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1. Introduction

Dynamic equilibriummodels are now used routinely in many fields. Such models, for

example, have been used to address a variety of macroeconomic issues, including business-cycle

fluctuations, economic growth, and the effects of government policies.~ Additional prominent

fields of application include international economics, public economics, industrial organization,

labor economics, and agricultural economics.2

At present, however, many important questions regarding the empirical implementation of

dynamic equilibriummodels remain incompletely answered. The questions fall roughly into two

methodological groups. The first group involves issues related to assessing model adequacy, and

the second involves issues related to model estimation. We contribute to an emerging literature

that has begun to deal with both issues, including Watson (1993), King and Watson (1992, 1996),

Canova, Finn and Pagan (1994), Kim and Pagan (1994), Pagan (1994), Leeper and Sims (1994),

Cogley and Nason (1995), and Hansen, McGrattan and Sargent (1997). A 1996 Journal of

Economic Perspectives symposium focused on these issues, and two important messages

emerged:3 (1) dynamic equilibriummodels, We all models, are intentionally simple abstractions

and therefore should not be construed as the true data generating process, and (2) formal methods

should be developed and used to help us assess the models more thoroughly. In this paper, we

take a step in that direction.

Some parts of our framework are new, while others build on earlier work in interesting

ways. In many respects, our work begins where Watson (1993) ends. With an eye toward future

research, Watson notes that “... one of the most informative diagnostics ... is the plot of the model

1Among many others, see Kydland and Prescott (1982), Hansen (1985), Christian and
Eichenbaum (1995), and Rotemberg and Woodford (1996) (business cycles), Lucas (1988), Jones
and Manuelli (1990), Rebelo (1991), and Greenwood, Hercowitz, and Krusell (1997) (growth),
and Lucas (1990), Cooley and Hansen (1992), and Ohanian (1997) (policy effects).

2Among many others, see Backus, Kehoe and Kydland (1994) (international economics),
Auerbach and Kotlikoff (1987) (public economics), Ericson and Pakes (1995) (industrial
organization), Rust (1989) (labor economics), and Rosen, Murphy and Scheinkman (1994)
(agricultural economics).

3See Kydland and Prescott (1996), Sims (1996) and Hansen and Heckman (1996).
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and data spectra,” and he recommends that in the future researchers “present both model and data

spectra as a convenient way of comparing their complete set of second moments.”4 Our methods,

which are based on comparison of model and data spectral density functions, can be used to

assess the performance of a model (for a given set of parameters), to estimate model parameters,

and to test hypotheses about parameters or models. To elaborate, our approach is:

A. Frequency-domain and multivariate. Working in the frequency domain enables
decomposition of variation across frequencies, which is ofien useful, and the
multivariate focus facilitates simple examination of cross-variable correlations and
lead-lag relationships, at the frequencies of interest.

B. Based on a full second-order comparison of model and data dynamics. This is in
contrast to a common approach used in the business cycle literature of comparing
only a few variances and covariances of detrended variables horn the model
economy and the actual economy. The spectrum provides a complete summary of
Gaussian time series dynamics and an approximate summary of non-Gaussian time
series dynamics.

C. Based on the realistic assumption that au models are misspecified. We regard all of the
models we entertain as false, in wtich case traditional statistical methods lose some
of their appeal.

D. Graphical and constructive. The framework permits one to
the dimensions along which a model performs well, and
which it performs poorly.

assess visually and quickly
the dimensions along

E. Based on a common set of tools that can be used by researchers with potentially very
different objectives and research strategies. The framework can be used to
evaluate strictly calibrated models, and it can also be used formally to estimate and
test models.

F. Designed to facilitate statistical inference about objects estimated from data, includhg
spectra, goodness-of-fit measures, model parameters, and test statistics. Bootstrap
methods play an important role in that regard; we develop and use a simple
nonparametric bootstrap algorithm.

G. Mathematically convenient. Under regularity conditions, the spectrum is a bounded
continuous function, which makes for convenient mathematical developments.

4He also notes that his failure to study cross-variable relationships is a potentially
important omission.
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All of the classical ideas of business-cycle analysisdiscussed, for example, by Lucas

(1977) have spectral analogs, ranging tiom univariate persistence (typical spectral shape) to

multivariate issues of comovernent (coherence) and lead-lag relationships (phase shtits) at

business-cycle frequencies. We highlight these links and draw upon the business-cycle literature

for motivation in the methodological sections 2 and 3. The methods we develop, however, are

not wed to macroeconomics in any way; rather, they can be used in a variety of fields. Therefore,

to introduce researchers in different areas to the use of our framework, we apply our methods to a

simple and accessible, yet rich, macroeconomicmodel in section 4. We conclude in section 5.

2. Assessing Agreement Bet~veenModel and Data

Our basic strategy is to assess models by comparing model spectra to data spectra. Our

goal is provision of a graphical framework that facfitates visual comparisons of model spectra to

interval estimates of data spectra. We compute model spectra exactly (either analyticallyor

numerically);thus, they have no sampling uncertainty. Sampling error does, however, affect the

sample data spectra, which are of course just estimates of true but unknown (population) data

spectra. We exploit well-established procedures for estimating spectra, and we develop and use

bootstrap techniques to assess the sampling uncertainty of estimated spectra.5

2a. Estimatin~ St)ectr~

Consider the N-variate linearly regular covariance stationary stochastic process,

m

Yt = P + B(L) Et = p + ~ Bi et-i

{

Q ift =sE(e~e~)= 0 otherwise,

5Alternatively, one could fix the data spectrum and assess sampling error in the model
spectrum by simulatingrepeated realizations from the model. The two approaches are essentially
complementary, corresponding to the “Wald”and “Lagrange multiplier”testing perspectives.
See, for example, Gregory and Smith (1991).
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where E(e~) = O, B. = I, and the coefficients are square summable (in the matrix sense).6 The.
autocovariance function is r(~) = ~ B1 Q B1~tand the spectral density function is

