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Abstract

This paper estimates a small New-Keynesian model with imperfect in-
formation and optimal discretionary policy using data for the Euro area.
The estimated model is used to: (1) compare the values of key parameters
concerning the strucutre of the economy and monetary policy targets with
those commonly used in calibrations. (2) assess the imperfect information
problem and the usefulness of monetary aggregates and unit labor costs as
information variables for monetary policy.
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1. Introduction

This paper estimates a small New-Keynesian model with imperfect information

and optimal discretionary policy using data for the Euro area. We think that our

exercise adds two useful elements to existing analyses.

First, while most available studies rest upon calibration, we use maximum

likelihood to estimate the structural parameters. As several quantitative predic-

tions of the model hinge on the value of some key parameters, e.g. the degree of

forward looking behavior in the output and inflation equations, it is important

to let the data “speak” about these magnitudes and to quantify the uncertainty

which surrounds them.

Second, most existing models neglect a role for imperfect information. This is

particularly troubling with the new keynesian model because one of its key vari-

ables, “potential output” (i.e. the flexible price level of output), is not directly

observable. This adds on top of the fact that information about several other

variables of interest (e.g. GDP or inflation in the current period) is usually avail-

able only with lags and subject to statistical revisions. Quantifying the relevance

of the imperfect information problem is an empirical challenge. We deal with this

issue in a consistent way by modeling the optimal processing of information by

the monetary authority, providing the policy maker with various indicators of the

variables of interest and letting the estimation determine the noisiness of each in-

dicator. In particular, monetary aggregates and a measure of unit labor costs are

considered as indicators of output, inflation and potential output. The estimates

determine the noisiness of each indicator and, eventually, allow us to evaluate

their information content and assess whether this information is welfare improv-

ing. These issues are distinct. In an economy with forward-looking agents the

additional information provided by the indicators does not necessarily increase the

policy maker’s welfare. This happens because better information about current

state variables may cause some forward-looking variables to be more responsive

to new information, increasing their volatility.

Previous analyses, most notably Ehrmann and Smets (2001), assess the effects

of imperfect information using a calibrated model. We address this empirical

question by estimating the structural parameters of our model, which include the

measurement errors that are present in the data, using the Kalman filter and data
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for the Euro area. Moreover, the joint presence of an optimization and a filtering

problem within the theoretical model is an important difference with respect to

Ireland (2001), where a small structural model for the US is estimated assuming

perfect information and an exogenous policy rule.

Our methodological strategy is the following. We specify a dynamic stochastic

monetary policy model of the “new keynesian” variety developed by e.g. Woodford

(1999) and Clarida, Gali and Gertler (1999). The model is then extended to

incorporate imperfect information, following a method proposed by Svensson and

Woodford (2002). The solution of this theoretical model maps the structural

parameters into a vector autoregression. We estimate these parameters using the

Kalman filter following a methodology proposed by Sargent (1989) and Ireland

(2001).

Our estimates suggest that inflation has a strong forward looking component,

while this is not true for output for which the backward looking component is more

important. The estimates for the weights in the monetary authority’s objective

function show that the weight attached to inflation is almost double than the

weight attached to the output-gap target and about four times higher than the

one attached to interest-rate-smoothing target. Moreover, the results reveal that

monetary aggregates contain little information about the state variables of interest

for the conduct of stabilization policy. The unit labor cost indicator, instead,

contains information that helps reducing the forecast error in the output gap, a

key non-observable variable in the new-keynesian model. This, in turn, increases

the policy maker’s welfare because, by allowing for a better identification of the

potential output shocks, leads to a smaller variability of inflation and output.

2. The model

We model policy by assuming that the central banks aims at minimizing the

intertemporal loss function

Λt = E[
∞X
τ=0

βτLt+τ | It] (2.1)
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where β ∈ (0, 1) is the intertemporal discount factor and period losses are given
by

Lt ≡ 1
2

£
(πt)

2 + λy(yt − ȳt)2 + λi(it − it−1)2
¤
.

where πt, yt , ȳt and it denote, respectively, inflation, output, potential output

and the nominal interest rate.

