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ABSTRACT

Simon’s and Theil’s certainty equivalence property justifies a conve-
nient algorithm for solving dynamic programming problems with quadratic
objectives and linear transition laws: first, optimize under perfect foresight,
then substitute optimal forecasts for unknown future values. A similar de-
composition into separate optimization and forecasting steps prevails when
a decision maker wants a decision rule that is robust to model misspecifi-
cation. Concerns about model misspecification leave the first step of the
algorithm intact and affect only the second step of forecasting the future.
The decision maker attains robustness by making forecasts with a distorted
model that twists probabilities relative to his approximating model. The
appropriate twisting emerges from a two-player zero-sum dynamic game.

Note: This paper was prepared for a conference at the Federal Reserve Board on March

26–27, 2004 to honor the work of our friends Dale Henderson, Richard Porter, and Peter

Tinsley. An earlier version of this paper was presented at a conference to honor the memory

of Henri Theil.
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1. Certainty equivalence and rational expectations

Lucas and Sargent (1981) attributed to Simon’s (1956) and Theil’s (1957) certainty equiv-

alence principle an important role in developing applied dynamic rational expectations

models. Two of the three examples in Lucas’s Critique (1976) and all but one of the pa-

pers in Lucas and Sargent (1981) assumed environments for which certainty equivalence

prevails. By sharply delineating the two steps of (1) optimizing for a given set of expec-

tations and (2) forming expectations optimally, certainty equivalent problems formed a

perfect environment for extracting the methodological and econometric lessons of rational

expectations.1 Two of the most important of these were : (a) how rational expectations

imposes a set of cross-equation restrictions that link the parameters of an optimal decision

rule to laws of motion for variable that influence a decision maker’s payoffs (e.g., prices),

but that are beyond his control;2 and (b) how the concept of Granger-causality, based

as it is on a prediction-error criterion, can guide the empirical specification of variables

that belong on the right side of decision rule because they help predict those influential

variables. Environments for which certainty equivalence holds are ones for which it is

easiest to compute decision rules analytically. That has facilitated formal analysis as well

as numerical computation.3 Finally, for some important applications, certainty equivalent

environments are benchmarks against which departures have been measured.4

1 The literatures on applied dynamic economics and macroeconomics before Muth were almost ideally
set up for application of the certainty equivalence principle. The standard practice then was to apply
nonstochastic optimization problems, then to supplement the solution with a theory about expectations.

2 This is the Lucas critique.
3 Many papers in the real business cycle literature have approximated the solutions to optimization

problems for which certainty equivalence does not obtain with related problems in which it does.
4 A leading example occurs in the precautionary savings literature, which by perturbing a linear quadratic

benchmark alters the pure ‘permanent income’ model of consumption to induce an extra source of saving
from the extra curvature of the marginal utility of consumption.
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2. Model uncertainty

As in a rational expectations model or the subgame perfect equilibrium of a game, the

decision maker envisioned in Simon’s and Theil’s analysis experiences no uncertainty about

the specification of his dynamic model . He knows the model up to the realization of a

Gaussian random disturbance. But in practice a decision maker could find himself knowing

less, like econometricians whose finite data sets expose them to doubts provoked by their

statistical specification tests.

Diverse literatures on ‘uncertainty aversion’ and ‘robustness’ consider decision makers

who do not ‘know the model’. They make decisions knowing at best a set of models. Such

agents are inspired either by the axioms of Gilboa and Schmeidler (1989) or their desire

for a decision rule that is robust to misspecified model dynamics (e.g., Zhou, Glover, and

Doyle (1996)) to choose a decision rule from a systematic worst-model analysis of alterna-

tive rules. These literatures represent model uncertainty by having a decision maker retain

a set of models that he refuses to reduce to one by the Bayesian device of assigning proba-

bilities over models in the set. This non-Bayesian decision maker behaves as someone who

maximizes expected utility while assuming that, given his decision rule, a perverse nature

chooses the worst from within his set of models. The literature on robustness shows how

such min-max behavior promotes a decision rule that is robust to model misspecification.

The ignorance that is called uncertainty in these literatures on uncertainty aversion

and robustness is evidently worse than not knowing realizations from a known probability

distribution, the subject of Simon’s and Theil’s certainty equivalence. Nevertheless, a

remarkable and useful version of certainty equivalence prevails when a decision maker

expresses his fear of model misspecification by wanting good decisions across a set of models

near his approximating model.5 The structure of this modified certainty equivalence result

parallels that for ordinary certainty equivalence. It too sharply divides decision making

into separate phases of first optimizing given beliefs, then forming beliefs. The first stage

turns out to be identical to that for Simon’s and Theil’s setting. But in the second stage,

the decision maker purposively distorts beliefs relative to his approximating model in order

to achieve robustness. The resulting form of certainty equivalence preserves many of the

5 This insight began with Jacobson (1973) and was also developed by Whittle (1982, 1999), Başar and
Bernard (1995), and Hansen and Sargent (1995, 2004).
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analytical conveniences of Simon’s and Theil’s result. It also sheds light on the kind

of precaution that is induced by a concern about model misspecification. In addition,

it provides underpinnings for a Bayesian rationalization of the decision made by a robust

decision maker. The certainty equivalence representation exposes a distorted law of motion

in terms of which the robust decision maker behaves as though he were a Bayesian.

