parameters from being consistently estimated
(although, regrettably, most published Bayesian studies do not show plots of the prior and
marginal posterior distributions, which may help to uncover parameters that are weakly in-
formed by the data). Using limited-information methods, Canova and Sala (2009) demonstrate
that many structural parameters in stylized New-Keynesian DSGE models are not identified.
Iskrev (2010) and Komunjer and Ng (2011) develop necessary and sufficient rank conditions
for assessing identifiability of DSGE model parameters. While these methods can be used to
detect failure of identification coming from the structure of the DSGE model, they do not
address the problem of making valid statistical inference in the presence of weak identification
due to insufficient or inadequate data.

Guerron-Quintana et al. (2013) find that

• in weakly identified DSGE models, classical confidence sets and Bayesian credible sets
will not coincide even asymptotically, and

• summary estimators of the posterior distribution such as the mean, median and mode
may not be consistent.

Using the inverse of the likelihood ratio statistic and the inverse of the Bayes Factor (BF),
they construct confidence intervals that are asymptotically valid from a frequentist point of
view regardless of the strength of identification. However, creating the BF confidence set
requires numerically performing pairwise tests over the entire parameter space, which they
describe as “computationally challenging” because of the large number of parameters that are
typically present in DSGE models. To reduce the computational burden, they approximate
the BF intervals using Monte Carlo realizations of the prior and posterior distributions, the
latter computed using Bayesian estimation methods. One may question the coverage accuracy
of their BF confidence interval, given that it is based on a potentially inconsistent posterior
distribution; the authors acknowledge that “the accuracy of the corresponding BF confidence
sets can be sensitive to the choice of prior” (p. 30). Another drawback of their approach is that
if one wishes to approximate the entire posterior distribution rather than just the upper and
lower bounds of a single confidence set — thereby permitting, e.g., an examination of the tails
of the distribution, which can be used to inform stress-test analysis or worse-case scenarios
for economic decision-making — it is necessary to repeat the method with a potentially large
number of confidence coefficients, which places an even greater computational burden on the
approach.

When maximum-likelihood techniques are used to estimate DSGE models (e.g., Ireland
(2003)), the parameter estimates come purely from the data (although, as we discuss below,
if the likelihood function is essentially flat for a parameter, the precise “maximum” found by
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numerical maximization may be largely arbitrary), and without (explicit) controversy over the
role of priors. But if the data alone are not sufficient to identify all parameters of a model,
the use of priors and Bayesian techniques is sensible, as long as the priors themselves are also
sensible. The main message of this paper is that if one is to achieve identification through
the Bayesian approach, this should be done transparently. That is, the Bayesian approach
should not only be used to derive parameter estimates; it should also reveal which parameters
are most sensitive to the prior specifications: if the model is to be used for policymaking, it
is crucial to know how strongly the empirical results depend on the prior information. For
researchers estimating DSGE models using Bayesian techniques, this paper offers an empirical
strategy that strives to unveil the information content of the data relative to that of the prior
distribution. Our approach is natural from a statistical perspective but, surprisingly, is not in
routine use by investigators fitting complicated econometric models.

Before estimating the model, we check for lack of identification due to the model’s structure,
which could imply, for example, that a parameter is indistinguishable from another in terms of
how it propagates the exogenous shocks. After repairing the model by removing unidentified
parameters, we begin our empirical strategy by integrating out components of the likelihood
function defined by the data. Our plots of the marginal likelihood densities derived from
MCMC methods then reveal which parameters are weakly informed by the data.

Notational convention. In this paper the phrase marginal likelihood has a literal, rather than
standard, meaning: we treat the normalized likelihood function as a density for the parameters,
as if it were a posterior with uniform priors (which it is), and we integrate out elements of the
parameter vector to obtain marginal distributions for the remaining parameters. (This is in
contrast to the use of the phrase marginal likelihood to denote the numerator and denominator
quantities in Bayes factors, a common (e.g., Bernardo and Smith (2000)) but entirely different
calculation.)

After having identified the dimensions along which the likelihood function is relatively
flat, we conduct a Bayesian sensitivity analysis using three sets of priors, which differ in
information content from low to moderate. The Bayesian analysis complements the analysis
of the likelihood function in helping to diagnose which parameters are weakly identified by the
data, and also provides a reality check on whether the posterior estimates are being driven
mainly by the prior or the data.

The plan for the remainder of the paper is as follows. In Section 2 we describe our data
resources and sketch the model we fit, with more details on the model and the fitting process
given in the Appendix. In Section 3 we estimate the model using artificial data, to check that
the model’s structure is not creating an identification problem. Section 4 provides results from
likelihood analysis. In Section 5 we offer results from the Bayesian sensitivity analysis (with
prior elicitation details given in Section A2 of the Appendix), and Section 6 concludes with a
discussion.

2. Data resources and the Smets-Wouters model

Building on work by Christiano et al. (2005), Smets and Wouters (2003, hereafter SW) de-
veloped and estimated a large-scale dynamic stochastic general equilibrium model for the
Euro Area. Using summary statistics such as marginal likelihoods, Bayes factors, and root-
mean-squared errors, they showed that their DSGE model fits the data as well as standard
non-theoretical VAR models and Bayesian VAR models estimated using the same data. This
implies that their DSGE model does at least as good a job as the VAR models in predicting
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the observable data series over the sample period. The model’s good fit largely derives from a
number of frictions that generate persistence in the propagation of shocks, such as sticky prices
and wages, external habit persistence, investment adjustment costs, and other features such
as variable capacity utilization. SW describe the full non-linear model and derive a linearized
version of it, which we summarize in Section A1 of the Appendix. Its basic structure involves
28 log-linearized time series that link output, inflation, real wages, investment, capital stock,
hours worked, firms’ marginal costs, the real interest rate, and employment to ten structural
shocks, six of which are allowed to be serially correlated.

The model has 32 parameters. The key structural parameters include the degree of relative
risk aversion (ηC), external habit-formation (h), elasticity of work effort with respect to the
real wage (ηL), rigidity of goods prices (ξp) and wages (ξw), productivity persistence (ρ) and
three policy parameters relating to the lagged interest rate (ρi), inflation (rπ), and the output
gap (ry).

The log-likelihood is computed using a Kalman filter (Hamilton (1994)); the Euro Area
dataset is described in Fagan et al. (2001). The data comprise quarterly time series for
seven key macroeconomic variables: real GDP, real consumption, real investment, real wages,
employment, the GDP deflator, and the nominal interest rate. Following SW, we detrend real
variables by their linear trend, and we detrend inflation and the nominal interest rate by the
same linear trend in inflation. We extended the sample period used in SW to cover the most
recent decade, so our data span the period 1970:3 to 2009:4, with the first 12 observations (3
years) being used to initialize the Kalman filter (later years could of course be included, but
this data set is sufficient to make our methodological points).

The prior-posterior plots shown in SW suggest that data are not informative for 10 out
of the 32 parameters, which makes the likelihood function nearly flat along these dimensions
and yields marginal posteriors that closely resemble their prior distributions. Onatski and
Williams (2010) also find evidence of weak parameter identification when they re-estimate
the same model; when using Uniform priors they obtain “substantially different” parameter
estimates.

In re-estimating the SW model, Onatski and Williams (2010) paid special attention to
how strongly the empirical results depend on the prior assumptions. However, in using “less
informative” (Uniform) priors they encountered two problems. First, they found “numerous
local minima which confounded many optimization methods.” We also find that standard
methods for maximizing the log-likelihood function are sharply inadequate with this model;
we developed a new maximization/adaptive-MCMC/maximization algorithm to address this
issue (see Section A3 of the Appendix). The second problem Onatski and Williams (2010)
encountered is that for 9 of the 32 parameters, the maximum likelihood estimates are on
the boundaries of the prior range. Onatski and Williams (2010) acknowledge this boundary
problem but dismiss it by stating that “To the extent that we set our prior to reflect reasonable
ranges of estimates, this is not troubling in itself. But it does suggest that the data may favor
some parameter values which may be implausible from an economic viewpoint, and hence are
not in the support of our prior” (p. 154). What is more worrying is that, because the data
seem to favor parameter values that are far from the arbitrary prior boundaries they chose,
their point estimates depend critically on their boundary assumptions — in other words,
while Onatski and Williams (2010) sought to make their priors “less informative” by using
Uniform distributions, the end result is that they inadvertently calibrated these parameters
at the prior boundaries. By integrating over the likelihood function (instead of maximizing
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it, as Onatski and Williams (2010) did), our estimation strategy will gauge the degree of
parameter uncertainty, even for those parameters whose values seem implausible from an
economic viewpoint.

