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Can Learning Explain Boom-Bust Cycles In Asset Prices?
An Application to the US Housing Boom

Colin Caines�

Abstract: Explaining asset price booms poses a di�cult question for researchers in macroeconomics: how
can large and persistent price growth be explained in the absence large and persistent variation in fun-
damentals? This paper argues that boom-bust behavior in asset prices can be explained by a model in
which boundedly rational agents learn the process for prices. The key feature of the model is that learning
operates in both the demand for assets and the supply of credit. Interactions between agents on either
side of the market create complementarities in their respective beliefs, providing an additional source of
propagation. In contrast, the paper shows why learning involving only one side on the market, which has
been the focus of most of the literature, cannot plausibly explain persistent and large price booms. Quan-
titatively, the model explains recent experiences in US housing markets. A single unanticipated mortgage
rate drop generates 20 quarters of price growth whilst capturing the full appreciation in US house prices in
the early 2000s. The model is able to generate endogenous liberalizations in household lending conditions
during price booms, consistent with US data, and replicates key volatilities of housing market variables at
business cycle frequencies.
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1 Introduction

Following the �nancial crisis of 2008 there has been an intense focus on the tendency of markets to generate

boom-bust patterns in asset prices. Explaining these episodes poses a di�cult question for researchers:

how can large and persistent price growth be explained in the absence of large and persistent exogenous

variation? Across a wide range of settings it has proven di�cult to identify market fundamentals or frictions

that can explain price booms as well as asset price volatility more generally. This paper argues that boom-

bust behavior in asset prices can be explained by a model in which boundedly rational agents learn the

process for prices. The key feature of the model is that, in contrast with the literature, learning operates in

both the demand for assets and the supply of credit. Propagation comes from the interaction between the

two sets of agents in the model, which creates complementarities in their respective beliefs. The quantitative

performance of the model is evaluated in the context of recent experiences in US housing markets. A single

unanticipated mortgage rate drop, consistent with that observed in the early 2000s, generates 20 quarters

of house price growth whilst capturing the full appreciation in US housing in the early 2000s.

The novel feature of this work is that it allows for learning in the credit supply problem facing lenders.

This is in contrast to canonical asset pricing models with learning that restrict subjective beliefs to the

demand side of the market. Models of bounded rationality allow for the possibility of feedback loops to

exist between subjective beliefs and observed outcomes. In order for such environments to generate large

and persistent asset price growth in response to a small set of shocks, beliefs need to exhibit two properties.

First, subjective beliefs must be highly responsive to observed shocks. The response of outcomes to shifts in

beliefs must be of su�cient size to generate subsequent belief shifts. Second, the belief process itself must

be su�ciently persistent to prevent the episode from dying out quickly. A contribution of this paper is to

show that in models with only demand side learning, there exists a trade-o� between these two properties.

In other words, increasing the elasticity of beliefs with respect to shocks comes at the cost of decreasing the

persistence of these beliefs. As a result of this trade-o� such models struggle to explain asset price booms.

Next, the paper shows that this trade-o� in the formation of the belief process can be broken by

extending bounded rationality to credit suppliers. When learning about prices operates in both the demand

side and credit supply side of the market there are complementarities in the beliefs of buyers and lenders.

An increase in buyers' price forecasts increases the capital gains they expect to receive on their assets,

driving up demand. An increase in lenders' price forecasts decreases the default rate they expect to face on
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their assets, leading to relaxed lending conditions. Each of these actions drive up prices, and through the

learning mechanism further increase the price forecasts of each type of agent. The paper shows that this

complementarity loosens the trade-o� between generating beliefs that are both persistent and responsive.

Finally, the paper shows that this mechanism can quantitatively capture many properties of US housing

markets. The full appreciation in US housing seen in the early 2000s can be explained with observed

mortgage rate movements. The calibrated model is also shown to replicate key volatilities of housing

market variables at business cycle frequencies. Furthermore, the paper explains observed comovements in

house prices and household leverage. The model developed here is able to endogenously generate substantial

liberalizations in households' borrowing environment concurrent with periods of prolonged price growth.

The paper is structured as follows. Section 2 provides an overview of the literature in which this work is

placed as well as a discussion of the recent experience in US housing markets. Section 3 presents the main

model, outlining the microfoundations of agents' beliefs, discussing the decision problem and optimality

conditions of households and lenders, and �nally providing an equilibrium for the model under learning. A

discussion of the model's calibration is to be found in section 4. Section 5 presents the analytical �ndings

of the paper and demonstrates how the presence of bounded rationality in both the demand for housing

and the supply of credit breaks a trade-o� between the persistence of beliefs and the sensitivity of beliefs

to shocks that exists in traditional learning models. Empirical �ndings are discussed in section 6; 6.1

examines the e�ect of observed mortgage rate drops and highlights the model's ability to capture much of

the observed experience in the US housing market post-2000, while 6.2 shows the model's performance in

attempting to match business cycle moments of the US housing market.

2 Background & Related Literature

2.1 Background

Across almost all of the major urban centers in the United States price-rent ratios rose between 20 and

70 percent in the 10 years leading up to the market crash. The experience in US housing is widely seen

as being central to the subsequent crisis in global �nancial markets and the ensuing recession. Housing

wealth, about 80 percent of which is encompassed by the stock of owner-occupied homes, accounts for

half of household net worth in the United States (Iacoviello (2011)) and residential investment has been a

relatively large component of US GDP growth over the past 30 years (Wheaton and Nechayev (2010)). In

2



spite of the prevalence and importance of housing booms, data on housing market fundamentals typically

doesn't display large volatilities. Consequently, standard frameworks struggle to explain large and persistent

movements in house prices1, suggesting a role for an expectations-based explanation. The overweighting

of recently observed information in the formation of beliefs, particularly beliefs about long horizon events,

is documented in many settings2. An implication of such extrapolative behavior when applied to beliefs

about price movements is that agents tend to underpredict price growth during in�ationary periods and

overpredict growth during de�ations.

Figure 1: Home Price Index Futures
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Figure 1 plots the 10-city composite of the Case-Shiller Home Price Index together with the prices of

futures contracts that trade on this index on the Chicago Mercantile Exchange3. The futures contracts

provide a proxy for market expectations about future house prices, and they bear the evidence of extrap-

olative expectations. Following the crest in US house prices in 2006, forecasts substantially overpredicted

the realized path of house prices for the best part of two years. After beliefs about future growth adjusted

in late 2007, the forecasted series missed the turning point at the bottom of the market in 2009 and persis-

1Literature has arisen as a result that attempts to explain housing booms as arising from a variety of di�erent and often
con�icting mechanisms, including: varying supply-side constraints (see Gleaser et al. (2008), Bulusu, Duarte, and Vergaga-
Alert (2013), Kiyotaki, Michaelides, and NIkolov (2011)), demand-side factors such as changes in credit conditions (Chu (2014),
Favilukis, Ludvigson, and Nieuwerburgh (2010)), income instability (Nakajima (2011), Pastor and Veronesi (2006)), and social
interaction mechanisms (Burnside, Eichenbaum, and Rebelo (2011)). Also see Justiniano, Primiceri, and Tambalotti (2015)
for further discussion

2See Adam and Marcet (2011), Eusepi and Preston (2011), Glaeser, Gyourko, and Saiz (2008) for discussion.
3Note a version of this �gure appears in Gelain and Lansing (2013).
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tently underpredicted prices as in�ation began in 2012. Similar evidence is documented in Case and Shiller

(2003) and Piazzesi and Schneider (2009), who estimate household beliefs about price increases and �nd

increasing levels of optimism throughout the run-up in house prices in the mid 2000s.4

This evidence suggests a potential mechanism for resolving the observed boom in prices with the relative

lack of variation in market fundamentals. If agents' beliefs about future events, particularly in the long-run,

are su�ciently responsive to shocks, booms may arise as self-con�rming events: shocks to prices may shift

the distribution of expected prices � and therefore expected capital gains, expected default rates, etc... �

enough to generate large increases in demand and therefore subsequent price growth. In formulating a

learning model in which boundedly rational agents recursively update beliefs about the process for house

prices this paper captures precisely these kind of dynamics.

Figure 2: House Prices & Household Borrowing
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A key feature of the US house price boom was the large increase in credit provided to households. The

left hand panel in �gure 2 plots the All-Transaction House Price index from the Federal Housing Finance

Agency together which three measures of net household liabilities as a fraction of GDP. The right hand

panel shows net new borrowing by US households as a fraction of the market value of housing stock. As

can be seen, the data reveals close comovement between prices and household credit during the late 1990s

and early-mid 2000s. It seems reasonable, then, that a story of price booms in US housing markets should

4Gelain and Lansing (2013)
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speak to this phenomenon. Under the learning framework developed in this paper, a simple contracting

mechanism between households and lenders endogenously generates substantial comovement in house prices

and household leverage5. This is a result of the sensitivity of credit supply to subjective beliefs. Shifts

in the distribution of expected price growth cause lenders to signi�cantly liberalize lending conditions to

households, driving in�ation in house prices and subsequent shifts in lenders' beliefs.

2.2 Related Literature

This work follows from a wide literature that models learning behavior of economic agents so as to amplify

and propagate shocks in macro models. In such frameworks agents are assumed to be uninformed about

some process or set of processes and hence hold subjective beliefs about their true law of motion. These

beliefs are updated over time to account for new information via a learning rule such as Bayesian updating,

least squares updating, or constant gain learning (under such an updating rule agents place a constant

weight, called a gain, on new information). Typically, agents perceive that temporary shocks have long

run e�ects through their in�uence on learned beliefs. Much of the initial interest in this work arose in the

monetary policy and business cycle literature.

