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The basic framework for macroeconom ¢ analysis has the structure of a
si npl e nodel consisting of a denand or “1S’ equation, an inflation or
“AS’ equation, and a nonetary policy reaction function. Over the
years, this nodel has evolved fromthe static Keynesian nodel into a
m cro-founded rational expectations nodel in which expectations play a
prom nent role in the structural equations. Expectations of current
and future interest rates affect current aggregate demand, and
expectations of current and future aggregate denmand affect current
inflation. This intertenporal specification of the basic franework,
often | abel ed as “New Keynesian,” purports to preserve the enpirica
wi sdom enbodi ed in the ol der Keynesian tradition wthout sacrificing
the theoretical insights of nodern dynam c nacroeconom cs.

The extent to which the New Keynesian nodel is able to replicate
key dynam c features of aggregate data, though, remains the subject of
much debate. There is a grow ng consensus that purely forward-1|ooking
speci fications generate counterfactual dynam cs for output and
inflation. Sone adjustnment process nmust be added to the structural
equations in order to match the inertial responses of output and
inflation that are apparent in the data. Wile “hybrid” specifications
with both forward and backward | ooki ng conponents seem better suited
at characterizing actual dynamcs, there is little agreenment on the
relative role played by expectations (i.e., by the forward-I| ooking
conponent) in the structural equations. Different enpirical studies

have reached different concl usions concerning the inportance of



expectations of future interest rates and future denmand in determ ning
the dynamics of current output and inflation.?

In this study we provide an explanation for the disparate nature of
the enpirical results on forward-|ooking demand and inflation
relations. As in previous research, we docunent weak identification in
Ceneral i zed Method of Monments (GW) estimation of these nmacroeconom c
relations. Weak instrunments lead to GW poi nt estinmates, hypothesis
tests, and confidence intervals that are unreliable. In an effort to
i nprove the small sanple properties of GW we propose a GW procedure
that, instead of instrunmenting by neans of sinple |inear projections
on the instrunent set, uses projections that inpose the dynam c
constraints inplied by the forward-|ooking relation

W | abel this approach to estimating forward-1ooking relations an
“optimal” instrunents approach. Any forward-|ooking relation can be
expressed in reduced form provided that a rational expectations
solution exists. The optimal instruments approach explicitly takes
into account the constraints placed on the reduced formby the posited
structural relation. Conventional GW estination, instead, generates
instruments sinply by neans of unconstrained |inear projections on the
instruments set. This difference in constructing instrunents is at the
root of the weak identification bias of conventional GW estination.

In Monte Carlo simulations we show that, in contrast to conventiona

! For exanple, Gali and Gertler (1999) argue that expectations about current
and future demand pressures are the main determinant of current inflation,
with past inflation playing a relatively small role. O hers, e.g. Fuhrer
(1997), have reached the opposite conclusion that the inertial or backward-
| ooki ng conponent, captured by past inflation, is very inportant in

expl ai ning current inflation.



GW estimation, GW estimation with optimal instrunents produces
estimates that are properly centered around the true val ues.

The optimal instrunents approach is typically used in maxi mum
l'i kel'ihood (M) estimation of forward-|ooking relations (see Anderson
and Moore 1985). Previous literature has shown that relative to
conventional GW estinmation, M estimtion provides snall sanple
estimates that are | ess biased, nore efficient, and dynamcally
stable. Indeed, in a weak identification context the extent to which
M. domi nates conventional GWis striking.?

For the appropriate choice of instrunents, a maxi numlikelihood
estimator can be expressed as an equival ent instrunmental variables
estimator. It is then not too surprising that in a weak identification
setting GW estimation with optimal instrunents inherits the
consi stency feature of M. estimation. And in contrast to M.
estimtion, G estinati on does not require the assunption of
normality of the structural shocks.?

Practitioners now have several ways of testing for the presence of
weak instrunents in GW estimation. Gven the variety of pathol ogi es
that GW exhibit in a weak identification setting, applied researchers
shoul d use the available tools to assess whet her weak instrunents
potentially are a problemin a given application. If this is the case,
an optimal instrunments approach provides a useful alternative to
estimati ng macroeconom c relations with expectational terns. After

all, the hallmark of these forward-Iooking nodels is precisely to

2 See Furer, Moore, and Schuh (1995) and Fuhrer and Rudebusch (2003).

3 Still, to the extent that such an assunption is satisfied by the data, M
estimates will be nore efficient, since maxi mum likelihood exploits the
vari ance-covari ance structure of the shocks.
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i npose a constrained reduced formthat is the rational expectation
solution to the relation at hand. The mai n nessage of the present work
is that optimal instrunments are sufficiently strong to properly center
the distribution of estimates on the true values in a context where
conventi onal GW procedures exhibit weak identification