A JL ~=–W
Consider now a generic off-diagonal element of F(u), fu(u). In polar form the cross-

spectral density is fu(ti) = gau(o) exp[i phu(m)], where gau(o) = [re2(fM(m))+ im2(fU(o))]12is the

gain or amplitude, and where phkl(~) –– arctan{im(fti(~)) / re(fti(m))} is the phase. As is well

known, the gain tells how the amplitude of ylis multiplied in contributing to the amplitude of y~at

frequency O, and phase measures the lead of y~over ylat frequency ~. (The phase shift in time

units is ph(w)/~.) We shall often find it convenient to examine coherence rather than gain, where
ga~(u)

the coherence is defined as coh~l(w) = which measures the squared correlation
f~~(~) f~](o)’

between y~and ylat tiequency u.

Given a sample path {yl,, ..., yNt}~.l,we estimate the .Nx1mean vector p with

j’ = (y], ..., yN)’. From this point onward, we assume that all sample paths have been centered

around this sample mean. We estimate :h~lautocovariance function with ~(~) = [~~1(~)](k = 1,
1

..., N, 1= 1, ..., ~ ~ Y~,Yl,+.,~ = ~, 51, ..., *(T-1). WeestirnatetheN), where ~~l(z) = — 9
spectral density matrix using the Blac&n-Tukqlag-window approach in which we replace the

sample spectral density function, ~(mj) = L ‘~) ~(~)e-ioj’ (~j = ~, j = ~, .,., ~-1~

2n.=.@-1)
with one involvin the “windowed” sample autocovariance sequence,

4 $ -1)

F *(uj) = ~ ‘~’ A(r) ~(~) e-itiz, where
2n .=-~-l)

A(T) is a matrix of lag windows. The Blachn-Tukey procedure results in a consistent

estimator if we adjust the lag window A(%)with sample size in such a way that variance and bias

deche simuhaneously.7 We then obtain the sample coherence and phase at any frequency oj by

transforming the appropriate elements of F “(tij).

2b. Assessing SalnDk~ v~iabilit~

6In many cases, detrending of some sort will be necessary to achieve covariance
stationarity.

7Alternatively, of course, one may smooth the sample spectral density function directly.
The duality between the two approaches, for appropriate window choices, is well known. See
Priestley (1981).



-6-

.4 key issue for our purposes is how to ascertain the sampling variabilityof the estimated

spectral density function. To do so, we use an algorithm for resampling from time series data,

which we call the Cholesky factor bootstrap.8 The basic idea is straightforward. First we

compute the Cholesky factor of the sample covariance matrix of the series of interest. We then

exploit the fact that, up to second order, the series of interest can be written as the product of the

Cholesky factor and seria~y uncorrelated disturbances, which can be easily bootstrapped using

parametric or non-parametric procedures.9 An important feature of this very simple approach is

that it can be used to bootstrap objects other than the spectral density function. Later, for

example, we will use it to assess the uncertainty in a model’s estimated parameters.

First we need some definitions and notation. ht z~ = (ylt, ..., y~~)’,and let
IIz = (Zl, Z2>““”? ‘ ‘ Then z - (l@p, 2), where 1 is an N-dimensional column vector of ones,z~) .

and 2 = Toeplitz(r(0), r(l), ..., r(T-1)). By symmetry and positive definiteness, we can

write 2 = PP ~,where the unique Cholesky factor P is lowe;t;~~ngular. We estimate 2 by

~ = Toeplitz(fi(0), ~(l), ..., ~(T-1)), where F(r) = ~AT ~,z, ~~lT1’
T = o, *1, ...? k(T-l); this ensures that Wecan Write Z = PP , where the unique Cholesky

factor ~ is lower triangulm. Now let {A,i.j,};:;, =obe a set of decreasing weights applied to the

successive off-diagonal blocks of ~, and call the resulting matrix 2“. Finally, let P * be the

Cholesky factor of Z *.
iid

The fact that z - (l@p, PP impfiesthat data generated by drawing e(i) - (O, 1~~)

and forming

z (i) = pZ + P&(l),

gThe Cholesky factor bootstrap is closely related to the Ramos (1988) bootstrap. We
develop the Cholesky factor bootstrap in the time domain, however, whereas Ramos proceeds in
the frequency domain.

9Note that the Cholesky factor bootstrap will miss nonlinear dynamics such as GARCH --
it is designed to capture only second-order dynamics, in identical fashion to standard (as opposed
to higher-order) spectral analysis. Users should be cautious in employing our procedure if
nonlinearities are suspected to be operative, as would likely be the case, for example, for high-
fiequency financialdata. Such nonlinearitiesare not likely to be as important for the lower-
frequency data typically analyzed in many areas of macroeconomics, public finance, international
economics, industrial organization, agricultural economics, etc.
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where pZ = l@p, will have the same second-order properties as the observed data. In practice

we replace the unknown population first and second moments with the consistent estimates

described above. Thus, to perform a parametric bootstrap, we draw e(i) - N(O, 1~~),form

~(i) = ~ * p *&(i)- N(z, ~*),

where z = l@~, and then compute both the estimates F *(i)(uj),j = 1, ,.,, ~-l, i = 1, ..., R

and confidence intervals. Alternatively, to perform a nonparametric bootstrap, we note that
~(i) = p -J(z – ~7). In practice,we~“awe(i)with replacement from P *-’(z – z), form.

from which we compute F *{i)(oj),j = 1, .,., $-1, i = 1, ..., R, and then construct cotidence

intervals.