The ability of learning mechanisms to generate improved volatilities and comovements in macroeconomic

environments has been mixed 6. The range of results found in this literature can in part be accounted for by

the e�ect di�erent learning mechanisms have on the microfoundations of agents' decision problems. Preston

(2005) argued that researchers implicitly impose an inconsistency upon agents' beliefs when assuming them

to be uninformed about the future evolution of their own choice variables, an assumption that is common

in the learning literature. When agents are uninformed about the true law of motion of some variable(s)

in learning models, they forecast future values of these variables using a perceived law of motion that they

have estimated from previously observed data. Hence, if uninformed about the law of motion of one of their

own control variables, the agent's forecasts of this object are not constrained to be consistent with what

optimal choices would be given its beliefs about the evolution of other variables in the model. Suppose, for

example, that an agent is uninformed about the true process governing investment. In a learning framework,

forecasted investment would then be given by the expected value of an estimated process for investment

5Box & Mendoza (2014) study the e�ect of credit market liberalizations in a learning framework. The authors are able to
capture signi�cant growth in land prices, however credit market liberalizations are exogenously imposed and the model does
not allow for feedback between agents' exogenous variables and beliefs.

6See Williams (2003), Carceles-Poveda and Giannitsarou (2008), Huang, Liu, and Zha (2009), and Milani (2007).
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and not by the expected optimal response of investment to prices and exogenous shocks. Such models

therefore implicitly assume that agents are either uninformed about their decision problem in the future or

that agents predict they will be making suboptimal decisions in the future.7

This work is extended by Adam and Marcet (2011) who formalize the concept of internal rationality. This

stipulates that agents with subjective beliefs should make choices that are everywhere optimal conditional

on these beliefs (ie. on and o� the equilibrium path). In restricting subjective beliefs to the space of

prices observed in the housing market the model formulated in this paper builds upon this work. There

is growing evidence that such frameworks can improve the internal propagation mechanisms of models.

Eusepi and Preston (2011) consider a real business cycle environment where agents are restricted to learning

the parameters of wage and capital return functions via constant gain learning. The speci�cation allows

the consumption-saving decisions of households to be a discounted sum of subjective wage and rental rate

forecasts. Relative to rational expectations the persistence of shocks and overall volatilities are substantially

increased. Similar results are found in Branch and McGough (2011), while Sinha (2011) suggests that

such learning speci�cations can improve the performance of business cycle models in matching �nancial

moments8.9

Asset pricing models with internally rational learning have achieved some success in explaining the

observed volatility and persistence in asset prices (most notably stock prices and house prices) over the

business cycle, however this research has thus far failed to provide a convincing explanation of price booms.

Adam, Beutel, and Marcet (2014) propose a learning framework in which boundedly rational agents believe

stock price growth to be governed by a simple linear hidden Markov model. A similar model is examined

by Adam and Marcet (2010) with agents that are assumed to be uninformed about the evolution of stock

returns instead of price growth. Both frameworks struggle to endogenously generate sequences of beliefs

su�cient to yield price booms in general equilibrium settings.

Adam, Kuang, and Marcet (2011) implement a learning model, similar in spirit to that found in Adam,

Beutel, and Marcet (2014), to try to explain joint house price-currentaccount movements in the G7 over

the 2000s. The authors �nd that reductions in interest rates in the early 2000s can generate substantial

7Marshall and Shea (2013) provide an example of a learning model in housing where households are assumed to be
uninformed about the evolution of their own consumption.

8Similar frameworks can be found in Adam, Marcet, and Nicolini (2013), Branch (2014), and Williams (2003).
9Note that a question that emerges from the initial learning literature in business cycle models is whether canonical macro

models converge to rational expectations dynamics under learning. For a discussion of these issues see Evans and Honkapohja
(2001), as well as Cellarier (2006), Cellarier (2008), Cho, Williams, and Sargent (2002), Evans and Honkapohja (2003), Ellison
& Pearlman (2011), McCallum (2007), Williams (2003), and Zhang (2012).
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increases in house prices as households become increasingly optimistic about price appreciation, however the

result is highly sensitive to the initial conditions of beliefs and price growth at the time shocks hit. Similar

models are formulated by Gelain and Lansing (2013) and Granziera and Kozicki (2012). This paper is

also closely related to Kuang (2014) who considers a Kiyotaki and More (1997) environment with learning.

Internally-rational agents in the model form beliefs about the joint law of motion for collateral prices and

collateral stock. The author shows that the speci�ed process of expectation formation can generate boom-

bust cycles in prices and credit. This paper follows from Kuang (2014) in considering credit constraints

to be an important channel through which learning can operate. This paper goes further, however, in

considering a role for internal rationality in the determination of loan-to-value ratios. It shows that under

such conditions boom-bust cycles can be obtained even with the simple models of expectation formation

found in Adam, Kuang, and Marcet (2011), Gelain and Lansing (2013), and Granziera and Kozicki (2012).

The environment speci�ed here also allows for belief heterogeneity between borrowers and lenders.

Boz and Mendoza (2014) argue that credit market liberalizations in the late 1990s lie at the root of the

US housing boom. The authors propose a learning framework in which agents learn a two-state Markov-

switching model for collateral constraints, however the model cannot explain the majority of the growth in

US house prices.10

This paper also contributes to a literature which considers the role of bounded rationality in driving

the credit supply choices of �nancial institutions. Luzzetti and Neumuller (2015) argue that the dynam-

ics of household debt and bankruptcy can in part be explained when lenders learn the riskiness of the

�nancial environment in which they operate. Similarly, Pancrazi and Pietrunti (2014) consider the role

that boundedly-rational beliefs about prices on the part of lenders can play in determining debt and home

equity extraction.

10Many of the papers in the learning literature make stronger assumptions about agents' information structure. Gelain and
Lansing (2013) study the behavior of US house prices under a form of learning where households make forecasts of a composite
variable which is composed of price-rent ratios and consumption growth. Williams (2012) considers a model where agents
learn the mean and standard deviation of stock returns. The model includes an occasionally-binding borrowing constraint
about which the agent is uninformed and which it does not internalize in its decision problem. Branch, Petrosky-Nadeau, and
Rocheteau (2014) examine US housing using a learning model with search and matching frictions in employment. Agents in
the model believe that price growth will always exceed the level of growth extrapolated o� of recent data.
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3 A Model With Learning

The housing market is modelled as an open economy environment. The key interactions in the model

involve households who purchase and consume housing stock, and mortgage lenders who supply households

with credit in return for claims on their housing. Housing stock is treated as an asset which, in addition to

providing households with a source of capital gains, yields a �ow of housing services and can be posted as

collateral when borrowing. Household borrowing is subject to default. The paper abstracts from modelling

strategic behavior in the household's default choice. While there is a rich literature that seeks to model the

decision problem facing households when defaulting on residential mortgages, these issues are not central to

the mechanism considered in the paper. The default choice is modelled to re�ect observed default patterns

in the data. Lenders are assumed to have access to an outside source of funds (ie. international �nancial

markets) and are owned by agents outside the housing market.

In modelling the lender's problem the paper does not seek to provide a complete description of mortgage

�nancing. Instead, the model provides a stylized contracting problem between lenders and households in

order to capture observed properties of mortgage default as well as measured correlations between default

rates, price growth, and household leverage. Lenders set their supply of credit in response to expected

default rates and the value of their collateral claims in the event of default. Household demand is driven

by expected capital gains, expected default rates, and their credit constraint.

All agents are assumed to be uninformed about the determination of house prices, and therefore hold

subjective beliefs about the evolution of these prices in the economy. Beliefs are homogeneous across

lenders and households, and are updated continuously to account for new information. Stationary Bayesian

updating of beliefs implies that learning follows the well-known constant gain algorithm. Expectations

about price growth at long horizons heavily weight recent price observations. Importantly, the information

structure respects the international rationality of agents' decision problem. Household and lender choices

are optimal responses to their subjective beliefs.

3.1 Household Problem

An individual household has preferences over consumption and housing services given by

E
P
0

1X
t=0

�tu(ct; ht), where u(ct; ht) = c
ct h
1�
c
t (1)
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where P denotes the household's subjective beliefs. The household receives an exogenous endowment yt each

period out of which it can accumulate housing stock ht and purchase consumption goods (the numeraire in

the economy). Housing stock has a price qt and depreciates at the rate �h. The household also has access

to a technology that allows it to convert consumption goods into non-housing capital one-for-one. Capital

can be rented to builders, who are owned by the household, at a price pt and depreciates fully after one

period. The household can also borrow from a credit supplier at a risk-free rate Rt by posting its housing

stock as collateral. All debt contracts are one period in length. The household's borrowing is limited by a

collateral constraint

Rtbt � �tE
P
t qt+1ht (2)

which is assumed to bind each period. The �ow budget constraint is given by

ct + qt (ht � (1� �h)ht�1) +Rt�1bt�1 + kt = yt + bt + ptkt�1 +�t (3)

Where �t denotes pro�ts earned by builders. At the beginning of each period the household is able to

decide whether or not it wants to default on its debt repayment Rt�1bt�1. If it chooses not to repay then

the lender con�scates the household's housing stock (1� �h)ht�1. The model abstracts from considerations

of strategic default. Instead, households default so as to minimize their per-period repayment. However

this process is subject to an idiosyncratic shock �, such that the household chooses to default if

(1� �h)qtht�1 � �tRt�1bt�1; log �t � N(log ��; �2� ) (4)

The shock � can be thought of as capturing di�erences in liquidity across households. This formulation

allows the model to re�ect the observed fact that only a subset of households who go into negative equity

end up having their mortgages foreclosed. It is important to be clear about the timing of the default

decision. Households make their default choice before chosing consumption and housing demand in a given

period. Moreover, defaulting households are not subsequently excluded from housing or debt markets. As

a result, households are not constrained to consume zero housing in the periods in which they default.