The rest of the paper proceeds as follows. Section | describes our
enpirical specification. W consider an Euler equation that allows for
bot h expectational and inertial dynam cs. Such a specification has
been applied — with nodifications that are not crucial for the scope
of our analysis — to the estimation of both demand and inflation
equations in the previous literature. Euler equations for demand and
inflation are isonorphic, and the issues that arise in the estimation
of an Eul er equation for demand and an Eul er equation for inflation
are, to a large extent, the sane. For this reason, at this stage we
consider a specification that, while stylized, is general enough to be
cast into both an “1S” and an “AS” framework. Wiile we are ultimately
interested in demand and inflation relations, the Euler specification
that we consider can be readily extended to many other contexts, for
exanple to inventory or taxation dynam cs.

Section Il contrasts estimation results for our Eul er specification
using different estimation techniques in Monte Carl o experinents. W
show that the weak-identification bias present in conventional GW
estimati on di sappears once we use an optimal instrunents approach.

Esti mates obtained by GWMwith optinmal instruments are conparable to
t he estinmates obtained via maxi num i kel i hood.

In Section IIl we bring our specification to actual data. W

estimate an Eul er equation for output and an Eul er equation for
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inflation using optimal instrunents, and show that for both rel ations
the estimates indicate a |arger inertial conponent than the one
suggested by conventional GW estimation. In other terns, conventiona
GW estimates differ fromoptimal instruments estimates by giving
expectations a nore significant role. Since there is evidence that
weak identification is an issue in GW estimation of both the demand
and the inflation Euler equations, we are nore confident in the
estimates generated via optinmal instrunents procedures. Section IV

provi des sonme concl udi ng remarks.

| . Mbdel Specification

The structural relations in the new Keynesi an nodel explicitly
represent the dependence of econom c deci sions upon expectations
regarding the future. These relations are derived fromthe first-order
conditions (Eul er equations) that characterize optinmal behavior of
househol ds and firnms, and they invol ve expectations about the future
evol uti on of endogenous variables. The fact that the relations have

m croeconom ¢ foundations is no guarantee that they are enpirically
realistic. Indeed, a nunber of authors have shown that purely forward-
| ooki ng Eul er equations for demand and inflation have a difficult tine
to match key dynam c features of aggregate data (see, e.g., Estrella
and Fuhrer 2002). For this reason, “hybrid” relations have been

devel oped that depart froma purely forward-I|ooking specification to
account for the inertial responses of demand and inflation.

Tradi tional explanations of inertia in demand and inflation rely on

sone form of “backwardness” in spending and price-setting deci sions.



In this study, we consider a stylized hybrid Eul er equation of the

form
z, =ng_, +(b- MEz, +gE X +e, (1)
where z and X are the structural variable and the driving process in
t he equation, respectively, and € is a shock to the equation. The term

E,z,, indicates the expectation forned at tinme t of future z at tine
t+1, and the term E, X, the contenporaneous expectation of X (that is,

we allow for the possibility that X does not belong to the information
set at timet). The parameter m is positive and bounded between 0 and
1, while b is generally taken to be slightly less or equal to 1.

When equation (1) is interpreted as a denmand rel ati on, the paraneter

g is negative, z is a nmeasure of the output gap, and X is a rea
interest rate. The inertia in the output gap, captured by z,, helps to

expl ai n the hunp-shaped response of the output gap to policy shocks
observed in VAR studies. This inertial response is usually attributed
to habits in consunption expenditures (Fuhrer 2000) and to adjustnent
costs in the rate of investnment spending (Basu and Ki nball 2003).

I nstead, when equation (1) is interpreted as an aggregate supply
relation, the paraneter g is positive, z denotes inflation, and X is
t he output gap or another indicator of the intensity of demand in the
econony. Again, the reason for the presence of inflation inertiais
largely enpirical and is notivated by sone formof deviation froman

opti m zi ng behavior.*

4 The deviation fromthe optinizing behavior can take different fornms. A
popul ar assunption is that a subset of firns set prices according to a
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The crucial elenent in equation (1) that makes the relation

intertenporal is the expectation of future z, E,z,,. This expectation
enters the relation as a shifter, so that changes in E,z,, shift the
relation between z and X. According to the structural relation (1),

changes in E,z,, are driven by changes in expectations about the future

path of the driving process X. This can be seen explicitly by

iterating equation (1) forward to obtain the follow ng expression:

¥
- - [] i
Z :Zzlzt-l+gzzl(zl+22)a Z, EXi +U (2)
i=0

where 0<z,<1, z,>1, and u, is an error term The parameters z, and
z, are nonlinear functions of m and b in equation (1). The relation
shows that z depends on its past (the inertial or backward-I| ooking
conponent, z_,) and on the present discounted streamof X. In other

words, current inflation is affected not only by the current output
gap, but al so by expectations about future output gaps. Simlarly,
current denmand is affected by the entire termstructure of (ex-ante)

real interest rates. Qther things equal, the snaller m in equation

(1), the larger the inpact of changes in expectations about the future

streamof X on current z.