Our benchmark model, taken from Ehrmann and Smets (2001), consists of the

following structural equations:

yt = δyt−1 + (1− δ) yt+1|t − θ
¡
it − πt+1|t

¢
+ up,t (2.2)

πt = απt−1 + (1− α) πt+1|t + κ (yt − yt) + uc,t (2.3)

yt = ρyt−1 + uy,t (2.4)

mt = γ1mt−1 + γ2mt+1|t + γyyt − γiit + um,t (2.5)

wheremt is real money. There are four structural iid innovations in the model with

covariance matrix Σ2u: a preference shock up,t, a cost-push shock uc,t, a potential

output shock uy,t and a money demand shock um,t.

Information about the variables in the economy is obtained from the following

vector of measurables:

yot = yt−1 + vy,t (2.6a)

πot = πt + vπ,t (2.6b)

mo
t = mt + vm,t (2.6c)

xot = yt−1 − yt−1 + vx,t (2.6d)

where yot is the indicator output variable, given by a noisy observation on the pre-

vious period output level. This assumption models the fact that information on

output yt in a given quarter is not contemporaneously available and that, more-

over, output observations are subject to revisions, which justifies the existence of

noisy measurement. The indicators πot and m
o
t posit that inflation and real money

balances are observed contemporaneously, possibly with noise. Although no direct

role for money exist in this model, as it does not affect any of the payoff relevant

variables or their transmission mechanism, the monetary indicator may contain
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useful information on current output through the money demand equation (2.5),

which may help reducing the imperfect information problem. Similarly, the last

indicator, xot , is a noisy measure of the previous period output gap, given by a

lagged measure of real unit labor cost. Rotemberg and Woodford (1997) show,

among others, that such costs are proportional to the output gap. Measurement

errors contained in the vector v are assumed to be iid with covariance matrix Σ2v.

2.1. The Economy under a Discretionary Equilibrium

We focus on the discretionary (i.e. Markov perfect) equilibrium, whereby both

the strategy of both the policy maker and the agents are constrained to be func-

tions of the predetermined (natural) state variables alone (i.e. history-dependent

strategies are ruled out).1

To solve the above model it is convenient to rewrite the system in the state-

space form following a method by Svensson andWoodford (2000), defining the vec-

tor X 0
t ≡

h
yt−1 πt−1 mt−1 yt up,t uc,t um,t it−1 yt−1

i
of predetermined

state variables and the vector x0t ≡
h
yt πt mt

i
of non-predetermined (forward

looking) variables (see Appendix A).

Information is described by the set Jt ≡ {Zτ ,Ω; τ = t, t− 1, ..., 0} i.e. all
agents in the model are supposed to know the model parameters

Ω ≡ [α, β, δ, γ1, γ2, γy, γi,λy,λi,κ, θ, ρ,Σ2u,Σ2v]

and the history of the four observable variables (2.6), stacked in the vector Z 0t ≡
[yot ,π

o
t ,m

o
t , x

o
t ], up to and including period t.

We use the algorithms of Gerali and Lippi (2003) to solve for the optimal

Markov perfect policy (it = FXt|t) and to compute the equilibrium representation
of the model, i.e. the law of motion of the state variables (Xt), forward-looking

(xt) variables and the optimal prediction for Xt computed by the Kalman filter:

1Alternatively, the model could be solved for the optimal Ramsey policy, under the assump-
tion that the central bank can commit.
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Xt+1 = HXt + JXt|t + Cuut+1 (2.7a)

xt = GXt|t +G1(Xt −Xt|t) (2.7b)

Xt|t = Xt|t−1 +K[L(Xt −Xt|t−1) + vt] (2.7c)

where the matrices F,H, J, Cu, G,G
1, L and K depend on the primitive parame-

ters in Ω (see Svensson and Woodford, 2000).

The linear quadratic structure of this problem and the certainty equivalence

principle imply that the optimal interest rate rule in this model, it = FXt|t, is
a linear function of the estimate of the states which does not depend on the

uncertainty in the system. Of course uncertainty affects the way in which an

innovation in the observables is mapped into an updated estimate of the state

variables, which occurs through the Kalman gain matrix: K.