3. Checking identifiability problems created by the model’s structure

One possibility for problems arising from the fitting of DSGE models is that the model’s struc-
ture could imply, for example, that one parameter is indistinguishable from another in terms of
how they propagate the exogenous shocks to the state variables. Iskrev (2010) examines local
identifiability by checking that the Jacobian matrix of the mapping, of the deep parameters
to the parameters that determine the first two moments of the data, is not rank deficient.
Because numerical derivatives tend to be inaccurate for highly non-linear functions, Iskrev
develops a method for computing the Jacobian analytically. Iskrev applies this method to the
Smets and Wouters (2007) model (an extended version of the model examined in this paper),
and find that the Jacobian is rank deficient. Iskrev attributes the lack of identifiability to the
similar roles played by the two curvature parameters for the goods and labor markets, and
the Calvo wage and price parameters. These parameters play similar roles in the nonlinear
version of the model, but become equivalent in the linearized version that is estimated. To
fix the identifiability problem, Iskrev (2010) (as well as Smets and Wouters (2007)) calibrate
these curvature parameters. Similarly, Komunjer and Ng (2011) obtain necessary and suffi-
cient rank conditions for identifiability using the spectral density of the endogenous variables
in the model. This approach requires extensive use of numerical derivatives and Kronecker-
product matrices. Komunjer and Ng (2011) find that computation of the rank is sensitive to
the tolerance level that is used to determine whether the eigenvalues are sufficiently small.
They address this issue by performing the analysis using a variety of tolerance levels.

As recognized in Iskrev and Ratto (2010), computing the analytical derivatives of the
Jacobian with respect to the deep parameters is computationally inefficient and requires a large
amount of memory allocation, because sparse Kronecker-product matrices are used extensively.
In this paper we take a simple, informal approach to diagnose identification problems that
are inherent to the model’s structure, similar to that of Adolfson and Lindé (2011). The
approach involves simulating the model to generate artificial data and then maximizing the
resulting likelihood function (using our new maximization method detailed in Section A3 of
the Appendix). In the case of our version of the SW model, this approach correctly reveals
the parameters that are not identified due to the structure of the model.

For each simulation, we perform the following steps.

(1) Randomly draw a vector of parameters θ∗DGP from the SW prior distribution.

(2) Solve the DSGE using θ∗DGP to obtain the state-space representation.

(3) Generate a sample of length (1, 000 + T ) of artificial data for the same set of observable
variables we have actual data on, by simulating random draws for the IID shocks and
feeding them into the state-space representation of the model equations found in step
(2). We discarded the first 1, 000 observations as burn-ins.

(4) Given the artificial data of sample size T , search for the parameter vector θ̂ that maxi-
mizes the log-likelihood.
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(5) Compute absolute bias in percent as
∣∣∣ θ̂
θDGP

− 1
∣∣∣× 100.

We performed 2,000 such simulations for a sample of T = 118 (the number of quarters of
data in the original SW dataset) and another 2,000 simulations with T = 1, 000 (a time series
of obviously infeasible length). Table 1 gives the median of the absolute biases of the maximum
likelihood estimates for both sets of simulations. When T = 118, 13 out of the 32 parameters
have biases of 10 percent or more, with some of the largest biases found in σπ, σQ, σL, σI , σb,
ψ, ry, r∆y, and λl. When we increased the sample size to T = 1, 000, the bias was reduced for
most parameters by 60 to 83 percent. However, as highlighted in bold font in the table, the
increased sample size barely reduced the bias for ρπ and σπ. The small reduction in the bias of
these two parameters suggests that the structure of the model is likely preventing them from
being identified. ρπ and σπ govern the persistence and the standard deviation of the inflation
objective shock that enters the interest rate equation, respectively; the inflation objective
shock and the policy shock enter additively in the same equation. In principle, the two shocks
should be identifiable, because the inflation objective shock is assumed to be autocorrelated in
the data-generating process (DGP) while the policy-rule shock is not. However, when ρ is high
the model can generate an autocorrelated interest rate even when the inflation objective shock
is not autocorrelated, making it difficult to distinguish the two shocks (as evidenced by our
simulation with T = 1, 000). SW address this identification problem by placing a tight prior
on the autocorrelation parameters, whereas Onatski and Williams (2010) fix the problem by
eliminating the policy rule shock. We take the latter approach, because we wish to compare
the results of our estimation exercise with those of Onatski and Williams.

Although removing the policy-rule shock fixes the lack of identification inherent in the
model’s structure, when taking the model to the actual data we may still find that some
parameters are weakly identified. This could arise because we are using data on only seven
observable variables to estimate a model that has 9 structural shocks (even after eliminating
the policy-rule shock). SW attempt to identify the 10 shocks in their model by assuming that
(a) they are uncorrelated with each other and (b) six of them are autocorrelated, treating
the other four as white-noise processes. For the six autocorrelated shocks, SW impose fairly
strong persistence by setting the prior mean on the autocorrelation coefficient to 0.85, with
prior standard deviation of 0.10. However, without these priors, if the actual data favor low
values for these autocorrelation parameters, some of the shocks will be difficult to identify.
This is likely the case for σQ, which has a median absolute bias of 39 percent even with
1,000 observations. In the next Section we show how a close examination of the log-likelihood
function can reveal which parameters are weakly informed by the data.

4. Likelihood analysis

The “less informative” Uniform prior used by Onatski and Williams (2010) [OW], shown in
column (1) of Table 2, restricts the range of values the parameters can take to what OW
regard as the “plausible” region. To derive their point estimates, which are shown in column
(2), OW maximize the log-likelihood function in the region defined by their prior bounds. As
highlighted in bold, many of these estimates are at the prior boundary, suggesting that the
data favor implausible values for these parameters. When using the same data and our own
maximization algorithm (described in Section A3 of the Appendix), we obtain similar results
(column 3) except for the Calvo employment parameter ξe, which gravitates in our results
to the opposite prior boundary than that chosen by OW’s method. In column 4 we extend
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Table 1: Median absolute biases (in percent) from 2, 000 Monte Carlo simulations comparing
the parameters θDGP of the data-generating process with their maximum likelihood estimates
θ̂, using T = 118 and T = 1, 000 quarters of simulated data (see text for explanations of bold
font).

Percent
Parameter T = 118 T = 1000 change

ϕ Inverse adjustment cost 13 4 –73
λC Risk aversion 13 3 –72
h Habit persistence 3 1 –71
ξw Calvo wages 3 1 –71
λl Labor utility 23 6 –75
ξp Calvo prices 3 1 –72
ξe Calvo employment 4 1 –73
γw Wage indexation 9 3 –69
γp Price indexation 8 2 –70
ψ Capital utilization cost 32 5 –83
φ Fixed cost 3 1 –77

Policy rule
rπ Inflation 9 2 –74
r∆π Inflation gradient 8 2 –71
ρ Lag interest rate 2 1 –73
ry Output gap 25 7 –72
r∆y Output gap gradient 24 6 –75

Shocks, autocorrelation
ρa Productivity 3 1 –71
ρb Preference 3 1 –77
ρG Government spending 4 1 –75
ρL Labor supply 8 2 –79
ρI Investment 6 1 –75
ρπ Inflation objective 13 10 –24

Shocks, SD
σa Productivity 10 3 –73
σb Preference 25 6 –77
σG Government spending 5 2 –61
σI Investment 53 15 –71
σL Labor supply 49 12 –75
σp Price markup 6 2 –69
σw Wage markup 5 2 –63
σR Interest rate 7 2 –73
σQ Equity premium 97 39 –60
σπ Inflation objective 98 87 –11

7



Table 2: Maximum-likelihood estimates of the parameters in the DSGE model (see text for
explanations of column headings and bold font).