The household side of the model is completed by outlining the supply of new housing stock. Builders

construct new housing stock from the physical capital they rent from households, according to a production

9



function hs = f(k) = Ak�. Pro�ts earned by builders are returned to the households. The builders' pro�t

maximization problem is given by

max
~k

n
�(qt;pt; ~k) = qtA~k

� � pt~k
o

=) pt = �qtA~k
��1
t (5)

3.2 Lender Problem

The representative lender chooses the amount of credit to supply to the household at the note rate Rt. The

lender is assumed to have access to an outside source of funds (ie. international �nancial markets) from

which it can borrow. In the event of default, a household's stock of housing is transferred to the lender. The

lender can recoup the value of the collateral in the housing market, however it faces delay in doing so. In

particular, the lender can only sell a unit of the foreclosed housing stock in its possession with probability

� each period. This assumption captures the presence of delay in the foreclosure process and allows the

lender's choice to depend on its beliefs about long-horizon events. The lender's valuation of housing is also

subject to a stochastic markdown, �t
11. �t is assumed to follow a random walk in logs (which bounds

�t > 0)

log �t = log �t�1 + �dt (6)

which is known to the lender. The calibration of this process allows the model to match observed correlations

between lagged house prices and household leverage. The lender's pro�ts are given by

�Ljht;P = �~bt + � (1� Pr(defaultjP)) �Rt
~bt + ::: (7)

Pr(defaultjP) �

2
4 1X
j=1

�j(1� �h)
j�(1� �)j�1EPt (�t+jqt+j)ht

3
5

where P denotes the lender's beliefs about future prices. Normalizing �L by the value of household's

housing stock, the pro�t maximization problem can be written

max
�

8><
>:

� �
R
� EPt

�
qt+1
qt

�
+ � (1� Pr(defaultjP)) � � � EPt

�
qt+1
qt

�
+ :::

Pr(defaultjP) �
hP

1

j=1 �
j(1� �h)

j�(1� �)j�1EPt

�
�t+j

qt+j
qt

�i
9>=
>; (8)

11�t can be thought of as capturing non-monetary costs/bene�ts to liquidating foreclosed housing in a given period (ie. a
liquidity value).
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=) �� = �(mt) (9)

Where � is the value of the debt repayment Rtbt as a fraction of the expected value of the household's

housing stock, EP(qt+1ht). In other words, conditional on its observation of (qt; ht) and its beliefs P, the

lender's choice of credit supply ~b is equivalent to determining the credit constraint that the household faces

in (2)12. The lender's choice of �t implies that the perceived probability of default is given by

Pr(defaultjP) = Pr

�
log

�
qt+1
qt

�
� log(�t+1) � log

�
�t

1� �h

�
+ log

�
E
P

t

�
qt+1
qt

���
(10)

The lender's credit supply choice is determined by the probability of default and the value of its claims to

the collateral in the event of default. As can be seen in (8), delay in the sale of foreclosure inventory implies

that the value of the lender's claim to the housing stock depends on long-run forecasts of price growth13.

This introduces a degree of convexity in the supply of credit with respect to the belief mt.

The contracting problem in the model is intentionally quite stylized, as the determination of mortgage

structure is not the focus of this paper. The model could be augmented to allow the mortgage rate or

additionally, in a substantially more complex setting, the term structure of the mortgage to be endogenized

as part of the lender's choice problem. In such a case the essential mechanism through which lenders and

households interact is the same. Expectations of future house price growth increases the willingness of the

lender to carry the risk of lending, while liberalizations in the supply of credit increase the demand for

housing on the part of households.

3.3 Learning & Subjective Beliefs

The key informational assumption in the model is that each agent is only aware of their own decision

problem. Their information set does not contain the decision problem of any other agent in the economy.

An immediate consequence of this is that agents do not know the correct mapping between the state

variables of the economy and the prices that they observe, as these are equilibrium outcomes and therefore

functions of other agents' choices. Agents do know their own choice problem and so are capable making

decisions which are optimal conditional on their beliefs (to be precise, their beliefs about the distribution of

12As the household's problem is calibrated to ensure that (2) binds in each period, the household will always be willing to
accept this contract.

13Alternatively, this could be achieved through the presence of a foreclosure cost, however the assumed cost function would
need to be a function of expected forward prices, which is not intuitive.
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variables outside of their decision set, P i). In this respect agent behavior satis�es the standard of Internal

Rationality (Adam and Marcet (2011)). The restriction on their information implies, however, that these

beliefs will not include the objective distribution of prices. In order to be able to make choices agents hold

subjective beliefs about house prices. These beliefs are assumed to be homogeneous amongst all agents in

the economy and are extrapolated from observed prices through learning. As a result, the model allows for

feedback between subjective beliefs and equilibrium prices.

As has been widely studied in the learning literature, simple rule-of-thumb updating rules can capture

the property that long-horizon price forecasts heavily weight recent price data, consistent with the evidence

discussed in sections 1 and 2. Such updating rules arise endogenously from Bayesian learning of parsimonious

hidden state models. Agents in the model perceive that prices are generated by the following data generating

process (DGP)

ln qt
qt�1

= ln!t + �qt

ln!t = ln!t�1 + �!t

0
B@ �qt

�!t

1
CA iid
� N

0
B@ 0

0
;

0
B@ �2q 0

0 �2!

1
CA
1
CA (11)

where the persistent component of price growth, log!t, is a hidden state variable. Agents observe the

realization of ln qt
qt�1

and learn by updating beliefs about the distribution of ln!t. The choice of perceived

DGP follows a number of papers in the asset pricing learning literature, including Adam, Kuang, and Marcet

(2011) and Adam, Beutel, and Marcet (2014). Optimal updating of (11) implies patterns of forecast errors

in prices consistent the evidence discussed in section 2.1.

Under stationary Bayesian learning, an agent's posterior beliefs about ln!t are given by

ln!t � N
�
lnmt; �0(�q; �!)

2
�

(12)

�20 =
��2! +

q
�4! + 4�2q�

2
!

2
(13)

The stationary Kalman �ltering equations imply the constant gain algorithm for updating beliefs about the

posterior mean, lnmt

lnmt = lnmt�1 + g(�q; �!) �

�
ln

qt
qt�1

� lnmt�1

�
(14)

g(�q; �!) =
�0(�q; �!)

2

�2q
(15)
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Under constant gain updating (14), posterior beliefs will be a weighted average of past price growth ob-

servations. The gain parameter g, which controls the weight agents place on new price data when forming

beliefs, is equivalent to the inverse of the rate at which old observations are discounted over time14.

Given this belief structure, EPt (qt+j=qt) in (8) can be written as

E
P

t

�
qt+j
qt

�
= exp

�
j log(mt) +

1

2
j2�20

�
� exp

�
1

2
j�2q

�
� exp

 
1

2
�2!

jX
s=1

s2

!
(16)

While the representative lender doesn't observe the households' decision problem in full, it is aware of

the liquidity shock, �t, and as a result can infer a perceived default pobability from its beliefs about prices.

A shift in beliefs mt in�uences the lenders' supply of credit via its e�ect on perceived default probabilities

and the expected values of the lenders' claims on housing

mt "=)

8>>>><
>>>>:

PPt (Default) #

E
P
t

�
�L; default
t+1

�
"

9>>>>=
>>>>;

=) ~bt; �t "

The household's Euler equation for housing is given by

qt =
uh(t)

uc(t)
+ E

P
t

��
�(1� �) �

�it+1
�it

� �t+1 +
�t
R

�
� qt+1 � ��t

�
E
P
t qt+1

� �it+1
�it

�t+1

�
(17)

where �t+1 = 1 � Pr(defaultjP) in (10). Increases in the economy-wide posterior mean of the permanent

component of price growth, logmt, directly in�uence the households' housing demand via three complemen-

tary channels: (i) increasing expected capital gains on housing, (ii) increasing the supply of credit available

to the households, and (iii) decreasing the households' expected default probability. As neither the lender

nor the households understand the correct mapping between fundamentals and prices, it is assumed that

neither agent is able to account for the e�ect of their actions on future beliefs. In other words, when

forecasting future prices the agents also do not internalize the e�ect of future price movements on mt
15.

A few comments should be made at this point about the assumption that beliefs in the model are

14The constant gain makes this a model of perpetual learning. Even when the DGP (11) is correctly speci�ed, discounting
of past data implies that mt will not converge in levels. In this case, however, beliefs should be ergodically distributed around
the rational expectations equilibrium when the gain is small (see Evans and Honkapohja (2001)).