3. Ordinary certainty equivalence

3.1. Notation and setup

For any vector y, let ys
t denote the history from t to s. If a subscript is omitted, we take it

to be zero. If a superscript is omitted, we take it to be +∞. Thus, yt is the history from

0 to t, and yt is the future from t to +∞.

An exogenous component zt of a state vector yt =
[

xt

zt

]
has transition law

zt+1 = f (zt, εt+1) (3.1)

where εt+1 is an i.i.d. sequence of random vectors with cumulative distribution function

Φ. The endogenous component xt is partially influenced by the decision maker’s control

ut and has a transition law

xt+1 = g (xt, zt, ut) . (3.2)

The decision maker evaluates stochastic processes {xt, zt, ut}∞t=0 according to

E

[ ∞∑
t=0

βtr (yt, ut) |y0

]
(3.3)

where β ∈ (0, 1), E(·)|yt is the mathematical expectation conditioned on yt ≡ (xt, zt),

and ut is required to be a measurable function of yt. The decision maker chooses ut to

maximize (3.3) subject to (3.1) and (3.2). The solution is a decision rule

ut = h (xt, zt) . (3.4)

Along with Simon (1956) and Theil (1957), throughout this paper we use

Assumption 1: The one-period return function r is quadratic, e.g., r(y, u) = −y′Qy −

u′Ru where Q,R are both positive semidefinite matrices; f and g are both linear; and Φ

is multivariate Gaussian with mean zero and identity covariance matrix.
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Simon and Theil showed that under Assumption 1 the solution of the stochastic opti-

mization problem of maximizing (3.3) subject to (3.2) and (3.1) has a special structure. In

particular, the problem can be separated into two parts (notice that only (3.3) and (3.2)

appear in part 1, while only (3.1) is used in part 2):

1. Solve the nonstochastic or perfect-foresight problem of maximizing (3.3) subject to

(3.2), assuming that the future sequence zt is known. This leads to a ‘feedback-

feedforward solution’

ut = h1 (xt, zt) . (3.5)

The decision for ut feeds back on the endogenous state vector xt and feeds forward

on the future of the exogenous component of the state vector zt. The function h1 can

be computed from knowing only V and g, and without knowing f . In particular, h1

is obtained by deducing the decision maker’s Euler equation for ut, then solving it

forward. The parts of assumption A1 stating that V is quadratic and g is linear make

h1 a linear function.

2. Using the function f and the c.d.f. Φ in (3.1), compute the mathematical expectation

of zt conditioned on the history zt. By iterating on (3.1) when f is linear, the future

sequence zt can be expressed as a linear function of an initial condition, zt, and the

sequence of future shocks:

zt = h2 · zt + h3 · ε∞t+1. (3.6)

Then from the assumed properties of the i.i.d. sequence {εt+1}, the solution of the

forecasting problem takes the form

Ezt|zt = h2 · zt. (3.7)

The certainty equivalence or separation principle states that the optimal decision rule

in pure feedback form can be obtained by replacing zt in (3.5) with Ezt|zt from (3.7):

ut = h1 (xt, h2 · zt) = h (xt, zt) (3.8)

Each of h1, h2, and h are linear functions. The decision rule (3.8) feeds back on both

exogenous and endogenous components of the state.



6

The original stochastic control problem thus separates into a nonstochastic control

problem and a statistical estimation problem. An inspiration for the term ‘certainty equiv-

alence’ is that the control problem in step (1) can be solved by assuming that the future

sequence of z’s, zt, is known.

3.2. Certainty equivalence and the value function

Evidently from (3.6),

E
[(

zt − Ezt|zt
) (

zt − Ezt|zt
)′ |zt

]
= h3h

′
3. (3.9)

The optimized value of (3.3) starting from state y0 is given by a value function

V (y0) = −y′0Py0 − p. (3.10)

The constant p depends on the ‘volatility statistics’ h3h
′
3 in (3.9), but the matrix P in

the quadratic form in (3.10) does not. In particular, the matrix P is the fixed point of an

operator

T (P ) = T (P ; r, g, f1) , (3.11)

where we express the linear law of motion for zt as zt+1 = f1zt + f2εt+1. The volatility

parameters f2 do not appear in T . The constant p does depend on f2 via the operator

p = p (P ; f2, β) . (3.12)

Note that the fixed point P = T (P ) can be solved first, then the solution can be put into

(3.12) to find p.