In summary, there me several appealing features of the Cholesky factor bootstrap: (1) it

is a very simple procedure, (2) it can be used to bootstrap a variety of objects, (3) it does not

involve conditioning on a fitted model and therefore imposes minimalassumptions on dynamics.

This last feature may be attractive for researchers who choose not to view the data through the

lens of an assumed parametric model. Alternative bootstrap procedures include the VAR

bootstrap (e.g., Canova, Finn and Pagan, 1994), which can be a useful approach for those

interested in fitting a specific parametric model to the data. Thus, the Cholesky approach and the

VAR approach can be viewed as complementary procedures.

We hasten to add, however, that the literature on bootstrapping time series in general --

and spectra in particular -- is very young and very much unsettled. We still have a great deal to

learn about the comparative properties of various bootstraps, both asymptotically and in finite

samples, and the conditions required for various properties to obtain. Presently availableresults

ci~er depending on the specific statistic being bootstrapped, and moreover, only scattered first-

and second-order asymptotic results are available, and even less is known about actual finite-

sample performance. With this in mind, we present both theoretical and Monte Carlo analyses of

the performance of the Cholesky factor bootstrap in two appendices to this paper. In appendix 1,

we document the bootstrap’s small.-sa.mpleperformance. In a second appendix (availablefrom

the authors upon request), we establish first-order asymptotic validity.
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2c, Constructin~ Confidence Tunne ~~ 10

If interest centers on only one fl.equency,we simplyuse

frequency to construct the usual bootstrap confidence interval.

the bootstrap distribution at that

That is, we find q:, q~” such that

P(f*(”)((A))s q;) = 1-; and P(f ‘(”)(w)> q~-’)= 1-~, where (1-a) is the desired confidence

level, “L” stands for lower, “U” stands for upper, the “T” subscript indicates that we tailor the

band to the finite-sample size T, and the (.) superscript indicates that.we take the probability

under the bootstraP distribution. The (1-a)70 two-sided confidence intervalis [qTL,q-lu].

However, one often wants to assess the sampling variabilityof the entire spectral density

fu?zction over many frequencies (e.g., business-cyclefrequencies, or perhaps all frequencies) to

learn about the broad agreement between data and model. One approach is to form the pointwise

bootstrap confidence intervals described above, and then to “comect the dots.” But obviously, a

set of (1-a)70 confidence intervals constructed for each of n ordinates will not achieve (1-a)y~

joint coverage probability. Rather, the actual confidence level will be closer to (1-a)”%, which

holds exactly if the pointwise intervals are independent. A better approach is to use the

Bonfenoni method to approximate the desired coverage level, by assigning (1 - a/n)% coverage

to each ordi.nate.11The resulting’’confidencetunnel” has coverage of at least (1 - a)% and

therefore provides a conservative estimate of the tunnel.12

A third approach to confidence tunnel construction is the supremum method of

Woodroofe and van Ness (1967) and Swanepoel and van Wyk (1986), which uses an estimate of

the (standardized) distribution of sup If*(uj) - f(oj)l, @j =
O<uj<n

~, j = 1, ..., $-1, to

l“In this section, for notational simphcitywe focus on coltildence tunnels for univariate
spectra. As will be clear, the extension to cross spectra is immediate.

II In the univariate case, typicallyn = T/2 -1. In the multivariate case, the question arises
as to “how wide to cast the net” in forming confidence tunnels. One might view each element of
the spectral density matrix in isolation, for example, in which case each of the respective
confidence tunnels would use n = T/2 -1.. At the other extreme, one could use n = N2(T/2-1),
effectively forming a tumel for the entire matrix.

12Bonferroni tunnels achieve the desired coverage only for (1) independent values of the
estimated function across ordinates, which is clearly violated in spectral density estimation as the
smoothing required for consistency results in averaging across fi”equencies,and (2) large n,
because (1 - a/n)” 2 (1 - a), for any finite n.
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construct a confidence tumel for the curve. Specificafly,13

(1.) Calculate f’(~(uj), @j = ~, j = 1, ..., ~-l..
2

(2) Find c such that:

where we evaluate the probability with respect to the

(3) Construct the cotildence tunnel, f“(~j) * c~f”(~j),

–o!,

t>ootstrapdistribution.

m = 2nJj ~,j = 1, ..., Z- .91
Unlike the Bonferroni tunnels, the suprernum tunnels attain asymptotically correct “

coverage rates even with statistical dependence among ordinates. Little is hewn, however,

about the compmative finite-sample performance of the Bonferroni and supremum tunnels, and

the supremum tunnels may require very large samples for accurate coverage.14

3. Estimation: Maximizing Agreement Between Model and Data

Now we consider estimation, together with the related issues of goodness-of-fit and

hypothesis testing. To make the discussion as transparent as possible, we first discuss the

univariate case, and then we proceed to the multivariate case.

3a. Umvar
.

iat.~

Estilnation requires a loss function, or goodness-of-fit measure, for assessing closeness

between model and data. A strength of our approach is that many loss functions maybe

entertained; the particular loss function adopted reflects the user’spreferences.ls In most cases it

would seem that a finction of the form

cow(e) = jg(fm(u; 6), f “(m)) W(0) dma
o

will be adequate. The function g measures the divergence between f~(m; 0) (model spectrum)

ISThis procedure is stiar to the one advocated in Gallant, Rossi and Tauchen (1993).