Il1. Investigating Estimation with Optimal Instrunments
The Eul er equation (1) in the previous section does not provide a

closed-formsolution for z. In order to obtain an expression for z in

backwar d-1 ooking rule of thunmb (Gali and Gertler 1999). Fuhrer and More
(1995) appeal instead to Buiter and Jewitt's (1985) relative wage hypot hesi s.
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reduced form it is necessary to specify a law of notion for the
driving process X. W assune for the nonent that we can wite the | aw
of nmotion for X and other variables affecting X as foll ows:

X, = AY,_, +h,, (3)
where X, is a colum vector of variables at time t that includes X

and additional variables other than z, Y., is a colum vector of

| agged variables, witten in first-order form which includes all the
variables in X and z, A is a matrix of coefficients, and h a colum
vector of disturbances. Equation (3) describes the |Iaw of notion for X
and variables other than z in a vector auto-regressive (VAR formthat
allows for potential feedback fromlagged z. G ven the specification
in (3), the reduced formfor z can be witten as:
z =b(mb,g,A)Y, , +v,, (4)

where b is a row vector of coefficients that depend on the paraneters
in equations (1) and (3), and n is a disturbance term The vector b
is the vector of reduced-form solution coefficients that constitute
t he uni que, stable rational expectation solution to the Eul er equation
(1) given the auxiliary structure in (3).

In this context, an optimal instrument for z or X is an instrunment
that is consistent with the posited nodel reduced-fromstructure given
by equations (3) and (4). Odering z first in the vector Y and

denoting by B a matrix that vertically stacks the vector b in (4) and



the matrix A in (3),° the optimal tine t-1 instrunment for z, (with
130) is given by:

2y =B, (5)
where the row vector €, has the first element equal to 1 and all other
el enents equal to zero. Simlarly, the optimal time t-1 instrunent for
X, Wl be given by:

%% =e,BY, (57)
where now the vector e, has a value of 1 in the sane position where X

is located in Y, and zero el sewhere.

The optimal instrunents in (5) and (5’) inpose all the constraints
pl aced on the reduced form by the unique and stabl e cl osed-form
solution to the Euler equation (1), given the auxiliary structure (3).
As a result, the coefficients in B are functions of the structura

paranmeters mb,g,A in (1) and (3). In contrast, conventional GW
estimation fornms instruments for z, and X, sinply by neans of |inear
unconstrai ned projections of these variables on Y,_,.

Note that the closed-formsolution for z relies on a specific |aw

of motion for X and any other variable that influences X. In other
ternms, a conplete specification of the econom c environnent is needed
in order to performoptimal instruments estimation. Wile such a task
can be in principle daunting, it is still possible to estimate the

structural relation (1) via optimal instrunments using a data-

ébu

Al

5 That is, the matrix Bis witten as B=

f
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consistent tine series nodel of the driving process. This neans that

the matrix A in equation (3), which describes the |aw of notion for

vari ables other than z is left unrestricted. The coefficients in
the matrix can then be estimated by sinple QLS and held fixed in
the estimation of (1) with optinmal instrunments. This general and
agnostic way of nodeling the driving process in a structural relation
avoi ds the necessity of having a structural equation for each of the
vari abl es that bear on the specific relation we want to estinmate.
Specifying a data-consistent tine series nodel for the driving process
al so greatly reduces the risk that the estimates for the specific
relation we are interested in are driven by m sspecification in other

rel ati ons.

A. Estimation Mt hodol ogy

We here briefly describe the nmethods used to estimate the Eul er
relation (1), and | eave details to an appendi x. The novel estimation
approach to equation (1) we propose in this paper is a GW procedure
with optinmal instruments. It is an iterative procedure that updates

the optimal instrunments at each iteration. The procedure uses an CLS

estimate A% of the matrix A in equation (3), with the estimate held

fixed during the iteration process. The procedure starts with initial

values for the paraneters in (1). Wth these initial values and A®®,

we conpute the closed-formsolution for z and, using expressions (5)

and (5 ), optimal instruments for z,, and X. The instrunents are then
used to estinmate equation (1) via conventional GW estimation. Wth

the estimates of (1) and A®°, we conpute a new cl osed-form sol ution
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for z and new optinmal instrunents for z, and X. The instrunents are

then used to generate new estinmates of (1) via conventional GYW Such
a process is repeated until the estimates in (1) converge.