3. Bringing the model to the data

The evolution of the whole economic system (2.7) can be expressed in a compact

notation using the following vector autoregression representation:

Qt+1 = ÂQt + Ĝw1,t+1 (3.8)

where

Qt+1 ≡
"
Xt+1

Xt+1|t

#
Â ≡

"
H + JKL J (I −KL)
(H + J)KL (H + J) (I −KL)

#

w1,t+1 ≡
"
ut+1

vt

#
Ĝ ≡

"
Cu JK

0 (H + J)K

#

The endogenous variables are linked to the states Qt by: it

Zt

xt|t

 =
 FKL F (I −KL)
L+MKL M (I −KL)
GKL G (I −KL)

" Xt

Xt|t−1

#
+

 FK

MK + I

GK

 h vt i
(3.9)

The data used in the estimation are given by the 3-month interest rate, taken to
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be a noisy measure of the monetary policy control variable and the four observables

of the theoretical model, which are taken as noisy measures of the true (lagged)

output, inflation, money and the (lagged) output gap (hence d0t = [Z
0
t it]). From

the first and second row in (3.9):

dt = L̂Qt + w2,t (3.10)

w2,t ≡ M̂vt + et

where the matrix L̂ and M̂ are

L̂ ≡
"
L+MKL M(I −KL)
FKL F (I −KL)

#
and M̂ ≡

"
FK

MK + I

#

and the vector et ≡ [ 0 0 0 0 ei,t ]
0 is a vector of measurement errors in

the data. Since we already have measurement errors in the theoretical model

(the vector v), the measurement errors in e associated to the Z variables are

assumed to be identically zero to avoid redundancy. Instead, the introduction of

a measurement error for the interest rate is needed to avoid a stochastic singularity

problem, as the theoretical model predicts that the interest rate is a linear function

of the state variables. By introducing the measurement error ei,t we create a wedge

between the optimal rate predicted by the model and the actual rate recorded

in the data which makes estimation possible. The standard deviation of the

measurement error ei,t can be interpreted as a measure of the distance between

actual policy and the optimal one.

Equations (3.8)-(3.10) represent, respectively, a state space system to which

a Kalman filter can be applied to estimate the structural model parameters, Ω.

The basic insight rests on the fact that the solution of the theoretical model maps

the structural parameters Ω into the matrices Â, Ĝ, L̂ , M̂ and Σ2u and Σ2v which

fully characterize the system dynamics (3.8) and (3.10). Given this system, the

Kalman filter provides a convenient method to compute the likelihood function

associated to a vector of observations on dt. The estimation problem thus consists

in finding the vector of parameters Ω that maximizes the likelihood function. The

idea, originally due to Sargent (1989), McGrattan (1994) and Ireland (2001), is

illustrated in more detail in Appendix (B).
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3.1. Estimation results

The data used in the estimation of the model described by equations (3.8) and

(3.10) are the euro area counterparts of the variables in the vector Zt and it: out-

put, which is measured by real GDP, the inflation rate, measured by the quarterly

changes in the GDP deflator, real money, measured by the stock of M3 divided

by the GDP deflator, the (lagged) output gap indicator, measured by (lagged)

real unit labor costs and the nominal short-term interest rate. The data runs

from 1981:1 to 2002:3. Stationarity of the time series is achieved by means of the

Hodrick-Prescott filter with the only exception of the inflation rate for which we

used deviations from an annual rate of 2 per cent and the nominal interest rate

for which we used deviations from an annual rate of 4.1 per cent.2 A figure of the

detrended data is reported below.
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Figure 1: Detrended data

The likelihood function is constructed using the Kalman filter and is maxi-

mized with respect to the free parameters of the model. The discount factor in

the loss function, β, is set to 0.9949 implying a steady state real interest rate of

two per cent. The value was calibrated as the average three-month real interest

2The steady state interest rate is computed dividing the steady state inflation rate by the
discount factor.
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Table 1. Parameter estimates
Estimates Standard errors