15This is commonly referred to as the anticipated utility assumption (see Kreps (1998) and Sargent (1999)). In practice
this assumption does not have a signi�cant e�ect on the results presented in section 6 and is made for computational ease.
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homogeneous across all agents. Heterogeneity could be incorporated into the model in a number of di�erent

ways: (i) households and lenders could be assumed to have the same perceived data generating process for

prices (11) but di�er with respect to rate at which they discount the past (ie. g varies between households

and lenders), (ii) the perceived data generating process for prices could di�er between households and

lenders, or (iii) heterogeneity could be assumed in the beliefs amongst households and lenders. In the case

of (i), the dynamics of the model would be equivalent to formulation considered here with a di�erent overall

gain. In the case of (ii), a general comment about the e�ect on the model's dynamics cannot be made,

however the available evidence does not support the conclusion that �nancial institutions and households

hold structurally di�erent beliefs about house prices 16. Finally, in the case of (iii), the model considered here

abstracts from a transaction margin in housing and features an intentionally sparse contracting problem.

This is done so as to retain a focus on aggregate price movements. As a consequence it is not a rich

framework in which to consider heterogeneity in beliefs amongst households and lenders17.

3.4 Equilibrium Under Learning

The equilibrium concept of the model is an Internally Rational Expectations Equilibrium (IREE), formal-

ized by Adam and Marcet (2011). An Internally Rational Expectations Equilibrium for this economy is

characteized by:

1. A probability measure P i representing an agent's beliefs over 
s, where 
s denotes the space of
realizations of variables exogenous to an agent.

2. A sequence of equilibrium prices fp�t ; q
�
t g
1
t=0 where p

�
t ; q

�
t : 
t

S ! RN
+ 8 t. Markets clear for all t, all

realizations in 
S almost surely in P i.

3. A sequence of choice functions fc�it; h
�
it; k

�
it; b

�
it;

~k�it;
~b�it;

~h�itg
1
t=0 that maximize agent i's objective func-

tion conditional on P i. All agents i = 1; :::; I are internally rational.

A rational expectations equilibrium can be viewed as a being a special case of an IREE. In particular,

a rational expectations equilibrium is an IREE in which subjective beliefs P i coincide with the objective

probability distribution. Under rational expectations agents infer the correct process for prices from their

knowledge of the system. In the equilibrium considered here the agents' knowledge of the system is incom-

plete, hence their beliefs will not in general coincide with the objective distribution over outcomes external

16See Cheng, Raina, and Xiong (2012)
17Note, Burnside, Eichenbaum, and Rebelo (2011) consider a housing model with heterogeneity between households. Cali-

brating the distribution of prior beliefs across agents remains an empirical challenge in such frameworks, however.
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to their decision set. Nevertheless, the microfoundations of agents' choices are preserved as decisions are

always optimal conditional on subjective beliefs.

The model is closed by specifying the market clearing condition for housing. The solution to the

households' problem yields an aggregate housing demand function hd(hdt�1; kt�1; bt�1; qt;mt; �t; ytjP). The

market clearing price q�t is determined by the identity

hd(hdt�1; kt�1; bt�1; q
�
t ;mt; �t; ytjP)� (1� �h)(1�Dt)h

d
t�1 = Ak�t�1 + �(1� �h) �

�
Dth

d
t�1 + Ft�1

�
(18)

where Dt is the proportion of households who default in period t and Ft�1 is the inventory of foreclosed

housing that the lender holds at the end of period t�1. The left hand size of (18) denotes new purchases of

housing after default choices are made. The amount of housing made available for sale is given by the sum

of newly constructed housing and the proportion � of the foreclosure stock the lender is able to liquidate.

The law of motion for F is given by

Ft = (1� �)(1� �h) (Ft�1 +Dtht�1) (19)

The presence of default in the model implies that housing stock will be heterogeneous across households.

Owing to the fact that per period utility in (1) is Cobb-Douglas, the household side of the model can nev-

ertheless be aggregateed to a representative household structure with stochastic default (the representative

households loses only a fraction of his/her housing stock each period as a result of default). The aggregation

is shown in appendix B.

The household problem is solved via a form of parameterized expectations using spectral methods. The

details of the solution method can be found in appendix C. The lender's decision rule is approximated by a

simple interpolation of the solution to (8). Given these two approximations the market clearing prices can

be solved for any state vector via (18).

4 Calibration

The complete set of calibration results can be found in table 118. Exogenous variation in the model comes

from the endowment process yt and mortgage rate Rt. The endowment is estimated as a log AR(1) process

18Appendix D lists the data sources used for this paper.
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using detrended wages and salaries compensation data from the Bureau of Economic Analysis (BEA)1920.

The mortgage rate series is taken from Freddie Mac's 30-year �xed mortgage average for the United States.

An Augmented Dickey-Fuller test on the series does not reject the hypothesis of a unit root, and the

mortgage rate process is estimated as being a random walk in logs.21

The delay in liquidating foreclosed housing, �, is set so that foreclosure stock as a fraction of total

housing in steady state equals its 1996 value in the National Delinquency Survey of the Mortgage Bankers

Association. The determination of credit supply in the model implies a correlation between a weighted

average of past prices (mt) and household leverage. The length and volatility of the lenders' markdown

shock f�dsg
T
s=1 are chosen so as to match this correlation as measured from the data, as well as the level

of loan-to-value (LTV) ratios on US mortgages. Using the Federal Housing Finance Agency's (FHFA) All-

Transaction House Prices Series for the United States, a sequence m̂t(g) is estimated using (14). Household

leverage is measured using net mortgage liabilities from the Federal Reserve Financial Accounts as a fraction

of the aggregate market value of non-farm residential homes, taken from Davis and Heathcote (2007). The

level of the series is adjusted to match the mean LTV ratio on US mortgages in 1996 Q1, measured in

the American Housing Survey (AHS). The parameters are set so that (i) the correlation between these two

series matches the implied correlation of the lender's choice of �t with mt in the model, and (ii) steady state

� matches the LTV ratio in the US in 1996 Q1.

The parameters governing the liquidity shock, �� and �� , in part control the level of default in the model

as well as its volatility. The pair (��; ��) are set so that (i) the level of default in steady state matches

the aggregate delinquency rate on single-family residential mortgages in the US in 1996 Q1 (measured by

the St. Louis Federal Reserve), and (ii) the elasticity of default with respect to � matches an estimated

elasticity of the delinquency rate with respect to household leverage from 1992 Q1 to 2014 Q1.

The gain parameter determines both the size and persistence of the response of beliefs to changes in

prices. It is therefore key in governing the dynamics of the model. The beliefs are calibrated so as to match

forecast errors taken from the data as follows. The perceived DGP for house price growth (11) implies the

19The wages and salaries data is detrended using a bandpass �lter. An AR(1) process is speci�ed to limit the number of
state variables in the model for computational ease.

20The model presented in section 3 is a zero trend growth environment with a well-de�ned stationary steady state, hence
the model is simulated with shocks to detrended incomes.

21When simulating the model, shocks to y and R are correlated. The correlation is estimated from measured shocks in the
data.
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relationship

V ar

�
log

qt
qt�1

� log
qt�1
qt�2

�
= f (�q; �!) (20)

This identity, together with the identities (13) and (15) implies a relationship

�(g) = (�0(g); �q(g); �!(g)) (21)

Therefore, the choice of g together with the variance in (20) implies the values of the prior variances �q

and �!. In order to choose g the left hand side of (20) is measured from the FHFA house price series22 and

the model is simulated over a grid of g values (where for each g the priors are set according to �(g)) using

shocks to yt and Rt measured in the data. The chosen gain is that which minimizes the sum of squared

errors between the vector of model-implied one-quarter-ahead forecast errors log qt
qt�1

� EPt�1 log
qt

qt�1
and a

data analog of this series. Forecast error data is constructed using the prices of futures contracts on the

S&P Case-Shiller home price index, which trade on the Chicago Mercantile Exchange. The futures prices

can be thought of as a measure of the market's expectations about house prices 23. The calibrated gain is

0.014. This value is slightly smaller than the quarterly-implied gain parameter estimated in Adam, Kuang,

and Marcet (2011) and sits within the range of values typically found in the learning literature24.

The parameter 
c in the utility function is equal to the consumption share of disposable income. This

is set to 0.558 using BEA data on personal consumption expenditures25. The elasticity of housing supply

in the model is given by �=(1 � �). The parameter � is set using Saiz (2010), who provides estimates

of local-level supply elasticities computed using data on land availability at the MSA level. The discount

factor � is set to 0.96 so that the borrowing constraint binds in each period. In order to ensure a stable

solution to the household's problem a compromise has to be made in the calibration of the depreciation

rate, �h, which is set to the relatively high value of 0.06. It should be noted, however, that this compromise

serves to dampen rather than accentuate price volatility during model simulations.

22The level of the house price series is set using the Census Bureau's 2005 American Community Survey.
23The futures contracts use price movements in the 10-city composite of the S&P Case-Shiller index, which covers the

following housing markets in the United States: Boston, Chicago, Denver, Las Vegas, Los Angeles, Miami, New York, San
Diego, San Francisco, and Washington, DC. The data series for forecast errors begins in 2007 Q1.

24 See Adam, Kuang, and Marcet (2011). It should be noted that the size of gains found in the learning literature vary
with respect to the setting concerned. One should not necessarily expect estimated/calibrated gains to be the same in models
where agents learn about asset prices as in models where they learn about economy wide output or wages for example, as it
is reasonable to assume that agents' information about these objects di�er.