14See Hannan (1970), p. 294.

IsFor an interesting and early discussion of this and related points, see Pagan (1994).
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and f ‘(u) (estimate of data spectrum).lb We weight this divergence across frequencies by the
27CJ

function w(m). In practice, we replace the integral with a sum over frequencies oj = —
T T’

j = 1, ..., —-1. Quadratic loss with uniform weighting over all frequencies, for example,n
corresponds~to g(a, b) = (a-b)2 and w(m) = 1, yielding C~W(0)= ~ (f~(mj; (3) - f*(uj))2.

The goodness-of-fit measure may readily be transformed into a: estimation criterion by

taking

egw= argminCgw(e).
e

The Gaussian ML estimator is asymptotically f this fern> for a particular and potenti~lly

!

restrictive choice of g, f*, and w; it is argma

1

-+~h fm(”j; e) - ;~ f ;“J)6) .
e“ .

To compute standard errors and interv 1esti~’tes for parameters if i#ter#st, a d to test

hypotheses

as fo~ows:

(1)

(2)

(3)

(4)

about the elements of 6~W,we again use the Cholesky factor bootstrap.

At bootstrap replication (i), draw a bootstrap sample of size T using the

factor algorithm.

We proceed

Cholesky

Numerically minimize C~$(0) to get $~~.

Repeat R times.

Compute standard errors, form interval estimates, implement bias corrections, or test

hypotheses using the distribution of ~(i) i = 1, ..., R.
gw’

Note that, unlike most implementations of the bootstrap, ours does not involve conditioning on

the model; instead, we generate the bootstrap samples directly from the autocovariance matrix of

the data. This is important in our environment, in which all models are best regarded as false.

In closing this section, let us elaborate on our allowance for differential weighting by

frequency. There are at least two reasons for entertaining this possibility. First, use of a loss

function that weights dtierentially by frequency maybe helpful in dealing with measurement

error, which ofien may not contaminate all frequencies equally. Thus, it would seem prudent to

1~Note that the model spectrum is either computable analyticallyor numerica~y to any
desired degree of accuracy. The data spectrum on the other hand, is consistently estimable.
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downweight those frequencies that are assumed to be more contaminated by measurement error.

Second, use of a loss function that weights differentiallyby frequency maybe important in

misspecified models. For example, as discussed by Hansen and Heckman (1996), model

misspecification may contaminate solmefrequencies more than others. Examples of this include

potential contamination at seasonal hequencies, as in the work of Hansen and Sargent (1993) and

Sims (1993). Watson (1993) also advocates the use of dtierent.ial weighting in parameter

estimation, for the same reason, although he doesn’tpursue the matter. As Watson notes,

optimizing a loss function at particular frequencies corresponds to constructing an analog

estimator along the lines of Manski (1988).

3b. Multlvm ~t~
.

i’

The multivariate analog of our earfier loss function is

cGw(e) = /G(Fm(O; 0), F*(w)) 0 W(W) d~,
o

where ~ denotes component-by-component multiplication. The multivariate analog of our

earlier univariate quadratic loss function, for example, is C~i~,(0) = ~ tr(D ‘(uj; 6) D(uj; 6)),
2nj

where D(oj; o) = F~(uj; 6) - F *(mj), Qj = — j ~ ~ T ~e——
T’

7 ..,,
2

The estimation criterion function has the same form as in the univariate case,

0Gw
= argefi cGw(e),

and the bootstrap approaches to computing standard errors, confidence intervals, and hypothesis

testing parallel the univariate case precisely. Furthermore, as expected, the multivariate Gaussian

ML estimator emerges as a special and potentially restrictive case; it is

It is worth emphasizing how all parts of the spectrum contribute to loss in the multivariate case.

Consider, for example, a bivariate model (variables x and y) under quadratic loss. Then
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[

dxx(~j; 0) dxy(uj; 0)
D(wj; 0) =

1dYX(~j;6) dn(mj; 6) ‘

where

‘y,(@j; e) = fy.xm(oj;e) - $~(@j)= fxym(tij;e) - fx;(mj) = ~(oj; 0).

Thus,

tr(D/(wj; O)D(Oj;O)) = [d~(~j;e) ~ dXY(tij;O)dYX(oj;6)] ~ [~(uj;e) + dxy(oj;6)dyx(wj;$)]

= [fXxw(tij;0) - fx;(oj)]z + 2[re(fXY@(0j;6)) - re(fX~.(Oj))]z..

This expression shows clearly how the goodness of fit of both univariate spectra, as we~ as both

the real and imaginary parts of the cross spectrum, contribute to loss.

4. Applicatio~~: ‘1’heU.S. Cattle Cycle

Letus begin by summarizing the framework for assessing and estimating dynamic

stochastic models developed in sections 2 and 3 of this paper. We first perform a fill seconci-

order comparison of model and data by visuallycomparing model spectra, data spectra, and

associated confidence tunnels about the data spectra computed usilg the simple Cholesky factor

bootstrap. To forma~y assess di~’ergencebetween model and data spectra, and to estimate model
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parameters, we develop an explicit loss function that reflects the specific objectives of the

investigation. Finally, we assess the sampling distributions of estimated parameters again using

the Cholesky factor bootstrap.