This last observation leads to another manifestation of the certainty equivalence prin-

ciple, which comes from noting that the optimal decision rule (3.8) for the stochastic

optimization problem also emerges from the nonstochastic problem of maximizing

∞∑
t=0

βtr (xt, zt, ut) (3.13)

subject to (3.2) and the nonstochastic law of motion

zt+1 = f (zt, 0) . (3.14)
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Equation (3.14) sets all of the shocks impinging on the state to their unconditional means

of zero. For this problem, the optimal value function becomes

V (y0) = −y′0Py0, (3.15)

which differs from (3.10) only by the absence of the constant p. The decision rule depends

only on the quadratic forms in the continuation value functions (3.10) and (3.10), not on

the constants. Therefore, the presence of uncertainty in the original problem lowers the

value of the problem by lowering p, but does not affect the decision rule. The decision

maker prefers less uncertainty to more, i.e., he prefers a f2 and therefore a smaller h3

loading in (3.6), but does not allow his decisions to respond to different values of h3.

4. Model misspecification and robustness

We now turn to a type of certainty equivalence that prevails when the decision maker does

not trust his model of the dynamics for zt. This certainty equivalence principle lets the

decision maker use the type of two-step optimization process described above. His doubts

about the transition law are expressed in the way he forms expectations in the second step.

The decision maker believes that (3.1) might be misspecified because the data are

actually generated by the law of motion

zt+1 = f (zt, εt+1 + wt+1) (4.1)

where wt+1 is a process whose time t + 1 component is a measurable function ωt of the

history of state at t

wt+1 = ωt

(
xt, zt

)
.

The decision maker thinks that his model (3.1) is a good approximation to the data

generating mechanism (4.1) in the sense that

Ê

[ ∞∑
t=0

βtw′
t+1wt+1

∣∣∣y0 ≤ η0

]
(4.2)

where η0 measures the size of the maximal specification error and the expectation operator

Ê is evaluated with respect the distribution generated by (4.1).6

6 See AHS and HS (200XXX) for a reasonable way to measure discrepancies between models.
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To construct a robust decision rule, the decision maker computes the Markov perfect

equilibrium of the following two-player zero-sum game, which we call a multiplier problem:

min
w1

max
u0

Ê

[ ∞∑
t=0

βt
{
r (yt, ut) + θβw′

t+1wt+1

}] ∣∣∣∣y0 (4.3)

where the components of ut, wt+1 must each be measurable functions of the time t histories

yt. In the Markov perfect equilibrium, the timing protocol is that each player chooses

sequentially and simultaneously each period, taking the other player’s decision rule as

given. Note how the worst case shock mean distortions wt+1 feedback on the endogenous

state vector xt. Allowing this feedback is part of the way that the maximizing agent designs

a rule that is robust to the possibility that the dynamics of (3.1) are misspecified.

A robust rule is generated by the u component of a Markov perfect equilibrium of

game (4.3):

ut = h (xt, zt) (4.4a)

wt+1 = W (xt, zt) . (4.4b)

The rule is robust in the sense that it promises a lower maximal rate at which the objective

Ê[
∑∞

t=0 βtr(yt, ut)]|y0 can deteriorate with increases in misspecification as measured by the

terms w′
t+1wt+1.

4.1. Stackelberg equilibrium and certainty equivalence

The Markov perfect equilibrium conceals that a form of certainty equivalence prevails

despite the decision maker’s uncertainty about his approximating model. To reveal the

certainty equivalence within the robust decision rule (4.4b), it helps to formulate another

game with the same players and payoffs, but a different timing protocol. Remarkably, this

change in timing protocol leaves intact both the equilibrium outcome and its recursive

representation (4.4), a consequence of the special zero-sum feature of the dynamic game

(see Başar and Bernhard (1995) and Hansen and Sargent (200XX)).

We now impose the following timing protocol on a two-player zero-sum game with

transition laws (3.2), (4.1) and the payoff (4.3). At time 0, the minimizing player once-

and-for-all chooses a plan w1, where wt+1 is a measurable function of information known to

him at time t, which we denote Yt. Given the random sequence w1, the maximizing player
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chooses ut each period. This timing protocol makes the minimizing player the Stackelberg

leader. At time 0, the minimizing player chooses w1, taking into account the best response

of the maximizing player, who chooses sequentially and regards {wt+1} as an exogenous

process.

4.2. Representing the Stackelberg timing protocol

To reflect the Stackelberg timing protocol, we add state variables to describe the decisions

to which the minimizing player commits at time 0. We use upper case counterparts of

xt and zt to denote these additional state variables, all of which the maximizing player

takes as exogenous. Each of the vectors X, Y, Z has the same dimension as its lower case

counterpart. At time 0, the Stackelberg leader makes wt+1 follow the law of motion:

wt+1 = W (Xt, Zt) (4.5a)

Xt+1 = g (Xt, Zt, h (Xt, Zt)) (4.5b)

Zt+1 = f (Zt,W (Xt, Zt) + εt+1) (4.5c)

which we summarize as

wt+1 = W (Yt) (4.6a)

Yt+1 = MYt + Nεt+1. (4.6b)

Note the appearance in (4.5b) of the maximizing player’s best response function h(X, Z)

from (4.4b). Also W in (4.5a) is the same best response function that appears in (4.4b).