The ot her optimal instruments approach we consider is M estimation,
whi ch has been used in previous literature to estimate Euler relations
of the formof (1).° The nmethod conputes the cl osed-form sol ution for
z and applies maxi mum likelihood to the restricted reduced form (4)
and the auxiliary structure (3). As with the optimal GW procedure, we

use an OLS estimate A%

of the matrix A in equation (3) when
conputing the closed-formsolution for z. The likelihood of the solved
nodel can be obtained for any set of parameters under the assunption
that the innovations in the nodel are joint normally distributed with
mean zero. If the normality assunption is satisfied, M estimation
will be nore efficient than GW estimation with optimal instrunents
when the di sturbances are correl ated across equati ons.

We conpare optinmal instrunments estinmation with conventional GW
estimation. As al ready enphasi zed, GW instrunents for the
expectational ternms in equation (1) wthout inposing any nodel

structure. In this context, GW estimation is straightforward because

equation (1) is linear in variables and paraneters.

B. Monte Carlo Results

In what foll ows we investigate the behavior of optimal instrunents
estimati on and conventional GW estimation in a Monte Carlo

experinment. We focus on the snmall sanple behavior of these different

6 See, e.g., Fuhrer and Rudebusch (2003).
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estimators under the assunption that the nodel is correctly specified.
Several applications of GW estinmation confront what is known as “weak
instrunents” or “weak identification,” that is, instrunents that are
only weakly correlated with the included endogenous vari abl es. Wen
instruments are weak, the sanpling distributions of GW statistics are
i n general non-normal and conventional GW point estimtes, hypothesis
tests, and confidence intervals are unreliable (see, e.g., Stock
Wight, and Yogo 2002). The scope of our Mnte Carlo experinent is to
ascertain the extent to which optimal instrunments nethods inprove upon
conventional GW estimation. The experinment is perforned within a
setting that replicates sone of the relevant features that the
econometrician has to confront when estinmating an Eul er equation for
aggregate demand or inflation on actual data.

Qur experinment design consists of estimating the Euler equation (1)
augnented by the auxiliary structure (3) in a three-variable setup. W
use three variabl es because the New Keynesian framework, in its
sinplest form can be characterized by aggregate demand (expressed in
the formof an output gap), inflation, and a short-terminterest rate.
Mor eover, the dynam c interactions between the output gap, inflation
and short-termrates have been explored extensively in the VAR
literature.

Using this three-variable setup, we performtwo Monte Carlo
experinments that differ in the way in which the auxiliary structure
(3) is paranmetrized. W do so in order to cast the two experiments
within an “out put Eul er equation” and an “inflation Eul er equation”
estimation framework, respectively. In the output Euler equation
experinent, z is the output gap and X a real interest rate, while the

12



addi tional variable is given by inflation. In this case, the auxiliary
structure (3) consists of VAR equations for the real interest rate and
inflation. In the inflation Euler equation experiment, z is inflation
and X the output gap, while the additional variable is given by a
nomnal interest rate. The auxiliary structure (3) then consists of
VAR equations for the output gap and the nomnal interest rate.

The paraneters for the auxiliary equations are estinmated from actua
U S quarterly data over the period 1966 to 2001. The output gap is
the log difference between real GDP and a segnented determnistic
linear trend for log real GDP, with breakpoints in 1974 and 1995.
Inflation is the |l og change in the GDP chai n-wei ghted price index, and
the nominal interest rate is the federal funds rate. The real interest
rate is then given by the difference between the federal funds rate
and next-period inflation.

The Euler equation (1) and the auxiliary structure (3) are used to
conpute 1000 replications of sinmulated data for a sanple size of 180,
wi th shocks drawn froma mnultivariate nornmal distribution with
variance-covariance matrix equal to the identity matrix, for different
val ues of the parameters in (1). Conventional GW estimation of
equation (1) uses as instrunents |ags of each of the three variabl es.
We use the mnimumlag-length for the instrunents that allows to span
every realization of the endogenous variables given the assuned dat a-
generating process. The sane lag length is used when we estimate the
auxiliary structure (3) as an unrestricted VAR in the context of

optimal instrunments estimation.
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Table 1 summarizes the results for the “output Eul er equation” Mnte
Carl o experinment. W set the value of b to 0.98 throughout, and
estimate the paraneters m and g in the relation. The true value of ¢
is set at -0.5, and we let m take the true val ues
[0.1,0.25,0.5,0.75,0.9]. The top panel of the table reports sumary

statistics for estimates of m. The true value, m, is reported in the

second columm, followed by the nean estinmate, the nedian estimte, and
the standard deviation of the estimate. The bottom panel displays the

correspondi ng estimates of g.

