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Abstract

We compare different methods for estimating forward-
looking output and inflation equations and show that
weak identification can be an issue in conventional GMM
estimation. GMM and maximum likelihood procedures that
impose the dynamic constraints implied by the forward-
looking relation on the instruments set are found to be
more reliable than conventional GMM. These “optimal
instruments” procedures provide a robust alternative to
estimating dynamic macroeconomic relations, and suggest
only a limited role for expectational terms.
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The basic framework for macroeconomic analysis has the structure of a

simple model consisting of a demand or “IS” equation, an inflation or

“AS” equation, and a monetary policy reaction function. Over the

years, this model has evolved from the static Keynesian model into a

micro-founded rational expectations model in which expectations play a

prominent role in the structural equations. Expectations of current

and future interest rates affect current aggregate demand, and

expectations of current and future aggregate demand affect current

inflation. This intertemporal specification of the basic framework,

often labeled as “New Keynesian,” purports to preserve the empirical

wisdom embodied in the older Keynesian tradition without sacrificing

the theoretical insights of modern dynamic macroeconomics.

The extent to which the New Keynesian model is able to replicate

key dynamic features of aggregate data, though, remains the subject of

much debate. There is a growing consensus that purely forward-looking

specifications generate counterfactual dynamics for output and

inflation. Some adjustment process must be added to the structural

equations in order to match the inertial responses of output and

inflation that are apparent in the data. While “hybrid” specifications

with both forward and backward looking components seem better suited

at characterizing actual dynamics, there is little agreement on the

relative role played by expectations (i.e., by the forward-looking

component) in the structural equations. Different empirical studies

have reached different conclusions concerning the importance of
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expectations of future interest rates and future demand in determining

the dynamics of current output and inflation.1

In this study we provide an explanation for the disparate nature of

the empirical results on forward-looking demand and inflation

relations. As in previous research, we document weak identification in

Generalized Method of Moments (GMM) estimation of these macroeconomic

relations. Weak instruments lead to GMM point estimates, hypothesis

tests, and confidence intervals that are unreliable. In an effort to

improve the small sample properties of GMM, we propose a GMM procedure

that, instead of instrumenting by means of simple linear projections

on the instrument set, uses projections that impose the dynamic

constraints implied by the forward-looking relation.

We label this approach to estimating forward-looking relations an

“optimal” instruments approach. Any forward-looking relation can be

expressed in reduced form, provided that a rational expectations

solution exists. The optimal instruments approach explicitly takes

into account the constraints placed on the reduced form by the posited

structural relation. Conventional GMM estimation, instead, generates

instruments simply by means of unconstrained linear projections on the

instruments set. This difference in constructing instruments is at the

root of the weak identification bias of conventional GMM estimation.

In Monte Carlo simulations we show that, in contrast to conventional

                                                                
1 For example, Galí and Gertler (1999) argue that expectations about current
and future demand pressures are the main determinant of current inflation,
with past inflation playing a relatively small role. Others, e.g. Fuhrer
(1997), have reached the opposite conclusion that the inertial or backward-
looking component, captured by past inflation, is very important in
explaining current inflation.
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GMM estimation, GMM estimation with optimal instruments produces

estimates that are properly centered around the true values.

The optimal instruments approach is typically used in maximum

likelihood (ML) estimation of forward-looking relations (see Anderson

and Moore 1985). Previous literature has shown that relative to

conventional GMM estimation, ML estimation provides small sample

estimates that are less biased, more efficient, and dynamically

stable. Indeed, in a weak identification context the extent to which

ML dominates conventional GMM is striking.2

For the appropriate choice of instruments, a maximum likelihood

estimator can be expressed as an equivalent instrumental variables

estimator. It is then not too surprising that in a weak identification

setting GMM estimation with optimal instruments inherits the

consistency feature of ML estimation. And in contrast to ML

estimation, GMM estimation does not require the assumption of

normality of the structural shocks.3

Practitioners now have several ways of testing for the presence of

weak instruments in GMM estimation. Given the variety of pathologies

that GMM exhibit in a weak identification setting, applied researchers

should use the available tools to assess whether weak instruments

potentially are a problem in a given application. If this is the case,

an optimal instruments approach provides a useful alternative to

estimating macroeconomic relations with expectational terms. After

all, the hallmark of these forward-looking models is precisely to

                                                                
2 See Furer, Moore, and Schuh (1995) and Fuhrer and Rudebusch (2003).
3 Still, to the extent that such an assumption is satisfied by the data, ML
estimates will be more efficient, since maximum likelihood exploits the
variance-covariance structure of the shocks.
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impose a constrained reduced form that is the rational expectation

solution to the relation at hand. The main message of the present work

is that optimal instruments are sufficiently strong to properly center

the distribution of estimates on the true values in a context where

conventional GMM procedures exhibit weak identification.