Thus, equations (4.5b) and (4.5c) are the ‘big letter’ counterparts to (4.1) and (3.2), where

we have substituted ‘big letter’ analogues of the best response functions (4.4) for the big

letter counterparts to ut and wt+1.

The maximizing agent takes (4.6) as given and forecasts zt according to the distorted

law of motion (4.1), (4.6), where the role of the latter system of equations is to describe

the distortion process wt+1. Thus, given the time 0 choice of the minimizing player, the

maximizing player assumes the law of model for zt to be

Yt+1 = MYt + Nεt+1 (4.7a)

wt+1 = W (Yt) (4.7b)

zt+1 = f (zt, εt+1 + wt+1) . (4.7c)
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The maximizing player faces an ordinary dynamic programming problem of maximizing

(3.3) subject to (3.2) and (4.7), and so chooses a decision rule of the form

ut = H̃ (xt, zt, Yt) . (4.8)

Under the Stackelberg timing protocol, we use the following

Definition: An equilibrium is a collection of functions h, W, H̃ such that: (a) Given H̃,

the decision rule (4.6) solves the minimizing player’s problem; (b) Given (4.6), decision rule

(4.8) solves the maximizing player’s problem; (c) H̃(Xt, Zt, Yt) = h(Xt, Yt); (d) Y0 = y0.

Conditions (c) and (d) impose versions of what in macroeconomics are called the ‘big K

equals little k’ conditions.

Başar and Bernhard (1995) and Hansen and Sargent (2004) prove that

H̃ (Xt, Zt, Yt) = h (Yt) . (4.9)

This result asserts that the same decision rule for ut emerges from the Markov perfect and

the Stackelberg games. It rationalizes an interpretation of robust decision rule h(Yt) in

terms of a modified type of certainty equivalence.

4.3. Stackelberg and certainty equivalence

The Stackelberg timing protocol allows us to characterize the maximizing player’s choice

with an Euler equation that we can solve forward to get his time t decision as a function

of future actions of the minimizing player. This legitimizes the following two-step solution

procedure.

1. Solve the same non-stochastic problem as in step (1) above, assuming again that the

sequence zt is known, leading to the same solution (3.5):

ut = h1 (xt, zt) .

2. Using the distorted law of motion (4.7), compute the mathematical expectation of zt

conditioned on the history zt. The Markov property of (4.7), the linearity of f , and

the Gaussian distribution of ε∞t+1 make the solution of this forecasting problem take

the form

Êzt|zt = h̃2 ·
[

zt

Yt

]
(4.10)
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where Ê denotes the conditional expectation using model (4.7).

A modified separation principle states that the robust decision rule in pure feedback

form can be obtained by replacing zt in (3.5) with Ê[zt|zt,Yt] from (4.10), and then setting

Yt = yt.7 This yields the robust decision rule

ut = h1

(
xt, ĥ2 · yt

)
. (4.11)

It occurs that (4.11) is equivalent with the robust rule (4.4a), the u component of the

Markov perfect equilibrium of game (4.3), so that ut = h1(xt, ĥ2 · yt) = h(xt, zt).

Another view of this certainty equivalence result come from noting that there is a

counterpart to our finding without robustness that the same decision rule (but a different

optimal value function) emerges had we just set {εt}∞t=1 to zero. That is, the same decision

rule h(xt, zt) would emerge from our Stackelberg problem had we solved the nonstochastic

control problem that emerges upon replacing (4.7) with the nonstochastic law of motion
Yt+1 = MYt

wt+1 = W (Yt)

zt+1 = f (zt, wt+1) ,

which we form by setting εt+1 ≡ 0 in (4.7).

5. Other uses of the Stackelberg timing protocol

The ‘big letter’ law of motion associated with the Stackelberg timing protocol has other

important uses in addition to clarifying the certainty equivalence embedded in the robust

decision rule. These include:

• Supporting a recursive representation of state-contingent prices for a decentral-

ized version of an economy with a robust representative agent. These prices

can be expressed as linear functions of a state Yt that is described by a version

of (4.5). See AHS (200XXX) and Hansen and Sargent (2000XXX) for details.

• Supplying a Bayesian interpretation of a robust decision maker. Equation

(4.7) provides a unique model or belief that rationalizes the robust decision

maker’s choices. See Blackwell and Girshik (19XXX) for related material about

interpreting the outcomes of zero sum games.