λy 0.2457 0.0091
λi 0.4952 0.0059
δ 0.7293 0.0969
θ 0.1045 0.0034
α 0.5244 0.0028
κ 0.0032 0.0001
γ1 0.7965 0.0196
γ2 0.0527 0.0001
γy 0.0616 0.0009
γi 0.0094 0.0005
ρy 0.7663 0.0041
σu,p 0.0056 0.0001
σu,c 0.0013 0.0001
σu,y 0.0098 0.0004
σu,m 0.0038 0.0002
στ ,y 0.0196 0.0002
στ ,π 0.0012 0.0000
στ ,m 0.0006 0.0001
στ ,x 0.0086 0.0002
σe,i 0.0106 0.0000

rate between 1998 and 2002 a period in which annual inflation rate was fluctuating

around its steady state. The estimated parameters are reported in Table 1.3 All

the estimated parameters are statistically significant at conventional 5 per cent

confidence level.

According to the estimated weights in the loss function, the monetary author-

ity is more concerned with fluctuations in the inflation rate and the interest rate

than the output gap. These values differ substantially from the ones used in the

literature: for example in the benchmark calibration in Ehrmann and Smets the

weights are set to 1 and 0.1 for, respectively, the output gap and the changes in

the interest rate. Our estimates indicate a much smaller weight for the output

gap (0.25) and a greater weight for the interest rate term (0.5).

3The likelihood function is maximized using the algorithm csminwel.m written by C. Sims.
This routine is robust to discontinuities in the objective function although being a gradient-based
method.
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The estimates suggest that output exhibits a large degree of backwardness

(high δ) and a low sensitivity to changes in the expected real interest rate (small

θ). The first result contrasts with the estimates in Andres at al. (2001) who

suggest a larger degree of forwardness in the output equation. With respect to

the interest rate elasticity our value is smaller than the estimate in Andres at al.

(2001) and Smets and Wouters (2002).

With respect to the parameters of the New Phillips curve equation we find

a large degree of forwardness in inflation (α = 0.52), as in Gaĺi et al. (2000),

Andres at al. (2001) and Smets and Wouters (2002). The estimated value of the

elasticity of inflation to the output gap, κ, suggests a rather flat supply curve and

is close to the value in Smets and Wouters (2002).

The estimated money demand equation suggests a large degree of backward-

ness (large γ1) and a small interest rate elasticity. The long-run elasticity to

output and the interest rate are equal to, respectively, 0.38 and -0.06.

The estimates of the standard deviation of the structural shocks are small, with

innovations in potential output being the most volatile. The latter result is in line

with the empirical findings of Ireland (2001) for the United States and of Smets

and Wouters (2002) for the Euro area. The measurement errors in the observables

are also small. The variable which is measured with the highest precision is real

money (the standard deviation of the measurement error is 0.06 per cent) while

the variable which is measured with the largest errors is output (2.0 per cent).

The standard deviation of the measurement error in the interest rate, σei, is equal

to 1 per cent. The implications of these findings are discussed in Section 4.

As is the case for previous studies, the model forecasting performance within

sample is rather modest. About half of the cyclical variability in inflation and

real balances is captured, but much less is achieved for output (5 per cent) and

the interest rate (13 per cent).4 However the model performance with respect

to an unconstrained VAR is reasonable: the ratio between the likelihood of our

structural VAR and the likelihood of the corresponding unconstrained VAR is

0.83. This seems to suggest that a great portion of the cyclical volatility of these

variables is not easy to fit.

4The ratio between the standard deviation of the forecast errors in a given variable and the
standard deviation of that same variable is usually quite high, equal to 0.55 for inflation, 0.95
for output, 0.54 for real money, 0.78 for the real CLUP and 0.87 for the interest rate.
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Table 2. The optimal policy function

Coefficient Standard error

yt−1|t 0.49 0.06
πt−1|t 0.77 0.01
mt−1|t - -
yt|t -0.27 0.00
up,t|t 0.67 0.03
uc,t|t 1.39 0.16
um,t|t - -
it−1 0.61 0.01
yt−1|t - -

3.2. Analysis of the model

The estimated model is characterized by the optimal monetary policy rule it =

FXt|t, the coefficients of which are reported in the Table 2. The standard error are
computed by means of Monte Carlo methods. The optimal rule reacts strongly

to the cost-push shock which has important effects on inflation (also see Figure 5

below). The weight on lagged inflation is also large. The coefficient on potential

output is negative and significant: an increase in potential output forces the

central bank to accommodate the shock to stabilize inflation and the output gap.