The rest of the paper proceeds as follows. Section I describes our

empirical specification. We consider an Euler equation that allows for

both expectational and inertial dynamics. Such a specification has

been applied – with modifications that are not crucial for the scope

of our analysis – to the estimation of both demand and inflation

equations in the previous literature. Euler equations for demand and

inflation are isomorphic, and the issues that arise in the estimation

of an Euler equation for demand and an Euler equation for inflation

are, to a large extent, the same. For this reason, at this stage we

consider a specification that, while stylized, is general enough to be

cast into both an “IS” and an “AS” framework. While we are ultimately

interested in demand and inflation relations, the Euler specification

that we consider can be readily extended to many other contexts, for

example to inventory or taxation dynamics.

Section II contrasts estimation results for our Euler specification

using different estimation techniques in Monte Carlo experiments. We

show that the weak-identification bias present in conventional GMM

estimation disappears once we use an optimal instruments approach.

Estimates obtained by GMM with optimal instruments are comparable to

the estimates obtained via maximum likelihood.

In Section III we bring our specification to actual data. We

estimate an Euler equation for output and an Euler equation for
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inflation using optimal instruments, and show that for both relations

the estimates indicate a larger inertial component than the one

suggested by conventional GMM estimation. In other terms, conventional

GMM estimates differ from optimal instruments estimates by giving

expectations a more significant role. Since there is evidence that

weak identification is an issue in GMM estimation of both the demand

and the inflation Euler equations, we are more confident in the

estimates generated via optimal instruments procedures. Section IV

provides some concluding remarks.

I. Model Specification

The structural relations in the new Keynesian model explicitly

represent the dependence of economic decisions upon expectations

regarding the future. These relations are derived from the first-order

conditions (Euler equations) that characterize optimal behavior of

households and firms, and they involve expectations about the future

evolution of endogenous variables. The fact that the relations have

microeconomic foundations is no guarantee that they are empirically

realistic. Indeed, a number of authors have shown that purely forward-

looking Euler equations for demand and inflation have a difficult time

to match key dynamic features of aggregate data (see, e.g., Estrella

and Fuhrer 2002). For this reason, “hybrid” relations have been

developed that depart from a purely forward-looking specification to

account for the inertial responses of demand and inflation.

Traditional explanations of inertia in demand and inflation rely on

some form of “backwardness” in spending and price-setting decisions.
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In this study, we consider a stylized hybrid Euler equation of the

form:

ttttttt xzzz εγµβµ ++−+= +− EE)( 11 , (1)

where z  and x  are the structural variable and the driving process in

the equation, respectively, and ε  is a shock to the equation. The term

1E +tt z  indicates the expectation formed at time t of future z  at time

1+t , and the term tt xE  the contemporaneous expectation of x  (that is,

we allow for the possibility that tx  does not belong to the information

set at time t). The parameter µ  is positive and bounded between 0 and

1, while β  is generally taken to be slightly less or equal to 1.

When equation (1) is interpreted as a demand relation, the parameter

γ  is negative, z  is a measure of the output gap, and x  is a real

interest rate. The inertia in the output gap, captured by 1−tz , helps to

explain the hump-shaped response of the output gap to policy shocks

observed in VAR studies. This inertial response is usually attributed

to habits in consumption expenditures (Fuhrer 2000) and to adjustment

costs in the rate of investment spending (Basu and Kimball 2003).

Instead, when equation (1) is interpreted as an aggregate supply

relation, the parameter γ  is positive, z  denotes inflation, and x  is

the output gap or another indicator of the intensity of demand in the

economy. Again, the reason for the presence of inflation inertia is

largely empirical and is motivated by some form of deviation from an

optimizing behavior.4

                                                                
4 The deviation from the optimizing behavior can take different forms. A
popular assumption is that a subset of firms set prices according to a



7

The crucial element in equation (1) that makes the relation

intertemporal is the expectation of future z , 1E +tt z . This expectation

enters the relation as a shifter, so that changes in 1E +tt z  shift the

relation between tz  and tx . According to the structural relation (1),

changes in 1E +tt z  are driven by changes in expectations about the future

path of the driving process x . This can be seen explicitly by

iterating equation (1) forward to obtain the following expression:
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tt uxzz ζζζγζζ , (2)

where 10 1 << ζ , 12 >ζ , and tu  is an error term. The parameters 1ζ  and

2ζ  are nonlinear functions of µ  and β  in equation (1). The relation

shows that tz  depends on its past (the inertial or backward-looking

component, 1−tz ) and on the present discounted stream of x . In other

words, current inflation is affected not only by the current output

gap, but also by expectations about future output gaps. Similarly,

current demand is affected by the entire term structure of (ex-ante)

real interest rates. Other things equal, the smaller µ  in equation

(1), the larger the impact of changes in expectations about the future

stream of x  on current z .