Our Estimates
Wider

OW Prior Prior
OW Prior OW Original New New

Range Estimate Data Data Data
Parameter (1) (2) (3) (4) (5)

ϕ Inverse adjustment cost 3.57–8.33 6.579 6.332 7.260 418.4
λC Risk aversion 1.00–4.00 2.178 2.953 3.299 998.7
h Habit persistence 0.40–0.90 0.400 0.400 0.400 0.000
ξw Calvo wages 0.65–0.85 0.704 0.708 0.760 0.870
λl Labor utility 1.00–3.00 3.000 3.000 3.000 842.3
ξp Calvo prices 0.40–0.93 0.930 0.930 0.930 0.979
ξe Calvo employment 0.40–0.80 0.400 0.800 0.800 0.874
γw Wage indexation 0.00–1.00 0.000 0.242 0.024 0.000
γp Price indexation 0.00–1.00 0.323 0.307 0.181 0.154
ψ Capital utililization cost 2.80–10.00 2.800 2.800 10.00 0.297
φ Fixed cost 1.00–1.80 1.800 1.800 1.800 2.000

Policy rule
rπ Inflation 1.00–4.00 4.000 4.000 2.182 3.621
r∆π Inflation gradient 0.00–0.20 0.181 0.169 0.088 0.035
ρ Lag interest rate 0.60–0.99 0.962 0.957 0.945 0.989
ry Output gap 0.00–1.00 0.062 0.000 0.158 −0.195
r∆y Output gap gradient 0.00–1.00 0.319 0.434 0.409 0.159

Shocks, autocorrelation
ρa Productivity 0.00–1.00 0.957 0.961 0.973 0.998
ρb Preference 0.00–1.00 0.876 0.913 0.897 0.953
ρG Government spending 0.00–1.00 0.972 0.901 0.934 0.956
ρL Labor supply 0.00–1.00 0.974 0.986 0.967 0.999
ρI Investment 0.00–1.00 0.943 0.967 0.914 0.799
ρπ Inflation objective 0.00–1.00 0.582 0.746 0.791 0.224

Shocks, SD
σa Productivity 0.00–6.00 0.343 0.542 0.543 0.633
σb Preference 0.00–4.00 0.240 0.220 0.278 12.9
σG Government spending 0.00–4.00 0.354 0.352 0.391 0.382
σI Investment 0.00–1.00 0.059 0.075 0.210 12.2
σL Labor supply 0.00–36.00 2.351 2.724 3.345 739.9
σp Price markup 0.00–2.00 0.172 0.197 0.253 0.240
σw Wage markup 0.00–3.00 0.246 0.267 0.207 0.196
σQ Equity premium 0.00–7.00 7.000 7.000 7.000 433.7
σπ Inflation objective 0.00–1.00 1.000 0.716 1.000 2.645
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the sample period by a decade and re-estimate the parameters using the same prior; many of
the estimates remain at the prior boundary. It is interesting to check just how implausible
the estimates become when the prior bounds are widened considerably (while still imposing
some theoretical constraints). As shown in the last column, the estimates obtained when using
the wider prior range are strikingly distant from the ones obtained using the OW prior. In
particular, the estimates for ϕ, λc, λl, σL, and σQ are clearly implausible.

Integrating over the likelihood function using MCMC methods reveals that those param-
eters whose maximum likelihood estimates are implausible are also weakly informed by the
data. Figure 1 shows the marginal likelihood plots for the 31 parameters in our model. For
each parameter, the shaded region represents the histogram of the MCMC draws from the
likelihood function. The thick line just above the horizontal axis denotes the Onatski and
Williams (2010) prior range, and the dashed line shows their point estimate. The wide range
spanned by the histograms of ϕ, λc, λl, ψ, rπ, ρπ, σB, σI , σL, and σQ suggests that these
parameters are weakly informed by the data. These likelihood plots also reveal some con-
tradictions with the prior. For example, the likelihood function strongly favors values for h
between 0 and 0.4, which is in contrast with the Onatski and Williams (2010) prior range of
0.4 to 1. It is therefore not surprising that Onatski and Williams (2010) arrived at a point
estimate of 0.4 for this parameter, effectively calibrating it at the prior boundary. The data
also strongly favor values for ξp, ξe, and ψ that are at odds with the prior used by Onatski
and Williams (2010).

With insufficient data, some parameters that play similar roles in DSGE models can be
difficult to identify. In the case of λc, the curvature parameter in the household’s utility
function, the histogram of the MCMC-based likelihood draws shown in Figure 1 ranges from
200 to 1000, well above the plausibility range of 1–4 typically used in the literature. In the
linearized model λc governs how sensitive the household’s optimal consumption choice is to
the real interest rate and the preference shock. As shown in equation (1) of the Appendix,
a high value of λc will dampen the response of consumption to the preference shock (εbt). In
the same equation, a high value for h, which governs the persistence of the habit formation
in consumption, would also dampen the response of consumption to a preference shock. It is
therefore not surprising that the data favor implausibly high values for λc that are balanced
(in terms of the log-likelihood value) by values of h that are much lower than those typically
used in the literature.

If we had strong prior knowledge that h should be closer to one (which we do), would such
a prior help identify λc?

2 One way to address this question is to examine the log-likelihood
surface as a function of h and λc, while keeping the other parameters fixed at their maximum
likelihood values. As shown in the top panel of Figure 2, when h is high (close to 1), the
curvature of the log-likelihood surface increases with respect to λc, meaning that λc is indeed
better identified when h is large. Because the SW and Onatski and Williams (2010) priors
for h rule out low values for this parameter, this restriction likely helped them identify the
curvature parameter in the household’s utility function. The lesson to take from this example
is that if one has good prior information for a parameter, one should use it, for two reasons
(one obvious, the other less so): such a prior would not only help to identify the parameter in
question, but may also help identify other parameters in the model as well.

If there is little prior information for a parameter, one must of course be careful in choosing
the prior range when performing Bayesian estimation, especially if the parameter plays a key

2See Section A2 of the Appendix for a discussion of studies that have estimated h.
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Figure 1: MCMC-based marginal likelihood plots for 20 of the 31 parameters.
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Figure 1: (continued). MCMC-based marginal likelihood plots for the other 11 parameters.
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role in the model dynamics. One such parameter in the SW model is ψ, the elasticity of the
capital utilization cost function. A low (respectively, high) value of ψ implies that the cost of
utilizing capital increases slowly (rapidly) with its utilization rate. King and Rebelo (2000)
show that variable capacity utilization makes the labor demand curve more elastic with respect
to the real wage (or the marginal product of labor). Similarly, Francis and Ramey (2005) and
Smets and Wouters (2007) show that capital adjustment costs can help explain the empirical
finding of Gali (1999) that productivity shocks have a negative impact on hours worked.

The impact of productivity shocks on hours worked also depends on the elasticity λ−1
l of

work effort with respect to the real wage. The bottom panel of Figure 2 plots the likelihood
surface as a function of ψ and λl while holding the other parameters fixed at their maximum
likelihood values. The log-likelihood surface shows an inverse relationship between these two
parameters; because they are poorly informed by the data (Figure 1), placing a strong prior
on one of them will likely influence the estimate of the other.

To sum up, the histograms of the MCMC-based likelihood draws reveal that some pa-
rameters in the Onatski and Williams (2010) model cannot be identified by the data alone.
Furthermore, the surface plots suggest that identification of some parameters could be achieved
by placing a strong prior on other parameters. Both SW and Onatski and Williams (2010)
achieve identification by incorporating priors into their analysis. However, as evidenced by
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Figure 2: Log likelihood as a function of λc and h (top) and λl and ψ (bottom).
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the disparity in their estimates, when identification is achieved through the use of priors, the
results can be fragile. This is important because knowing how strongly the empirical results
depend on the prior information is crucial if the model is to be used for policymaking.