25
c is set equal to the 1999-2012 mean of the sum of the GDP shares for personal consumption expenditures on durables,
nondurables, and services, minus the GDP share of personal consumption expenditures on housing services (imputed rental
of owner-occupied non-farm housing).
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Table 1: Calibrated Parameter Values

Parameter Value

� discount factor 0.96
�h depreciation of housing 0.06

c consumption share of income 0.558
� curvature on housing production 0.0172
�ss steady state � 0.834
� prob. of lender selling housing unit 0.69
�y persistence in yt 0.948
defss steady state default rate 2.25%
�� mean liquidity shock 0.124
�� std. dev of log liquidity shock 1.155
�0 posterior std. dev 7:957� 10�4

�w priors std. dev. of �!t 9:482� 10�4

�q priors std. dev. of �qt 6:725� 10�2

�d std. dev. of �dt 0.026
g gain parameter 0.014

5 Analytic Results

When both households and the suppliers of credit use subjective beliefs to forecast price movements, learning

creates complementarities between the two sides of the market. This departure from standard demand-side

learning frameworks bolsters the internal propagation mechanisms of the model. In order to demonstrate

the di�culty in generating price booms with demand-side learning, consider the model outlined in Section

3 without the lender's problem discussed in 3.2. Such a model is similar to the demand-side learning models

of Adam, Kuang, and Marcet (2011); Adam, Beutel, and Marcet (2014); and Gelain and Lansing (2013)26.

Self-con�rming deviations in prices occur through a simple feedback mechanism27

qt "=) mt "=) E
P
t [Capital Gain] =) qt+1 "=) mt+1 "

26Such a setting can also be related to learning frameworks used to explain stock price volatilities. Winkler (2015) considers
an environment in which both investors and �rms learn the stock price of the �rm. Investors are concerned about capital
gains on their investments while �rms have a debt �nancing constraint that depends upon their market value. This can be
considered a decentralization of the setting considered here.

27Note that shifts in expected capital gains operate on the household choice through two channels: (i) through changes in
the expected resale value of housing stock, and (ii) through their e�ect on the household's credit constraint.
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In order to generate large and persistent price growth without relying upon a rich set of shocks to fun-

damentals, such a mechanism requires subjective beliefs to exhibit two properties. First, beliefs must be

su�ciently responsive to price changes that the resulting response of demand drives subsequent price in-

creases. Second, the belief process mt itself must be highly persistent. The trade-o� between the two can

be illustrated by deriving a law of motion for mt. Writing the household's Euler equation (17) in simpli�ed

form

qt = �t + qtmtE
P
t [�t+1]

28 (22)

This implies

qt =
�t

1�mtE
P
t [�t+1]

(23)

=) log

�
qt
qt�1

�
= log

�
�t

�t�1

�
+ log

 
1�mt�1E

P
t�1[�t]

1�mtE
P
t [�t+1]

!
(24)

Substituting (24) into (14) yields

logmt = (1� g) logmt�1 + g log

�
�t

�t�1

�
+ g log

 
1�mt�1E

P
t�1[�t]

1�mtE
P
t [�t+1]

!
(25)

linearizing this equation yields:

lnmt �
g

1� ��� g��

8>>>><
>>>>:
(1� ��) ln

�
�t

�t�1

�
| {z }
value of housing

+ ��Et ln

�
�t+1

�t

�
| {z }

price of consumption

9>>>>=
>>>>;

+

�Pz }| {
1� ��� g

1� ��� g��
� lnmt�1| {z }

exp. capital gains + updating

(26)

Note that the persistence parameter P is downward sloping with respect to g

dP

dg
=
���2 + 2��� 1

(1� ��� g��)2

8>><
>>:
< 0 if �� 6= 1

= 0 else

(27)

28Where

�t = uh(t)=uc(t)

�t+1 =

�
�(1� �) �
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�it

� �t+1 +
�t
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�
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�
�t � N(0; 1)
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Figure 3: Response to Endowment Shock, Demand-Side Learning
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The law of motion (26) makes clear that in the absence of highly persistent shocks or strong internal

propagation mechanisms in the model, persistent growth in mt requires a relatively large value for P .

Given (27), this can be achieved be lowering the value of the gain parameter. The gain parameter, however,

determines the weight that agents place on new information when updating beliefs. Hence, a reduction in

g diminishes the responsiveness of beliefs to price changes. The trade-o� is illustrated in �gure 3, which

shows the response of log prices to a wage shock in the demand-side learning environment. When the gain

is low the shift in beliefs after the shock hits is insu�cient for the e�ect of higher expected capital gains to

outweigh the e�ect of the wage shock dying out. As a result, the shock does not propagate. In contrast,

under high gain calibrations the shock is propagated through prices. However, owing to household beliefs

placing a relatively larger weight on current shocks (represented through the �t and �t terms in (26)), once

the wage shock dies o� mt is quick to readjust to fundamentals and qt returns to steady state faster than

was the was the case under a low gain. This tight trade-o� between the persistence and responsiveness

of beliefs under demand-side learning implies that such frameworks can struggle to generate the kind of

sustained price growth seen in the data without a similarly persistent set of shocks.

The credit supply problem in 3.2 introduces a complementary learning mechanism into the model. Shifts

in expected log price growth, logmt, lead the lender to increase credit supply due to lower perceived default

risk and higher expected payo�s in the event of default. As households are constrained this increases their

demand for housing. As before, the shift in mt also pushes up the demand for housing through its e�ect on
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expected capital gains. Hence, shifts in subjective beliefs give rise to credit supply changes that complement

the e�ect of demand-side learning on prices. The parallel channels through which learning operates in the

full model can be illustrated as follows:

q "=) mt "=)

8>>>>>>><
>>>>>>>:

Household:

Lender:

E
P
t
[Capital Gain] "

8<
:

PrP(Default) #

E
P
t
(Default Value) "

9=
; =) �t "

9>>>>>>>=
>>>>>>>;

=) Demand "=) q *

Intuitively, the introduction of learning on the credit supply side should increase the persistence in the

belief process. Following the an initial shock to prices and a shift in mt, the subsequent change in prices

should be greater as there is both a demand and credit supply response to the belief shift. This will imply

that the change in mt in the second period following the shock will be greater than under demand-side

learning and so on. As a result, for any level of responsiveness of beliefs to shocks the propagation cycle

should be longer.

In order to explicitly show the in�uence of this parallel mechanism on the dynamics of household beliefs

an approximate law of motion for mt is derived by combining (25) with the lender's decision rule �(mt).

Taking a linear approximation yields

logmt �
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where �1, �2 < 029. The autoregressive coe�cient P 0 now has the following properties

dP 0

d@��=@m
> 0 ;

d (abs(dP 0=dg))

d@��=@m
< 0 (29)

While the autoregressive coe�cient is decreasing in the gain as before, the e�ect of learning in credit supply

29Combing the (24) with (3) and (2) yields
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on beliefs is clear. First, increasing the elasticity of credit supply with respect tomt increases the persistence

in mt conditional on the gain. Second, as the elasticity of credit supply with respect to mt increases the

in�uence of the gain on persistence P 0 decreases. This is the key in�uence of the complementarity induced

by two-sided learning. If lenders are su�ciently responsive to their beliefs in the full model, the trade-o� in

trying to generate beliefs that are both persistent and sensitive to price changes that exists in demand-side

learning frameworks can be broken. Section 6 tests whether this is indeed the case in the calibrated model.

6 Quantitative Results

Following a number of papers in the literature the constant gain algorithm is modi�ed for model simulations

as follows:

lnmt = lnmt�1 + g(�q; �!) �

�
ln
qt�1
qt�2

� lnmt�1

�
(30)

This assumption avoids simultaneity between the determination of prices and beliefs, and signi�cantly

speeds up the computation30. Furthermore, in order to guarantee stability a constraint is imposed on the

lenders credit supply choice when simulating the model: �t � ��. This can be conceptualized as a regulatory

constraint on LTV ratios. In practice, the model does not hit the constraint when simulating at business

cycle frequencies. �� is set equal to 1.05.

6.1 Interest Rates & Boom-Bust in House Prices

The paper now considers the model's ability to endogenously generate persistent growth in house prices

consistent with the observed boom in US housing markets in the mid-2000s. Given the paucity of empirical

evidence that identi�es signi�cant trends in housing market fundamentals during this period, it is desirable

that models should be able to generate persistent price growth following a small set of shocks. This section

evaluates the potential for interest rate movements in particular to generate boom-bust periods in the

calibrated model.

In recent years there has been wide discussion about the extent to which monetary policy contributed to

the 2008 �nancial crisis in general and to the house price boom more particularly. An argument commonly

advanced in both the popular and academic literature is that persistently low interest rates encouraged

excessive borrowing through the early 2000s. The ensuing e�ect of the credit expansion on demand for

30See Adam, Kuang, and Marcet (2011) and Eusepi and Preston (2011).
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Figure 4: Response of Log House Prices to Interest Rate Drop
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housing may have in turn generated appreciation in house prices over a near-10-year period. A growing

empirical literature links interest rate movements with periods of �nancial instability. Hott and Jokipii

(2012) show that over the past 30 years, across a sample of 14 OECD countries, periods of low interest rates

Granger-cause deviations of house prices from fundamentals-implied levels (the authors' characterization

of a bubble). In a similar vein, Ahearne et al. (2005) show that across advanced economies house price

bubbles tend to be preceded by a period of loosening monetary policy.