II. Investigating Estimation with Optimal Instruments

The Euler equation (1) in the previous section does not provide a

closed-form solution for tz . In order to obtain an expression for z  in

                                                                                                                                                                                                                
backward-looking rule of thumb (Galí and Gertler 1999). Fuhrer and Moore
(1995) appeal instead to Buiter and Jewitt’s (1985) relative wage hypothesis.
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reduced form, it is necessary to specify a law of motion for the

driving process x . We assume for the moment that we can write the law

of motion for x  and other variables affecting x  as follows:

 ttt AYX η+= −1 , (3)

where tX  is a column vector of variables at time t that includes x

and additional variables other than z , 1−tY  is a column vector of

lagged variables, written in first-order form, which includes all the

variables in X  and z , A is a matrix of coefficients, and η a column

vector of disturbances. Equation (3) describes the law of motion for x

and variables other than z  in a vector auto-regressive (VAR) form that

allows for potential feedback from lagged z . Given the specification

in (3), the reduced form for z  can be written as:

     ttt vYAbz += −1),,,( γβµ , (4)

where b  is a row vector of coefficients that depend on the parameters

in equations (1) and (3), and ν  is a disturbance term. The vector b

is the vector of reduced-form solution coefficients that constitute

the unique, stable rational expectation solution to the Euler equation

(1) given the auxiliary structure in (3).

In this context, an optimal instrument for z  or x  is an instrument

that is consistent with the posited model reduced-from structure given

by equations (3) and (4). Ordering z  first in the vector Y  and

denoting by B  a matrix that vertically stacks the vector b  in (4) and
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the matrix A in (3),5 the optimal time 1−t  instrument for itz +  (with

0≥i ) is given by:

1
1ˆ −

+
+ = t

i
z

o
it YBez , (5)

where the row vector ze  has the first element equal to 1 and all other

elements equal to zero. Similarly, the optimal time 1−t  instrument for

itx +  will be given by:

1
1ˆ −

+
+ = t

i
x

o
it YBex , (5’)

where now the vector xe  has a value of 1 in the same position where x

is located in Y , and zero elsewhere.

The optimal instruments in (5) and (5’) impose all the constraints

placed on the reduced form by the unique and stable closed-form

solution to the Euler equation (1), given the auxiliary structure (3).

As a result, the coefficients in B  are functions of the structural

parameters A , , , γβµ  in (1) and (3). In contrast, conventional GMM

estimation forms instruments for itz +  and itx +  simply by means of linear

unconstrained projections of these variables on 1−tY .

Note that the closed-form solution for tz  relies on a specific  law

of motion for x  and any other variable that influences x . In other

terms, a complete specification of the economic environment is needed

in order to perform optimal instruments estimation. While such a task

can be in principle daunting, it is still possible to estimate the

structural relation (1) via optimal instruments using a data-

                                                                

5 That is, the matrix B is written as 



=

A
b

B .
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consistent time series model of the driving process. This means that

the matrix A in equation (3), which describes the law of motion for

variables other than z, is left unrestricted. The coefficients in

the matrix can then be estimated by simple OLS and held fixed in

the estimation of (1) with optimal instruments. This general and

agnostic way of modeling the driving process in a structural relation

avoids the necessity of having a structural equation for each of the

variables that bear on the specific relation we want to estimate.

Specifying a data-consistent time series model for the driving process

also greatly reduces the risk that the estimates for the specific

relation we are interested in are driven by misspecification in other

relations.

A. Estimation Methodology

We here briefly describe the methods used to estimate the Euler

relation (1), and leave details to an appendix. The novel estimation

approach to equation (1) we propose in this paper is a GMM procedure

with optimal instruments. It is an iterative procedure that updates

the optimal instruments at each iteration. The procedure uses an OLS

estimate OLSA  of the matrix A in equation (3), with the estimate held

fixed during the iteration process. The procedure starts with initial

values for the parameters in (1). With these initial values and OLSA ,

we compute the closed-form solution for z  and, using expressions (5)

and (5’), optimal instruments for 1+tz  and tx . The instruments are then

used to estimate equation (1) via conventional GMM estimation. With

the estimates of (1) and OLSA , we compute a new closed-form solution
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for z  and new optimal instruments for 1+tz  and tx . The instruments are

then used to generate new estimates of (1) via conventional GMM. Such

a process is repeated until the estimates in (1) converge.