5. Bayesian sensitivity analysis

When the data alone are not sufficient to identify all of the model’s parameters, using priors and
Bayesian techniques is sensible, provided that the prior information is good. However, as noted
in Section 1, if one is to achieve identification through the Bayesian approach, this should be
done transparently. That is, the Bayesian estimation exercise should reveal which parameters
are most sensitive to prior specification. To perform this sensitivity analysis, we estimated
the SW model using three sets of priors: the SW (informative) prior, a looser (somewhat
informative) version of their prior, and a Uniform prior. The bounds of the Uniform prior
are wider than those used by Onatski and Williams (2010). In Section A2 of the Appendix
we document the background literature we used in specifying the prior distributions for each
parameter; the exact prior specifications are reported in Table 3.

For some parameters, there is practically no previous research on which to base a prior;
often the priors for these parameters are chosen for convenience. In some cases, even though
the data have little to say about a given parameter, its posterior estimate is used to inform
the prior in subsequent studies. An example is the parameter that governs the elasticity of
the capital utilization cost function (ψ). Smets and Wouters (2007) normalize this parameter
so that it lies in the unit interval and center their prior at 0.5 because they did not have any
previous research on which to base it. As recognized by Smets and Wouters, their posterior
estimate for ψ largely coincides with their prior, casting doubt on the insensitivity of this
estimate to the prior. Even so, Onatski and Williams (2010) use the Smets and Wouters
(2007) posterior estimate for ψ to inform the boundaries of their Uniform prior, only to arrive
at a point estimate that is at the prior boundary. By using three sets of priors, we can
determine how strongly our empirical results depend on the prior specifications.

Table 4 summarizes the marginal posterior distributions arising from the three priors,
and Figure 3 plots the marginal posterior densities. The marginal posteriors for the weakly-
identified parameters (ϕ, λc, λl, ψ, rπ, ρπ, σB, σI , σL, and σQ) vary tremendously when we
change the prior, confirming the diagnosis from the previous analysis of the likelihood function.
In particular, the posterior estimates of ψ and φ crucially depend on the prior choice, which
is unfortunate, because there is practically no information in the literature on which to base
the prior. For parameters that are well-identified by the data, such as ρg, σG, and σP , the
marginal posterior is essentially invariant to the prior choice.

When trying to infer how informative the data are about the parameters of the model, it
has become common practice in the econometric literature

(a) to compare the moments of the posterior and prior distributions using just one set of
priors, and

(b) to conclude that the data provide substantial information if these moments differ sub-
stantially.

Our findings demonstrate that this approach could mislead one to believe that a parameter is
well identified just because its posterior and prior distributions are different. For example, the
SW prior for ϕ is concentrated on the interval (1.5, 6.5) (Table 3) with a mean of 4, and the
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Table 3: Prior distributions used in the Bayesian sensitivity analysis; see Section A2 of the
Appendix for specification details.

Uniform Somewhat Informative Informative

Bound Percentiles Percentiles
Parameter(θ) L U p(θ) E(θ) 5% 95% p(θ) E(θ) 5% 95%

ϕ
Inverse

adjustment cost
1 100 IG 4 1.49 8.96 N 4 1.53 6.47

λc Risk aversion 0 50 IG 1.5 0.36 4.07 N 1 0.38 1.62
h Habit persistence 0 1 B 0.7 0.32 0.96 B 0.7 0.52 0.85
ξw Calvo wages 0 1 B 0.75 0.47 0.95 B 0.75 0.66 0.83
λl Labor utility 0 50 IG 1.5 0.36 4.07 N 2 0.77 3.23
ξp Calvo prices 0 1 B 0.75 0.47 0.95 B 0.75 0.66 0.83
ξe Calvo employment 0 1 B 0.5 0.04 0.96 B 0.5 0.25 0.75
γw Wage indexation 0 1 B 0.5 0.04 0.96 B 0.75 0.47 0.95
γp Price indexation 0 1 B 0.5 0.04 0.96 B 0.75 0.47 0.95

ψ
Capital

utilization cost
1 100 N 10 1.78 18 N 5 1.91 8.09

φ Fixed cost 1 2 N 1.5 1 2 N 1.45 1.04 1.86
Policy rule

rπ Inflation 1 10 N 2 1 3 N 1.7 1.54 1.86
r∆π Inflation gradient −1 1 N 0.3 −0.03 0.63 N 0.3 0.14 0.46
ρ Lag interest rate 0.5 1 B 0.8 0.38 1 B 0.8 0.61 0.94
ry Output gap −1 1 N 0.13 −0.04 0.29 N 0.13 0.04 0.21

r∆y
Output

gap gradient
−1 1 N 0.3 −0.03 0.63 N 0.06 −0.02 0.14

Shocks, autocorrelation

ρa Productivity 0 1 B 0.85 0.41 1 B 0.85 0.66 0.97
ρb Preference 0 1 B 0.85 0.41 1 B 0.85 0.66 0.97

ρG
Government

spending
0 1 B 0.85 0.41 1 B 0.85 0.66 0.97

ρL Labor supply 0 1 B 0.85 0.41 1 B 0.85 0.66 0.97
ρI Investment 0 1 B 0.85 0.41 1 B 0.85 0.66 0.97
ρπ Inflation objective 0 1 B 0.85 0.41 1 B 0.85 0.66 0.97

Shocks, SD

σa Productivity 0 20 E 2 0.10 6 IG 0.4 0.19 0.77
σb Preference 0 20 E 2 0.10 6 IG 0.2 0.12 0.32

σG
Government

spending
0 20 E 2 0.10 6 IG 0.3 0.16 0.53

σI Investment 0 20 E 2 0.10 6 IG 0.1 0.07 0.14
σL Labor supply 0 20 E 2 0.10 6 IG 1 0.32 2.45
σp Price markup 0 20 E 2 0.10 6 IG 0.15 0.09 0.23
σw Wage markup 0 20 E 2 0.10 6 IG 0.25 0.14 0.43
σQ Equity premium 0 20 E 2 0.10 6 IG 0.4 0.19 0.77
σπ Inflation objective 0 20 E 2 0.10 6 IG 0.020 0.02 0.02

Notes: B = Beta, IG = Inverse-gamma, N = Normal, and E = Exponential; L = lower, U = upper; SD =
standard deviation.
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Table 4: Summaries of marginal posterior distributions of the parameters under the three prior
distributions described in Table 3.

Uniform Somewhat Informative Informative
Percentiles Percentiles Percentiles

2.5% 97.5% Median 2.5% 97.5% Median 2.5% 97.5% Median
ϕ 9 22 16 3 11 5 5 10 7
λc 12 26 19 8 27 15 1 2 2
h 0.04 0.35 0.19 0.1 0.38 0.23 0.5 0.7 0.6
ξw 0.72 0.94 0.79 0.76 0.93 0.86 0.7 0.82 0.76
λl 11 37 23 5 23 10 2 5 3
ξp 0.92 0.98 0.94 0.94 0.98 0.96 0.92 0.95 0.94
ξe 0.79 0.9 0.86 0.82 0.9 0.87 0.76 0.85 0.81
γw 0.01 0.44 0.15 0.01 0.31 0.1 0.17 0.59 0.36
γp 0.04 0.37 0.19 0.03 0.36 0.18 0.18 0.45 0.31
ψ 5.91 95.04 47.57 4.03 20.65 11.88 2.74 9.13 5.71
φ 1.02 1.91 1.31 1.34 1.97 1.74 1.41 1.86 1.63
rπ 1.67 9.47 4.42 1.33 3.17 2.05 1.52 1.9 1.71
r∆π −0.05 0.09 0.02 −0.03 0.13 0.04 0.05 0.19 0.11
ρ 0.97 1 1 0.91 1 0.98 0.84 0.96 0.91
ry −0.55 0.88 0.19 −0.05 0.32 0.13 0.06 0.2 0.13
r∆y 0.23 0.39 0.29 0.27 0.48 0.36 0.23 0.32 0.27
ρa 0.96 0.98 0.97 0.97 0.99 0.98 0.96 0.99 0.98
ρb 0.9 0.99 0.96 0.92 1 0.97 0.84 0.94 0.89
ρG 0.91 0.96 0.94 0.92 0.96 0.94 0.91 0.96 0.94
ρL 0.97 1 0.99 0.98 1 0.99 0.93 0.99 0.97
ρI 0.75 0.97 0.89 0.87 0.99 0.96 0.88 0.98 0.94
ρπ 0.07 0.91 0.55 0.7 1 0.94 0.71 0.96 0.88
σa 0.48 0.94 0.68 0.43 0.74 0.54 0.54 0.86 0.68
σb 0.2 1.06 0.49 0.11 0.57 0.23 0.19 0.47 0.3
σG 0.35 0.44 0.39 0.35 0.44 0.39 0.35 0.44 0.39
σI 0.18 2.06 0.57 0.1 0.5 0.18 0.06 0.31 0.13
σL 15 20 19 8 21 13 2 4 3
σp 0.21 0.29 0.25 0.21 0.29 0.24 0.2 0.27 0.23
σw 0.18 0.24 0.21 0.18 0.24 0.21 0.2 0.26 0.22
σπ 0.34 4.35 1.68 0.17 3.72 1.29 0.26 1.3 0.56
σQ 9 20 17 2 11 5 6 12 9