It is well known that cattle stock and consumption are among the most periodic time

series in economics, with a cycle of roughly ten years in U.S. (“the cattle cycle”). In this section,

we provide a detailed illustration of the use of our assessment and estimation techniques by

applying them to an important model of the cattle cycle developed by Rosen, Murphy, and

Scheinkman (RMS, 1994). This simple yet rich model allows us to illustrate very clearly the

application of all the tools in our framework, and moreover, our findingsprovide new insight into

the RMS model and its agreement with the data.

4a. The Data

We use amual data on U.S. cattle consumption and stock, 1900-1989.17We plot the

series in Figures 1 and 2, and the cycle is visually apparent. Moreover, the series are clearly

trending. Following RMS, we remove a linear trend horn each series prior to additional analysis,

allowing for a break in the slope of the trend in 1930.~g

We present the estimated data spectrum in Figure 3.19 We make use -- here and

throughout -- of a matrix graphic with univariate spectra plotted on the main diagonal, coherence

in the upper-right corner, and phase in the lower-left corner. Not all frequencies me of equal

interest, however. The frequencies most relevant to an investigation of the cattle cycle, typically

thought to have a period of roughly ten years, are not those in the entire [0, m]range, but rather

those in a subset that excludes very low and very high frequencies. This presents no problem for

our procedures and in fact provides a good opportunity to illustrate the ease with which they can

be tailored to study specific applications. Thus, for much of our analysis, we concentrate on the

17The data were kindly supplied by Sherwin Rosen and were originally obtained from
Historical Statistics: Colonial Times to 1970 and Agricultural Statistics, published by the U.S.
Department of Agriculture.

18The fitted trends are also shown in Figures 1 and 2.

19We smooth the sample autocovariance function using a Bartlett window with truncation
lag 24.
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fiequency band corresponding to periods of 30 years to 4 years, indicated by the shaded region in

Figure 3 and subsequent figures.

Four features of the point estimates of the data spectrum stand out. First, the

consumption spectrum (and to a lesser extent, the stock spectrum) displays a power concentration

at roughly a ten-year cycle. Second, both the consumption and stock spectra otherwise have

Granger’s (1966) typical spectral shape, with high power at low frequencies, and decliningpower

throughout the fi-equencyrange. Third, the coherence between consumption and stock is

generally high and varies across frequencies, with a matium (about .85) at roughly a ten-year

cycle. Finally, the phase SM varies with frequency; within the band of interest, the maximum

(about one year) is again at roughly a ten year cycle.20

In Figure 4 we present the data spectrum along with 90% cotidence tumels computed

using the conservative Botierroni technique in conjunction with the Cholesky-factor bootstrap.21

To facilitate evaluation, we plot the consumption and stock spectra on a logarithmic scale.22 All

of the point estimates display substantial uncertainty, as manifest in the 90Y0confidence tunnels.

Such uncertainty associated with estimated spectra is typical of economic time series, although it

often goes unacknowledged.

4b. The Model

We begin with some accounting identities. The head count of all animals (yt) is the sum

of the adult breeding stock (xt), the stock of calves (assumed equal to gxt-l ), and the stock of

yearlings (assumed equal to gxt-z), where g is a fertility parameter. That is,

Y~= x~ + gx~-~+ gxt-~.

The adult breeding stock consists of surviving stock fi-omthe previous period (assumed equal to

20Phase shift is measured in years by which consumption leads stock.

21The detrended consumption and stock data are nevertheless highlypersistent. We
present some Monte Carlo evidence in Appendix 1 that indicates that the Cholesky factor
bootstrap performs well in such stationary, but highlypersistent, environments.

22From this point onward, we adopt the log scale for consumption and stock spectra
whenever confidence tunnels are included.
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(1 -b)xt-l ) and the yearlings from t-1 entering the adult herd (gx~-~) less the number that are

marketed (ct),

Xt = (1–a)xt-l + gx~.g – Ct”

We are concerned with the equilibriumdetermination of ct and yt. The risk-neutral rancher

maximizes the present discounted value of expected profits, which involves equating the expected

marginal benefit of marketing an animal for consumption to the expected marginal benefit of

holding the animal for breedtig. First, suppose that the rancher markets the animal for

consumption. He receives net revenue qt=p~–mt,where pt is price and ~ is fishing cost.

Alternatively, suppose the rancher holds an animal for breeding. Expected discounted net revenue

is the sum of expected discounted revenue from selling tomorrow plus expected discounted

revenue from marketing its offspring, less expected total holding costs (~,

Et[~(l -b)q~+l‘p3gqt,g t-z ]. Total holding cost equals the sum of time t holding costs (h~),

discounted holding costs of the resultant time t+l calves, and discounted holding costs of the

resultant time t+2 yearlings. That is, zt=ht+~gyO\+l+~2gy1ht+2(assuming proportional COStSfor

calves and yearlings, yOand YI).

In equilibrium, the expected marginal net revenue from marketing for consumption equals

the expected marginal discounted net revenue from holding for breeding; that is,

Et[qt] = Et[~(l -~)qt+l + ~3gqt+g- ‘tl”

We close the model by specifyingthe exogenous processes {~, ht, d~ as first-order

autoregressions.23 Following RMS, we assume that each of the three shocks has common serial-

correlation parameter p.