The other optimal instruments approach we consider is ML estimation,

which has been used in previous literature to estimate Euler relations

of the form of (1).6 The method computes the closed-form solution for

z  and applies maximum likelihood to the restricted reduced form (4)

and the auxiliary structure (3). As with the optimal GMM procedure, we

use an OLS estimate OLSA  of the matrix A in equation (3) when

computing the closed-form solution for z . The likelihood of the solved

model can be obtained for any set of parameters under the assumption

that the innovations in the model are joint normally distributed with

mean zero. If the normality assumption is satisfied, ML estimation

will be more efficient than GMM estimation with optimal instruments

when the disturbances are correlated across equations.

We compare optimal instruments estimation with conventional GMM

estimation. As already emphasized, GMM instruments for the

expectational terms in equation (1) without imposing any model

structure. In this context, GMM estimation is straightforward because

equation (1) is linear in variables and parameters.

B. Monte Carlo Results

 In what follows we investigate the behavior of optimal instruments

estimation and conventional GMM estimation in a Monte Carlo

experiment. We focus on the small sample behavior of these different

                                                                
6 See, e.g., Fuhrer and Rudebusch (2003).
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estimators under the assumption that the model is correctly specified.

Several applications of GMM estimation confront what is known as “weak

instruments” or “weak identification,” that is, instruments that are

only weakly correlated with the included endogenous variables. When

instruments are weak, the sampling distributions of GMM statistics are

in general non-normal and conventional GMM point estimates, hypothesis

tests, and confidence intervals are unreliable (see, e.g., Stock,

Wright, and Yogo 2002). The scope of our Monte Carlo experiment is to

ascertain the extent to which optimal instruments methods improve upon

conventional GMM estimation. The experiment is performed within a

setting that replicates some of the relevant features that the

econometrician has to confront when estimating an Euler equation for

aggregate demand or inflation on actual data.

Our experiment design consists of estimating the Euler equation (1)

augmented by the auxiliary structure (3) in a three-variable setup. We

use three variables because the New Keynesian framework, in its

simplest form, can be characterized by aggregate demand (expressed in

the form of an output gap), inflation, and a short-term interest rate.

Moreover, the dynamic interactions between the output gap, inflation,

and short-term rates have been explored extensively in the VAR

literature.

Using this three-variable setup, we perform two Monte Carlo

experiments that differ in the way in which the auxiliary structure

(3) is parametrized. We do so in order to cast the two experiments

within an “output Euler equation” and an “inflation Euler equation”

estimation framework, respectively. In the output Euler equation

experiment, z  is the output gap and x  a real interest rate, while the
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additional variable is given by inflation. In this case, the auxiliary

structure (3) consists of VAR equations for the real interest rate and

inflation. In the inflation Euler equation experiment, z  is inflation

and x  the output gap, while the additional variable is given by a

nominal interest rate. The auxiliary structure (3) then consists of

VAR equations for the output gap and the nominal interest rate.

The parameters for the auxiliary equations are estimated from actual

U.S. quarterly data over the period 1966 to 2001. The output gap is

the log difference between real GDP and a segmented deterministic

linear trend for log real GDP, with breakpoints in 1974 and 1995.

Inflation is the log change in the GDP chain-weighted price index, and

the nominal interest rate is the federal funds rate. The real interest

rate is then given by the difference between the federal funds rate

and next-period inflation.

The Euler equation (1) and the auxiliary structure (3) are used to

compute 1000 replications of simulated data for a sample size of 180,

with shocks drawn from a multivariate normal distribution with

variance-covariance matrix equal to the identity matrix, for different

values of the parameters in (1). Conventional GMM estimation of

equation (1) uses as instruments lags of each of the three variables.

We use the minimum lag-length for the instruments that allows to span

every realization of the endogenous variables given the assumed data-

generating process. The same lag length is used when we estimate the

auxiliary structure (3) as an unrestricted VAR in the context of

optimal instruments estimation.
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Table 1 summarizes the results for the “output Euler equation” Monte

Carlo experiment. We set the value of β  to 0.98 throughout, and

estimate the parameters µ  and γ  in the relation. The true value of γ

is set at –0.5, and we let µ  take the true values

[0.1,0.25,0.5,0.75,0.9]. The top panel of the table reports summary

statistics for estimates of µ . The true value, Tµ , is reported in the

second column, followed by the mean estimate, the median estimate, and

the standard deviation of the estimate. The bottom panel displays the

corresponding estimates of γ .