posterior with this prior has most of its mass in the interval (5, 10) (Table 4) with posterior
median 7, which is not even in the prior 95% interval. However, it is incorrect to conclude
that this difference is because the data swamped the prior. The huge interval spanned by
the MCMC draws from the likelihood function for ϕ (Figure 1) and the high sensitivity of its
posterior distribution to the prior choice (Figure 3) confirm that this parameter is actually
weakly informed by the data. What has happened here is that the SW prior and the likelihood
are sharply at odds with each other, with the prior concentrated on a region of extremely
low likelihood, making the SW posterior an unreliable summary of the available information.
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Figure 3: MCMC-based marginal posterior plots for 20 of the parameters.
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Note: Dashed red lines give marginal posteriors under the Uniform priors, thin blue lines under the
somewhat informative priors, and thick green lines under the informative priors of Smets and Wouters (2003).
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Figure 3: (continued). MCMC-based marginal posterior plots for the remaining 11 parameters.
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somewhat informative priors, and thick green lines under the informative priors of Smets and Wouters (2003).

Ironically, this is an example in which the prior has swamped the data, by restricting the
posterior to a range of values that the likelihood function regards as unrealistic.

From this (and other examples like it), we conclude that without a detailed analysis, e.g.,
of the type we advocate here — simulation with known parameter values to summarize small-
and large-sample bias of parameter estimates, careful examination of the likelihood surface,
and sensitivity analysis with a range of priors — it is difficult to draw correct conclusions
about the amount of information the data provide for the parameters of DSGE models.

6. Conclusions and discussion

Recent contributions to the literature on parameter identification in DSGE models have pro-
vided several useful tools for flagging lack of identification due to the structure of the DSGE
model (e.g. Iskrev (2010), and Komunjer and Ng (2011)). But existing research has paid little
attention to the issue of weak identification in DSGE models that arises from insufficient or
inadequate data. The main contribution of this paper is to provide an empirical strategy for
estimating DSGE models that is aimed at obtaining reasonable parameter estimates through
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the use of carefully chosen priors, while at the same time revealing the information content of
the data relative to that of the prior distribution. Previous studies have focussed on obtaining
reasonable estimates, which is fairly straightforward to achieve in a Bayesian setting if one
uses reasonable priors to begin with. But the latter goal of transparency, which has largely
been ignored in the DSGE literature, is crucial if the estimates are to be taken seriously for
analysis of policy.

We illustrated our approach by estimating an off-the-shelf DSGE model, applied to the
Euro Area over the period 1970–2009. Our empirical strategy has three parts: simulation to
uncover lack of identification from the model’s structure, MCMC-based likelihood estimation
to determine the dimensions along which the likelihood function is relatively flat, and Bayesian
sensitivity analysis to gauge the information content of the data relative to that of the prior.
Using this approach, we first found that several parameters were not identified because of the
model’s structure. After eliminating these parameters from the model, we then took the model
to the data and performed an MCMC-based likelihood analysis and a Bayesian sensitivity
analysis. We found that roughly one third of the model’s parameters are weakly identified
by the data. One such parameter is the elasticity of the capital utilization cost function (ψ),
which plays a key role in the dynamics of the model because it determines (among other things)
the impact of productivity shocks on hours worked. Weak identification of this parameter is
troubling because there is not much information in the literature on which to base a prior.
Despite the lack of prior information regarding this parameter, previous studies have estimated
it using informative priors, obtaining narrow posterior intervals that, in turn, have been used
as the prior for subsequent studies (and these later studies have not acknowledged the weak
level of data support for their priors).

When estimating DSGE models, it is sensible to incorporate priors by using Bayesian
techniques when the data alone are not sufficient to identify all of the model’s parameters,
provided that the prior information is credible. But unless this is done in a transparent manner,
it is nearly impossible for subsequent readers to judge how well the posterior estimates are
informed by the data. This is crucial if the estimates are to be used for policymaking, and
also if the estimates will be used to inform priors in subsequent studies. We have shown how
integrating over the likelihood function and performing a Bayesian sensitivity analysis can help
diagnose weak identification arising from the data. This approach is natural from a statistical
perspective but, surprisingly, is not in routine current use by investigators fitting complicated
econometric models.

Our other noteworthy finding is that, in models of this type, the naive technique — ex-
amples of which may be readily found in econometrics — of {concluding that any parameter
whose posterior and prior differ substantially must have been well informed by the data} can
be sharply misleading; the parameter θ1 in question may be nearly unidentified and yet exhibit
strong prior-to-posterior movement, because the prior (not the likelihood) has exerted strong
influence on the posterior (e.g., by inadvertently restricting the posterior to concentrate on a
region of low likelihood).
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Appendix

A1. The Smets-Wouters Model

The Smets and Wouters (2003, hereafter SW) model consists of 28 time series equations
that link output, inflation, real wages, investment, capital stock, hours worked, firms’ marginal
cost, the real interest rate, and employment to ten structural shocks, six of which are allowed
to be serially correlated. The series are expressed as logarithmic deviations from the steady
state. In order to induce intrinsic persistence in the propagation of shocks, the model features
sticky wages and prices, external habit persistence in consumption, investment adjustment
costs and variable capacity utilization with utilization costs. SW apply their model to data
from the Euro Area; as noted in the main paper, we extended the sample period used in SW
to cover the most recent decade, so our data span the period 1970:3 to 2009:4.

Household utility depends positively on consumption relative to an external habit stock,
and negatively on labor supply. Utility maximization (subject to a budget constraint) implies
the following optimal allocation of consumption over time Ct:

Ct =
h

1 + h
Ct−1 +

1

1 + h
EtCt+1 −

1− h
(1 + h)λC

(it − Et πt+1) +
1− h

(1 + h)λC
(εbt − Et εbt+1) , (1)

in which h is the habit-persistence parameter; Et is the rational expectation operator, which
averages over uncertainty about future unexpected shocks (conditioning on the model struc-
ture, parameters and shock distribution); λC is the coefficient of relative risk aversion of
households (i.e., the inverse of the intertemporal elasticity of substitution); it is the nominal
interest rate; πt is the rate of inflation; and εbt is an autoregressive preference shock (with
first-order auto-correlation ρb and a mean–0 Gaussian error term with variance σ2

b ), which
affects the intertemporal substitution of households.

Because households supply differentiated labor in an imperfectly competitive market, they
can set their own wages. However, only a fraction (1 − ξw) can adjust wages in period t;
when ξw = 0, wages are perfectly flexible. Households that cannot re-optimize their wages can
partially index their wage to past inflation. The degree of wage indexation is determined by
the parameter γw: when γw = 0, wages that cannot be re-optimized remain constant (i.e., in
that case there is no wage indexation). Optimal wage setting implies that the real wage wt
evolves as follows:

wt =
β

1 + β
Etwt+1 +

1

1 + β
wt−1 +

β

1 + β
Et πt+1 −

1 + βγw
1 + β

πt +
γw

1 + β
πt−1 − (2)

λw(1− β ξw)(1− ξw)

(1 + β)[λw + (1 + λw)λL]ξw

[
wt − λLLt −

λC
1− h

(Ct − hCt−1)− εLt − ηwt
]
.

