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Abstract

In this paper, I study risk-neutral probability densities regarding future Libor rates denominated in
British pounds, euros, and US dollars as implied by option prices. I apply Breeden and Litzenberger’s
(1978) result regarding the relationship between option prices and implied probabilities for the un-
derlying to estimate full probability density functions for future Libor rates. I use these estimates in
case studies, detailing the evolution of probabalistic expectations for future Libor rates over the course
of several important market events. Next, I compute distributional moments from density functions
estimated for fixed horizons and test for Granger causality across the three Libor rate distributions
considering their mean, standard deviation, skewness, and kurtosis. I further break these relation-
ships down by various fixed horizon lengths, as well as the slope and curvature in the term structure
of moments over different horizons. The results show a rich interconnectedness among these three
Libor rates that extends well beyond levels of future mean expectations.
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1 Introduction

Option prices provide a unique insight into the probabilities assigned by markets to various future out-

comes for a particular economic variable. An option contract allows its owner to buy or sell an underlying

security or commodity at a pre-determined price. As such, options can be used to hedge against downside

or upside risks, or alternatively to speculate on the future value of a particular security or commodity. In

the hedging case, options provide an effective ceiling or floor to the price of the underlying. On the other

hand, as the price of an option’s underlying exceeds (falls below) the price at which a speculator agreed

to buy (sell), the speculator earns a return by exercising the option to buy (buying at the market price)

and selling at the market price (exercising the option to sell). In either case, the price an individual is

willing to pay for a particular option is based intimately upon the likelihood assigned to various outcomes

for the option’s underlying.

Cox and Ross (1976) formalize this relationship by expressing the price of a European option1 as the

discounted expected payout of the option at maturity. Breeden and Litzenberger (1978) directly relate

the second partial derivative of call option price with respect to strike to the probability density function

(pdf) assigned to the underlying. Since these results were established, option prices have been applied

in various cases to derive estimates of market-assigned probabilities for different underlying securities or

commodities (for example, see Malz (1997) in the case of foreign exchange rates, or Melick and Thomas

(1997) and Datta, Londono, and Ross (2014) in the case of oil prices).

Option prices have been applied to estimate market-assigned probabilities for future interest rates, as

well. Clews, Panigirtzoglou, and Proudman (2000) estimate pdf’s for future British pound-denominated

Libor interest rates and use distributional characteristics to shed light on the impact of important events

on market expectations. For example, they show that the advent of operational independence for the

Bank of England in May, 1997 had little contemporaneous effect on market uncertainty around future

GBP Libor rates. Ivanova and Gutiérrez (2014) use options to study probabilities assigned to future

euro-denominated Libor (Euribor) rates, investigating the forecasting performance of such measures and

using forecast biases to infer risk aversion.

Two general approaches to estimating option-implied probabilities have emerged in the literature as

particularly useful. One involves assuming a functional form for the terminal distribution of the under-

lying (for example, a weighted mixture of two lognormal or two normal distributions), and determining

the parameters of the distribution by minimizing the resulting option pricing errors (see Bahra (1997);

Melick and Thomas (1997)). The other works by interpolating a fine set of option prices and using the

1 A European option is one that can only be exercised on its maturity date. Contrastingly, American options allow the
option holder to exercise at any time prior to expiration.
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result of Breeden and Litzenberger (1978) to produce a pdf by taking the second derivative of option

prices numerically. This paper does not take a stance on whether one method outperforms the other.

However, previous research comparing these two methodologies in Monte Carlo simulation settings us-

ing similar data has favored the method of interpolating option prices and taking numerical derivatives

(Cooper (1999); Bliss and Panigirtzoglou (2002)).

In this paper, I use options on Libor futures for interest rates denominated in euros (EUR), British

pounds (GBP), and US dollars (USD) in order to study market-assigned probabilities for the three rates.

This paper contributes to the existing literature on option-implied pdf’s in a few ways. First, I detail

the evolution of pdf estimates for Libor rates denominated in EUR, GBP, and USD over important case

studies, including events critical to the financial crisis of 2007-08. These case studies serve as meticulous

overviews of the ways in which market-assigned probabilities for future interest rates were affected

by major events. I then move to a more thorough investigation of the time series dynamics among

distributional characteristics for the three Libor rates. I perform tests of Granger causality across the three

Libor rate distributions considering the option-implied mean, standard deviation, skewness, and kurtosis

related to pdf’s at fixed future horizons; these tests are carried out for the levels of the four distributional

moments at different horizons, as well as their slope and curvature across horizons. By comparing

estimates of distributional characteristics across the three separate Libor rates, this paper offers unique

insights into their interrelationships extending beyond comparisons of spot or even expected future levels.

Finally, as a methodological contribution, I take up the issue of the American option premium as it relates

to option-implied pdf’s using a Monte Carlo simulation approach; while previous research has focused

on the level of the American option premium (see Tian (2011)), I tie the premium directly to its impact

on probability function estimates. The remainder of the paper is structured as follows: Section 2 reviews

the data and methodology; Section 3 presents empirical case studies of the evolution of future Libor

rate pdf’s over important market events; Section 4 details the results of Granger causality tests over

distributional moments across the three Libor rates; and Section 5 concludes, along with suggestions for

further research.

2 Estimating Probability Density Functions and Distributional Moments

from Option Prices2

2.1 Data

Futures contracts for 3-month Libor rates denominated in GBP and EUR trade on the London Interna-

tional Financial Futures and Options Exchange (LIFFE), and similar contracts for Libor denominated in

2 Appendix A contains further technical detail regarding option pricing models covered in this section.
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USD trade on the Chicago Mercantile Exchange (CME). In order, these futures contracts are typically

referred to as Short Sterling, Euribor, and Eurodollar futures. The futures contracts are cash settled at

expiration based on the prevailing 3-month Libor rate in the relevant currency at that time, as well as

the notional value of the contract. Prices are quoted as 100 minus the annualized 3-month rate – for

example, an effective rate of 2.79% would imply a contract price of 100− 2.79= 97.21.

Option contracts written on 3-month Libor futures are available on the same exchanges. For futures

on GBP and EUR Libor, options exist with maturities in the nearest eight March-quarterly months (i.e.

March, June, September, December); for options on USD Libor futures, available option maturities span

the nearest sixteen March-quarterly months. All sets of options also offer serial maturities in the four

nearest months that do not follow the March-quarterly cycle, so that there is always an available option

maturity in each of the six upcoming months. However, when an option is exercised, it delivers the

futures contract expiring in the upcoming March-quarterly month. Therefore, the value of a serial option

at expiration will be based on a futures rate (for example, a February option’s value at expiration is based

on the concurrent price of the March futures contract). On the other hand, March-quarterly options

expire on the same date as the underlying futures contract, so that the value of a March-quarterly option

at expiration is based on a spot Libor rate.3 For this reason, I restrict analysis to option contracts maturing

in the March-quarterly cycle. Futures and options data for EUR and GBP Libor comes from Thomson

Reuters, and USD Libor data is from CME.

Figures B1 and B2 in Appendix B detail option liquidity trends for March-quarterly Eurodollar options

from May 4th, 1998 through March 31st, 2016. Figure B1 shows open interest, and Figure B2 shows

volume. Not surprisingly, option liquidity peaked in the early stages of the 2007-08 financial crisis as

investors likely sought insurance against an uncertain monetary policy response. As interest rates settled

to historically low levels following the crisis, trading of Eurodollar options dipped significantly through

2013. More recently, Eurodollar options have seen a secular rise in liquidity alongside the possibility

and realization of monetary policy “liftoff” from near the Zero Lower Bound (ZLB) in the United States.