There are two key results that emerge from the table. The first is

that conventional GMM estimates of µ  are biased. GMM understates µ  by

about .18 when the true value is 0.9, and overstates µ  by about .12

when the true value is 0.1. In other terms, conventional GMM estimates

are biased towards 0.5 from either side of 0.5. In addition,

conventional GMM estimates of γ  are biased downward when the true

value of µ  is high. The bias is small for low values of µ  (i.e., when

the forward-looking component becomes more important). Estimates of µ

obtained via optimal instruments procedures, in contrast, are

generally unbiased. In particular, ML estimates are accurate

regardless of the value taken by µ . GMM with optimal instruments

performs equally well except when µ  is very small (µ =0.1). Still,

even in that circumstance the mean estimate of µ  is closer to the

actual value than the mean estimate of µ  obtained by conventional GMM.

The second result apparent in the table is that estimates obtained

via optimal instruments are not only more accurate, but also far more



15

efficient than conventional GMM estimates. The standard error for the

GMM estimates is usually twice as large as that for optimal

instruments estimates. Figures 1-3 illustrate the performance of

conventional GMM relative to optimal instruments methods for various

parameter values. Figures 1 and 2 show histograms of the parameter

distribution of µ  when µ  is equal to 0.25 and to 0.75, respectively.

Figure 3 shows histograms of γ  when µ  is equal to 0.5. Note that even

in this case in which the conventional GMM estimate of γ  is unbiased,

the gain in efficiency from using optimal instruments methods is

striking.

Table 2 summarizes the results for the “inflation Euler equation”

Monte Carlo experiment. In the experiment we set the value of β  to

0.98 throughout, and estimate the parameters µ  and γ  in the relation.

The true value of γ  is set at 0.10, and we let µ  take the true values

[0.1,0.25,0.5,0.75,0.9]. The table shows that conventional GMM

estimates of µ  exhibit a very pronounced bias. The GMM estimator

assigns equal weight to the forward and backward-looking components

whenever the true value of µ  is greater than 0.5. That is,

conventional GMM estimates of (1) do not assign a weight of more than

one half to the backward looking component on average even when such a

component is preponderant. The GMM estimator is somewhat better able

at recognizing a specification that places greater weight on the

forward-looking component (i.e., µ <0.5), but the estimates of µ  are

still biased toward 0.5. In addition, conventional GMM estimates of γ

are biased downward when the true value of µ  is high, with the bias

disappearing as µ  decreases.
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When compared to conventional GMM estimates, optimal instruments

estimates are much more accurate. The table shows that ML estimates

tend to be well centered across all values taken by µ . Estimates

obtained via GMM with optimal instruments are very similar to their ML

counterparts when µ  is high. The performance of GMM with optimal

instruments deteriorates somewhat for low values of µ . Then estimates

of γ  exhibit a downward bias, although estimates of µ  continue to be

much closer to the true value than the corresponding conventional GMM

estimates.

  It is interesting to note that, for the specification used in this

Monte Carlo exercise, when µ  is high optimal instruments estimates –

while unbiased – exhibit about the same degree of dispersion as

conventional GMM estimates. Instead, when µ  is equal to or is less

than 0.5, optimal instruments estimates become more efficient than

conventional GMM estimates. Figures 4-6 illustrate the performance of

conventional GMM relative to optimal instruments methods for various

parameter values. Figures 4 and 5 show histograms of the parameter

distribution of µ  when µ  is equal to 0.25 and to .75, respectively.

Figure 6 shows histograms of γ  when µ  is equal to 0.5.

Overall, the results of the two Monte Carlo exercises indicate that

estimates of the Euler equation (1) obtained using optimal instruments

procedures are more precise than conventional GMM methods. Maximum

likelihood and GMM with optimal instruments estimates are generally

unbiased and tend to behave reliably in a relevant sample size and

across a range of values of µ .
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C. Discussion

 The Monte Carlo experiments just described rule out by construction

model misspecification. As a result, the difference in estimates

obtained by conventional GMM versus optimal instruments methods is

driven entirely by finite-sample performance. For valid inference in

the context of equation (1), it is necessary to have a strong set of

instruments for both 1E +tt z  and tt xE .

Since the number of variables to be instrumented is greater than

one, simple first-stage F-statistics do not provide information about

the joint relevance of the instruments. However, Stock and Yogo (2003)

have developed a test based on Donald and Cragg’s (1993) multivariate

version of the F-statistic. Specifically, they consider a test of

whether the worst-behaved linear combination of the instruments

provides sufficient information about the included endogenous

variables in the GMM regression. While conservative, this approach is

tractable and critical values for the test have been tabulated.