7 This is the stage at which we set ‘big K’ equal to ‘little k’.
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6. Certainty equivalence and the value function

Under a preference for robustness, the optimized value of (4.3) starting from state y0 is

given by a value function

V (y0) = −y′0Py0 − p (6.1)

but now the constant p and the matrix P both depend on the volatility parameters f2 in

the representation

zt+1 = f1zt + f2 (εt+1 + wt+1) . (6.2)

In particular, the matrix P is now the fixed point of a composite operator T ◦ D where T

is the same operator defined in (3.11) and D is an operator

D (P ) = D (P ; f2, θ) , (6.3)

that depends on f2 and θ. Given a fixed point P of T ◦ D, p is then a function

p = p (P ; f2, β, θ) . (6.4)

The D operator represents the distortion through w imposed by the minimizing player,

while the T operator represents the maximizing player’s choice of u. Because P is a fixed

point of T ◦D, the volatility parameters f2 now influence P and therefore the decision rule

h. Nevertheless, a form of certain equivalence prevails.

Thus, paralleling our earlier discussion without robustness, another manifestation of

the certainty equivalence principle under robustness comes from noting that identical de-

cision rules (4.4) also emerge from the nonstochastic game associated with extremizing

(i.e., jointly minimizing and maximizing) (4.3) subject to (3.2) and the nonstochastic law

of motion

zt+1 = f (zt, wt+1) = f1zt + f2wt+1. (6.5)

Equation (6.5) sets all of the shocks impinging on the state to their unconditional means

of wt+1. For this problem, the equilibrium value function becomes

V (y0) = −y′0Py0, (6.6)

which differs from (6.1) only by the absence of the constant p. The decision rule depends

only on the quadratic forms in the continuation value functions (3.10) and (3.10), not on
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the constants. Therefore, the presence of randomness lowers the value of the game by

lowering p, but does not affect the decision rule.

7. Risk sensitive preferences

Building on results of Jacobson (1973) and Whittle (1990), Hansen and Sargent (1995)

showed that another way to interpret the decision rules that we obtain under a preference

for robustness is to regard them as reflecting a particular version of Epstein and Zin’s

(1989) specification of recursive preferences. Thus, suppose now that the decision maker

believes his model and so has no concern about model misspecification. Let the model be

yt+1 = Ayt + But + Cεt+1 (7.1)

where εt+1 is an i.i.d. Gaussian process with contemporaneous mean zero and identity co-

variance matrix. Hansen and Sargent suppose that the decision maker evaluates processes

{yt, ut}∞t=0 according to a utility function U0 that is defined by the fixed point of recursions

on

Ut = r (yt, ut) + βRt (Ut+1) (7.2)

where

Rt (Ut+1) =
(

2
σ

)
log E

[
exp

(
σUt+1

2

) ∣∣∣yt

]
(7.3)

and σ ≤ 0 is the risk sensitivity parameter. When σ = 0, an application of l’hospital’s rule

shows that the right side of (7.2) becomes r(yt, ut) + βEUt+1|yt. However, when σ < 0,

Rt departs from the ordinary conditional expectation operator. It puts an additional

correction for risk into the evaluation of continuation utility Ut+1. The risk-sensitive control

problem is to choose a decision rule ut = −Fxt that maximizes U0 defined by recursions

on (7.2), subject to (7.1).

Despite their different motivations, a risk-sensitive control problem yields precisely

the same decision rule as a corresponding robust control problem with θ = −σ−1. This

useful fact can be established by following Jacobson (1973) and evaluating Rt(U e
t+1) for a

candidate quadratic continuation value function

U e
t+1 = −y′t+1Ωyt+1 − ρ (7.4)
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and a time t decision rule ut = −Ftxt, so that (7.1) becomes

yt+1 = Âtyt + Cεt+1 (7.5)

where Ât = A−BFt. Using the properties of the Gaussian distribution, one obtains

RtU
e
t+1 = −ytÂ

′
tD (Ω) Âtyt − ρ̂, (7.6)

where D is the same operator defined in (6.3) with θ = −σ−1 and8

ρ̂ = ρ− σ−1 log det
(
I + σC ′ΩC

)
. (7.7)

If we guess that the value function is quadratic, the Bellman equation for a risk-sensitive

control problem is9

−y′Py − p = max
u

[
r (y, u) + βRt

(
−y∗′Py∗ − p

)]
(7.8)

where the maximization is subject to y∗ = Ay + Bu + Cε. It follows that P is the fixed

point of iterations on T ◦ D, where T is the operator defined in (3.11) that is associated

with the ordinary quadratic intertermporal optimization problem without risk-sensitivity

and without a preference for robustness. Since the matrices in the quadratic forms in the

value functions are the same, both being fixed points of T ◦D, the decision rule for ut is the

same under risk sensitivity or a preference for robustness. Under risk-sensitive preferences,

the D operator comes from evaluating the R operator, while the T operator comes one-

step on the ordinary Bellman equation, taking Rt(−y∗′Py∗ − p) as the continuation value

function.

It immediately follows from these results that with quadratic r(y, u), a form of certainty

equivalence holds for the risk-sensitive preference specification.

8 In particular,
D (Ω) =

[
I − σΩC (I + σC ′ΩC)−1

C ′
]
Ω.