The coefficients on lagged real money and the money demand shock are zero:

these two variables have no direct effect on the target variables. Therefore it is

optimal for the central bank not to react to them.

Figure 2 below reports the time series for the interest rate that is implied by

the optimal rule, together with 95 per cent confidence bands (dashed lines) and

the realized 3-month interest rate (solid line) over the estimation period. It shows

that the optimal rate implied by the theoretical model tracks the actual interest

rate on average. The latter, however, appears to be less volatile: the interest rate

was significantly higher than the optimal one in the 1993-99 period and below it

in the 2001-02 period.
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Optimal and realized short-term interest rate
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Figure 2

In order to have a more intuitive interpretation of the optimal monetary policy

rule reported in Table 2, we estimated a Taylor-type of rule with data simulated

using the model under the estimated coefficients reported in Table 1. This rule

constrains the control variable (the interest rate) to be a linear function of the

contemporaneous estimate of the output gap and inflation: it = φxxt|t + φππt|t.
The ordinary least square estimation explains about 80 per cent of the variability

of the optimal rule. The estimated coefficients are 0.6 on the output gap and 1.6

on inflation. These values are remarkably close to those originally proposed by

Taylor for the U.S. (0.5 and 1.5 for, respectively, the output gap and inflation).

The qualitative behavior of the estimated model can be described by means

of impulse responses to the different shocks. An innovation in potential output

(Figure 3) can be interpreted as a positive productivity shock which determines

a decrease in real marginal costs, and hence inflation, and an increase in output.

The central bank reduces the interest rate in order to increase output and stabilize

the output gap. The initial decrease in the output gap reduces inflation. Real

money increases as a consequence of the reduction in the interest rate and the

increase in output.
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Figure 3

A positive demand shock (Figure 4), which in standard sticky price models

is interpreted as a preference shock, increases output and the output gap and,

through the Phillips curve, inflation. The central bank increases the interest rate

to stabilize the target variables output gap and inflation. Real money increases

reflecting mainly the increase in output which is partially compensated by the

increase in the interest rate.
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Figure 4

A positive cost-push shock (Figure 5) increases inflation on impact. The re-

action of the monetary authority is to increase strongly the interest rate which

reduces output and the output gap. As a result real money decreases.
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Figure 5

It is important to underline that in response to all the shocks, the central bank

reacts gradually because changes in the interest rate are costly.
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Table 3. Information and forecast error about fundamental shocks
With Measurement Error Without Meas. Error

Indicator: ULC and Money ULC Money
{1} {2} {3} {4}

var
£
up,t − up,t|t

¤
0.316 0.319 0.316 0.316

var
£
uc,t − uc,t|t

¤
0.008 0.008 0.008 0.000

var
h
uy,t − uy,t|t

i
1.381 1.385 2.313 0.957

var
£
um,t − um,t|t

¤
0.007 0.141 0.007 0.001

4. The Role of Information

This section discusses the estimates of the measurement errors that are present

in the model (Σ2v) and then proceeds to assess the role of these errors in affect-

ing macroeconomic performance and the policy makers welfare. The estimates

reported above provide quantitative information on the extent of the imperfect

information problem in the model. Table 1 shows that the estimated measurement

errors pertaining to output, inflation, money and the output gap are significant.

The two largest errors pertain to output and the output gap, with standard de-

viation of respectively around 1.9 and 0.9 percent. This finding is not surprising

given that these two variables are the ones for which no contemporaneous infor-

mation is available. Much smaller measurement errors are computed for inflation

and the monetary indicator. This is consistent with the empirical observation

that information about these variables is available at higher frequency and that

they are subject to much smaller statistical revisions.

The Kalman filter provides a convenient way to assess the consequences of

these measurement errors for the information that the policy maker is able to

extract about the fundamental shocks that hit the economy and, consequently,

the true value of the state variables at each point in time. Column {1} of Table 3
reports the (unconditional) variance of the contemporaneous forecast errors about

the fundamental shocks that the agents in the model face when information is

processed optimally (using the Kalman filter) and both the monetary and the

unit labor cost indicators are used. It appears that the largest forecast errors

pertain to the innovations in potential output. This is partly due to the relatively

large size of the innovations hitting this variable (see Table 1) and partly to the
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relative noisiness of the unit labor cost indicator that is used to form a forecast

of this variable.