The Stock and Yogo statistic for weak instruments provides evidence

that in our Monte Carlo exercises conventional GMM methods suffer from

weak identification. If one is willing to accept a bias as high as 20

percent of the inconsistency of ordinary least squares, then it is

possible to show that the average Stock and Yogo statistic is always

below the appropriate critical value for any parameter configuration

considered in Tables 1 and 2.7

                                                                
7 If one is willing to accept a bias as high as 30 percent, then we fail to
reject the hypothesis of weak instruments only when µ  is less than 0.5 in the
Monte Carlo experiments of Table 1 (output Euler equation).
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In sum, in our Monte Carlo experiments the inclusion of 1−tz  in

equation (1) makes the remaining instruments too weak to produce

unbiased estimates of µ  and γ  under conventional GMM estimation.

Instead, optimal instruments estimation methods, by imposing all the

constraints placed on the reduced form by the model, provide

sufficiently strong instruments to generate an unbiased distribution

of estimates in most circumstances.

III. Empirical Applications

In this section we compare estimates for the Euler equation (1) on

actual data using conventional GMM estimation and optimal instruments

methods. We estimate both an output Euler equation and an inflation

Euler equation. The sample period is 1996:Q1 to 2001:Q4. We use two

different measures for the output gap: (i) the deviation of log real

GDP from its Hodrick–Prescott (HP) filtered trend; and (ii) the

deviation of log real GDP from its segmented deterministic linear

trend, with breakpoints in 1974 and 1995. Inflation and interest rates

are as defined in the previous section. For the inflation Euler

equation, we also consider a system augmented by the inclusion of real

unit labor costs in the nonfarm business sector.8 In this four-variable

system, real unit labor costs replace the output gap as the driving

process in equation (1).

Conventional GMM estimation is conducted with an instruments set

consisting of four lags of each of the endogenous variables plus a

                                                                
8 Real unit labor costs are defined as unit labor costs in the nonfarm
business sector deflated by the nonfarm business sector implicit price
deflator.
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constant term.9 When performing optimal instruments estimation, the

unrestricted VAR for the auxiliary structure (3) has lag length of

four, also. Table 3 displays estimation results for the output Euler

equation. For each estimation method, the table reports two sets of

estimates according to the definition of the output gap that is being

used. Overall, lagged output appears to be an essential component

across all specifications and estimation methods. The estimate of µ  is

one half when using conventional GMM estimation, and it is somewhat

higher when optimal instruments methods are used. The real interest

rate coefficient estimates are economically minute, and statistical

significance is achieved in ML estimation only. Note that ML and

optimal instruments GMM estimates are very close, although standard

errors for the optimal instruments GMM method are large. These results

are similar to the findings of Fuhrer and Rudebusch (2003), who

compare conventional GMM and ML estimates for a richer specification

of the output Euler equation. Conventional GMM estimates center on a

larger forward-looking component than optimal instruments estimates,

but the link between output and current and future real interest rates

is largely missing.

Table 4 displays estimation results for the inflation Euler

equation. The table has entries also for the specification in which

real unit labor costs replace the output gap as the driving process in

(1).10 In this case, the instruments set for conventional GMM

                                                                
9 We use a Newey-West estimate of the weighting matrix with a lag length of 4.
10 In a micro-founded setup, the optimal price level is set as a markup over a
present discounted value of current and future marginal costs. Thus, the
driving process for inflation is better described by real marginal costs. The
conditions under which real marginal costs can be well approximated by a
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estimation comprises four variables, while the vector X  in the

auxiliary structure (3) used for the construction of optimal

instruments includes real unit labor costs, the output gap, and the

federal funds rate. Conventional GMM estimates are not particularly

encouraging for this simple specification of the inflation Euler

equation. GMM estimates suggest a larger forward-looking component

than optimal instruments estimates, but the link between inflation and

current and future activity, measured either by the output gap or by

real unit labor costs, is either insignificant or has the wrong sign.

Optimal instruments estimates have the correct sign for γ , although

the “demand pressure” coefficient is significant in one instance only.

Again, ML estimates and GMM with optimal instruments estimates are

extremely close.

Estimates in tables 3 and 4 are suggestive of the potential

differences between conventional GMM estimation and estimation with

optimal instruments. While the results are specific to the simplified

version of the Euler equation we have considered, it is important to

note that in this particular context weak identification is a feature

of conventional GMM estimation. It is indeed possible to show that the

Stock and Yogo test statistic for instrument relevance is well below

the critical value in all the conventional GMM estimates reported in

tables 3 and 4.11 Conventional GMM provides only weak instruments for

                                                                                                                                                                                                                
measure of the output gap are in fact restrictive. See Galí and Gertler
(1999).
11 Specifically, the estimated Stock and Yogo statistic is always below the
appropriate critical value when the bias is no more than 20 percent of the
inconsistency of OLS. This weak identification feature has already been noted
by Fuhrer and Rudebusch (2003) in the context of estimating an Euler equation
for ouput, and by Ma (2002) in the context of estimating an Euler equation
for inflation.
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1+tz  and tx , and such a feature will continue to persist for more

general specifications of (1) unless other variables explaining a

higher fraction of the joint variation in z  and x  can be found.