The early 2000s saw a period of abrupt decreases in mortgage rates across the US economy. Beginning

in late 2000 the 30-year conventional mortgage rate in the US began a 3% drop, and thereafter remained

relatively low until 2006. The rate drop coincided with an acceleration in the aggregate house price index

for the US. In the environment presented in section 3.1, such a rate decrease not only drops the borrowing

costs that households face, but also serves to relax their credit constraints. As discussed in section 5, the

learning framework considered here gives the model strong internal propagation mechanisms by allowing

for potentially large persistence in subjective beliefs without sacri�cing the responsiveness of these beliefs

to new information.

In order to investigate whether the calibrated model can explain the pattern of house prices in the 2000s

the e�ect of an unanticipated drop in R is considered. The model is simulated from steady state with an

initial interest rate set equal to the mean 30-year conventional mortgage rate in the US from 1996 Q1 to
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2000 Q4. The drop in R is calibrated to match the mean US mortgage rate from 2001 Q1 to 2006 Q431.

Figure 4 plots the response of log prices to the unanticipated rate drop, together with both the response

of prices when learning is restricted to the demand side of the housing market32and the actual path of

the FHFA All-Transaction House Price Index. Under demand-side learning the shift in the distribution of

expected capital gains is insu�cient to subsequently generate large shifts in housing demand. As a result

the propagation of the interest rate shock in house prices is negligible. In the full model the shift in beliefs

mt following the initial increase in prices generates an increase in credit supply relative to the market value

of housing. As is clear in �gure 4, this additional mechanism has a dramatic in�uence on the evolution

of prices following the shock. The model can account for the full appreciation in US house prices in the

early 2000s with total growth between 2001 Q1 and 2006 Q4 slightly overstating the level observed in the

data. Furthermore, the model can explain much of the persistence in prices following 2001. Following

2001 Q1, price growth persists for 20 quarters in the model, compared with 22 quarters in the data series.

Importantly, the model is also capable of capturing asymmetry in boom-bust cycles. Following the peak in

the simulated price series in �gure 4, prices collapse to the steady state level within 12 quarters.

Figure 5: Response of Log House Prices and Credit to Interest Rate Drop
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31This follows from an exercise carried out in Adam, Kuang, and Marcet (2011). A similar exercise can be found in Kuang
(2014).

32In the �demand-side learning model� considered from here on, only households are assumed to have the beliefs speci�ed
in section 3.3.
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Two comments should be made about this result. First, the literature on learning has not yet reached a

settled view on how to appropriately calibrate gain parameters in constant gain learning. As a result a wide

range of values are found in the literature and the estimated gain in this paper sits in the high end of this

spectrum. Second, as noted in section 4, the calibration of the model su�ers from the necessity of imposing

a relatively high value for �h. In order to gauge the sensitivity of the price response to these assumptions,

the previous exercise was carried out over a grid of g and �h
33. Figure A.1 in appendix A plots the maximum

deviation of log prices from steady state following the R drop as well as the length of the propagation period

(the number of quarters of positive price growth following the shock) over (g; �h). Conditional on a given �h,

decreasing the gain parameter actually increases the size of price growth following the interest rate shock.

Similarly, increasing the depreciation rate on housing serves to augment rather than dampen price growth

in the model. In both cases, changes in �h or g from the values listed in table 1 have an ambiguous e�ect

on the length of the propagation period. However, the �nding that price growth persists for many quarters

following the interest rate shock is robust to perturbations of either parameter in the neighborhood of the

calibrated values.

As discussed in section 1, the available data on price forecasts suggest that agents' forecast errors tend to

be largest following turning points in the price series. This is consistent with the model's response to the R

shock. The left hand panel of �gure 5 plots the absolute value of the forecast error of log price growth in the

model following the unanticipated rate drop. The large spike in forecast errors at the point of the interest

rate drop drives the initial appreciation in expected price growth. As beliefs adjust to higher prices the

magnitude of the forecast errors decreases. This slows the growth in mt, and as a result growth in qt, until

forecast errors go to zero and the model hits a turning point. The ensuing collapse in the simulated prices

and beliefs mt is driven by a series of large negative forecast errors. The model also captures comovements

in house prices and household leverage.

The right hand panel in �gure 5 plots a simulated series of household leverage measures. Because debt

contracts are one period in length and the framework does not feature an occasionally binding constraint,

the model abstracts from some dynamics of household debt. In order to make the data and model series

comparable, the right hand panel in �gure 5 plots net new mortgage borrowing as a fraction of the market

value of housing stock in both the data and the model34. Consistent with evidence provided in �gure 2,

33Note that for the di�erent values of g the priors and parameters of the lender's problem were recalculated as in section 4.
34Note, the series are normalized to 2001 Q1.
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the model generates increases in credit supply and household leverage concurrent with the takeo� in house

prices. Under demand-side learning the growth in leverage is negligible. By contrast the full model can

generate almost a third of the growth in the leverage measure seen in the data. Because the lender's problem

is highly stylized, the leverage series tracks house prices closely following the shock. This is the result of the

lenders' choice being predominantly a function of mt through the lender's credit supply problem outlined

in section 3.2. Nevertheless, the framework suggests a potentially powerful mechanism for endogenously

generating liberalizations in credit markets during price booms.

Table 2: Business Cycle Moments

Data Learning Rational
1978Q1 - 1978Q1 - Demand-Side Full Learning Expectations

2014Q1 1990Q1 Learning Model

std(�)=std(y)

q 7.686 2.488 1.715 2.452 0.598
q � h� 9.824 2.968 1.770 2.480 0.607

fe(q=q�1) 1.367 1.367 0.556 0.652 0.334
F � � 0.849 0.506
� 15.560 7.006 � 1.943 9� 10�4

skewness(�)

q 1.118 0.381 0.016 0.195 -0.102
q � h 1.345 0.054 0.017 0.196 -0.102

fe(q=q�1) -0.074 -0.074 0.016 0.065 0.016
F � � -0.028 0.152 -0.011
� -0.021 0.208 � 0.178 0.086

Reported moments are for log values. Simulation moments are taken from simulated sample

of size 50000 quarters, with the �rst 1000 quarters dropped as burn-in. Reported data moments

of one-quarter-ahead forecast errors are from CME data sample running from 2007Q1 to

2011Q1. Wage data, y, is detrended using a bandpass �lter with frequency range 1/32

to 1/8 cycles per quarter.
� data for market value of housing stock taken from Davis and Heathcote (2007), see

section 4
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6.2 Capturing Cyclical Variation in Housing Markets

In order to test whether the results in section 6.1 come at the expense of the the model's ability to capture

normal cyclical variation in prices and forecast errors, several large-sample simulations are carried out.

Table 2 shows moments for simulations of the full model as well as for the model when learning only takes

place on the demand side of the housing market, and the model under rational expectations. Note that the

presence of the mid-2000s price boom has a large e�ect on measured volatilities. Table 2 therefore includes

data moments for a pre-boom sample covering 1978Q1 - 1990Q1 in order to gauge moments during `normal'

periods. Under rational expectations neither prices nor the market value of housing display anything like

the volatility seen in the data. The standard deviation of each of these series, relative to wages, is only about

20-25% of that seen in the pre-boom sample. Furthermore, under rational expectations the relative standard

deviation of the one-quarter-ahead forecast error of house price growth is a quarter of that measured in the

data.

The introduction of bounded rationality on the demand side of the market signi�cantly increases volatil-

ities in the model, however the relative standard deviation of prices and the market value of housing remain

31% and 40% below their pre-boom data values. By contrast, the full two-sided learning model comes close

to matching both of these moments. The model is able to capture almost all the observed volatility in prices

and the vast majority the relative standard deviation in the market value of housing. The volatility of the

housing stock is relatively low in the model. This is a result of the very simple framework governing the

construction of new housing stock. As a result the model performs better in explaining price variation than

it does variation in the market value of total housing stock. Introducing interaction between near-rational

households and near-rational lenders similarly increases the volatility of forecast errors, with the relative

standard deviation 17% higher under two-sided learning. While the model fails to capture the volatility

in household leverage, the introduction of bounded rationality amongst lenders nevertheless produces an

extreme increase in the volatility of � relative to the rational expectations model (as a result there is also

a large increase in the volatility of the foreclosure inventory).

In order to gauge the robustness of these �ndings, �gure 6 plots the relative standard deviation of

simulated prices and forecast errors in the model for di�erent values of g. For each g, f�0; �q; �!; �;Kg

is recalibrated in line with section 4. As can be seen, in the region of the value of g found in section 4

the volatilities displayed by the model remain close to the data values listed in table 2. As is also clear in
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Table 3: Business Cycle Correlations

Data Learning Rational
Demand-Side Full Learning Expectations

Learning Model

corr(�; y)

q 0.234 0.438 0.362 0.964
q � h 0.268 0.437 0.362 0.964

fe(q=q�1) -0.613 0.054 0.060 0.319
F � 0.062 0.260 -0.999
� -0.143 � 0.315 � 0

corr(�; R)

q -0.586 -0.770 -0.766 0.219
q � h -0.492 -0.772 -0.769 0.218

fe(q=q�1) -0.433 -0.194 -0.237 0.113
F � 0.225 -0.506 -0.142
� -0.869 � -0.694 -0.215

Reported moments are for log values. Simulation moments are taken from simulated

sample of size 50000 quarters, with the �rst 1000 quarters dropped as burn-in. Reported

data moments of one-quarter-ahead forecast errors are from CME data sample

running from 2007Q1 to 2011Q1. Wage data, y, is detrended using a bandpass �lter

with frequency range 1/32 to 1/8 cycles per quarter.

table 2, the model provides a closer �t to the third moments measured in the data. Neither the rational

expectations model nor the demand-side learning model can produce the positive skew observed in house

prices and household leverage. The model also matches the observed skewness in the forecast error series.