In the shorthand notation used in (6.3), f2 is playing the role of C.
9 The P that solves (7.7) matches the P in the value function (6.1) for the robust control problem, but

the constants p differ. The decision rules depend on P but not on the constants.
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8. Example: robustness and discounting in a permanent income model

This section illustrates certainty equivalence in the context of a linear-quadratic version of

a simple permanent income model.10 In the basic permanent income model, a consumer

applies a single marginal propensity to consume to the sum of his financial wealth and his

‘human wealth’, defined as the expected present value of his labor (or endowment) income

discounted at the same risk-free rate of return that he earns on his financial assets. In the

usual permanent income model without a preference for robustness, the consumer has no

doubts about the probability model used to form the conditional expectation of discounted

future labor income. But with a preference for robustness, the consumer doubts that model

and therefore forms forecasts of future income by using a probability distribution that is

twisted or slanted relative to his approximating model for his endowment process. Except

for this slanting, the consumer behaves as an ordinary permanent income consumer, i.e.,

uses the same component function h1 from (3.5), a reflection of our certainty equivalence

principle under robustness.

This slanting of probabilities leads the consumer to engage in a form of precautionary

savings that under the approximating model tilts his consumption profile toward the fu-

ture relative to what it would be without a preference for robustness. Indeed, so far as

his consumption and saving program is concerned, activating a preference for robustness

is equivalent with making the consumer more patient. However, that is not the end of

the story because elsewhere (HST and HSW) we have shown that attributing a prefer-

ence for robustness to a representative consumer has different effects on asset prices than

does varying his discount factor, even though it can leave a consumption-savings program

unaltered.

10 See Sargent (1987) and Hansen, Roberds, and Sargent (1991) for accounts of the connection between
the permanent income consumer and Barro’s (1979) model of tax smoothing. See Aiyagari, Marcet, Sargent,
and Seppälä (2003) for a more extensive exploration of the connections.
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8.1. The LQ permanent income model

In the linear-quadratic permanent income model (e.g., Hall (1978)), a consumer receives

an exogenous endowment process {z2t} and wants to allocate it between consumption ct

and savings xt to maximize

−E0

∞∑
t=0

βt (ct − z1)
2 , β ∈ (0, 1) (8.1)

where E0 denotes the mathematical expectation conditioned on time 0 information, and

the constant z1 is a bliss level of consumption. We simplify the problem by assuming that

the endowment process is a first-order autoregression. Thus, the household faces the state

transition laws

xt+1 + ct = Rxt + z2t (8.2a)

z2,t+1 = µd (1− ρ) + ρz2t + cd (εt+1 + wt+1) , (8.2b)

where R > 1 is a time-invariant gross rate of return on financial assets xt held at the

beginning of period t, and |ρ| < 1 describes the persistence of his endowment process.

In (8.2b), wt+1 is a distortion to the mean of the endowment process that represents

possible model misspecification. For convenience, we follow Whittle (1990) and use the

risk-sensitivity parameter σ = −θ−1 to measure the consumer’s preference for robustness.

We begin by setting σ = 0 and solving the problem with no preference for robustness, then

activate a preference for robustness by setting σ < 0 (i.e., θ < +∞). It is useful to let the

consumer’s choice variable be µct = z1 − ct, the marginal utility of consumption and to

express (8.2a) as

xt+1 = Rxt + (z2t − z1) + µct. (8.3)
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8.2. Solution when σ = 0

As promised, first we solve the household’s problem without a preference for robustness,

so that σ = 0. The household’s Euler equation is

Etµc,t+1 = (βR)−1 µct. (8.4)

Treating (8.2a) as a difference equation in xt, solving it forward in time, and taking con-

ditional expectations on both sides gives

xt =
∞∑

j=0

R−(j+1)Et (ct+j − z2,t+j) . (8.5)

This equation imposes expected present value budget balance on the household. Solving

(8.4) and (8.5) and using µct = z1 − ct gives the following representation for µct:

µct = −
(
1−R−2β−1

) Rxt + Et

∞∑
j=0

R−j (z2,t+j − z1)

 (8.6)

Note that because µct = z1−ct, this equation is a version of (3.5), i.e., it is the household’s

Euler equation “solved forward”, so that the right side of (8.6) portrays the function h1

after Ezt|zt has replaced zt. Equations (8.4) and (8.6) can be used to deduce the following

representation for µct

µc,t+1 = (βR)−1 µc,t + νεt+1 (8.7)

where ν is a scalar.11

Given an initial condition µc,0, equation (8.7) describes the consumer’s optimal behav-

ior. This initial condition is determined by solving (8.6) at t = 0. Note that it is easy to

use (8.6) to deduce an optimal consumption rule of the form

µct = h

[
zt

xt

]
= hyt, (8.8)

which is a particular version of (3.4). In the case βR = 1 that was analyzed by Hall (1978),

(8.7) implies that the marginal utility of consumption µct is a martingale, which because

µct = z1 − ct also implies that consumption is a martingale.

