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1. Introduction
Dynamic equilibrium models are now used routinely in many fields. Such models, for

example, have been used to address a variety of macroeconomic issues, including business-cycle

overnment p olicies.! Addition ]prnmn]ent
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At present, however, many important questions regarding the empirical implementation of

dvnamic egnilibrium models remain 'qggm nletelv angw
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methodological groups. The first group involves issues related to assessing model adequacy, and
the second involves issues related to model estimation. We contribute to an emerging literature

that has begun to deal with both issues, including Watson (1993), King and Watson (1992, 1996),
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should be developed and used to help us assess the models more thoroughly. In this paper, we
take a step in that direction.

Some parts of our framework are new, while others build on earlier work in interesting
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research, Watson notes that "... one of the most informative diagnostics ... is the plot of the model

! Among many others, see Kydland and Prescott (1982), Hansen (1985), Christiano and
Eichenbaum (1995), and Rotemberg and Woodford (1996) (business cycles), Lucas (1988), Jones
and Manuelli (1990), Rebelo (1991), and Greenwood, Hercowitz, and Krusell (1997) (growth),
and Lucas (1990), Cooley and Hansen (1992), and Ohanian (1997) (policy effects).

? Among many others, see Backus, Kehoe and Kydiand (1994) (international economics),

Auerbach and Kotiikoff (1987) (public economics), Ericson and Pakes (1995) (industrial

organization), Rust (1989) (labor economics), and Rosen, Murphy and Scheinkman (1994)
(agricultural economics).
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/dland and Prescott (1996), Sims (1996) and Hansen and Heckman (1996).
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contrast to a common approach used in the business cycle literature of comparing
NJUAUDILIALL LIV OVl

multivariate focus facilitates simple examination of cross-variable correlations and

and data spectra,” and he recommends that in the future researchers "present both model and data
3

spectra as a convenient way of comparing their complete set of second moments."* Our methods,
which are based on comparison of model and data spectral density functions, can be used to

and to test hypotheses about parameters or models. To elaborate, our approach is

He also notes that his faiiure to study cross-variabie relationships is a potentialiy

important omission.
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All of the classical ideas of business-cycle analysis discussed, for example, by Lucas
(1977) have spectral analogs, ranging from univariate persistence (typical spectral shape) to

multivariate issues of comovement (coherence) and lead-lag relationships (phase shifts) at

to introduce researchers in different areas to the use of our framework, we apply our methods to a
simple and accessi
2. Assessing Agreement Between Model and Data

Our basic strategy is to assess models by comparing model spectra to data spectra. Our

goal is provision of a graphical framework that facilitates visual comparisons of model spectra to
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2a. Estimating Spectra
Consider the N-variate linearly regular covariance stationary stochastic process,

Yt:P+B(L)€t=P+zBi8t-i

i=—c

Blee)) = Q ift=s
(&&s) 1 0 otherwise,

S

* Alternatively, one couid fix the data spectrum, and assess sampling error in the model
spectrum by simulating repeated realizations from the model. The two approaches are essentially

compiementary, corresponding to the *Waid" and "Lagrange muitiplier” testing perspectives.

IR Wata’

See, for exampie, Gregory and Smith (1991).
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where E(e) = 0, By =1, and the CO@fﬁClCI’ltb are square summable (in the matrix sense).® The

autocovariance function is I'(t) = Z B. Q B, . and the spectral density function is

Fw) = -— Z I'(t) e ot —‘n:<1(—o_2n.

C; éer now a generic off-diagonal element of F(w), f,(w). In polar form, the cross-
spectral density is f,(w) = ga,(w) expli phy(w)], where gay(w) = [re*(fy(w)) + IM*(f(w))]*2 is the
gain or amplitude, and where ph (©) = arctan{im{f (®)) / re(f ()} is the phase. Asis well
known, the gain tells how the amplitude of y; is multiplied in contributing to the amplitude of y, at
frequency ), and phase measures the lead of y, over y, at frequency w. (The phase shift in time

units is ph(w)/w.) We shall often find it convc;ment to examine coherence rather than gain, where
. ga,(w) . .
the coherence is defined as coh,(w) = — X which measures the squared correlation
f (@) fy(w)
between y, and vy, at frequency w.
I 7 \s "l‘ o
U e INtIt=D YV

Y =Gp o VN . From this point onward, we assume that all sample paths have been centered

N
. . ) . Ca .
around this sample mean. We estimate the autocovariance function with I'(x) = (ol k=1,
1 Tt
i
» N, 1=1, ..., N), where §,,(t) = ? 2 YV T = 0, 21, .., £(T-1). We estimate the
-1
. 1 3 N ~ 1 n tlas
spectral density matrix using the Blackman-Tukey lag-window approach in which we replace the
S A

sample spectral density function, ?(wi) =

](JJT 2 T
Y Pe ™ (o =22, j=1,., =1
T t=—(T-1) 1 2
with one mvolvm(g the "windowed" samp]e autocovariance sequence,

1
bt -iwt
F ((o) = — 2 A1) T'(t) e “%, where
ZTT T=- (T ]) . .
A{7) is a matrix of lag windows. The Blackman-Tukey procedure results in a consistent

¢ In many cases, detrending of some sort will be necessary to achieve covariance
stationarity.