Figures B3 and B4 show open interest and volume as they evolve with an option’s time to maturity,

aggregated over the same period. Trading is heaviest between 3 and 6 months prior to an option’s

expiration. Figures B1 - B4 also disaggregate trends in market liquidity to detail out-of-the-money option

trading independently. It is apparent that out-of-the-money options capture the solid majority of trading

action in the Eurodollar market. In total, out-of-the-money Eurodollar options account for 73% of open

interest and 82% of volume over the full period. Finally, Figure B5 separates share of total open interest

and volume by month of option maturity. Trading tends to be heaviest for December options, which

account for 30% of both open interest and volume over the period.
3 Table B1 in Appendix B reports the maturity date conventions for Short Sterling, Euribor, and Eurodollar futures and

options in the March-quarterly cycle.
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The payment and exercise structures of the option contracts prove important to the following analysis.

All three Libor-based options are American, meaning the buyer has the right to exercise at any time

prior to the option’s maturity. This is in contrast to European-style options, which only allow exercise

at contract maturity. Eurodollar option contracts require payment of the option premium at the time

of purchase; however, Short Sterling and Euribor options use a futures-style margining system. For

Short Sterling and Euribor options, a premium is agreed at the time of purchase, but it is not paid

at that time. Instead, the net value of the option is marked-to-market daily, and the payout of the

contract at exercise becomes the value of the option net of the agreed premium. As a result, pricing

of Short Sterling and Euribor options involves no discounting.4 Additionally, the margining structure

results in zero opportunity cost of holding the option, meaning the American early exercise premium can

be ignored and Short Sterling and Euribor options can be priced as though they were European options.5

The analysis in this paper assumes options are European. Appendix C takes up the issue of the American

early exercise premium included in Eurodollar option prices, concluding that there is little accuracy lost

in this paper’s analysis by treating Eurodollar options as though they were European.

Finally, it is important to note that Libor rates may include a risk and/or term premium component

in comparison to the interest rates targeted by central banks in policy decisions; therefore, estimated

probability distributions for future Libor rates necessarily blur together market views of future central

bank policy along with anticipated risk or term premia. These factors may reinforce or counteract one

another: for example, if stresses on the financial sector increase, markets may expect monetary policy

easing to lower rates, while simultaneously expecting a greater risk premium between Libor and the

corresponding policy rate to push Libor upward. The following analysis does not formally attempt to

distinguish between implied expectations for central bank policy rates and other factors contributing to

a spread between Libor and the corresponding policy rate, but instead treats Libor as the primary focus.

2.2 Basic Methodology

In an efficient (and risk-neutral) market, the price of a European option is equal to the discounted

expectation of its value at maturity.6 In the case of a put option on the futures price FT struck at K and

lasting from time t to a maturity date T ,

P(K , t, T ) = e−rτ Et[max(K − FT , 0)]

= e−rτ

∫ K

−∞
(K − f ) πFT ,t( f ) d f ,

(1)

4 See Chen and Scott (1993).
5 See Lieu (1990) and Chen and Scott (1993).
6 This result is originally due to Cox and Ross (1976).
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where r is the risk-free rate used for discounting,7 τ ≡ T − t, and πFT ,t( f ) is the pdf for FT from time

t evaluated at a terminal futures contract price of f . It is important to note that FT is considered as a

random variable.

Using the insights of Breeden and Litzenberger (1978), it is possible to extract the market-assigned

cumulative distribution function (cdf) and pdf for FT directly from Equation (1). Taking the first deriva-

tive of Equation (1) with respect to K yields

dP(K , t, T )
dK

= e−rτ

∫ K

−∞
πFT ,t( f ) d f .

Where the cdf of FT evaluated at K is defined by ΠFT ,t(K)≡
∫ K

−∞
πFT ,t( f ) d f , it is then true that

ΠFT ,t(K) = erτ dP(K , t, T )
dK

. (2)

Equation (2) states that the cdf of FT is equal to the (future value of the) first derivative of the put pricing

function with respect to strike. Taking the derivative of Equation (2) with respect to K yields

πFT ,t(K) = erτ d2P(K , t, T )
dK2 , (3)

showing that the pdf for FT is equal to the (future value of the) second derivative of the put pricing

function with respect to strike.

After estimating πFT ,t(·), it is possible to evaluate the overall methodology using Equation (1). Ob-

served options can be re-priced using the estimated pdf, and these prices can then be compared against

actual market prices. Smaller magnitudes of re-pricing errors generally indicate that the estimated pdf is

increasingly reflective of market expectations. Pricing errors must also be balanced with the plausibility

of the shape of the resulting pdf, a point further elaborated below.

2.3 Interpolation of Option Prices

In order to apply Equations (2) and (3), the instantaneous first and second derivatives of the put pricing

function with respect to strike are required. Of course, we do not observe the latent option pricing
7 I set r = 0 for Short Sterling and Euribor options. Eurodollar discounting is based on a curve constructed using an

overnight rate and Treasury yields at various tenors.
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function, but only prices at discrete intervals. As a result, derivatives are computed numerically after

interpolating put option prices to a sufficiently high granularity.

The question arises of how best to produce a stable and accurate interpolation function. The choice

of interpolation specification is not trivial as we are directly interested in the slope and curvature of the

estimated pricing function, which of course depend on the interpolation approach. Further, it is clear

that the actual pricing function will exhibit a high degree of curvature, especially so near the mode of the

pdf for the underlying (Equation (3) directly links the pdf with curvature in the put pricing function).

In order to replicate this curvature in a robust way I first transform prices to implied volatilities and

strikes to deltas (specifically, put deltas), both of which are derived via the Black (1976) model for pric-

ing options on futures.8 Only out-of-the-money put and call options are used as inputs, as these tend

to be more liquid than in-the-money options and therefore embed more reliable information.9 Trans-

forming option prices to implied volatilities was introduced by Shimko (1993). The implied volatility

function tends to entail a lower degree of curvature than the price function, yielding a simpler space

over which to interpolate. An option’s delta expresses the rate of change in the option price relative to a

change in the price of the underlying security. As a result, converting strikes to deltas provides two main

benefits.10 First, deltas compress the domain under consideration: far out-of-the-money options have

deltas approaching zero, while far in-the-money put options have deltas approaching −e−rτ. This eases

extrapolation beyond the range of observed strikes as well as interpolation across time (both discussed

further below). Second, because deltas change more rapidly near-the-money but group together for far

in-the-money or out-of-the-money options, interpolating over deltas increases interpolation granularity

near-the-money to better capture the inherent curvature of the pricing function.

A cubic smoothing spline is used to perform interpolation of implied volatilities over deltas. The

cubic smoothing spline is a piecewise cubic polynomial function that has continuous first and second

derivatives at observed data points, where the function is segmented (so-called “knots” of the spline).

In addition to providing a very flexible functional form, the cubic smoothing spline offers an explicit

balancing between smoothness of the interpolated function and fit errors that result from the smoothing

process. Specifically, the cubic smoothing spline g(·) minimizes the following objective function:

(1−λ)
n
∑

i=1

w(i)
�

y(i)− g(x(i))
�2 + λ

∫

x

�

g ′′(t)
�2 d t ,

8 Note that the Black (1976) assumption of a lognormally distributed underlying futures price at option expiration does
not carry through to estimated pdf’s. Rather, the Black (1976) model simply provides a mapping between prices and implied
volatilities, as well as strikes and deltas.

9 Ivanova and Gutiérrez (2014) verify that out-of-the-money liquidity is greater for Euribor futures options, while Clews,
Panigirtzoglou, and Proudman (2000) argue the same holds for Short Sterling. Figures B1 - B4 in Appendix B demonstrate the
relatively high liquidity of out-of-the-money options on Eurodollar futures.