Here β is the subjective discount factor; λL is the inverse of the elasticity of work effort with
respect to the real wage; Lt is labor demand; the preference shocks to labor supply, εLt , are
autocorrelated with first-order auto-correlation ρL and mean–0 Gaussian errors with variance
σ2
L; the wage markup shocks ηwt are IID N(0, σ2

w); and λw is determined as follows: when wages
are perfectly flexible, the real wage is the markup — equal to (1 +λw) — over the ratio of the
marginal disutility of labor and the marginal utility of an additional unit of consumption.
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The capital stock Kt grows with investment It, but shrinks every period by the depreciation
rate τ . The evolution of the capital stock is therefore

Kt = (1− τ)Kt−1 + τIt−1 . (3)

A typical household’s optimal investment decision is given by

It =
1

1 + β
It−1 +

β

1 + β
Et It+1 +

ϕ

1 + β
Qt +

βEt ε
I
t+1 − εIt

1 + β
, (4)

where ϕ is the inverse of the investment adjustment costs and εIt is an autocorrelated investment
shock (with first-order auto-correlation ρI and mean–0 Gaussian errors with variance σ2

I ). Here
Qt is the current real value of the capital stock, with evolution given by

Qt = −(it − Et πt+1) +
1− τ

1− τ + r̄k
EtQt+1 +

r̄k

1− τ r̄k
Et r

k
t+1 + ηQt , (5)

where r̄k is the mean return on capital, rkt is the rental rate of capital and the ηQt are IID
N(0, σ2

Q) equity-premium shocks.
Labor demand Lt is assumed to follow the simple relation

Lt = −wt +

(
1 +

1

ψ

)
rkt +Kt−1 , (6)

where ψ measures the elasticity of the capital-utilization cost function. Because there are no
consistently-measured data sets on aggregate hours worked in the Euro Area, SW used data
on employment instead. Since employment typically responds more slowly to macroeconomic
shocks, SW introduced an auxiliary equation linking employment to aggregate hours worked;
in other words, employment et evolves according to

et = β et+1 +
(1− β ξe)(1− ξe)

ξe
(Lt − et) , (7)

in which a fraction (1− ξe) of the firms do not adjust employment in any given period.
Only a fraction (1 − ξp) of firms can optimally set prices each period, but those firms

that do not re-optimize can still index their prices to past inflation. The degree of price
indexation for firms that do not re-optimize is given by the parameter γp: when γp = 0 there
is no indexation, and prices of final goods produced by firms that do not re-optimize remain
unchanged. Optimal price setting implies that the inflation rate evolves according to

πt =
β

1 + β γp
Et πt+1 +

γp
1 + β γp

πt−1 +
(1− β ξp)(1− ξp)

(1 + β γp)ξp

[
α rkt + (1− α)wt − εat + ηpt

]
. (8)

In this equation, the inflation rate depends on expected future inflation, past inflation, and
the marginal cost of production; α is the steady-state share of capital in total output, εat is
an autocorrelated technology shock with first-order auto-correlation ρa (and mean–0 Gaussian
errors with variance σ2

a), and the ηpt are IID N(0, σ2
p) price-markup shocks.

The goods market equilibrium condition, which equates demand and supply of output Yt,
is

Yt = cy Ct + gy ε
G
t + ky

(
τ It + r̄k ψ−1 rkt

)
= φ

[
εat + α

(
Kt−1 + ψ−1 rkt

)
+ (1− α)Lt

]
. (9)
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Here cy is the steady-state ratio of consumption to output; gy is the steady-state ratio of
government spending to ouput; εGt is a government-spending shock, which follows an autore-
gressive process with first-order auto-correlation ρG (and mean–0 Gaussian errors with variance
σ2
G); and ky is the steady-state capital-output ratio. Equation (9) corrects a slight error that

Onatski and Williams (2010) discovered in SW: the production of output is now specified on
the right-hand side, where φ is 1 plus the share of fixed cost in production.

Finally, to close the model SW adopt a monetary policy reaction function, whereby the
monetary authority sets the nominal interest rate in response to inflation and the output gap.
The output gap is defined as the difference between

(a) actual output and

(b) the output that would prevail under flexible prices and wages (Y ∗t ) and in the absence
of the three “cost-push” shocks (ηwt , ηQt , ηpt ).

The policy rule is given by

it = ρ it−1 + (1− ρ)
[
π̄t + rπ(πt−1 − π̄t) + ry(Yt−1 − Y ∗t−1)

]
+ (10)

r∆π(πt − πt−1) + r∆y

[
Yt − Y ∗t − (Yt−1 − Y ∗t−1)

]
+ ηRt ,

in which π̄t is the inflation objective, which follows an autoregressive process with first-order
auto-correlation ρπ (and mean–0 Gaussian errors with variance σ2

π); rπ is the policy response
to deviations of lagged inflation from the inflation objective; ry is the policy response to
deviations in the lagged output gap; r∆π is the policy response to current changes in inflation;
r∆y is the policy response to current changes in the output gap; and ηRt is an IID N(0, σ2

R)
policy shock. Because the policy-rule shock is not identified, we follow Onatski and Williams
(2010) and eliminate this shock when estimating the model.

In order to determine Y ∗t (the level of output that would prevail under flexible prices
and wages), the model is supplemented with flexible-price versions of equations (1)–(9); see
Appendix A1 for further details.

We fit the linear model implied by equations (1–10) above using the algorithm of Sims
(2002), which relies on matrix eigenvalue decompositions. In order to derive the likelihood for
the data, we write the model’s solution in state-space form,{

xt = F xt−1 +Qzt
yt = H ′ xt + vt

}
, (11)

where zt is the IID system noise and vt is the IID measurement noise. The H matrix links
the observed variables yt to the state variables xt; F and Q are functions of the model’s
parameters. The disturbances zt and vt are assumed to be Normally distributed with mean
zero and covariance matrices QQ′ and RR′, respectively. Because our model includes no
measurement errors, for us RR′ is just a matrix of zeros. This is a dynamic linear model (West
and Harrison (1999)), of which the Kalman filter is a special case. As shown in Hamilton
(1994), the Kalman filter can be used to derive the sampling distribution of the data yt,
conditional on past observations Yt−1 ≡ (y′t−1, y

′
t−2, . . . , y

′
1). The likelihood function is defined

by the conditional sampling distribution

p(yt|Yt−1) = (2π)−n/2
∣∣H ′Pt|t−1H +RR′

∣∣−1/2
exp

[
−1

2
(yt −H ′ x̂t,t−1)′ ·(

H ′ Pt|t−1H +RR′
)−1

(yt −H ′ x̂t,t−1)
]
, (12)
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where x̂t|t−1 ≡ Ê(xt|Yt−1) is the linear least-squares forecast of the state vector based on the
data observed through time (t − 1) and Pt|t−1 is the associated mean-squared-error (MSE)
matrix, defined as Pt|t−1 ≡ E

[
(xt − x̂t|t−1)(xt − x̂t|t−1)′

]
.

A2. Prior distribution elicitation

The DSGE literature has generally followed a sensible approach to specifying priors: the
prior mean is typically chosen to match the median of the estimates obtained from previous
studies, and the prior standard deviation is wide enough to include at least some of the more
extreme values. SW follow this approach for the structural parameters in their model, and
their priors were later adopted in numerous other studies (e.g., Levin et al. (2005), Negro et al.
(2005), and Adolfson et al. (2007)).

However, in this field one should not necessarily place too much prior mass close to the
means obtained from previous studies, because these estimates are sensitive to the choice of
modeling assumptions, econometric techniques used, and the specific data sets employed. A
DSGE model is a restricted vector-autoregressive (VAR) model in which the equation restric-
tions are based on economic theory. Because the parameter estimates are conditional on these
restrictions, a prior “borrowed” from one model may not be consistent with the data when
viewed through the lens of a different model.