The model structure implies that the reduced-form equations for ct and y, can be expressed

in terms of a single disturbance, mt, which is a linear combination of the independent innovations

horn the three AR(1) driving processes. In particular, c~-ARMA(2,1) and yt-ARMA(4,2):

(l-klL)(l-pL) C, = -(1 - $IL) Ut

23dt is a preference shock. We have not discussed the demand side of the model, because
we do not use it in estimation.
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(l-LIL)(l -(J)2L)(l-@gL)(l-pL) y, = (1 + gL + gL2) ~,>

where @l is the one unstable root and {+2, $3} are the two stable roots of

0’ - (1-8)$2 - g = (),

and Al is the one stable root of

gp3a3 + (1-5)pA - 1 = o.

The associated univariate spectra are

fc(m)
1(1 - @,eio)12

I(1 - ~leio)(l - pei”)12

f},(m)= 0:
1(1 + geio + ge2io)12

1(1 - ~leio)(l - @2ei0)(l - @3ei@)(l- pei0)12 ‘

and the cross spectrum is

-(1 - @lei@)(l - $2ei”)(l - $3ei@) f (U)
fq(m) =

(1 + geio + ge2io)
Y“

These equations provide a full description of the model in the frequency domain. o: is a

complicated function of the structural parameters, including some horn the demand side of the

model. All of the parameters of present interest, however, maybe identitle.dfrom the other

reduced-form parameters, with the exception of yOand yl. We therefore treat o; as a free

parameter and estimate it subject to no restrictions.

RMS do not estimate the cattle cycle model. Rather, they choose values for the

behavioral parameters and report that the calibrated model fits the data w’ell. In the following

section, we explicitlyestimate the model and compare our findings to those of RMS.

4c. Asse,ssing. Est’wtinc. and Testin~ the Model

To assess agreement between a parametrized version of the model and the data, or to
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estimate parameters formally, it is necessary to construct an explicit loss function. We use a loss

function that explicitly incorporates the focus in the cattle cycle literature on cycles of roughly 10

years. The loss function, which measures divergence between model and data spectra only within

a particular frequency band, leads us to an estimator that we call band-restricted maximum

Welihood (Band-ML). We exclude frequencies corresponding to periods of more than 30 years

or less than 4 years.~ From the standpoint of our earlier discussion of frequency downweighting,

this corresponds to weighting frequencies in the band of interest equally, and giving tiequencies

outside the band zero weight.

In Figure 5 we display the model spectrum evaluated at the Band-ML parameter

estimates. Given the objective of constructing a simple model that is consistent with periodic

behavior in these series, a surprising finding is that neither the consumption nor the stock model

spectrum has a peak corresponding to a ten-year cycle. Instead, the main distinguishingfeature of

both model spectra is Granger’s (1966) classic spectral shape. This suggests that at the band-ML

optirnu~ the model does not easily produce cyclicalbehavior. The model phase shift also

declines monotonically, which contrasts somewhat with the point estimate of the phase shift,

which has a local peak at roughly the ten-year cycle. Finally, the model coherence reminds us of

yet another of the model’s limitations: because it is driven by a single shock, the model is

singular, which produces unit coherence at all frequencies regardless of the parameter

configuration.

To evaluate divergence between model and data, we plot the model spectrum in Figure 6,

together with the earlier-discussed 90% confidence tunnels for the data spectrum, produced with

200 replications of the non-parametric Cholesky factor bootstrap.25 The diagonal elements

provide comparative assessments of model and data univariate dynamics, and the off-diagonal

elements provide comparative assessments of cross-variable dynamics.

w Gaussian Band-ML is the maximum likelihood analog of Engle’s (1974) band-spectral
linear regression. Band-ML may of course be undertaken for models much more complicated
than simple linear regression, such as the present one.

25When constructing the bootstrap confidence tunnel, we apply a Bartlett window to the
off-diagonal elements of the covariance matrix, and we use a truncation lag of 24.
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Figure 6 reveals some divergence between model and data beyond the earlier-discussed

fact that the model spectrum fails to display the internal spectral peaks found in the data spectrum.

First, the rate of decay of the model consumption spectrum appears significantlyslower than that

of the data spectrum thus, although the consumption model and data spectra agree over most of

the relevant frequency range, they begin to deviate substantiallyfor cycles with periods of 4 years

or less. Second, and conversely, the rate of decay of the model stock spectrum appears

significantly faster than that of the data spectrum. The two diverge not only at high frequencies,

but also over much of the relevant frequency range. In particular, the model stock spectrum lies

slightly outside the lower region of the 9070confidence tunnel for cycles of about 20 years and

less. Third, the phase shift implied by the model tends to be significantlylarger than the phase

shift found in the data over the frequencies of interest. Finally,model and data coherence diverge;

in spite of the fact that the confidence tumel is very wide, the unit model coherence is always

outside the confidence tunnel for the data coherence.

Let us now discuss the band-ML estimation in greater detail. We estimate model

parameters using the simplex algorit~ which is a derivative-free method, as implemented in the

Matlab fmins.m procedure. Using penalty functions, we constrain the discount factor to be

between 0.65 and 1.00, the fertility rate to be between 0.00 and 1.00, the death rate to be between

0.00 and 1.00, the persistence parameter to be between 0.00 and 1.00, and the scale parameter to

be between 0.10 and 7.00. We start the iterations with the RMS parameter values for the

discount rate, fertility rate, death rate, and persistence parameter.2GIn our experience, estimation

is numerically straightforward and stable; the estimated parameter vector is always in the interior

of the constraint set, convergence is fast, and alternative starting values produce virtually identical

estimates. In contrast, the RMS model has proven to k quite dficult to estimate using more

traditional approaches. For example, Hansen, McGrattan, and Sargent (1997) find that standard

time-domain ML fails to converge unless the discount factor is fixed prior to estimation.