Table 3 shows correlations between the simulated data and the exogenous processes y and R. Given the

literature indicating that interest rates have been a key driver of house prices over the past 30 years (see

Hott and Jokipii (2012)) the correlations of simulated prices and forecast errors with R are of particular

interest. Both the rational expectations model and the model with only demand-side learning overstate the

negative correlation between prices (and the market value of housing stock) and mortgage rates relative

to the data. The introduction of learning amongst lenders has little e�ect on the measured value of this

correlation. The full learning model also captures 55% of the observed negative correlation between R and
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Figure 6: Standard Deviation of q and fe(q=q�1) Relative to y
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forecast errors, an improvement upon the demand-side learning model, and comes close to matching the

observed correlation between � and R. As can also be seen in table 3, the full model can also capture the

observed correlation between house prices (and the market value of housing stock) and wages.

Turning to the time-series properties of the model, �gure 7 plots the periodogram of prices for the

three models listed in tables 2 and 3. Under rational expectations house prices fail to display the level of

low-frequency variation seen in the data. This problem is alleviated through the introduction of bounded

rationality in the model. Both the full model as well as the model with only demand-side learning can

capture the bulk of the low frequency (ie. less than 0.2 cycles per quarter) variation in the data, however

the full learning model provides a marginally better �t to the data spectrum. Autocorrelations for forecast

errors and � are shown in table 4. The full learning model matches the �rst order autocorrelation in forecast

errors, however it overstates persistence in the series at higher lags. The learning model also overstates

persistence in household leverage, however it signi�cantly outperforms the rational expectations model in

this regard.

In sum, the model developed here weakly dominates the demand-side learning model along the dimen-

sions discussed. The model captures almost all of the volatility in house prices over the business cycle whilst

providing a closer �t to observed correlations with market fundamentals.
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Table 4: Autocorrelation

Data� Learning Rational
Demand-Side Full Learning Expectations

Learning Model

 t (fe(q=q�1)

1 0.412 0.154 0.438 �4:27� 10�4

2 -0.091 -0.037 0.156 �7:19� 10�4

5 -0.068 -0.042 -0.054 �5:10� 10�3

10 -0.282 -0.034 -0.081 �1:08� 10�2

 t (�)

1 0.992 � 0.998 0.999
2 0.984 � 0.995 0.999
5 0.959 � 0.985 0.998
10 0.862 � 0.971 0.998

� autocorrelations for � are taken on sample from 1978Q1-2014Q1

Reported moments are for log values. Simulation moments are taken from simulated sample

of size 50000 quarters, with the �rst 1000 quarters dropped as burn-in. Reported data

moments of one-quarter-ahead forecast errors are from CME data sample running from

2007Q1 to 2011Q1. Wage data, y, is detrended using a bandpass �lter with frequency

range 1/32 to 1/8 cycles per quarter.

7 Conclusion

This paper provides a framework for explaining asset price booms. A general equilibrium model with

learning can quantitatively explain US house price growth in the 2000s and account for volatilities in

house prices and forecast errors when agents learn subjective beliefs about prices. The model departs from

established frameworks in allowing for bounded rationality amongst both households and the suppliers of

credit. In demand-side learning models there exists a trade-o� between generating subjective beliefs that

are persistent and at the same time highly responsive to innovations. The interaction between the demand

and credit supply sides of the market under learning boost the persistence in beliefs, thereby breaking this

trade-o�. A single permanent and unanticipated decrease in mortgage rates, consistent with the observed

drop in US interest rates in the early 2000s, produces 20 quarters of price growth whilst capturing the
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Figure 7: Periodogram of Log House Prices
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total growth in prices observed across the US. The model also outperforms both demand-side learning and

rational expectations models in capturing key business cycle moments.

There are several further issues that can explored using the framework developed here. In particular, the

paper has assumed homogeneous beliefs between households and credit suppliers, however this can be easily

relaxed. The open economy assumption implies that interest rate movements in the model are exogenous.

The model can be augmented to consider endogenous mortgage rates and the in�uence of movements in

mortgage rate expectations amongst households. Similarly, a natural line of inquiry would be to augment

the funding side of the lenders problem and consider the e�ects of uncertainty about �nancial risk.
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A Additional Figures

Figure A.1: Maximum Log Price Deviation and Length of Propagation Following R Drop
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B Aggregation of Household Problem to Representative Agent

This appendix outlines the aggregation of the household problem in section 3.1 to a representative agent.

Assume that all notation is in terms of individual household i in a heterogeneous agents economy. All

agents are assumed to have the same information, preferences, credit constraint, etc... Assume that the

households have access to a complete set of Arrow-Debreu securities in consumption goods. Also assume

that the household has access to a security that is indexed to house prices (in other words, a security

that delivers in units of housing). Assume that for both of these securities the household is exempt from

obligations/payments if it defaults. For ease of notation, physical capital kt is omitted from the exposition,

but its presence does not alter the steps outlined below.

� The budget constraint and credit constraint of of household i are

cit + qth
i
t +Rbit�1 + pcte

i
ct + pht e

i
ht = yit + (1� �)hit�1 + bit + eict�1 + qte

i
ht�1 (31)

bit �

�
�

R

�
~Et[qt+1]h

i
t � ~Qth

i
t (32)

these imply

cit + (qt � ~Qt)h
i
t = ~yit +

n
(1� �)qt �R ~Qt�1

o
hit�1 (33)

where

~yit = yit � pcte
i
ct � pht e

i
ht + qte

i
ht�1 + eict�1 (34)

� Let

1� �t = Pr

�
qt
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< �it
�
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�
= Pr

�
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qt
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�
(35)

� If the household defaults, it loses its stock of housing and no longer has to repay its debt bt�1

� The household's maximization problem can be written as follows
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� The �rst order conditions for this problem are

pct = � � EPt

�
�it+1
�it

�t+1

�
(37)

pht = � � EPt

�
�it+1
�it

�t+1qt+1
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(38)

�it = uc(c
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i
t) � uic(t) (39)

�it =
�it
R
� ��it+1�t+1 (40)

qt�
i
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36



=) qt =
uih(t)

uic(t)
+ E

P
t

��
�(1� �) �

�it+1
�it

� �t+1 +
�

R

�
� qt+1 � ��

�
E
P
t qt+1

� �it+1
�it

�t+1

�
(42)

� From the securities market:

pct = � � EPt

�
�it+1
�it

�t+1

�
= � � EPt

"
�jt+1

�jt
�t+1

#
(43)

pht = � � EPt

�
�it+1
�it

�t+1qt+1

�
= � � EPt

"
�jt+1

�jt
�t+1qt+1

#
(44)

� So these markets imply that the price of consumption and default-weighted housing is the same

for all agents

� Rewrite the budget constraint, and combine with the assumption that the borrowing constraint binds

cit + qth
i
t +R ~Qt�1h

i
t�1 = ~yit + (1� �)qth

i
t�1 + ~Qth

i
t (45)

=) cit + (qt � ~Qt)h
i
t = ~yit +

�
(1� �)qt �R ~Qt�1

�
hit�1 (46)

� From the household Euler

qt =
1� 
c

c

�
cit
hit

+ �(1� �) E
P
t

�
�it+1
�it

�t+1qt+1

�
| {z }

common across agents

���
�
E
P
t qt+1

�
E
P
t

�
�it+1
�it

�t+1

�
| {z }

comon across agents

:::

+
�

R
E
P
t [qt+1]| {z }
~Qt

=)
cit
hit

=
1� 
c

c

�
qt � ~Qt � �(1� �)EPt

�
�it+1
�it

�t+1qt+1

�
+ ��

�
E
P
t qt+1

�
E
P
t

�
�it+1
�it

�t+1

��
| {z }

�Bt, common across agents

=) cit = Bth
i
t (47)

� Substitute this into the modi�ed budget constraint (46)

cit + (qt � ~Qt)h
i
t = ~yit +

�
(1� �)qt �R ~Qt�1

�
hit�1

=) cit + (qt � ~Qt)B
�1
t cit = ~yit +

�
(1� �)qt �R ~Qt�1

�
hit�1

=)
�
1 + (qt � ~Qt)B

�1
t

�
cit = ~yit +

�
(1� �)qt �R ~Qt�1

�
hit�1

=)
�
1 + (qt � ~Qt)B

�1
t

�X
i

cit =
X
i

~yit +
�
(1� �)qt �R ~Qt�1

�X
i

hit�1 (48)
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� Note that

X
i

cit = CtX
i

hit = Ht

X
i

~yit =
X
i

�
yit � pcte

i
ct � pht e

i
ht + qte

i
ht�1 + eict�1

�
= Yt � pct

X
i

eict| {z }
=0

�pht
X
i

eiht| {z }
=0

+qt
X
i

eiht�1| {z }
=0

+
X
i

eict�1| {z }
=0

where the zeros are the result of market clearing in securities

=)
�
1 + (qt � ~Qt)B

�1
t

�
Ct = Yt +

�
(1� �)qt �R ~Qt�1

�
Ht�1 (49)

which is equivalent to a representative agents' choice
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C Solving the Household Problem

The solution to the household problem is computed using a parameterized expectations algorithm (PEA).