10 Interpolating implied volatilities over deltas was first performed by Malz (1997).
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where x represents n observed deltas and y represents n implied volatilities, w is a set of weights, and

λ is known as the “smoothing parameter”. The first term in the above objective function is simply the

weighted sum of squared residuals at the spline’s knots, while the second term is meant to reflect the

overall degree of curvature in the spline. The smoothing parameter fully determines the balance between

fit residuals and spline smoothness. In fact, as λ → 1, the spline approaches a weighted least squares

(WLS) regression estimate. Weights w are imputed as each option’s vega, equal to the rate of change in

price relative to implied volatility. As pointed out by Bliss and Panigirtzoglou (2002), because vega is the

change in price relative to implied volatility, weighting by vega over implied volatilities is equivalent to

constant weighting over prices.

The smoothing parameter λ presents a challenge, as it is not readily apparent that a particular value

will prove ideal in any sense. One approach to determining λ automatically based on input data involves

cross validation. This approach selects λ so as to minimize the average leave-one-out residual (i.e. for

each i of the n observations, g(·) is estimated while ignoring data point i, after which the residual for

data point i is calculated). In the case of options on Libor futures, testing of the cross validation approach

yields clearly undesirable results. In a number of trials, cross validation selects a smoothing parameter

at or near zero, which in turn produces implausibly choppy implied pdf’s. Examples of such pdf’s can be

seen in Figures B6, B7, and B8 in Appendix B. These figures show estimates based on options maturing

in December, 2010,11 which were priced on January 4th, 2010, for each of Short Sterling, Euribor, and

Eurodollar in turn. Respectively, cross validation selected smoothing parameters of 0.00000, 0.00000,

and 0.00002 on a granularity of 0.00001 between 0 and 1.

Alternatively, one might think to implement a similar approach which would instead be based on

pricing errors. As mentioned previously, Equation (1) can be used to re-price a set of options based on an

estimated pdf for the underlying security. From these estimated prices, pricing errors can be computed as

the difference between estimated and actual option prices. Instead of selecting λ to minimize leave-one-

out implied volatility residuals, one could alternatively attempt to minimize leave-one-out pricing errors.

However, this turns out to be prohibitively expensive computationally.12

Due to the undesirable performance of cross validation in selecting the smoothing parameter, I instead

follow the alternative approach in the literature, which is to select a smoothing parameter based on

subjective balancing between the plausibility of resulting pdf estimates and the magnitude of pricing

11 Maturity dates are December 13, 2010 for EUR and USD Libor, and December 15, 2010 for GBP Libor.
12 As elaborated below, the spline is evaluated at a large number of points, which quickly adds to computing time required

for a cross validation approach based on pricing errors.
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errors.13 I find λ = .03 tends to produce reasonable pdf’s while keeping option pricing errors generally

within one or two ticks.14 Figures B9 through B14 in Appendix B show example pdf’s alongside the

pricing errors that result after re-pricing options using the estimated pdf. Pricing errors are shown for the

set of options used as inputs to each estimation, which includes out-of-the-money options meeting basic

pricing assumption restrictions (as detailed further below). In Figures B9 through B14, the vast majority

of pricing errors are within two ticks, while many are within one tick.

In order to ensure the estimated pdf integrates to 1, the fitted spline function is extrapolated so that

the full delta range between −e−rτ and 0 is covered.15 Extrapolation is performed with a quadratic

polynomial function on either end of the observed delta range, as in Ivanova and Gutiérrez (2014).

The full resulting function of implied volatilities over deltas is then evaluated at 50,000 evenly spaced

delta values between the minimum and maximum deltas.16 Minimum and maximum deltas used for

evaluation are offset by a small value from the actual bounds of −e−rτ and 0, because these deltas imply

strikes approaching∞ and 0, respectively (see Appendix A). In the case that any implied volatilities are

evaluated as non-positive, the estimation procedure is quit. Finally, the evaluated implied volatilities and

deltas are converted back to prices and strikes via an inverse of the Black (1976) model.

Because the estimated put option prices remain discrete – as opposed to a continuous function –

derivatives and integrals must be taken numerically. The formal definition of a derivative or an inte-

gral provides the basis for approximating continuous derivatives and integrals with discrete (but highly

granular) data points. The following equations summarize these relationships for any function f (x):

d f (x)
d x

≡ lim
h→0

f (x)− f (x − h)
h

, (4)

and

∫ b

a

f (x) d x ≡ lim
max2≤i≤n(∆x i)→0

n
∑

i=2

f






a+

i
∑

j=2

(∆x j)






(∆x i) , (5)

13 For example, Datta, Londono, and Ross (2014) demonstrate graphically the tradeoffs involved in increasing or decreasing
the smoothing parameter when estimating option-implied pdf’s for future oil prices. They settle on a constant value for λ, which
keeps pricing errors low while producing reasonable pdf estimates.

14 The tick size is the minimum price increment. For all three Libor-based contracts, the minimum increment is .005. An
exception is made for Eurodollar option contracts that deliver the nearest expiring futures contract, as well as for low-priced
options expiring in the two upcoming March-quarterly months, in which cases the minimum tick size is .0025. For simplicity
and consistency, I will refer to the minimum tick size as .005, though observed prices with ticks of .0025 are not altered in any
way.

15 Resulting pdf’s are only reported if their area integrates to between 0.99 and 1.01
16 I use a very large number of points for evaluation in order to closely approach a continuous setting, while accounting

for some balancing of the computation time required. As we are interested in approximating instantaneous first and second
derivatives, it is important that the option price granularity is very fine in order to avoid bias. Further, applications that require
integration over the estimated pdf - for example, re-pricing options or computing moments of the distribution - gain accuracy
as the pdf approaches a near-continuous setting.
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where in the second definition n−1 is the number of discrete sub-intervals on (a, b), and∆x i ≡ x i−x i−1.

Note that, while the second equation simplifies in the case where ∆x i is a constant value for all i, this

does not hold for our purposes. Discrete observations are evaluated in implied volatility - delta space

at a constant delta interval. However, as previously mentioned, an option’s delta does not change at a

constant rate with respect to strike – in fact, the gamma of an option specifies this rate of change across

strikes. Therefore, the interval between strikes is not constant, so the above formula is applied when

integrating.

The process of smoothing implied volatilities over put option deltas does introduce the possibility of

negative estimated probabilities, even after cleaning input option prices as described further below. In

rare cases, the estimated set of implied volatilities over deltas results in a subset of implied volatilities

exhibiting large swings when placed over strikes, a pattern carried through to the relationship between

prices and strikes. It is apparent in these cases that the set of implied volatilities represents a situation in

which implied volatility – and, thereby, price – is not a proper function of strike (i.e. at least one strike

exists that corresponds to more than one implied volatility), which contradicts Black’s (1976) option

pricing model. This is analogous to considering the points (0,0), (1,-1), (4,2), and (9,-3): at some degree

of granularity, it becomes apparent that the function being traced out is neither piecewise linear nor

sinusoidal, but rather displays y = ±
p

x . Unfortunately, there is no clear restriction to impose for the

discrete set of implied volatilities over strikes (for example, monotonicity). However, because such a

set of implied volatilities tends to produce swings in prices over strikes and thereby negative estimated

probabilities (and because negative probabilities are not sensible), any estimated pdf’s are only used in

further analysis if they produce no negative probabilities.

2.4 Converting Futures Prices to Interest Rates

The preceding methodology is used to obtain a highly granular set of put option prices over strikes.

These prices apply to options written on the relevant futures contract price, which is based on a simple

transformation of the Libor rate being referenced. Specifically, where FT is the random variable denoting

the futures contract price at time T , then RT = 100− FT is the corresponding annualized 3-month Libor

rate in percentage points. Of course, we are directly interested in probability assignments for future Libor

interest rate realizations, rather than for futures contract prices.