IV. Conclusions

Structural relations that explicitly represent the dependence of

economic decisions upon expectations regarding the future provide the

foundations of modern macroeconomic analysis. The degree to which

agents are forward-looking has important consequences for the analysis

of the character of optimal monetary policy.12 In this context, the

debate about a quantitatively realistic account of the monetary

transmission mechanism remains open. Different studies have reached

different conclusions about the importance of expectations of future

interest rates and demand pressures on the actual dynamics of output

and inflation.

This study compares different methods for estimating forward-

looking output and inflation equations. Such an exercise is relevant

because we suspect that the disparate nature of the extant empirical

findings is largely dependent on the estimation methodology. We show

that weak identification can be an issue in conventional GMM

estimation of output and inflation forward-looking relations. It is

thus important to resort to methods that are more reliable than GMM

when instruments are weak. We propose a GMM procedure that, instead of

                                                                
12 For example, with purely forward-looking specifications, the optimal
response to an inflationary cost-push shock usually requires policymakers to
initially allow for a spurt in inflation and later induce a period of
deflation. In the presence of a large inertial component in inflation, it is
instead optimal to bring inflation down gradually without allowing for an
initial “overshooting,” and endure a much larger contraction in output.
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instrumenting by means of simple linear projections on the instruments

set, uses projections that impose the dynamic constraints implied by

the forward-looking relation. This “optimal instruments” procedure is

similar to maximum likelihood estimation, and provides an alternative

to maximum likelihood when the assumption of normality of the

structural shocks is not satisfied in the data. In contrast to

conventional GMM estimation, we show that both GMM with optimal

instruments and maximum likelihood provide instruments that are

sufficiently strong to center the parameter distributions on the true

values when conventional GMM procedures exhibit weak identification.

Overall, our findings argue in favor of using optimal instruments

techniques when estimating output or inflation Euler relations.

Optimal instruments methods also provide a tighter test of the Euler

relation because they impose a constrained reduced form that is the

rational expectations solution to the relation at hand. In so doing,

optimal instruments methods exploit the most distinguishing feature of

dynamic rational expectations macro models.
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Table 1

Properties of ML and GMM Estimators: Output Euler Equation

ttttttt xzzz εγµµ ++−+= +− EE)98.0( 11

Panel A. Estimates of µ

Estimation Method Tµ Mean )ˆ(µ Median )ˆ(µ SE )ˆ(µ
GMM 0.90 0.72 0.72 0.22
GMM 0.75 0.69 0.69 0.18
GMM 0.50 0.51 0.51 0.13
GMM 0.25 0.33 0.33 0.14
GMM 0.10 0.22 0.23 0.16
ML 0.90 0.90 0.90 0.09
ML 0.75 0.76 0.75 0.06
ML 0.50 0.50 0.50 0.04
ML 0.25 0.26 0.26 0.06
ML 0.10 0.13 0.13 0.09
Optimal Inst. GMM 0.90 0.90 0.89 0.09
Optimal Inst. GMM 0.75 0.76 0.75 0.06
Optimal Inst. GMM 0.50 0.50 0.50 0.04
Optimal Inst. GMM 0.25 0.28 0.28 0.05
Optimal Inst. GMM 0.10 0.16 0.16 0.09

Panel B. Estimates of γ

Estimation Method Tµ Mean )ˆ(γ Median )ˆ(γ Median SE )ˆ(γ
GMM 0.90 -0.31 -0.29 0.25
GMM 0.75 -0.42 -0.41 0.28
GMM 0.50 -0.51 -0.51 0.26
GMM 0.25 -0.56 -0.56 0.21
GMM 0.10 -0.55 -0.54 0.20
ML 0.90 -0.51 -0.49 0.11
ML 0.75 -0.52 -0.51 0.11
ML 0.50 -0.51 -0.50 0.11
ML 0.25 -0.49 -0.48 0.12
ML 0.10 -0.47 -0.47 0.13
Optimal Inst. GMM 0.90 -0.51 -0.49 0.11
Optimal Inst. GMM 0.75 -0.52 -0.50 0.11
Optimal Inst. GMM 0.50 -0.50 -0.49 0.11
Optimal Inst. GMM 0.25 -0.45 -0.44 0.13
Optimal Inst. GMM 0.10 -0.42 -0.42 0.15

Note: The true data generating process has Tµµ = , which is displayed in the second column, and a

5.0−== Tγγ  in all cases.
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Table 2