There are two key results that energe fromthe table. The first is

t hat conventional GW estinmates of m are biased. GW understates m by
about .18 when the true value is 0.9, and overstates m by about .12
when the true value is 0.1. In other terms, conventional GW esti nates

are biased towards 0.5 fromeither side of 0.5. |In addition

conventional GW estimates of g are biased downward when the true
value of m is high. The bias is small for |ow values of m (i.e., when
t he forward-| ooki ng conponent becones nore inportant). Estimates of m
obtained via optinmal instrunents procedures, in contrast, are

general |y unbiased. In particular, M. estinmates are accurate

regardl ess of the value taken by m. GWw th optimal instrunents
perforns equally well except when m is very small (nm=0.1). Still,
even in that circunstance the nmean estimate of m is closer to the
actual value than the nean estinmate of m obtained by conventional GW

The second result apparent in the table is that estinmates obtained

via optimal instrunents are not only nore accurate, but also far nore
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efficient than conventional GW estimates. The standard error for the
GW estimates is usually twice as large as that for optinal
instruments estimates. Figures 1-3 illustrate the performnce of
conventional GW relative to optinmal instrunents nmethods for various
par anet er values. Figures 1 and 2 show hi stograns of the paraneter
distribution of m when m is equal to 0.25 and to 0.75, respectively.
Figure 3 shows histograns of g when m is equal to 0.5. Note that even
in this case in which the conventional GW estimate of g is unbiased,
the gain in efficiency fromusing optinmal instrunents nethods is
striking.

Table 2 summarizes the results for the “inflation Euler equation”
Monte Carlo experinent. In the experiment we set the value of b to
0.98 throughout, and estimate the paraneters m and g in the relation.
The true value of g is set at 0.10, and we let m take the true val ues
[0.1,0.25,0.5,0.75,0.9]. The table shows that conventional GW
estimates of m exhibit a very pronounced bias. The GW esti mat or
assi gns equal weight to the forward and backward-| ooki ng conponents
whenever the true value of m is greater than 0.5. That is,

conventional GW estimates of (1) do not assign a weight of nore than
one half to the backward | ooki ng conponent on average even when such a
conponent is preponderant. The GW estimator is somewhat better able
at recogni zing a specification that places greater weight on the

f orwar d- 1 ooki ng conponent (i.e., m<0.5), but the estimates of m are
still biased toward 0.5. In addition, conventional GW estimates of ¢
are bi ased downward when the true value of m is high, with the bias

di sappearing as m decreases.
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When conpared to conventional GW estinmates, optinmal instrunments
estimates are nmuch nore accurate. The table shows that M. estinmates
tend to be well centered across all values taken by m. Estimates
obtained via GW w th optinmal instruments are very simlar to their M
counterparts when m is high. The performance of GW wi th opti nal
instruments deteriorates sonewhat for [ow values of m. Then estimates
of g exhibit a downward bias, although estimates of m continue to be
much closer to the true value than the correspondi ng conventi onal GW
esti mat es.

It is interesting to note that, for the specification used in this
Monte Carl o exercise, when m is high optimal instruments estinmates —
whi | e unbi ased — exhi bit about the sane degree of dispersion as
conventional GW estimates. Instead, when m is equal to or is less
than 0.5, optimal instruments estinmates becone nore efficient than
conventional GW estinmates. Figures 4-6 illustrate the performance of
conventional GW relative to optimal instrunents methods for various
paraneter values. Figures 4 and 5 show hi stograns of the paraneter
distribution of m when m is equal to 0.25 and to .75, respectively.

Figure 6 shows histograns of g when m is equal to 0.5.

Overall, the results of the two Monte Carl o exercises indicate that
estimates of the Euler equation (1) obtained using optimal instrunents
procedures are nore preci se than conventional GW net hods. Maxi mum
l'ikelihood and GWIwith optimal instrunments estimtes are generally
unbi ased and tend to behave reliably in a rel evant sanple size and

across a range of values of m.
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C. D scussion

The Monte Carlo experinments just described rule out by construction
nodel m sspecification. As a result, the difference in estinmates
obt ai ned by conventional GW versus optimal instrunments nethods is
driven entirely by finite-sanple performance. For valid inference in

t he context of equation (1), it is necessary to have a strong set of
instruments for both E,z, and EX.

Since the nunber of variables to be instrunented is greater than
one, sinple first-stage F-statistics do not provide information about
the joint relevance of the instrunents. However, Stock and Yogo (2003)
have devel oped a test based on Donald and Cragg’s (1993) nultivariate
version of the F-statistic. Specifically, they consider a test of
whet her the worst-behaved |inear conbination of the instrunents
provi des sufficient information about the included endogenous
variables in the GW regression. Wile conservative, this approach is
tractable and critical values for the test have been tabul at ed.