Because prices are interpolated and extrapolated in the setting of options on the futures price, Equa-

tions (2) and (3) are applied initially in the same setting. Probabilities are transformed to the interest

rate setting after being estimated in a futures price setting, as

9



Probt(RT ≤ a)

= Probt(100− RT ≥ 100− a)

= 1− Probt(100− RT ≤ 100− a)

= 1− Probt(FT ≤ 100− a) ,

(6)

which gives the desired cdf over interest rates.17 Similarly, when considering pdf’s,

πRT ,t(a) = π100−FT ,t(a) = πFT ,t(100− a) . (7)

Interpolating and extrapolating option prices in the setting of the futures contract price (FT ) provides

a useful tool for circumventing limitations embedded in the Black (1976) option pricing model. The Black

(1976) model assumes a lognormal probability distribution for the underlying security, which in turn

implies no probability mass assigned below zero (see Appendix A). As noted previously, this assumption

does not carry through to probability functions estimated as in this paper; the Black (1976) model is

employed only to provide a mapping between prices and implied volatilities, as well as between strikes

and deltas. However, these mappings break down for strikes below zero. As a result, while the above

methodology could be applied directly to the interest rate setting by subtracting option strikes from 100

and reversing call and put options (e.g. 97.25 put → 2.75 call), this approach would break down for

options with converted strikes below zero (or, original strikes above 100). Deriving probabilities for

the futures contract price before converting to the interest rate setting then provides the advantage of

retaining information embedded in options with strikes above 100. In this way, one can actually view the

futures price as a useful transformation of the Libor rate as relates to estimating pdf’s.

2.5 Cleaning Input Prices

In addition to restricting input prices to out-of-the-money options, inputs are screened so they meet basic

option pricing assumptions. These assumptions can be thought of in terms of the price level, slope, and

curvature over strikes. First, all option prices of zero or lower are immediately removed.

The next two restrictions regarding slope and curvature of option prices are simple results of Equa-

tions (2) and (3), combined with the fact that probabilities are defined as non-negative. Equations (2)

17 Note the implicit assumption that the probability of a random variable Z being equal to any particular value is assumed
to be zero. Or, lim

ε→0
Prob(k − ε < Z < k + ε) = 0 for any constant k. This allows equalities and inequalities to be used

interchangeably.
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and (3) reveal that the first and second derivatives of the put pricing function must be non-negative, as

the corresponding cdf and pdf are non-negative functions. Setting up an equation for the call pricing

function C(K , t, T ) analogous to Equation (1) and taking derivatives yields similarly that18

ΠFT ,t(K) = erτ dC(K , t, T )
dK

+ 1 (8)

and

πFT .t(K) = erτ d2C(K , t, T )
dK2 . (9)

Equation (8) implies that

−e−rτ ≤
dC(K , t, T )

dK
≤ 0 .

Therefore, the call pricing function must be non-increasing over strikes, and from Equation (9) it must

have non-negative curvature.

When option prices violate either the slope or curvature assumption, it is not obvious which option

is “in the wrong” and should be removed. In any subset of prices that violates the slope or curvature

assumption, I remove the option furthest from the money. There are two reasons for this selection. First,

deeper out-of-the-money options are likely to be less liquid, so their prices are more likely to be stale.

Second, the minimum tick size imposed on prices can be seen as introducing an error to the prices that

would be observed in a continuous setting, which bears relatively more importance to deeper out-of-

the-money options with already low prices. In practice, I allow for slight deviations from the slope and

curvature assumptions. This accommodates the possibility that prices are not perfectly arbitraged, and

accounts for a small degree of price inaccuracy due to discrete pricing ticks.

After option prices are cleaned, the estimation procedure is only carried out if there remain at least

three option prices comprising at least one call and one put.

2.6 Fixed Horizon Estimates

The procedure outlined above lends itself naturally to estimating the put option pricing function for

fixed horizons, which in turn can be used to generate fixed horizon probabilities. Option contracts allow
18 A full derivation can be found in Appendix A.
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directly for estimation of pdf’s corresponding to a specific option maturity date. However, we might also

be interested in estimates for a fixed horizon, for example 180 days ahead from the option pricing date.

While the former type of estimate can show how expectations for interest rates at a particular point in

the future evolve over time, fixed horizon estimates control for the impact of time to maturity. Pdf’s for

a particular maturity date will tend to narrow with the passing of time, as more information is garnered

on the likely price of the underlying futures contract at expiration. On the other hand, fixed horizon

estimates demonstrate the evolution of market expectations unaffected by time to maturity.

Fixed horizon estimates are computed by interpolating implied volatility - put delta functions across

time, similar to Datta, Londono, and Ross (2014). For a given hypothetical fixed horizon maturity date,

data is collected for the March-quarterly contracts with expirations that most closely precede and follow

that date. Each set of options is then used to estimate a function of implied volatilities over put option

deltas. For each of 25,000 evenly spaced deltas over the delta range corresponding to the fixed maturity

date, the corresponding implied volatility is the linear interpolation between the two functions, weighted

based on the fixed maturity date’s proximity to each contract’s actual maturity date. Implied volatilities

and deltas are again transformed back to prices and strikes, from which probabilities can be estimated.

Fitting implied volatilities over deltas instead of strikes makes for more consistent interpolation of

implied volatilities across time, as the domain covered is always (−e−rτ, 0). For a hypothetical fixed

maturity date, the range of strikes that should be used for interpolation would not be clear, as the support

of the pdf πFT ,t(·) over strikes varies with t and T – even for a constant τ.

2.7 Calculating Distributional Moments

Once a pdf has been estimated from option prices, computation of distributional moments provides useful

summary statistics, particularly when these moments are viewed over a span of time. Central moments

of the distribution are computed using the traditional formulas, which are applied to the discrete case

using the definition found in Equation (5) to compute integrals. Appendix A contains the continuous-

case formulas referenced for calculating moments, with skewness and kurtosis being normalized by the

standard deviation (square root of variance). In the remainder of this paper, references to skewness and

kurtosis are in terms of the normalized computations. Additionally, I focus on the standard deviation

rather than variance, as it has a more natural interpretation with units being in percentage points.

While distributional moments are discussed in terms of implied pdf’s on future interest rates rather

than futures contact prices, moments are initially computed in regard to the futures price and are then

transformed to the interest rate setting. It is straightforward to show that the following relationships

hold:
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Mean(RT ) = 100 − Mean(FT )

Variance(RT ) = Variance(FT )

Skewness(RT ) = −1 × Skewness(FT )

Kurtosis(RT ) = Kurtosis(FT )

It is worth briefly noting the potential influence that the risk-neutral assumption of this paper’s

methodology might have on estimated distributional moments. If investors are more risk averse to higher

(lower) relative to lower (higher) interest rates, then option payouts in the case of higher (lower) rates

will be priced above what the actual market-assigned probabilities would imply, resulting in a higher

(lower) estimated pdf mean and skewness. Similarly, if investors are relatively more risk averse to a

more (less) extreme interest rate environment, estimates of kurtosis might be overstated (understated).

Variance (and thereby standard deviation) are likely to be overstated to the extent that investors are risk

averse generally, as this would increase the price of out-of-the-money options used as inputs, implying a

wider spread of probability mass. Ivanova and Gutiérrez (2014) provide evidence that risk-neutral pdf

estimates for future Euribor rates likely overstate the tails of the distribution in general, and particularly

the right-hand tail as relates to interest rate levels (i.e. investors are more risk averse to larger deviations

from the expected future rate, and are particularly risk averse to higher interest rates).

3 Empirical Case Studies

The methodology laid out above is now applied to four sample case studies. These case studies demon-

strate the efficacy of such an approach in illuminating the evolution of market sentiment regarding future

interest rates. Particularly volatile historical cases with respect to financial market conditions are selected

for study, as these cases entail immediate and apparent changes in interest rate expectations.