The other columns in this table analyze how the forecast errors change as we

vary the information available to agents. When the monetary indicator is taken

out of the vector of observables Zt, the forecast errors concerning the money

demand innovation obviously increase (they almost double, see column {2} but
the forecast errors about the innovations in output (the preference shock) and

potential output increase only by a tiny amount. This finding suggests that the M3

monetary aggregate contains relatively little information about the current and

potential output, while it contains information on the innovation in the demand

for real balances. This result is in stark contrast with the experiment reported in

column {3}, in which the unit labor cost indicator is dropped from the information
set of the policy maker. It appears that the forecast errors about potential output

are almost doubled, while the forecast errors in the other variables are essentially

unchanged.

Column {4} reports, as a benchmark of comparison, the variance of the fore-
cast errors that are produced by the model if there is no measurement error on

the vector of observables (i.e. when Σ2v = 0). It shows that even with perfect mea-

surement an incomplete information problem persists about actual and potential

output given the assumption that information on this variables is available only

with a lag. This benchmark shows that when the monetary indicator is used the

forecast errors on output are as small as they would be if there was no measure-

ment error on the lagged output indicator. Forecast errors about potential output

instead remain above this benchmark even when the unit labor cost indicator is

used (columns {1} and {2}).

4.1. Effects of information on outcomes and welfare

The forecast errors discussed above influence the unconditional variances of the

main variables in the model. Table 4 reports the variance of the three goal vari-

ables (output gap, inflation and interest rate changes) together with the uncon-

ditional value of expected losses. The four columns of Table 4 report the values

obtained under four alternative information assumptions. As before, the spirit of

the exercise is to use the estimated model to analyze how economic performance

(volatilities, welfare) changes in each of these scenarios.
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Table 4. Targets volatility and the value of losses

With Measurement Error
Indicators: ULC and Money ULC Money

{1} {2} {3}
var [yt − yt] 3.016 3.010 3.346
var [πt] 0.413 0.413 0.412

var [it − it−1] 0.175 0.173 0.081
Λt 237.2 236.6 244.3

The results for the benchmark case in which both the monetary and the unit

labor cost indicator used appear in column {1}. Let us compare the volatility
of the goal variables for this case with the ones which are obtained when no

monetary indicator is available and only the unit labor cost indicator is used.

As Table 3 showed, this variation in the information set causes forecast errors

about innovations in current and potential output to increase by a tiny amount.

This (small) worsening in the information about the fundamental shocks causes

monetary policy to be less active (smaller variability of interest rate changes) and

the output gap volatility to be smaller. No effect is detected on the volatility of

inflation. Smaller variances in two of the three goal variables lead to a moderate

decrease in the losses enjoyed by the policy maker. Hence, less information about

output innovations turns out to be good for welfare as it results in smaller volatility

of target variables.

Quantitatively more noticeable consequences emerge when the output gap in-

dicator is removed form the agent’s information set (column 3). In this case,

the greater noise surrounding the potential output indicator leads to a significant

reduction in monetary policy activism (as indicated by the smaller volatility of

interest rate changes) and to a significantly greater output gap volatility. Due

to the certainty equivalence feature of our problem, policy effects stemming from

imperfect information arise entirely from the way uncertainty influences the esti-

mates of the states (i.e. through the matrix K in the updating equation (2.7c)),

since the vector F of the optimal control rule (it = FXt|t) does not depend on
the uncertainty. As shown in the bottom line of the table, these changes increase

the losses of the policy maker in comparison to the case in which both indicators

are available. This finding indicates that the unit labor cost indicator is useful as

16



it allows the policy maker to implement a welfare superior stabilization policy.
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A. Appendix: State-space formulation of the ESM model