11 See HS for a way to compute ν from the linear regulator.
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8.3. A robust consumption rule σ < 0

Under a preference for robustness, the decision rule for consumption is summarized by the

following solved-forward Euler equation for µct:

µct = −
(
1−R−2β−1

) Rxt + Êt

∞∑
j=0

R−j (z2,t+j − z1)

 (8.9)

where Êt ≡ Ê[·|zt,Yt] is the distorted expectations operator associated with the law of

motion chosen by the malevolent agent in a Stackelberg equilibrium with σ < 0. Note how

(8.9) assumes the certainty-equivalent form ut = h1(xt, Êzt|zt,Yt) that underlies (4.11),

where h1 is the same function that pertains to the no-robustness σ = 0 problem. By

substituting explicit formulas for the forecasts Ê[zt|zt,Yt] that appear in (8.9), we obtain

a robust consumption rule in the feedback form (4.11).

To compute the distorted measure with respect to which Ê in (8.9) is to be com-

puted, we pose the problem of the minimizing player in the Stackelberg game. It can be

represented as

min
{wt+1}

−
∞∑
t=0

β̂t
{

µ2
ct + β̂σ−1w2

t+1

}
(8.10)

subject to

µc,t+1 =
(
β̃R

)−1
µc,t + νwt+1. (8.11)

Equation (8.11), the consumption Euler equation of the maximizing player (the household),

encodes the maximizing player’s best response to the minimizing player’s choice. Under

the Stackelberg timing, the minimizing player commits to a sequence {wt+1}∞t=0 which

the maximizing player takes as given. The minimizing player determines that sequence

by solving (8.10), (8.11). The worst case shock that emerges from this problem can be

portrayed as a feedback rule wt+1 = kµct. Since from (8.8) µct = hyt in the Markov perfect

equilibrium, we can also represent the shock mean distortion as

wt+1 = khyt ≡ Wyt, (8.12)

a version of (4.4b).

The Stackelberg timing protocol confronts the consumer with an exogenous wt+1 se-

quence of the form (4.6). We can use (8.12) in the manner described above to create such



19

an exogenous representation for wt+1. The household can then be regarded as solving an

ordinary control problem subject to (8.2), (4.6), and (8.12).

8.4. Effects on consumption of a preference for robustness

To understand the effects on consumption of a preference for robustness, we use as a

benchmark Hall’s case of βR = 1 and no preference for robustness (σ = 0). In that

case, we have seen that µct and consumption are both driftless random walks. To be

concrete, we set the parameters of our example to be consistent with ones calibrated from

post-World War U.S. time series by Hansen, Sargent, and Tallarini (1999) for a more

general permanent income model. They set β = .9971 and fit a two-factor model for the

endowment process where each factor is a second order autoregression. To simplify their

specification, we replace their estimated two-factor endowment process with the population

first-order autoregression one would obtain if that two factor model actually generated

the data. Thus, fitting the first-order autoregressive process (8.2b) with wt+1 ≡ 0 using

the population moments implied by Hansen, Sargent, and Tallarini’s (HST’s) estimated

endowment process we obtain the endowment process zt+1 = .9992zt + 5.5819εt+1 where

εt+1 is an i.i.d. scalar process with mean zero and unit variance.12 We use β̂ to denote

HST’s β = .9971 ≡ β̂. Throughout, we suppose that R = β̂−1.

We now consider three cases.

• The βR = 1, σ = 0 case studied by Hall (1978). With β = β̂ ≡ .9971, we

compute that the marginal utility of consumption follows the law of motion

µc,t+1 = µc,t + 4.3825εt+1 (8.13)

where we computed the coefficient 4.3825 on εt+1 using a formula from Hansen

and Sargent (20XX).

• A version of Hall’s βR = 1 specification with a preference for robustness.

Retaining β̂R = 1, we activate a preference for robustness by setting σ =

σ̂ − 2E − 7 < 0. Under the approximating model, we now compute that

µc,t+1 = .9976µc,t + 8.0473εt+1. (8.14)

12 We computed ρ, cd by calculating autocovariances implied by HST’s specification, then used them to
calculate the implied population first-order autoregressive representation.
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When b − ct > 0, this equation implies that Et(b − ct+1) = .9976(b − ct) <

(b− ct) which in turn implies that Etct+1 > ct. Thus, the effect of activating a

preference for robustness is to put upward drift into the consumption profile,

a manifestation of a kind of ‘precautionary savings’.

• A case that raises the discount factor relative to the βR = 1 benchmark prevail-

ing in Hall’s model, but withholds a preference for robustness. In particular,

while we set σ = 0 we increase β to β̃ = .9995. Remarkably, with (σ, β) = (0, β̃),

we compute that µc,t+1 continues to obey exactly (8.14).

The second and third bullets point to an observational equivalence result about offset-

ting changes in σ and β. Thus, starting from (σ, β) = (0, β̂), the effect on consumption and

saving of activating a preference for robustness by lowering σ so that σ < 0 while keeping

β constant are evidently equivalent with keeping σ = 0 but increasing the discount factor

to a particular β̃ > β̂.