3.1 Case 1: BNP Paribas Freezes Funds19

Paramount in triggering the 2007-08 financial crisis was heavy exposure throughout financial markets

– especially the exposure carried by large and systemically important banks – to the performance of

subprime home mortgages. As derivative products including asset-backed securities (ABS) (in particular,

mortgage-backed securities (MBS)) and collateralized debt obligations (CDO) spread, the potential for

19 News sources: “BNP Paribas suspends funds” (2007, August 9); Kingsley (2012, August 6).
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a significant market crash on the back of a spike in mortgage defaults grew. So markets were on edge

when French bank BNP Paribas announced on August 9th, 2007 that it would suspend valuation for

three of its ABS-based funds, claiming it was “impossible to value certain assets fairly” in those funds

alongside disappearing liquidity. Indeed, the BNP Paribas announcement was a watershed moment in

the development of the financial crisis; as Adam Applegarth – former CEO of the nationalized British

bank Northern Rock – put it, August 9th was “the day the world changed.”

Figure 1: PDF Evolution, Case 1

EUR Libor, Maturity = Dec. 17, 2007

Figure 1 shows estimated option-implied pdf’s for the 3-month Euribor rate on December 17th, 2007,

using options priced on August 8th and 9th, 2007. While actual and expected interest rates would con-

tinue to slide downward as the financial crisis unfolded, it is clear that the BNP Paribas announcement

made an early contribution to investor expectations of monetary policy easing. Figure 1 reveals that much

of the change in interest rate expectations following the BNP Paribas announcement occurred through a

movement of probability mass toward the left tail of the distribution and largely out of the center, rather

than a simple shift of the entire distribution. In fact, though the spot 3-month Euribor rate had been

steadily trending upward since late 2005 to reach 4.35% by August 8th, 2007, the assigned probability of

falling back below 4.25% by mid-December nearly doubled from 6.84% to 12.53% in the course of one

day. Uncertainty for where interest rates would lie in December increased as well: the standard deviation

widened from 16 basis points to 18 basis points.

A similar trend can be seen in expectations for the December, 2007 USD Libor rate in Figure 2 below.

Such similarity is likely reflective of the extent of financial market exposure to asset-backed securities

whose returns were highly correlated. Normalized skewness and kurtosis decreased as the standard

deviation jumped from 42 to 58 basis points. The mean of the distribution fell by 16 basis points from

5.12% to 4.96%
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Figure 2: PDF Evolution, Case 1

USD Libor, Maturity = Dec. 17, 2007

3.2 Case 2: Lehman Brothers Files for Bankruptcy20

Of course, the bankruptcy of Lehman Brothers was a further watershed moment in the unfolding of the

financial crisis. On September 15th, 2008, Lehman Brothers filed for bankruptcy following the decision

by Federal Reserve and United States Treasury officials not to bail out the bank. As broader economic

conditions continued to sour, the Federal Reserve would hold an unscheduled meeting weeks later and

decide to resume interest rate cuts, which had seen a respite during the preceding six months. The

collapse of Lehman Brothers marks an important turning point in the depth of the financial crisis.

Figure 3: PDF Evolution, Case 2

USD Libor, Maturity = Dec. 15, 2008

Figure 3 shows estimated pdf’s for USD Libor on December 15th, 2008, using options priced on

September 12th and 15th of the same year. Though the Federal Reserve had left its target interest rate

20 News source: Sorkin (2008, September 14).
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unchanged at the most recent three Federal Open Market Committee (FOMC) meetings, Lehman’s failure

appears to have immediately set off expectations for further monetary policy easing. Similar to the BNP

Paribas case, the change in interest rate expectations resulting from Lehman was not a straightforward

shift of the entire distribution, but rather movement of probability from the center of the distribution

toward the left tail. The standard deviation of the distribution concomitantly increased from 43 to 57

basis points.

3.3 Case 3: European Markets Deteriorate; ECB Responds21

Late summer 2011 was a tumultuous period for financial markets, particularly so in Europe. Broadly,

global growth concerns were on the rise as composite purchasing managers indexes (PMI’s) dipped for

both the United States and the Euro area. Especially salient in Europe was burgeoning skepticism over the

ability of so-called European periphery countries – including Greece, Ireland, Italy, Portugal, and Spain

– to meet creeping debt obligations alongside rising bond yields. On August 4th tensions boiled over:

an ECB intervention in bond markets ignoring Spanish and Italian bonds was interpreted as signalling

economic conditions in those countries so dire as to be unworthy of attempted rescue, while a letter

written by European Commission president José Manuel Barroso indicated that risks were not confined

to the periphery; stock markets tumbled, with the Dow Jones Euro Stoxx index down 3.75% on the day

and the S&P 500 down 4.78%.

On August 4th, the ECB announced that it would provide loans to banks at fixed rates through early

2012, while simultaneously announcing a longer-term refinancing operation. Days later, on August 7th,

the ECB decided to resume bond purchases under the Securities Markets Programme (SMP), which had

not been active since March 2011. The reinstatement of SMP purchases was intended to relieve the

pressures of high interest rates on government borrowing.

Figure 4 details the evolution of pdf’s for the 3-month Euribor rate on December 19th, 2011 over

the most volatile few days of this episode. The evolution was not a linear one. As market pessimism

came to a head on August 4th, skewness dropped from near-zero into more negative territory, reflecting

greater tail probability for downward interest rate moves. Interestingly, uncertainty decreased slightly as

the standard deviation dropped from 42 to 39 basis points, possibly reflective of a stabilizing effect from

the ECB’s August 4th policy measures. Much of the remainder of the distribution caught up with the left

tail on August 5th as skewness returned to near-zero, while the standard deviation bounced back from 39

to 45 basis points. Following the revival of SMP, the mean of the distribution pushed further downward

on August 8th (with a net decline of 37 basis points from August 3rd). Skewness turned positive as the

21 News sources: Bowley (2011, August 4); European Central Bank (2011, September); Rettman (2011, August 4).
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left tail of the distribution became increasingly constrained by the ZLB while the right tail remained

significant.

Figure 4: PDF Evolution, Case 3

EUR Libor, Maturity = Dec. 19, 2011

3.4 Case 4: BOE Governor Carney Says Rates May Remain Low “for some time”22

A few months into 2014, market participants had come to expect that the Bank of England (BOE) might

begin increasing its target interest rate in the coming year – which would mark the first change to the

BOE’s policy rate since it had bottomed out at 0.50% in March, 2009. However, when Governor Mark

Carney delivered the Bank’s regular Inflation Report on May 14th, 2014, these expectations were subdued

with language considerably more dovish than anticipated. Figure 5 below shows pdf’s for the 3-month

GBP Libor rate on December 15th, 2014, based on option prices from May 13th and 14th. Following

Governor Carney’s remarks, the standard deviation fell as the distribution compressed back toward zero,

while normalized skewness and kurtosis increased. In the process, the mean rate expectation dropped

from 80 to 72 basis points.

22 News source: “Bank of England dampens interest rate rise speculation” (2014, May 14).
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Figure 5: PDF Evolution, Case 4

GBP Libor, Maturity = Dec. 15, 2014

4 Cross-Rate Relationships in the Term Structure of Distributional Mo-

ments23

Using fixed horizon pdf estimates at varying horizons, it is possible to view elements of the term structure

of distributional moments for future interest rates across time. Much attention has been paid to the term

structure of interest rates, especially concerning Treasury yield curves. Examining the term structure

of distributional moments around future interest rate expectations complements traditional yield curve

analysis by painting a fuller picture of market views. Further, with 3-month Libor rates as the underlying,

emphasis here is given to short rates viewed over the near term. This section compares simple measures

of the level, slope, and curvature of distributional moments on future 3-month Libor rates denominated

in US dollars, euros, and UK pounds. Analysis focuses on more recent history, which is due in part to

greater consistency of data availability, as well as an effort to focus attention on the period of historically

low interest rates following the financial crisis of 2007-08.