Rewriting the household Euler (17) in simpli�ed notation

qt �
uh(t)

uc(t)
= E

P
t [
(qt+1; ct+1; ht+1)jct; ht; bt; qt;mt; �t; yt; Rt] (50)

The expectation on the right hand side is approximated as

exp (e(Xt; 
)) (51)

The basis functions for e(�) are the Chebyshev polynomials. The vector of state variables for the household,

Xt, is (ht�1; kt�1; qt;mt; �t; yt; Rt)
35. De�ne 
 to be a coe�cient vector. The order of the approximation

along each dimension is given by (rh; rk; rq; rm; r�; ry; r�), hence 
 is an rh�rk�rq�rm�r��ry�r� vector.

Let  i(x) denote the Chebyshev polynomial of order i evaluated at x. Because the Chebyshev polynomials

are de�ned on [�1; 1] the state variables are rescaled according to

~x = 2
x� �x

�x� x
� 1 2 [�1; 1]

The approximating function e(Xt; 
) can be written

e ((h; k; q;m; �; y; R); 
) = T (h; k; q;m; �; y; R)
 (52)

= (Th(h)
 Tk(k)
 Tq(q)
 Tm(m)
 T�(�)
 Ty(y)
 TR(R)) 


where Tx(x) = ( 0(~x);  1(~x); :::;  rx(~x))

The coe�cient vector 
 is solved by appealing to the Chebyshev interpolation theorem and setting the

approximating function e(�) to be exact at the Chebyshev nodes. 
 therefore solves the system

exp
�
E
P
t [
(�)]

�
� e ((h; k; q;m; �; y; R); 
) = 0 8 vectors of nodes (h; k; q;m; �; y; R) (53)

which is an rh � rk � rq � rm � r� � ry � r� system of equations with rh � rk � rq � rm � r� � ry � r�

unknowns. (53) is solved by an iterative procedure. Let x̂ denote the rx-vector of Chebyshev nodes along

dimension x and X̂ = ĥ� k̂ � q̂ � m̂� �̂ � ŷ � R̂

1. Start from an initial guess 
0

2. Compute the vector e (�; 
0) for all Chebyshev nodes ĥ� k̂ � q̂ � m̂� �̂ � ŷ � R̂ using (52)

e
�
ĥ� k̂ � q̂ � m̂� �̂ � ŷ � R̂; 
0

�
= T (ĥ; k̂; q̂; m̂; �̂; ŷ; R̂) � 
0

� B � 
0

3. Given e(X; 
0) one can back out a corresponding vector of choice variables (ct; ht; bt; kt) from the

35In order to limit the size of the space the following approximation is applied bt �
�t
Rt

qtmtht.
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model equations outlined in section 3.1, call this �(X; 
0). Compute the expectation EPt [
(�)] at all

the Chebyshev nodes using a Gaussian quadrature, call this vector Y (X̂; 
0);

Y (X̂; 
0) =

�


�
qt+1; ct+1

�
�(X̂; 
0)

�
; ht+1

�
�(X̂; 
0)

�
jX̂; �(X̂; 
0)

�
dF (yt+1; qt+1jqt; yt;P)

4. Compute


� =
�
B0B

��1
B0 log Y (X̂; 
0)

5. Update the guess


1 = !
� + (1� !)
0

for ! 2 (0; 1)36

6. Repeat 1-5 until convergence37

36The procedure fails to converge when 
1 = 
�, necessitating this step.
37Further details on such methods can be found in Christiano and Fisher (2000).
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D Data Appendix

US. Bureau of Economic Analysis, Compensation of employees: Wages and salaries [A576RC1Q027SBEA],
retrieved from FRED, Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/A576RC1Q027SBEA/

US. Bureau of Labor Statistics, Consumer Price Index for All Urban Consumers: All Items Less Food &
Energy [CPILFENS], retrieved from FRED, Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/CPILFENS/, August 1, 2015.

US. Bureau of Economic Analysis, Personal Consumption Expenditures [PCECA], retrieved from FRED,
Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/PCECA/, August 1, 2015.

US. Bureau of Economic Analysis, Personal consumption expenditures: Services: Housing: Imputed rental
of owner-occupied nonfarm housing [DOWNRC1A027NBEA], retrieved from FRED, Federal Reserve
Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/DOWNRC1A027NBEA/, August 1, 2015.

US. Bureau of Economic Analysis, Shares of gross domestic product: Personal consumption expenditures:
Durable goods [DDURRE1A156NBEA], retrieved from FRED, Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/DDURRE1A156NBEA/, August 1, 2015.

US. Bureau of Economic Analysis, Shares of gross domestic product: Personal consumption expenditures:
Nondurable goods [DNDGRE1A156NBEA], retrieved from FRED, Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/DNDGRE1A156NBEA/, August 1, 2015.

US. Bureau of Economic Analysis, Shares of gross domestic product: Personal consumption expenditures:
Services [DSERRE1A156NBEA], retrieved from FRED, Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/DSERRE1A156NBEA/, August 1, 2015.

Freddie Mac, 30-Year Fixed Rate Mortgage Average in the United States [MORTGAGE30US], retrieved
from FRED, Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/MORTGAGE30US/, August 1, 2015

US. Federal Housing Finance Agency, All-Transactions House Price Index for the United States [USSTHPI],
retrieved from FRED, Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/USSTHPI/, August 1, 2015.

Board of Governors of the Federal Reserve System (US), Households and Nonpro�t Organizations; Credit
Market Instruments; Asset, Level [HSTCMAHDNS], retrieved from FRED, Federal Reserve Bank of
St. Louis,
https://research.stlouisfed.org/fred2/series/HSTCMAHDNS/, August 1, 2015.

Board of Governors of the Federal Reserve System (US), Households and Nonpro�t Organizations; Credit
Market Instruments; Liability, Level [CMDEBT], retrieved from FRED, Federal Reserve Bank of St.
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Louis,
https://research.stlouisfed.org/fred2/series/CMDEBT/, August 1, 2015.

Board of Governors of the Federal Reserve System (US), Real Gross Domestic Product [GDPC1], retrieved
from FRED, Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/GDPC1/, August 1, 2015.

Board of Governors of the Federal Reserve System (US), Households and Nonpro�t Organizations; total
mortgages; asset, Level [HNOTMAQ027S], retrieved from FRED, Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/HNOTMAQ027S/, August 1, 2015.

Board of Governors of the Federal Reserve System (US), Households and Nonpro�t Organizations; total
mortgages; liability [HNOTMLQ027S], retrieved from FRED, Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/HNOTMLQ027S/, August 1, 2015.

Board of Governors of the Federal Reserve System (US), Households and Nonpro�t Organizations; Credit
Market Instrutments; Asset, Level [CMIABSHNO], retrieved from FRED, Federal Reserve Bank of St.
Louis,
https://research.stlouisfed.org/fred2/series/CMIABSHNO/, August 1, 2015.

Board of Governors of the Federal Reserve System (US), Households and Nonpro�t Organizations; Home
Mortgages; Liability [HMLBSHNO], retrieved from FRED, Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/HMLBSHNO/, August 1, 2015.

Board of Governors of the Federal Reserve System (US), Households; Owner's Equity in Real Estate as
a Percentage of Household Real Estate, Level [HOEREPHRE], retrieved from FRED, Federal Reserve
Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/HOEREPHRE/, August 1, 2015.

Board of Governors of the Federal Reserve System (US), Households and Nonpro�t Organizations; Credit
Market Instruments; Liability, level [HSTCMDODNS], retrieved from FRED, Federal Reserve Bank of
St. Louis,
https://research.stlouisfed.org/fred2/series/HSTCMDODNS/, August 1, 2015.

Board of Governors of the Federal Reserve System (US), Households; Owner's Equity in Real Estate, Level
[OEHRENWBSHNO], retrieved from FRED, Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/OEHRENWBSHNO/, August 1, 2015.

Board of Governors of the Federal Reserve System (US), Delinquency Rate On Single-Family Residential
Mortgages, Booked In Domestic O�ces, All Commercial Banks [DRSFRMACBS], retrieved from FRED,
Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/DRSFRMACBS/, August 1, 2015.

S&P Dow Jones Indices LLC, S&P/Case-Shiller 10-City Composite Home Price Index [SPCS10RNSA],
retrieved from FRED, Federal Reserve Bank of St. Louis,
https://research.stlouisfed.org/fred2/series/SPCS10RNSA/, August 1, 2015.
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Davis, Morris A. and Jonathan Heathcote, 2007, "The Price and Quantity of Residential Land in the United
States," Journal of Monetary Economics, vol. 54 (8), p. 2595-2620; data located at Land and Property
Values in the U.S., Lincoln Institute of Land Policy http://www.lincolninst.edu/resources/

Saiz, Albert. 2010. "The Geographic Determinants of Housing Supply," The Quarterly Journal of Eco-
nomics 125: 1253-1296.

U.S. Dept. of Commerce, Bureau of the Census. AMERICAN HOUSING SURVEY, 2005: NATIONAL
MICRODATA. ICPSR04593-v1. Washington, DC: U.S. Dept. of Commerce, Bureau of the Census
[producer], 2006. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [dis-
tributor], 2007-06-13. http://doi.org/10.3886/ICPSR04593.v1

Bloomberg L.P. CME Case Shiller Home Price Futures 1/5/2007 to 1/2/2015. Retrieved May 20, 2015
from Bloomberg database.
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