The Stock and Yogo statistic for weak instrunments provides evidence
that in our Monte Carl o exercises conventional GW net hods suffer from
weak identification. If one is willing to accept a bias as high as 20
percent of the inconsistency of ordinary |east squares, then it is
possi ble to show that the average Stock and Yogo statistic is always
bel ow the appropriate critical value for any paraneter configuration

considered in Tables 1 and 2.7

“1f oneis wWilling to accept a bias as high as 30 percent, then we fail to
rej ect the hypothesis of weak instrunents only when nm is less than 0.5 in the

Monte Carlo experinents of Table 1 (output Euler equation).
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In sum in our Monte Carlo experinments the inclusion of z, in

equation (1) nakes the remaining instrunents too weak to produce

unbi ased estimates of m and g under conventional GW estimation

Instead, optinmal instruments estimation nmethods, by inmposing all the
constraints placed on the reduced formby the nodel, provide
sufficiently strong instruments to generate an unbi ased distribution

of estimates in nost circunstances.

I11. Enpirical Applications

In this section we conpare estimates for the Euler equation (1) on
actual data using conventional GW estimation and optinmal instrunents
net hods. W estinmate both an output Euler equation and an inflation
Eul er equation. The sanple period is 1996: QL to 2001: Q4. W use two
different neasures for the output gap: (i) the deviation of log rea
GDP fromits Hodrick—Prescott (HP) filtered trend; and (ii) the
deviation of log real GDP fromits segnented determnistic |inear
trend, with breakpoints in 1974 and 1995. Inflation and interest rates
are as defined in the previous section. For the inflation Euler
equation, we also consider a system augnented by the inclusion of real
unit |abor costs in the nonfarm business sector.® In this four-variable
system real unit |abor costs replace the output gap as the driving
process in equation (1).

Conventional GW estimation is conducted with an instrunents set

consisting of four |ags of each of the endogenous variables plus a

8 Real unit labor costs are defined as unit |abor costs in the nonfarm
busi ness sector deflated by the nonfarm busi ness sector inplicit price
defl at or.
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constant term?® Wien performing optimal instrunents estinmation, the
unrestricted VAR for the auxiliary structure (3) has lag | ength of
four, also. Table 3 displays estimation results for the output Euler
equation. For each estimation nmethod, the table reports two sets of
estimates according to the definition of the output gap that is being
used. Overall, |agged output appears to be an essential conponent

across all specifications and estimation nethods. The estimate of m is

one half when using conventional GW estimation, and it i s somewhat
hi gher when optimal instrunments nethods are used. The real interest
rate coefficient estimates are economcally mnute, and statistical
significance is achieved in M. estimation only. Note that M. and
optimal instruments GW esti mates are very close, although standard
errors for the optimal instrunents GW nethod are |arge. These results
are simlar to the findings of Fuhrer and Rudebusch (2003), who
conpare conventional GW and M. estimates for a richer specification
of the output Euler equation. Conventional GW estinmates center on a
| arger forward-|ooking conponent than optimal instrunments estinates,
but the |ink between output and current and future real interest rates
is largely m ssing.

Table 4 displays estimation results for the inflation Eul er
equation. The table has entries also for the specification in which
real unit |abor costs replace the output gap as the driving process in

(1). In this case, the instrunents set for conventional GW

® W use a Newey-West estimate of the weighting matrix with a lag | ength of 4.
0 1n a micro-founded setup, the optimal price level is set as a markup over a
present discounted value of current and future margi nal costs. Thus, the
driving process for inflation is better described by real marginal costs. The
condi tions under which real narginal costs can be well approxi mted by a
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estimation conprises four variables, while the vector X in the
auxiliary structure (3) used for the construction of optinal
instruments includes real unit |abor costs, the output gap, and the
federal funds rate. Conventional GW estimates are not particularly
encouraging for this sinple specification of the inflation Eul er
equation. GW esti mates suggest a | arger forward-1|ooki ng conmponent
than optimal instrunments estinmates, but the |ink between inflation and
current and future activity, neasured either by the output gap or by
real unit |abor costs, is either insignificant or has the wong sign.
Optimal instrunments estinates have the correct sign for g, although
the “demand pressure” coefficient is significant in one instance only.
Again, M. estimates and GW wi th optimal instrunents estinmates are
extrenely cl ose.

Estimates in tables 3 and 4 are suggestive of the potential
di f ferences between conventi onal GW estimation and estimation with
optimal instruments. While the results are specific to the sinplified
version of the Eul er equation we have considered, it is inportant to
note that in this particular context weak identification is a feature
of conventional GW estinmation. It is indeed possible to show that the
Stock and Yogo test statistic for instrunent relevance is well bel ow
the critical value in all the conventional GW estinmates reported in

tables 3 and 4.' Conventional GW provides only weak instrunents for

measure of the output gap are in fact restrictive. See Gali and Certler
(1999).