Properties of ML and GMM Estimators: Inflation Euler Equation

ttttttt xzzz εγµµ ++−+= +− EE)98.0( 11

Panel A. Estimates of µ

Estimation Method Tµ Mean )ˆ(µ Median )ˆ(µ SE )ˆ(µ
GMM 0.90 0.50 0.50 0.15
GMM 0.75 0.51 0.51 0.17
GMM 0.50 0.51 0.50 0.16
GMM 0.25 0.38 0.35 0.20
GMM 0.10 0.28 0.25 0.22
ML 0.90 0.88 0.88 0.15
ML 0.75 0.76 0.73 0.16
ML 0.50 0.50 0.50 0.03
ML 0.25 0.26 0.26 0.09
ML 0.10 0.12 0.13 0.06
Optimal Inst. GMM 0.90 0.88 0.89 0.15
Optimal Inst. GMM 0.75 0.76 0.72 0.16
Optimal Inst. GMM 0.50 0.50 0.50 0.03
Optimal Inst. GMM 0.25 0.28 0.28 0.05
Optimal Inst. GMM 0.10 0.16 0.17 0.06

Panel B. Estimates of γ

Estimation Method Tµ Mean )ˆ(γ Median )ˆ(γ Median SE )ˆ(γ
GMM 0.90 0.02 0.02 0.05
GMM 0.75 0.03 0.04 0.07
GMM 0.50 0.10 0.10 0.10
GMM 0.25 0.13 0.12 0.09
GMM 0.10 0.13 0.13 0.07
ML 0.90 0.10 0.09 0.07
ML 0.75 0.11 0.09 0.07
ML 0.50 0.10 0.09 0.03
ML 0.25 0.08 0.08 0.04
ML 0.10 0.08 0.08 0.04
Optimal Inst. GMM 0.90 0.10 0.09 0.07
Optimal Inst. GMM 0.75 0.11 0.09 0.07
Optimal Inst. GMM 0.50 0.09 0.09 0.03
Optimal Inst. GMM 0.25 0.06 0.05 0.04
Optimal Inst. GMM 0.10 0.05 0.05 0.04

Note: The true data generating process has Tµµ = , which is displayed in the second column, and a

1.0== Tγγ  in all cases.
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Table 3

 Estimates of Output Euler Equation: 1966:Q1 to 2001:Q4

ttttttt xzzz εγµµ ++−+= +− EE)1( 11

Estimation
Method Specification µ )(µSE γ )(γSE

GMM HP 0.5033 0.0350 -0.0068 0.0141

GMM ST 0.5083 0.0319 -0.0100 0.0136

ML HP 0.5418 0.0313 -0.0214 0.0079

ML ST 0.5725 0.0313 -0.0295 0.0089

Optimal  Inst. GMM HP 0.5556 3.1843 -0.0193 0.7374

Optimal  Inst. GMM ST 0.5866 3.47055 -0.0279 0.8691

Note: The specification column provides the output trend procedure. HP is the Hodrick-Prescott filter of log real
GDP, and ST is a segmented deterministic linear trend for log real GDP.
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Table 4

 Estimates of Inflation Euler Equation: 1966:Q1 to 2001:Q4

ttttttt xzzz εγµµ ++−+= +− EE)1( 11

Estimation
Method Specification µ )(µSE γ )(γSE

GMM HP 0.3024 0.0986 -0.0517 0.0373

GMM ST 0.3167 0.1054  -0.0296 0.0215

GMM rulc 0.4076 0.0596 0.0293 0.0193

ML HP 0.5861 0.0304  0.0248 0.0170

ML ST 0.5906 0.0317  0.0206 0.0117

ML rulc 0.4772 0.0212 0.0335 0.0075

Optimal  Inst. GMM HP 0.5861 3.6211 0.0247 0.5906

Optimal  Inst. GMM ST 0.5868 3.2577 0.0114 0.6041

Optimal  Inst. GMM rulc 0.4773 1.4956 0.0334 0.4487

Note: The specification column provides the output trend procedure when the entry is HP or ST. HP is the Hodrick-
Prescott filter of log real GDP, and ST is a segmented deterministic linear trend for log real GDP. When the entry is
rulc, the specification replaces the output gap with real unit labor costs as the driving process in equation (1).



Figure 1
Monte Carlo Parameter Estimates of µ. True µ = 0.25

Conventional GMM Estimation

Optimal Instruments GMM Estimation

Maximum Likelihood Estimation



Figure 2
Monte Carlo Parameter Estimates of µ. True µ = 0.75

Conventional GMM Estimation

Optimal Instruments GMM Estimation

Maximum Likelihood Estimation



Figure 3
Monte Carlo Parameter Estimates of ?. True ? =µ = 0.50

Conventional GMM Estimation

Optimal Instruments GMM Estimation

Maximum Likelihood Estimation