The model can be represented in state-space formulation:·
Xt+1
xt+1|t

¸
= A1

·
Xt
xt

¸
+A2

·
Xt|t
xt|t

¸
+Bit +

·
Cu
0

¸
ut+1

where the vector X 0
t ≡

£
yt−1 πt−1 mt−1 yt up,t uc,t um,t it−1 yt−1

¤
and

x0t ≡
£
yt πt mt

¤
denote, respectively, predetermined and non-predetermined

(forward looking) variables at time t and it is the instrument controlled by the
central bank.
The observables are stacked in the vector Zt ≡

£
yot πot mo

t xot
¤
according

to:

Zt = D
1

·
Xt
xt

¸
+D2

·
Xt|t
xt|t

¸
+ vt

and target variables are collected in the vector Yt ≡
£
yt − yt πt it − it−1

¤
:

Yt = C
1

·
Xt
xt

¸
+ C2

·
Xt|t
xt|t

¸
+ Ciit

Mapping the model of Section 2 into this formulation yields the following
matrices:

A1 =



0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 ρ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
− δ
1−δ

αθ
ξ

0 −θκ
ξ
− 1
1−δ

θ
ξ

0 0 0 1−α+θκ
ξ

− θ
ξ

0

0 − α
1−α 0 κ

1−α 0 − 1
1−α 0 0 0 − κ

1−α
1
1−α 0

0 0 γ2
γ1

0 0 0 − 1
γ1

0 0 −γy
γ1

0 1
γ1



,

where ξ ≡ (1− α)(1− δ)
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A2 = [0] , B =



0
0
0
0
0
0
0
1
0
θ
1−δ
0
γi
γ1



Cu =



0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



D1 =


1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 −1 0 0 0

 D2 = [0]

C1 =


0 0 0 −1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

 C2 = [0] Ci =


0
0
1
0



B. Appendix: Computing the likelihood function

[PRELIMINARY] In this section we describe how to compute the likelihood func-
tion for the model described in Section 2. The model, in its state-space represen-
tation, is defined by the following equations:

dt = L̂Qt + w2,t w2,t ≡ M̂vt

Qt+1 = ÂQt + Ĝw1,t+1
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w1,t+1 ≡
·
ut+1
vt

¸
where the first equation describe the law of motion of the unobserved states Qt+1
and the second equation is the observation equation linking the observed variables
dt to the states.
The vector of structural shocks ut and the measurement errors vt are assumed

to be independent i.i.d processes with covariance matrices Σ2u and Σ
2
v. The Kalman

filter consists in a system of recursive equations that allows to forecast the unob-
served state vector using the information contained in the observed variables.
The recursive system for computing the Kalman filter is given by

Qt+1|t = AQt|t−1 +Kt

¡
dt − dt|t−1

¢
Kt =

¡
AΣ2t|t−1C

0 +GV3
¢ ¡
CΣ2t|t−1C

0 + V2
¢−1

Σ2t+1|t =
¡
AΣ2t|t−1A

0 +GV1G0
¢−Kt

¡
AΣ2t|t−1C

0 +GV3
¢0

where the matrix Kt is defined as the Kalman gain and Σ2t+1|t is the covariance
matrix of the forecast of next period state vector Qt+1 as of time t. The matrices
V1, V2 and V3 are given by:

V1 = E
¡
w1,t+1w

0
1,t+1

¢
=

·
Σ2u 0
0 Σ2v

¸
(B.1)

V2 = E
¡
w2,tw

0
2,t

¢
= M̂E [vtv

0
t] M̂

0 = M̂Σ2vM̂
0 (B.2)

V3 = E
¡
w1,t+1w

0
2,t

¢
= M̂E

·
ut+1
vt

¸
v0tM̂

0 =
·

0

Σ2vM̂
0

¸
(B.3)

The prediction errors of the observed variables dt, which are used to compute
the likelihood function, are given by

at = dt − dyt|t−1 = dt − L̂Qt|t−1 (B.4)

and their covariance matrix by

E (ata
0
t) = CΣ

2
t|t−1C

0 + V2 = Ωt (B.5)
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Finally, the likelihood function is given by:

logL = −nT
2
ln (2π)− 1

2

TX
t=1

ln|Ωt|− 1
2

TX
t=1

a0tΩ
−1
t at (B.6)
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