11 gpecifically, the estimated Stock and Yogo statistic is always bel ow the
appropriate critical value when the bias is no nore than 20 percent of the

i nconsi stency of OLS. This weak identification feature has al ready been noted
by Fuhrer and Rudebusch (2003) in the context of estimating an Eul er equation
for ouput, and by Ma (2002) in the context of estimating an Eul er equation
for inflation.
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z,, and X, and such a feature will continue to persist for nore

general specifications of (1) unless other variables explaining a

hi gher fraction of the joint variation in z and X can be found.

I'V.  Concl usions
Structural relations that explicitly represent the dependence of
econom ¢ deci si ons upon expectations regarding the future provide the
f oundati ons of nodern nmacroeconom ¢ anal ysis. The degree to which
agents are forward-1ooking has inportant consequences for the anal ysis
of the character of optimal nonetary policy.* In this context, the
debat e about a quantitatively realistic account of the nonetary
transm ssi on mechani smremnmai ns open. Different studies have reached
di fferent conclusions about the inportance of expectations of future
interest rates and demand pressures on the actual dynam cs of out put
and inflation.

This study conpares different nmethods for estimating forward-
| ooki ng output and inflation equations. Such an exercise is rel evant
because we suspect that the disparate nature of the extant enpirica
findings is |largely dependent on the estimation nethodol ogy. W show
that weak identification can be an issue in conventional GW
estimation of output and inflation forward-looking relations. It is
thus inportant to resort to nmethods that are nore reliable than GW

when instrunents are weak. W propose a GW procedure that, instead of

12 For exanple, with purely forward-1ooking specifications, the optimal
response to an inflationary cost-push shock usually requires policymkers to
initially allow for a spurt in inflation and |ater induce a period of
deflation. In the presence of a large inertial conponent in inflation, it is
instead optimal to bring inflation down gradually wi thout allow ng for an
initial “overshooting,” and endure a nuch larger contraction in output.
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i nstrumenting by neans of sinple linear projections on the instruments
set, uses projections that inpose the dynam c constraints inplied by
the forward-1ooking relation. This “optimal instrunents” procedure is
simlar to maxi mum |ikelihood estimation, and provides an alternative
to maxi mum | i kel i hood when the assunption of normality of the
structural shocks is not satisfied in the data. In contrast to
conventional GW estimation, we show that both GWM w th opti nal
i nstrunments and nmaxi nrum | i kel i hood provide instrunments that are
sufficiently strong to center the paraneter distributions on the true
val ues when conventional GW procedures exhibit weak identification
Overall, our findings argue in favor of using optimal instrunments
t echni ques when estimating output or inflation Euler relations.
Optimal instrunments nethods also provide a tighter test of the Euler
rel ati on because they inpose a constrained reduced formthat is the
rational expectations solution to the relation at hand. In so doing,
optimal instruments nmethods exploit the nost distinguishing feature of

dynam c rational expectations nacro nodels.
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Tablel

Propertiesof ML and GMM Estimators. Output Euler Equation
Z =NE +(O-98' m)EtZt+1 +gEtXt +e

Pand A. Estimates of

Estimation Method m’ Mean(I7) Median (17) SE(17)
GMM 0.90 0.72 0.72 0.22
GMM 0.75 0.69 0.69 0.18
GMM 0.50 0.51 0.51 0.13
GMM 0.25 0.33 0.33 0.14
GMM 0.10 0.22 0.23 0.16
ML 0.90 0.90 0.90 0.09
ML 0.75 0.76 0.75 0.06
ML 0.50 0.50 0.50 0.04
ML 0.25 0.26 0.26 0.06
ML 0.10 0.13 0.13 0.09
Optimd Inst. GMM 0.90 0.90 0.89 0.09
Optima Inst. GMM 0.75 0.76 0.75 0.06
Optimal Inst. GMM 0.50 0.50 0.50 0.04
Optimal Inst. GMM 0.25 0.28 0.28 0.05
Optimal Inst. GMM 0.10 0.16 0.16 0.09

Panel B. Estimates of g

Estimation Method m' Mean(g) Median(§)  Median SE(G)
GMM 0.90 -0.31 -0.29 0.25
GMM 0.75 -042 -041 0.28
GMM 0.50 -0.51 -0.51 0.26
GMM 0.25 -0.56 -0.56 0.21
GMM 0.10 -0.55 -0.54 0.20
ML 0.90 -0.51 -0.49 0.11
ML 0.75 -0.52 -0.51 0.11
ML 0.50 -0.51 -0.50 0.11
ML 0.25 -0.49 -0.48 0.12
ML 0.10 -0.47 -0.47 0.13
Optimal Inst. GMM 0.90 -0.51 -0.49 0.11
Optimal Inst. GMM 0.75 -0.52 -0.50 0.11
Optimal Inst. GMM 0.50 -0.50 -0.49 0.11
Optimal Inst. GMM 0.25 -0.45 -0.44 0.13
Optimal Inst. GMM 0.10 -0.42 -0.42 0.15