These numerical examples illustrate what can be confirmed more generally, that in the

permanent income model an increased preference for robustness operates exactly like an

increase in the discount factor β. In particular, let α2 = ν ′ν and suppose that instead of

the particular pair (σ̂, β̂), where (σ̂ < 0), we use the pair (0, β̃), where β̃ satisfies:

β̃ (σ) =
β̂

(
1 + β̂

)
2 (1 + σα2)

1 +

√√√√1− 4β̂
1 + σα2(
1 + β̂

)2

 . (8.15)

Then the laws of motion for µc,t, and therefore the decision rules for ct, are identical across

these two preference specifications. Hansen and Sargent (200XX) establish formula (8.15).
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8.5. Observational equivalence and distorted expectations

8.6. Distorted endowment process

When σ = 0, the consumer faces a law of motion for the state vector yt that we can

represent as

yt+1 = Ayt + Bµct + Cεt+1. (8.16)

When σ < 0, the minimizing agent adds Cwt+1 to the right side of this transition law,

where wt+1 = Wyt. Under the Stackelberg timing protocol, the maximizing agent faces an

exogenous {wt+1} process that evolves according to

Yt+1 = (A + Bh + CW ) Yt + Cεt+1 (8.17a)

wt+1 = WYt (8.17b)

Under the Stackelberg timing protocol, the maximizing player thus faces the following

transition law for y:[
yt+1

Yt+1

]
=

[
A CW
0 A + Bh + CW

] [
yt

Yt

]
+

[
C
C

]
εt+1 (8.18)

If the decision maker solves an ordinary dynamic programming program without a pref-

erence for robustness but substitutes the distorted transition law for the one given by his

approximating model, he attains robust decision rules. Thus, when σ < 0, instead of fac-

ing the transition law (8.16) that prevails under the approximating model, the household

would use the distorted transition law (8.18).

It is useful to consider our observational equivalence result in light of the distorted

law of motion (8.18). Let Êt denote a conditional expectation taken with respect to the

distorted transition law (8.18) for the endowment shock and let Et denote the expectation

taken with respect to the approximating model. Then the observational equivalence of the

pairs (σ̂, β̂) and (0, β̃) means that the following two versions of (8.6) imply the same µct

processes:

µct = −
(
1−R−2β̂−1

) Rxt−1 + Êt

∞∑
j=0

R−j (zt+j − b)


and

µct = −
(
1−R−2β̃−1

) Rxt−1 + Et

∞∑
j=0

R−j (zt+j − b)

 .
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For both of these expressions to be true, the effect on Ê of setting σ less than zero must

be just offset by the effect of raising β from β̂ to β̃.

8.7. Equivalence of quantities but not continuation values

Our numerical examples illustrate that, holding other parameters constant, there exists a

locus of (σ, β) pairs that imply the same consumption, saving programs. Furthermore, it

can be verified that the P matrices appearing in the quadratic forms in the value function

are identical for the (σ̂, β̂) and (0, β̃) problems. However, in terms of their implications for

pricing claims on risky future payoffs, it is significant that the D(P ) matrices differ across

such (σ, β) pairs. For the (0, β̃) pair, P = D(P ). However, when σ < 0, D(P ) differs from

P . HST show that D(P ) encodes the shadow prices that are relevant for pricing uncertain

claims on future consumption. Thus, although the (σ̂, β̂) and (0, β̃) parameter settings

imply identical savings and consumption plans, they imply different valuations of risky

future consumption payoffs. HST and HSW used this fact to study how a preference for

robustness influences the equity premium.

9. Concluding remarks

In delineating optimization and expectations formation, Simon and Theil’s certainty equiv-

alence principle takes for granted that the decision maker has ‘rational expectations’ about

the exogenous variables that impinge on his one-period return function. For single-agent

problems, the assumption of rational expectations was so natural for Simon and Theil

and their readers that it was received without comment or controversy. The hypothesis of

rational expectations became more technically challenging and controversial when Simon’s

co-author13 Muth (1961) applied it to forecasts about endogenous variables, like prices,

whose laws of motion were to be determined by an equilibrium shaped by a representative

agent’s decision rules. Muth’s analysis thus required a fixed point argument that Simon

and Theil did not need.

Our introduction pointed out how extensively the certainty equivalence principle served

the development of applied rational expectations models. This paper has told how the

certainty equivalence principle also pertains to settings where the decision maker distrusts

13 See Holt, Modigliani, Muth, and Simon (1960).
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his model, unlike the decision maker inside rational expectations models. Our decision

maker’s fear of model misspecification makes him appear to have distorted or “irrational”

expectations relative to his approximating model. The decision maker achieves robustness

by distorting his expectations. Anderson, Hansen, and Sargent (2002), Hansen, Sargent,

and Tallarini (1999) and Hansen and Sargent (200XXX) describe the relevant counterpart

to a rational expectations equilibrium for a context where a representative agent fears

model misspecification.
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