We present the Band-ML estimates and the RMS parameter values in Table 1. We have

two main findings. First, several of the parameter values obtained by band-restricted maximum

likelihood are similar to those chosen by RMS. In particular, the estimate of the death rate

26RMS did not report a value for the scale parameter; we start it at 1.7.
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parameter (.08) is nearly identical to the RMS value (O.10), and the estimate of the producer’s

discount factor (.86) is close to the RMS value (0.91). The estimated fertility parameter (0.67) is

lower than but nevertheless close to the RMS value (0.85), which RMS choose based on

biological considerations.

Our second main finding is that the band ML estimate of the persistence parameter, which

is a fundamental object in the RMS model, dfiers substantiallyfrom the RMS value. RMS

choose a fairlypersistent value of 0.6. In contrast, we find that optimizing the band-ML loss

function requires very little persistence in the driving process (0.2). This irnpfiesthat the RMS

model has a strong internal propagation mechanism: the model takes shocks with relatively little

serial correlation and transforms them into series that display substantial persistence in

equilibrium. This dimension of the RMS model differs fundamentallyfrom standard dynamic

equilibriummodels used in macroeconomics, international economics, and public finance. As

Watson (1993) and others have noted, models used in those fields typically have weak internal

propagation mechanisms -- they require highlypersistent underlying shocks to generate a realistic

amount of serial correlation in the variables determined in equilibrium. This is considered to be a

shortcoming of the models and is the focus of much current research. Thus, a potentially

important contribution of the RMS model is that the rich nature of its dynamic propagation

mechanisms may be adapted to help researchers in other fields construct models with stronger

internal propagation.

In addition to finding the parameter estimates that maximize agreement between model

and data, we can assess their sampling uncertainty within our framework. Standard errors are of

some use in that regard, in spite of the fact that the sampling distributions need not be Gaussian.

We compute them using 200 replications of the Cholesky factor bootstrap procedure, and we

report them in parentheses below the estimated parameters in Table 1. More generally, our

bootstrap procedures allow us to estimate the entire sampling distributions of the estimated

parameters; we report in them in Figure 7. The estimated sampling distributions of the discount

factor, the depreciation rate, and the persistence parameter are fairly concentrated, while the

estimated sampling distribution of fertility rate is more dispersed.

Our framework also enables us to examine the joint distribution of the estimated

parameters. In Table 2 we present bootstrap estimates of the correlations between the estimated
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parameters. Perhaps the most interesting relationship is the strong negative correlation between

the discount factor and the fertility rate, which occurs because the discount factor and the fertility

rate enter multiplicativelyin one of the cubic equations that define the ARMA polynomials. This

implies that the loss function trades off high fertility rates for low discount factors, and suggests

that fixing either one of the parameters at the higher RMS value would tend to result in an even

lower estimate for the other.

5. Concluding Remarks

We have described a framework for evaluating dynamic economic models that should be

usefil to applied economists in many fields. The framework is flexible-- it can be used by

researchers to formally evaluate purely calibrated models, and it can also be used by researchers

interested in estimating parameters and conducting inference. Moreover, it is graphical and

constructive, and it takes seriously several important issues in the quantitative analysis of simple,

dynamic equilibriummodels: model misspecification, the user’s objectives, and small sample sizes.

Its frequency-domain foundations provide useful diagnostics that nicely complement alternative

time-domain approaches, such as Canova, Finn and Pagan’s (1994) approach based on estimated

VARS.

Our analysis of the RMS model of cattle cycles Nustrated the use of our tools for

assessing agreement between models and data at pre-set pmameter values, as well as for forma~y

estimating models and performing statistical inference. In addition, it shed new light on the

characteristics of the RMS model, and in particular, its strong internal propagation mechanism.

Our analysis also revealed several deficiencies of the model, not the least of which is its inabilityto

generate internal spectral peaks in the model spectra evaluated at the band-ML estimates.

The ultimate goal of the research program of which this paper is a part is to facilitate

communication between researchers with potentially very dtierent research objectives and

strategies, thereby bringing modern dynamic economic theory into closer and more frequent

contact with dynamic economic data. As economists use richer and more complicated models to

understand a wider variety of data, we hope that our framework will find use in discerning the

dimensions along which models are consistent -- and inconsistent -- with data. That information

can in turn be used to construct new and improved models.
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Tabie 1
Parameter Estimates

Band-Restricted Maximum Likelihood R;stimation

Estmtlon or
o .

Calibration Method

Band-ML .86 .67 .08 .21 2.10
(.03) (.09) (.03) (.10)(.37)

RMs .909 .85 .10 .60 NA
(NA) (NA) (NA) (NA) (NA)

Notes to Table: ~ is the discount factor, g is the is the fertility rate, 5 is the death rate, and p is the
persistenceparameter. Band-ML denotes band-restricted rnaxirnumlikelihood estimation, with the
frequency band used for estimation corresponding to periods horn 30 to 4 years. Standard errors,
based on 200 bootstrap replications, appear in parentheses. RMS denotes the Rosen-Murphy-
Scheinkmancalibratedparameters. (Theyhave no standarderrors, because they were not estimated.)

Table 2
Estimated Parameter CorI*elations

Band-Restricted Maximum Likelihood Estimation

g -.73 1.00

6 .49 -.37 1.00

P -.19 .10 .06 1.00

Notes to Table: ~ is the discount factor, g is the fertility rate, 5 is the death rate, and p is the
persistence parameter. Estimated parameter correlations are based on 200 bootstrap replications.
The fi”equencyband used for esthnation corresponds to periods fi-om30 to 4 years.