Note: The true data generating process has m=m' , which is displayed in the second column, and a

g=g' =-05 inall cases.
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Table?2

Propertiesof ML and GMM Estimators: Inflation Euler Equation

Z =g, +(0-98‘ n’»EtZ’Hl +gEtXt +e

Pand A. Estimates of

Estimation Method m’ Mean(I7) Median(r7) SE(I7)
GMM 0.90 0.50 0.50 0.15
GMM 0.75 0.51 051 0.17
GMM 0.50 0.51 0.50 0.16
GMM 0.25 0.38 0.35 0.20
GMM 0.10 0.28 0.25 0.22
ML 0.90 0.88 0.88 0.15
ML 0.75 0.76 0.73 0.16
ML 0.50 0.50 0.50 0.03
ML 0.25 0.26 0.26 0.09
ML 0.10 0.12 0.13 0.06
Optimal Inst. GMM 0.90 0.88 0.89 0.15
Optimal Inst. GMM 0.75 0.76 0.72 0.16
Optimal Inst. GMM 0.50 0.50 0.50 0.03
Optimal Inst. GMM 0.25 0.28 0.28 0.05
Optimal Inst. GMM 0.10 0.16 0.17 0.06

Panel B. Estimates of g

Estimation Method m Mean(g) Median(d)  Median SE(§)
GMM 0.90 0.02 0.02 0.05
GMM 0.75 0.03 0.04 0.07
GMM 0.50 0.10 0.10 0.10
GMM 0.25 0.13 0.12 0.09
GMM 0.10 0.13 0.13 0.07
ML 0.90 0.10 0.09 0.07
ML 0.75 0.11 0.09 0.07
ML 0.50 0.10 0.09 0.03
ML 0.25 0.08 0.08 0.4
ML 0.10 0.08 0.08 0.4
Optimal Inst. GMM 0.90 0.10 0.09 0.07
Optima Inst. GMM 0.75 0.11 0.09 0.07
Optima Inst. GMM 0.50 0.09 0.09 0.03
Optimal Inst. GMM 0.25 0.06 0.05 0.04
Optimal Inst. GMM 0.10 0.05 0.05 0.04

Note: The true data generating process has m= m' , whichis displayed in the second column, and a

g=g' =0.1 inall cases.
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Table3

Estimates of Output Euler Equation: 1966:Q1 to 2001:Q4
Z =N, +(1' m)Et Ziq +gEtXt +e

Estimation

Method Specification m SE(mm) g SE(9)
GMM HP 0.5033 0.0350 -0.0068 0.0141
GMM ST 0.5083 0.0319 -0.0100 0.0136
ML HP 0.5418 0.0313 -0.0214 0.0079
ML ST 0.5725 0.0313 -0.0295 0.0089
Optima Inst. GMM HP 0.5556 3.1843 -0.0193 0.7374
Optima Inst. GMM ST 0.5866 3.47055 -0.0279 0.8691

Note: The specification column provides the output trend procedure. HP is the Hodrick-Prescott filter of log real
GDP, and ST is a segmented deterministic linear trend for log real GDP.
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Table4

Estimates of Inflation Euler Equation: 1966:Q1 to 2001: Q4
Z =N, +(1' m)Et Ziq +gEtXt +e

Estimation

Method Specification m SE(Im) g SE(9)
GMM HP 0.3024 0.0986 -0.0517 0.0373
GMM ST 0.3167 0.1054 -0.0296 0.0215
GMM rulc 0.4076 0.0596 0.0293 0.0193
ML HP 0.5861 0.0304 0.0248 0.0170
ML ST 0.5906 0.0317 0.0206 0.0117
ML rulc 04772 0.0212 0.0335 0.0075
Optimal Inst. GMM HP 0.5861 36211 0.0247 0.5906
Optima Inst. GMM ST 0.5868 3.2577 0.0114 0.6041
Optimal Inst. GMM rulc 04773 1.4956 0.0334 0.4487

Note: The specification column provides the output trend procedure when the entry isHP or ST. HP is the Hodrick-
Prescott filter of log real GDP, and ST is a segmented deterministic linear trend for log real GDP. When the entry is
rulc, the specification replaces the output gap with real unit labor costs as the driving processin equation (1).
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Figurel
Monte Carlo Parameter Estimates of 1. True u = 0.25
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Figure2
Monte Carlo Parameter Estimates of 1. True u = 0.75
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Figure3
Monte Carlo Parameter Estimates of ?. True ? =y = 0.50
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