Figures B15 through B18 in Appendix B show the estimated mean, standard deviation, (normalized)

skewness, and (normalized) kurtosis for the three Libor rates at fixed horizons of 180, 360, and 540

days ahead. The series span from the beginning of 2009 through March 31st, 2016. A cursory view

of these figures yields some insight into market expectations over this period, which is made more rich

by considering the term structure of multiple moments in tandem. For example, an important trend

in financial markets over recent years has been the divergence in interest rates between the Euro area

and other advanced economies including the United Kingdom and the United States. Figure B15 reflects

that markets have consistently expected an increasing near-future path for GBP and USD Libor rates
23 The “term structure” here is considered across varying forward horizons with the same forward terms (3 months), as

opposed to being across spot rates with varying terms.
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since mid-2013. This timing coincides with the “taper tantrum”, when in May, 2013 Federal Reserve

Board Chairman Ben Bernanke stated the Fed might begin slowing the pace of bond purchases under

its quantitative easing program. The “taper tantrum” period did see an increased slope for projected

Euribor rates, though this quickly faded, and the difference between 540-day-ahead and 180-day-ahead

Euribor expectations has remained near zero since early 2014. As the slopes of mean rate expectations

for GBP and USD Libor have become elevated, so too has uncertainty increased for these rates: Figure

B16 shows that the standard deviation for each rate 540 days ahead has remained higher since mid-

2013. As Euribor mean expectations approached – and eventually breached – zero over the same period,

the standard deviation generally fell as the distribution compressed, with a slight trend upward since

mid-2014. Figures B17 and B18 show that skewness and kurtosis both jumped for GBP Libor in mid-

2013, especially for rates 180 days ahead, while both moments have broadly decreased across the term

structure since then for both GBP and USD Libor. Overall, as mean expectations for GBP and USD Libor

rates have increased, the bulk of each distribution has generally moved upward, while the right-hand tail

has not seen a comparable shift. Skewness and kurtosis for Euribor rates have not seen a clear secular

trend over the past few years.

4.1 Granger Causality across Rates

It is useful to understand the time series dynamics of distributional moments across Libor rates for various

components of the term structure. I examine these cross-rate dynamics by testing for Granger causality

in a vector autoregression (VAR). The general VAR is expressed as follows:

Yt = C + Z1Yt−1 + Z2Yt−2 + . . . + ZkYt−k + Ut , (10)

where each Yi is a 3-by-1 vector of the given moment and term structure component pairing (for example,

standard deviation level 360 days ahead) for each Libor rate at time i, C is a 3-by-1 vector of constants,

each Zi is a 3-by-3 matrix of coefficients, Ut is a 3-by-1 vector of error terms at time t, and k is the number

of lags included in the VAR.24 In total, 24 VAR’s of this form are estimated, corresponding to the number

of combinations between distributional moments and term structure components being considered. The

moments include mean, standard deviation, skewness, and kurtosis. The term structure components

are levels at 180, 360, and 540 days ahead; the difference between levels at 360 and 180 days ahead

(referred to as “Slope 1”); the difference between levels at 540 and 360 days ahead (referred to as “Slope

2”); and the difference between Slope 2 and Slope 1 (referred to as “Curvature”). Slope and curvature

measures capture information regarding the trajectory of moments abstracted from their levels.

24 Lag length is determined by minimization of Schwarz’s Bayesian Information Criterion.
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After a VAR is estimated, Granger causality is determined by Wald tests. Let each Yi retain the

same ordering with respect to the three Libor rates. For a particular VAR, consider the test that the

relevant pairing of moment and term structure component for the second-positioned rate Granger causes

that for the first-positioned rate (e.g. 540-day-ahead kurtosis for Euribor Granger causes that for GBP

Libor). This is equivalent to testing whether the entry in the first row, second column of each Zi matrix

of coefficients is equal to zero, with the null hypothesis being that all such entries are equal to zero. A

rejection of the null hypothesis implies Granger causality, meaning previous values of the relevant pairing

for the second-positioned rate contain explanatory power for the current value of the pairing for the first-

positioned rate, controlling for previous values of the pairing for the first- and third-positioned rates (e.g.

past values of 540-day-ahead kurtosis for Euribor contain explanatory power for the current value of

540-day-ahead kurtosis for GBP Libor, controlling for previous values of 540-day-ahead kurtosis for GBP

and USD Libor). Such tests are revealing of the directions in which expectations for different Libor rates

may affect one another across various distributional and term structure characteristics. It is worth noting

that Granger causality is not the same as formal causality, but should be interpreted simply as past values

of one variable containing residual explanatory power for the current value of another variable.

When testing for Granger causality in a VAR with possibly integrated time series, Toda and Yamamoto

(1995) demonstrate that the distribution under the null hypothesis is non-standard. However, they

introduce a simple solution: after determining the lag length k of the VAR by use of an information

criterion, one estimates a VAR using lag length k + d with d being the maximum order of integration,

then performs Wald tests for Granger causality using k lags of explanatory variables. This approach

resolves asymptotic inference. Relevant to this paper, augmented Dickey-Fuller (ADF) tests fail to reject

the null hypothesis of nonstationarity in many of the time series considered. As a result, tests for Granger

causality are performed both in the traditional manner (the VAR still being estimated with k lags) as well

as using Toda and Yamamoto’s (1995) method where applicable.

Tables B2 and B3 in Appendix B synthesize the results of all Granger causality tests. The sample

period begins on May 7th, 2009 (the date on which the European Central Bank cut its main policy rate

target to 1%, rounding out the series of rate cuts in the United States, United Kingdom, and the Euro

area following the financial crisis onset) and continues through March 31st, 2016. The results in Table

B2 use the traditional approach to testing for Granger causality. In Table B3, Toda and Yamamoto’s

(1995) method (with d = 1) is used for testing Granger causality in all VAR’s in which an ADF test fails

to reject the null hypothesis of nonstationarity in at least one of the time series at the 5% confidence

level, and uses the traditional approach in remaining VAR’s. The two tables serve as a robustness check

on one another, as well as a basic indication of the extent to which nonstationarity might be affecting

the results of traditional Granger causality tests in this case. VAR’s are set up as in Equation (10), and
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resulting bivariate Granger causality results are reorganized in both tables to ease reading of relationships

between pairs of Libor rates. An “x” denotes Granger causality significant at the 5% confidence level. As

a concrete example, the “x” under the GBP-180 column and the EUR-Mean row in either table denotes

that in a VAR of 180-day-ahead mean rates among all three Libor rates, the Euribor mean Granger causes

the GBP Libor mean at a 5% significance level under the relevant testing procedure. The sections of

each table corresponding to tests of autocorrelation are left blank, as all series are autocorrelated. The

exception is the EUR-EUR section in Table B3, which is used as a marker to denote which results come

from VAR’s using Toda and Yamamoto’s (1995) method; a blue “O” signifies that Granger causality tests

for the corresponding pairing of distributional moment and term structure component are performed

using Toda and Yamamoto’s (1995) approach.

I note here some broad takeaways from Tables B2 and B3 in an attempt to summarize the results; this

is not meant to be comprehensive, but rather to draw attention to some important patterns that emerge.

The most basic trend to note in Tables B2 and B3 is the striking overall degree of interconnectedness

among the three Libor rates, present across varying distributional moments and term structure compo-

nents. It is immediately clear that – in addition to levels of mean expectations – combinations of higher

distributional moments and simple measures of the broader term structure bear relationships across rates

as well. In other words, the cross-rate dynamics are not thoroughly captured by simply examining the

levels of future mean expectations; there is a rich interplay among rates involving standard deviation,

skewness, and kurtosis, as well as measures of the slope and curvature of future paths.