If the empirical performance of the model is overly sensitive to different prior assumptions,
the model is less useful for policy purposes. To gauge this sensitivity, we estimated the model
using three sets of priors: the SW priors, which we refer to as the informative priors; a looser
version of the SW priors, which we call the somewhat informative priors; and Uniform priors
with fairly wide bounds (even wider than those adopted by Onatski and Williams (2010)).

First, we note that six of the parameters cannot be estimated, because they govern ratios of
the different state variables in steady-state. Following SW and Onatski and Williams (2010),
we calibrate these parameters at the same (standard) values chosen by SW. The quarterly
depreciation rate of capital is set to τ = 0.025, the subjective discount factor is pegged at
β = 0.99 (which implies an annual steady state real interest rate of 4 percent), the wage
markup is set to λw = 0.5, the Cobb-Douglas production parameter is fixed at α = 0.3, the
steady-state share of consumption relative to output is pegged at cy = 0.6, and the steady-
state investment share is fixed at cI = 0.22 (which implies a steady-state ratio of capital to
output of ky = 2.2).

For many parameters, the priors need to properly account for theoretical restrictions. For
example, SW use inverse-Gamma distributions to specify the priors for the variances of the
shocks, which guarantees that they are positive. For parameters that govern shares, and the
autocorrelation parameters, the Beta distributions used by SW guarantee that these parame-
ters lie in the unit interval.

• Few studies have shed light on the magnitude ϕ of the investment adjustment costs.
The inverse of this parameter measures the elasticity of investment with respect to a
1 percent increase in the price of installed capital. Using impulse-response matching
techniques, Altig et al. (2002) estimate the investment adjustment cost for the United
States to be between 7.7 and 20, depending on which impulse responses they try to match.
Christiano et al. (2005) obtain a lower estimate of 2.48 for the investment adjustment
cost in the United States. These estimates translate into investment elasticities between
0.05 percent and 0.40 percent. For our informative prior, we follow SW and adopt a
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normal distribution centered at 4 with standard deviation of 1.5 for ϕ. Our somewhat
informative prior is an inverse-Gamma distribution with mean 4 and a much larger
standard deviation of 3. Our Uniform prior ranges from 1 to 100 (implying investment
elasticities from 0.01 to 1).

• Many economists prefer to use a constant-relative-risk-aversion (CRRA) value of unity
as suggested by Arrow (1971), implying that a CRRA utility depends on the log of
income, thus keeping the utility function bounded. For this reason, SW and others use
a prior for the coefficient of relative risk aversion or the inverse intertemporal elasticity
of substitution (λC) that is centered at 1, with varying degrees of uncertainty. But, as
surveyed in Kaplow (2005), more recent CRRA estimates from the financial economics
literature often exceed 10. The informative (SW) prior for λc is a Normal distribution
centered at 1 with standard deviation of 0.375. Our somewhat informative prior is an
inverse-Gamma distribution with mean 1.5 and standard deviation of 3. The Uniform
prior ranges from 0.001 to 50.

• The degree of habit persistence h is bounded between 0 and 1. Most empirical studies
have found h to be greater than 0.6. Christiano et al. (2005) estimate an h of 0.63 for
the United States; Fuhrer (2000) finds somewhat higher estimates of 0.8 and 0.9, and
the highest estimates found in the literature are those of Bouakez et al. (2005), who
estimate a value of 0.98. Our informative prior is a Beta distribution with a mean of 0.7
and standard deviation of 0.1. The somewhat informative prior has the same distribution
and mean, but the standard deviation is 0.2. The Uniform prior ranges from 0.001 to
0.999.

• SW set the mean of the Calvo price and wage parameters (ξp and ξw) to 0.75, so that
the average length of the contract is about 1 year. This is in line with some of the
estimates of Gali et al. (2001) for the Euro Area. Using monthly consumer price index
(CPI) databases from 9 European countries, Dhyne et al. (2005) estimate a median price
duration of 10.6 months in Europe. Similarly, a study by Angeloni et al. (2004) finds that
European firms on average change prices once a year. Our informative prior is a Beta
distribution with mean 0.75 and standard deviation of 0.05; our somewhat informative
prior has the same distribution and mean, but a standard deviation of 0.15 instead. The
Uniform prior ranges between 0.001 and 0.999.

• There is an entire literature devoted to estimating the inter-temporal elasticity of labor
supply (λ−1

L ), which plays an important role in explaining business cycles. Estimates
from the micro literature are much lower than required by Real Business Cycle models
to match certain “stylized facts” in the economy. In a meta-analysis of 32 micro-based
empirical estimates of labor supply elasticities covering 7 European countries and the
United States, Evers et al. (2006) find a mean of 0.24 (with a standard deviation of 0.42)
for the elasticity of labor supply. Using a contract model, Ham and Reilly (2006) obtain
much higher estimates ranging from 0.9 to 1.3. To achieve sensible results, values of 2
and higher are often used to calibrate DSGE models. Smets and Wouters (2007) center
their prior at 2, but recognize that their posterior and prior are quite similar, suggesting
that the data have little to say about this parameter. The SW informative prior for
λL is a Normal distribution with mean 2 and standard deviation of 0.75; our somewhat
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informative prior is an inverse-Gamma distribution with mean 1.5 and standard deviation
3. The Uniform prior ranges from 0.001 to 50.

• The Calvo-style employment parameter ξe is unique to this model and has no precedent
in the literature. It is theoretically bound to the unit interval. Our informative prior
is a Beta distribution with mean 0.5 and standard deviation of 0.15; the somewhat
informative prior has the same distribution and mean, but a standard deviation of 0.3.
The Uniform prior is bounded from 0.001 to 0.999.

• Estimates of the degree of price and wage indexation (γw and γp) are also scarce. In
a study of European inflation dynamics, Gali et al. (2001) find that backward-looking
price setting “has been a relatively unimportant factor behind the dynamics of Euro
Area inflation.” (p. 1256) This finding is consistent with values of γw and γp that are
closer to zero. Ignoring this evidence, SW use a Beta distribution with mean 0.75 and
standard deviation of 0.15 for their prior. Our somewhat informative prior is a Beta
distribution with mean 0.5 and standard deviation 0.3. The Uniform prior has a lower
bound of 0.001 and an upper bound of 0.999.

• There is not much reliable prior evidence for the parameter ψ governing the elasticity of
the capital-utilization cost function. For the United States, Smets and Wouters (2007)
obtain a 95% posterior interval for this elasticity of (1.4, 2.8), with a posterior mode of
1.9. But because their estimate largely coincides with their prior, we do not know if
this parameter is well informed by the data or not. King and Rebelo (2000) use a much
higher elasticity of 10 to obtain sensible results for their model simulations, but they did
not estimate it from data. Christiano et al. (2005) encountered difficulties in estimating
this elasticity (their estimation procedure resulted in implausibly high values), so they
simply set it to 100. Our informative (Smets and Wouters (2007)) prior for ψ is a Normal
distribution centered at 5 with standard deviation of 1.88. Our somewhat informative
prior for ψ is Normally distributed with mean 10 and standard deviation 5. The Uniform
prior ranges from 1 to 100.

• Smets and Wouters (2007) estimated the share of fixed costs in total production for
the United States to be between 48 percent and 73 percent, which is notably higher
than their prior centered at 25 percent. Because the share of fixed cost in production is
equal to (φ − 1), φ is restricted to be between 1 and 2. Our informative prior for φ is
a Normal distribution centered at 1.45 with standard deviation of 0.25; our somewhat
informative prior is a Normal distribution centered at 1.5 with standard deviation of 0.3.
The Uniform prior is bounded between 1 and 2.