—.
k’lgure 1
U.S. Cattle Consumption, 1900=1990
Actual and Estimated Trend
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cattle consumption (solid line) and the estimated kinked-linear trend
(dashed line).

Figure 2
U.S. Cattle Stock, 1900-1990
Actual and Estimated Trend
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Notes to Figure: We show cattle stock (solid line) and the estimated ktiked-linear trend (dashed
line).



Figul*e3
Estimated Spectral Densit~’Matrix
U.S. Cattle Consumption and Stock
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Notes to Figure: We detrenclall data using the kinked-linear method. We show the point estimate
of each elementof the speetraldensitymatyix, The fre~~uencyband indicated by vertical dashed lines
correspondsto cycleswith periods of 30 to 4 years and is the band of primary relevance for studying
cattle cycles.



Figure 4
Estimated Spectral Densit}~Matrix and Confidence Tunnels
U.S. Cattle Consumption and Stock
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Notes to Figure: We detrenclafl data using the kinked-linear method. We show the point estimate
together with a 9070 confidencetunnelfor each elementof the speetrd density matrix. The frequency
band indicatedbyverticaldashed lines corresponds to cycles with periods of 30 to 4 years and is the
band of primary relevance for studying cattle cycles.



Figure 5
Model Spectrum Evaluated at Band-ML Estimates
U.S. Cattle Consumption and Stock
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Notes to Figure: We detrend afldata usingthe ktiked-linear method. We show the model spectruln
evaluated at the band-restricted maximum Welihood parameter values, for each element of the
spectraldensitymatrix. The frequency band indicated by vertical dashed lines corresponds to cycles
with periods of 30 to 4 years and is the band of primary relevance for studying cattle cycles.
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Model Spectra, and Data Spectra Confidence Tunnels
[J.S. Cattle Consumption and Stock
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band indicatedbyverticaldashed lines corresponds to cycles with periods of 30 to 4 years and is the
band of prilnary relevance for studying cattle cycles.
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Bootstrap Estimates of Sampling Distributions
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Appendix 1
Finite-Sample Properties of the Cholesky Factor Bootstrap

In this appendix, we describe the results of a Monte Carlo comparison of the tite-sample
properties of the Cholesky factor bootstrap and conventional asymptotic. The experiment is
small by necessity, as Monte Carlo evaluation of bootstrap procedures is extremely burdensome
computationally, but we believe that it sheds some interesting light on the finite-sample
performance of the bootstrap.

We use a data-generating process with reahstic dynamics, given by

Yt = 1.335yt-1 - .401y~-z + et, T = 1, e.., 100,

which corresponds to Rudebusch’s (1993) estimate for detrended log GNP and is representative
of the dynamics of a typical detrended macroeconomic series.

We examine the empirical coverage of the nominal 80% and 90% intervals constructed
using the Cholesky factor bootstrap and conventional asymptotic. We examine two bootstrap
intervals, parametric (Gaussian) and nonparametric. At each of 1.000Monte Carlo replications,
we apply the Cholesky factor bootstrap with 2000 bootstrap replications. At each bootstrap
replication we estimate the spectral density at frequencies n/6 and n/2.

In Table Al, we present the empirical coverage rates for bootstrap and asymptotic
confidence intervals for three innovation distributions. First, we set et - iid N(O,l). At frequency
n/6, the actual coverage of all three intervals exceeds nominal coverage. However, both the
parametric and nonparametric bootstrap coverage rates are much closer to nominal coverage than
those of the asymptotic approximation. At frequency n/2, the asymptotic intervals similarly
deliver excessively high coverage rates but the parametric bootstrap interval in particular (and to a
lesser extent the nonparametric) display nearly exact coverage.

Second, we set et to a conditionallyGaussian GARCH(l,l). As expected, the
nonparametric bootstrap outperforms the parametric bootstrap in this case. However, neither the
nonparametric bootstrap nor the asymptotic approximation appear definitivelybest in terms of
actual coverage.

Finally, the innovation is iid X2(2),normalized to have zero mean and unit variance. As
with iid N(O,1) innovations, we find that the asymptotic approximation tends to give rise to
excessivelywide confidence intervals. At a nominal coverage level of 9070,both bootstraps
deliver more accurate coverage rates. At the nominal 80% level, ody the parametric bootstrap
dominates the asymptotic interval.

References
Rudebusch, G.D. (1993), “The Uncertain Unit Root in Real GNP,” Anlerican Ec>onon~icReview,

83,264-272.



Table Al
Empirical Coverage

Bootstrap and Asymptotic Confidence Intervals

Parametric Nonparametric
Nominal Bootstrap Bootstrap Asymptotic
Coverage Interval Interval Interval

.
ausslan Innovat”o s

f(:/;) .80
.90

f(n/2) .80
.90

Cond-y Gauw
. . .

(1.1) Innovations
f(m/6) .80

.90

f(n/2) .80
.90

Standardized Chi-Sauar~
Innovations

f(n/6) .80
.90

f(n/2) .80
.90

.827

.913

.795

.904

.696

.808

.770

.863

.843

.916

.798

.901

.831

.910

.780

.901

.718

.838

.818

.905

.862

.933

.852

.939

.912

.974

.827

.980

.767

.845

.789

.924

.913

.963

.824

.979

Notes to Table: For each innovation distribution, we generate data from an AR(2) with
parameters 1.335 and -.401, with sample size T=1OO. We perform 2000 bootstrap iterations in
each of 1000 Monte Carlo trials.