USD Libor expectations contain the most consistent explanatory power across moments and term

structure components, particularly so in relation to GBP Libor rates. USD Libor expectations are found

to Granger cause GBP Libor expectations across both Tables B2 and B3 in 20 of 24 combinations of

distributional moment and term structure component, with the only exceptions being levels of skewness

and kurtosis 540 days ahead, Slope 2 for kurtosis, and Curvature for skewness. Similarly, the mean and

standard deviation of USD Libor expectations Granger cause those of Euribor expectations across all term

structure components except the Curvature of standard deviation; USD Libor contains little explanatory

power for Euribor in terms of skewness and kurtosis, however. There are a couple potential explanations

for the relatively great importance of USD Libor rate expectations to those for EUR and GBP Libor. It is

certainly possible that USD-denominated interest rates hold greater causal sway relative to alternative

interest rates; for example, Brusa, Savor, and Wilson (2016) find that Federal Reserve policy decision

announcements bear an outsized influence across global stock market risk premia, which is not true for

any other central bank they examine. It may also be true, however, that USD Libor expectations simply

serve as a stronger proxy for omitted macro variables, which in turn are linked causally to EUR and GBP

Libor expectations. Distinguishing between these explanations is beyond the scope of this paper, though
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the evidence of Brusa, Savor, and Wilson (2016) seems to imply the former explanation holds water.

While USD Libor rate expectations hold much explanatory power for EUR and GBP Libor expectations,

the converse is not true. In fact, Euribor expectations are statistically important precursors of USD

Libor expectations in only 2 out of 24 total pairings of moment and term structure component when

applying Toda and Yamamoto’s (1995) testing procedure. Similarly, while the levels of GBP Libor mean

expectations consistently Granger cause their USD Libor counterparts, higher distributional moments of

GBP Libor expectations bear little importance to USD Libor when following Toda and Yamamoto (1995).

On the whole, higher moments than the mean of USD Libor expectations are consistently not found to

be Granger caused by those of either EUR or GBP Libor rates, while it is of course important to note that

levels of mean expectations for GBP Libor do Granger cause USD Libor mean expectations.

EUR and GBP Libor expectations share clear relationships running in both directions, especially so for

means and standard deviations. The levels of mean expectations for GBP Libor Granger cause those for

Euribor across fixed horizons of 180, 360, and 540 days ahead. Additionally, while levels of GBP Libor

standard deviations are not very consistently related to those for Euribor, the slopes and curvature of

standard deviations over time are; so, while the actual levels of uncertainty in GBP Libor rates are less

reliably linked to levels of uncertainty in Euribor, the path at which GBP Libor uncertainty is evolving

does help predict the path of Euribor uncertainty. In the opposite direction, the standard deviation of

Euribor expectations Granger causes that of GBP Libor expectations across term structure components,

with the exception of the 180-day-ahead level. Mean expectations for Euribor have little predictive power

for GBP Libor expectations across term structure components.

5 Conclusion

This paper uses options on Libor futures for rates denominated in EUR, GBP, and USD in order to estimate

risk-neutral market-assigned pdf’s for future interest rates. The methodology is reviewed, and estimates

are applied to produce case studies of probability estimates as they evolve over important market events.

Distributional moments are compared across rates to study their interrelationships in a Granger causality

framework.

The case studies carried out in this paper elucidate the significant impact of specific market events on

market expectations for future interest rates by detailing precisely how expectations changed along the

full probability distribution. For example, while the mean expectation for USD-denominated Libor fell

upon news of the collapse of Lehman Brothers in September, 2008, the probability distribution did not

undergo a simple level shift; rather, probability moved toward the left tail and primarily out of the center

of the distribution, resulting not only in a lower mean expectation but also a higher standard deviation.
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The evolution of expectations for GBP-denominated Libor rates as BOE Governor Mark Carney stated

interest rates might remain low “for some time” provides evidence on the critical role of statements by

central bank authorities in shaping market beliefs.

Granger causality tests considering the future path of distributional moments across the three Libor

rates demonstrate the large extent to which expectations for the three rates are interrelated. The dynam-

ics among mean expectations for future interest rates do not fully capture the rich interconnectedness

among broader probabilistic expectations for these rates. I find generally that expectations for USD-

denominated Libor rates bear the most consistent predictive power across combinations of distributional

moment and term structure component for EUR and GBP Libor, while EUR and GBP Libor expectations

do not provide much consistent explanatory power for USD Libor. USD Libor holds consistent explana-

tory power for GBP Libor across mean, standard deviation, skewness, and kurtosis, while being linked

to Euribor primarily in mean and standard deviation. GBP Libor holds predictive power for mean levels

as well as the slope and curvature of standard deviation in Euribor expectations, while Euribor standard

deviation Granger causes that of GBP Libor across levels (excluding the shortest horizon of 180 days),

slope, and curvature.

Further research might build upon the Granger causality results established here with estimates of the

magnitude of various relationships, for example in a multivariate vector error correction model among

cointegrated series. Additionally, it would be useful to study the relationships of the distributional mo-

ment time series used in this paper with other economic variables of interest, including equity indexes or

exchange rates. Time series of distributional moments might be derived from calibrated real-world (i.e.

not risk-neutral) probability densities as well, as detailed in Ivanova and Gutiérrez (2014); it would be

instructive to test whether results in this paper are sensitive to the assumption of risk-neutrality. Finally,

further analysis might view the relationships among Libor rate expectations (and possibly other economic

variables) as they have evolved over time.
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Appendix A: Technical Appendix

Black (1976) Model

Conversion between prices and implied volatilities occurs through the Black (1976) model for pricing

options on futures contracts. For a put option, the Black (1976) price is equal to

P = e−rτ �KΦ(−d2)− FΦ(−d1)
�

,

where

d1 =
ln
�

F
K

�

+ σ2

2
τ

σ
p
τ

and

d2 =
ln
�

F
K

�

− σ2

2
τ

σ
p
τ

= d1−σ
p
τ .

Adding to prior notation, Φ(·) is the cumulative distribution of the standard normal, F is the futures

contract price, and σ is the implied volatility.

Relating Deltas and Strikes

A put option’s delta, ∆P , denotes the sensitivity of the option price to a change in the underlying futures

rate, or

∆P =
∂ P

∂ F
= e−rτ �Φ

�

d1
�

− 1
�

.

From this, one can solve for the strike of a put option given its delta as the following:

K = Feα ,

where

α=
σ2

2
τ− (σ

p
τ) Φ−1(erτ∆P + 1) .

The above formula makes clear the bounds on ∆P . The inverse of the standard normal cdf, Φ(·), can

only be evaluated on (0, 1). Therefore, it must be that 0 < (erτ∆P + 1) < 1, or −e−rτ < ∆P < 0.

Additionally, it is the case that
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lim
∆P →−e−rτ+

K =∞ ,

and

lim
∆P → 0−

K = 0 .

Because of this, when evaluating implied volatilities as a function of deltas I place the end points for

evaluation a small value above −e−rτ and a small value below 0.

Vega

An option’s vega, v, is the sensitivity of the option price to a change in implied volatility. Specifically, in

the case of a put option,

vP =
∂ P

∂ σ
= Fe−rτφ(d1)

p
τ ,

where φ(·) is the standard normal density function.

Proof of Equations (8) and (9)

As in the case of put options, we begin by describing the call option pricing function as

C(K , t, T ) = e−rτ Et[max(FT − K , 0)]

= e−rτ

∫ ∞

K

( f − K) πFT ,t( f ) d f .

Then, taking the derivative with respect to K using Leibniz’s rule for differentiating under an integral

yields

dC(K , t, T )
dK

= −e−rτ

∫ ∞

K

πFT ,t( f ) d f

= −e−rτ(1−ΠFT ,t(K))

= e−rτ(ΠFT ,t(K)− 1) .