• Empirical studies have shown that the conduct of monetary policy in Europe (as de-
scribed by the coefficients of an interest-rate feedback rule) is not much different than in
the United States. For example, Gerlach and Schnabel (1999) estimate (in Europe) the
coefficient on the output gap ry in the policy rule equation to be 0.45 and the coefficient
on inflation rπ to be 1.58, values that are statistically indistinguishable from those sug-
gested by Taylor for the United States. However, Cochrane (2007) provided a theoretical
argument for the lack of identification of the Taylor rule parameters in New Keynesian
DSGE models; thus it is not surprising that posterior estimates for these parameters
obtained in previous Bayesian studies have often coincided with their respective prior
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distributions. Our somewhat informative priors for the five policy parameters ρ, rπ,
r∆π, ry, and r∆y are based on coefficient estimates of Levin et al. (2006) and Smets and
Wouters (2007) for the United States.

– For rπ, the informative prior (taken from SW) is N(1.7, 0.12), our somewhat infor-
mative prior is N(2.0, 0.62), and the Uniform prior ranges from 1 to 10, much wider
than the prior range used by Onatski and Williams (2010).

– For r∆π, our informative prior is Gaussian with mean 0.3 and standard deviation 0.1;
the somewhat informative prior is the same except that we doubled the standard
deviation to 0.2; and the Uniform prior is bounded between −1 and 1.

– Our informative prior for ry is N(0.125, 0.052), the somewhat informative prior is
N(0.125, 0.12), and the Uniform prior ranges from −1 to 1.

– Our informative prior for r∆y is Gaussian with mean 0.0625 and standard devia-
tion 0.05, the somewhat informative prior is Gaussian with mean 0.3 and standard
deviation 0.2, and the Uniform prior ranges from −1 to 1.

– The informative prior for ρ is N(0.8, 0.12), our somewhat informative prior is
N(0.8, 0.22), and the Uniform prior for ρ is bounded between 0 and 1.

• For the parameters that govern the persistence of the six autoregressive shocks in the
model (ρa, ρb, ρG, ρL, ρI , and ρπ), there is not much information on which to base the
priors. The one exception is the productivity shock (ρa): there is ample evidence in the
literature that productivity shocks are highly persistent in both Europe and the United
States (see for example, Backus et al. (1992), Baxter and Crucini (1995), and Gruber
(2002)). Following SW, our priors for these parameters have Beta distributions with
mean 0.85 and standard deviations of 0.1. This prior spans the range of estimates ob-
tained by Levin et al. (2006). Our somewhat informative prior has the same distribution
and mean, but a standard deviation of 0.2. The Uniform prior for these parameters has
a lower bound of 0.001 and an upper bound of 0.999.

• Because there is little prior information on the standard deviations of the nine shocks in
the model (σa, σb, σG, σI , σL, σp, σw, σπ, and σQ), we allowed for a wide range of values
in our somewhat-informative and Uniform prior specifications. The informative priors
for these parameters (in the order listed above) are all inverse-Gamma distributions
with means of 0.4, 0.2, 0.3, 0.1, 1, 0.15, 0.25, 0.02, and 0.4 (respectively), based on
“previous estimation outcomes and trials with a very weak prior3”; following SW, we
take a prior SD of 2 for all of these distributions. The somewhat informative priors for
these 9 parameters are all Exponential distributions with mean 2, which implies a scale
parameter of β = 1

2
and a standard deviation of 2. We chose to use the Exponential

distribution for our somewhat informative prior to avoid placing a higher density around
the means, because the available information about those means is not strong. The
Uniform priors for these 9 shock parameters are all bounded between 0 and 20.

3There is some confusion as to how SW specify this prior in their paper: they say that their inverse-Gamma
distribution has “a degree of freedom equal to 2.” The inverse-Gamma distribution is typically defined in terms
of a shape parameter α and a scale parameter β, with variance (in one of the two popular parameterizations)

V (θ) = β2

(α−1)2(α−2) . If their “degree of freedom” of 2 refers to the shape parameter, this would result in an

improper prior with infinite variance, but the Dynare estimation code that SW shared with us suggests that
they actually used a standard deviation of 2 for these priors.
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A3. Two maximization algorithms

We found that standard numerical gradient methods were unable to find the maximum
when the log-likelihood function was nearly flat along several dimensions; other complica-
tions arise in fitting DSGE models because of the presence of many local modes, cliffs in the
log-likelihood function at extreme parameter values, and regions in which the log-likelihood
function is undefined because the model’s solution is indeterminate for certain parameter
combinations. After experimenting with many different algorithms, we developed two new ap-
proaches of our own, which proved to be highly reliable in our experiments. Our first algorithm
includes the following steps.

(1) First, we choose an initial guess for the parameter vector from 1,000 function evaluations
using random values drawn from uniform distributions with wide bounds for each pa-
rameter. Of these 1,000 random draws, we choose the parameter vector that generates
the highest log-likelihood as the starting value for the algorithm.

(2) The algorithm then loops through the following gradient-based and non-gradient-based
optimization routines: simulated annealing (Belisle (1992)), the quasi-Newton “BFGS”
method (Broyden (1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970)), the
Nelder and Mead (1965) simplex method, and the conjugate-gradient method of Fletcher
and Reeves (1964). The optimized end value from one method (using a relative tolerance
level of 1.5 · 10−8) is used as the starting value for the next method, and the entire loop
is repeated until the improvement obtained by using a new method is less than 0.1 (on
the log-likelihood scale). When this sequential maximization process is completed, we
store the final parameter vector that resulted in the highest value of the function.

(3) After storing this parameter vector, we start over and repeat steps (1) and (2) 20 times
using 20 different initial guesses. The end result is a set of 20 parameter vectors with 20
corresponding “maximum” function values; we choose the best of these as the “apparent”
maximum.

We used this multiple-method maximization algorithm in Section 3 of the paper, to obtain
the 2,000 vectors of maximum-likelihood estimates that we compared with the actual data-
generating parameter values.

In Section 4 of the paper we combined the multiple-method maximization algorithm with
the adaptive MCMC algorithm described in the next Section of this Appendix, to perform
an extremely thorough exploration of the log likelihood surface with our actual data set.
The resulting maximization/adaptive-MCMC/maximization algorithm, the second of our two
maximization methods, has the following steps:

(4) We run the adaptive MCMC algorithm described in Section 4 below, using the “appar-
ent” maximum from step (3) above as starting values; and

(5) To conclude, we run step (2) again, using the means of the monitored draws from step
(4) for each parameter as starting values.

Our multiple-method maximization algorithm (steps (1)–(3)), which is
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(a) not fast when single-threaded (it took about 5 hours of clock time, on a desktop computer
with one 2.9GHz CPU, to obtain a single maximum of the log likelihood function with
the data set studied in this paper) but

(b) readily parallizable,

produced dramatic improvements in finding global, rather than local, maxima when combined
with step (4): in an earlier version of the paper with a different data set, the maximum log
likelihood at the end of step (3) was +421.26, and this was improved to +620.08 by step (4)
and to +630.95 by step (5). The explanation for this remarkable difference was that we did
not “cast our net wide enough” with the 20 initial guesses in step (3) — which succeeded in
finding only a local mode of the log-likelihood surface — to find the probably-global maximum
that was discovered with steps (4) and (5).

A4. Adaptive MCMC algorithm

We use an adaptive MCMC algorithm to obtain an efficient proposal distribution for sim-
ulating from both the likelihood function (Section 4 of the paper) and the posterior (Section
5 of the paper). Following Browne and Draper (2006), our adaptive MCMC method has three
stages: adaptation, burn-in, and monitoring (we used a random-walk Metropolis sampler with
a multivariate Gaussian proposal distribution).4 The adaptation stage adjusts the covariance
matrix of the proposal distribution every 2,500 iterations to be proportional to the posterior
covariance matrix estimated from these iterations, with the scale factor adapted to achieve a
target acceptance rate of 0.25 (Gelman et al. (1995)). The adaptation stage consists of 300,000
iterations, after which we fix the covariance matrix of the proposal distribution to that of the
estimated covariance of the last 150,000. We then re-calibrate and fix the scale factor to achieve
a target acceptance rate of 0.25. Following a burn-in period of 100,000 iterations (subsequent
to adaptation), we then monitor the chain for 200,000 iterations; all inferences we make about
the parameters come from this last set of 200,000 iterations from the monitoring phase.
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