Solving for ΠFT ,t(K),
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ΠFT ,t(K) = erτ dC(K , t, T )
dK

+ 1 ,

which is Equation (8). It is then straightforward that taking the derivative of Equation (8) with respect

to strike K yields Equation (9).

Distributional Moment Formulas

Continuous-case references used for calculating distributional moments are listed below. In practice, in-

tegrals are computed using the discrete-case equivalent via Equation (5) applied over all option strikes

evaluated in the course of interpolating and extrapolating option strikes and prices. Below, µX is equiva-

lent to Mean(X), and σX is the standard deviation of X, or the square root of Variance(X).

Mean(X): E [X ] =

∫

X

t πX (t) d t

Variance(X): E
�

(X −µX )
2
�

=

∫

X

(t −µX )
2 πX (t) d t

Skewness(X): E

�

�

X −µX

σX

�3
�

=
1

σ3
X

∫

X

(t −µX )
3 πX (t) d t

Kurtosis(X): E

�

�

X −µX

σX

�4
�

=
1

σ4
X

∫

X

(t −µX )
4 πX (t) d t
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Appendix B: Figures and Tables

Figure B1: Eurodollar Options Aggregate Open Interest

Figure B2: Eurodollar Options Aggregate Volume

30-day lagged moving average
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Figure B3: Eurodollar Options Aggregate Open Interest

By time to maturity

Figure B4: Eurodollar Options Aggregate Volume

By time to maturity
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Figure B5: Eurodollar Options Trading

By month of maturity
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Figure B6: PDF using Cross Validation for Smoothing Parameter - Short Sterling

Maturity = December 15, 2010

Figure B7: PDF using Cross Validation for Smoothing Parameter - Euribor

Maturity = December 13, 2010

Figure B8: PDF using Cross Validation for Smoothing Parameter - Eurodollar

Maturity = December 13, 2010
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Figure B9: PDF and Pricing Errors - Short Sterling

Maturity = December 15, 2010

Figure B10: PDF and Pricing Errors - Euribor

Maturity = December 13, 2010

Figure B11: PDF and Pricing Errors - Eurodollar

Maturity = December 13, 2010
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Figure B12: PDF and Pricing Errors - Short Sterling

Maturity = December 17, 2014

Figure B13: PDF and Pricing Errors - Euribor

Maturity = December 15, 2014

Figure B14: PDF and Pricing Errors - Eurodollar

Maturity = December 15, 2014
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Figure B15: Option-Implied Mean, by Days-to-Maturity
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Figure B16: Option-Implied Standard Deviation, by Days-to-Maturity
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Figure B17: Option-Implied Skewness, by Days-to-Maturity
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Figure B18: Option-Implied Kurtosis, by Days-to-Maturity
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Table B1: Maturity Date Conventions for March-Quarterly Futures and Options

Short Sterling Third Wednesday of the month

Euribor Two business days before the third Wednesday of the month

Eurodollar Two London bank business days before the third Wednesday of the month

Sources: Intercontinental Exchange and CME Group. Contract specifications for Short Sterling and Euribor

futures and options can be found on www.theice.com, and for Eurodollar futures and options on

www.cmegroup.com.
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Appendix C: The American Early Exercise Premium in Eurodollar Option

Prices

The American option early exercise premium is the premium paid for an American option compared

against an equivalent European option. The only difference in value between the American and the

European option in this case is the fact that the American option can be exercised at any time prior to

the expiration date, while the European option can only be exercised upon expiration. Barone-Adesi and

Whaley (1987) derive a method which can be used to estimate the early exercise premium embedded in

the price of an American option. This method, however, relies on the assumptions of the Black-Scholes

option pricing model, which include the assumption of geometric Brownian motion in the underlying

security and thereby a lognormal terminal distribution. The approach outlined in this paper does not

make such an assumption.

Melick and Thomas (1997) demonstrate that the upper bound on any American option early exercise

premium (considered multiplicatively) is equal to erτ. The intuition is that the greatest early exercise

premium comes for an option which will be exercised as soon as possible with near certainty; and, for

such an option, the price is simply the undiscounted expected payout (compare this against Equation (1),

in which the price of a European option is the discounted expected payout). Considering the analysis in

Section 4, the maximum USD-denominated risk-free rate used for discounting at 540 days ahead over the

sample period from May 7th, 2009 to March 31st, 2016 is just over 1%. Then, the maximum upper bound

on the difference between a European and American option price is about 1.5%. The multiplicative early

exercise premium will be smaller as options are less in-the-money, or in fact are out-of-the-money. In this

paper, I use only out-of-the-money option prices as model inputs. As the value of an out-of-the-money

option if exercised today is zero, the American price will certainly involve some degree of discounting

based on likely time to exercise. Therefore, the maximum daily upper bound on the early exercise

premium for Eurodollar options used in the analysis of Section 4 is certainly less than 1.5%.

While the relatively small bound on the early exercise premium points to a small impact on pdf’s

estimated from Eurodollar option prices, it ignores the interaction of option prices with the actual esti-

mation procedure. I therefore use Monte Carlo simulation to better understand the potential effect of

the American early exercise premium in Eurodollar option prices on estimated pdf’s. A set of European

option prices for a given pricing and maturity date can be estimated by assuming a basic functional form

for the early exercise premium and shocking observed American option prices based on the premium.

Characteristics of the pdf’s estimated from each set of option prices can then be compared in order to

infer the degree to which the early exercise premium might be affecting implied pdf’s.

In estimating European option prices, I work with the generous assumption that the daily upper
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bound for the early exercise premium of erτ is effective at-the-money. From here, the multiplicative

early exercise premium is linearly phased out over option strikes to reach 1 where the estimated cdf

reaches 2.5% for puts or 97.5% for calls (i.e. the early exercise premium is assumed to be zero for out-of-

the-money options where less than 2.5% probability is assigned to a positive option value at expiration).

European option prices are then estimated by multiplying observed American option prices by the inverse

of the corresponding premium.

I select all Wednesdays over the sample period from May 7th, 2009 to March 31st, 2016 for the

simulation option pricing dates, and I estimate fixed horizon pdf’s 540 days ahead as described in Section

2.6 using both observed option prices and simulated European option prices. I then calculate the mean,

standard deviation, (normalized) skewness, and (normalized) kurtosis of each pdf. Figure C1 shows

histograms of the percent differences in pdf moments, where positive (negative) values imply a higher

(lower) value using estimated European option prices.

Figure C1: Percent Differences in PDF Moments after Option Price Shocks

Figure C1 shows that the overall effects of even a generous specification for the early exercise pre-

mium are minor. Differences in the pdf mean are negligible, while differences in higher moments are all
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within small margins. It is not surprising that the standard deviation is consistently lower when using

estimated European option prices, or that the normalized skewness and kurtosis are consistently higher.

Because European option prices will be lower than American prices, and because out-of-the-money op-

tions are used as inputs, estimated probabilities will be less dispersed in order to match lower out-of-

the-money option prices. Further, as the early exercise premium falls for increasingly out-of-the-money

options, simulated price shocks will push prices increasingly downward nearer the money, implying less

probability mass near the center of the distribution relative to the tails in the case of hypothetical Eu-

ropean options. Finally, as skewness is normalized, a lower standard deviation will result in higher

skewness even if there is little to no change in non-normalized skewness. Table C1 below shows the

average and median percent differences between moments estimated from hypothetical European prices

and observed American prices, complementing Figure C1.

Table C1: Percent Differences in PDF Moments after Option Price Shocks

Mean Std Dev Skewness Kurtosis

Average Difference 7.24 e-06 -0.20 0.35 0.63

Median Difference 0.00 -0.17 0.29 0.53

Note: “Difference” is the percent difference between a given distributional moment as estimated from
hypothetical European option prices or observed American option prices.
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