7 Alternatively, of course, one may smooth the sample spectral density function directly.

o Lo __ S T

The duality between the iwo approaches, for appropriate window choices, is weli known. See
Priestiey (1931)
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A key issue for our purposes is how to ascertain the sampling variability of the estimated
spectral density function. To do so, we use an algorithm for resampling from time series data,

which we call the Cholesky factor bootstrap.® The basic idea is straightforward. First we

comnute hv th]eckv 'Fa of the canmmnle covarmance matriy nf ﬂ‘\p series Of mtere

23 = Al U2 3 LS L] o VAL ovaav OQraapray Y Cad aQaa

exploit the fact that, up to second order, the series of interest can be written as the product of the

Chol l( factor and \Prm“v uncorrelated disturbances, which can be

AVAVS. aGvea Kasa waivULL .

parametric or non-parametric procedures.” An important feature of this very simple approach is

tinn T atar far
LU, 1AL, 1UL

example, we will use it to assess the uncertainty in a model’s estimated parameters.
. o, 3 / .
First we need some definitions and notation. Let z, = (Yyp - Yno)» and let

z = (z), 2, ..., zT')/. Then z ~ (1®n, X), where 1 is an N-dimensional column vector of ones,

g

write ¥ = PP’, where the unique Cholesky factor P is lower triangular. We estimate 2 by
T

. . 1
I(T-1)), where I'(z) = T > 2 g
t=1 K

T =0, %1, ..., &(T-1); this ensures that we can write S = PP’ , where the unique Cholesky
B . T-1 .
factor P islower triangular. Now let {4 i ~-j|}li Lj-o B¢ a set of decreasing weights applied to the

successive off-diagonal blocks of 3, and call the resulting matrix 27, Finally, let P " be the
Cholesky factor of 2. i
ii
The fact that z ~ (1®p, PP’) implies that data generated by drawing € ~ (0, Iy

2® =+ Pe®,

® The Cholesky factor bootstrap is closely related to the Ramos (1988) bootstrap. We
develop the Cholesky factor bootstrap in the time domain, however, whereas Ramos proceeds in
the frequency domain.

it is designed to c-“ptu Omy second-order uyndrru(,s in 1dentical fashion to standard (as opposca
to higher—ord“r) speciral a “na1y51s Users shouid be cautious in employing our procedure if

e cin ciem A.

€ suspected o be operative, as would likely be the case, for exampie, for high-
frequency ﬁnan(n l1data. Such nonlinearities are not likely to be as important for the lower-

P LV

PR " .

Cauy ar «uy’z,cu n many areas of macroeconomics, pubiic finance, international
ial organization, agricultural economics, etc.
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where p, = 1®pu, will have the same second-order properties as the observed data. In practice
we replace the unknown population first and second moments with the consistent estimates

described above. Thus, to perform a parametric bootstrap, we draw ¥ ~ N(0, I,), form

-0 _ = . nx () AT/= TV
ZV =Z +r €& ~ NZ, 4 )
here 7 = 1QXv. and then commute hoth the ectimatee F*Oreyy 5 = 1 T 1 i=1 R
where 7z = LY, Qi LU CUIHTLHPUITC DLUL LU USURIIaWS 1 \u‘uj;, J T Ay ey ?_1, 1= &,y esey IN
and confidence intervals. Alternatively, to perform a nonparametric bootstrap, we note that
e” = PNz - p ). Inpractice, we draw £V with replacement from P*"!(z - 2), form

z% =z + P ~ (z, ),

from which we compute F"%(w), j = 1, ..., =-1,1=1, .., R, and then construct confidence
) Z

involve conditioning on a fitted model and therefore imposes minimal assumptions on dynamics.

Thic¢ lact featiire mav ha
A 2ALD AdESL AvLLUR v vw

lens of an assumed parametric model. Alternative bootstrap procedures include the VAR
bootstrap (e.g., Canova, Finn and Pagan, 1994), which can be a useful approach for those

interested in fitting a specific parametric model to the data. Thus, the Cholesky approach and the

[ IS ANy n g | e cixrm o e
VULY HIULLL ULDCLLICU. YV O dLid 11dve a4 glU

differ depending on the specific statistic being bootstrapped, and moreover, only scattered first-
and second-order asymptotic results are available, and even less is known about actual finite-
sample performance. With this in mind, we present both theoretical and Monte Carlo analyses of
sky factor bootstrap in iwo appendices to this paper. In appendix I,

we document the bootstrap’s small-sample performance. In a second appendix (available from
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If interest centers on only one frequency, we simply use the bootstrap distribution at that

frequency to construct the usual bootstrap confidence interval. That is, we find qTL , qTU such that

P(E'O() < ) = 1-2 and PE"Ow) > ) = 1 —%, where (1-a) is the desired confidence
level, "L" stands for lower, "U" stands for upper, the "T" subscript indicates that we tailor the
band to the finite-sample size T, and the (.) superscript indicates that we take the probability
under the bootstrap distribution. The (1-0)% two-sided confidence interval is [qTL U]
However, one often wants to assess the sampling variability of the entire spectral density

Junction over many frequencies (e.g., business-cycle frequencies, or perhaps all frequencies) to
learn about the broad agreement between data and model. One approach is to form the pointwise

bootstrap confidence intervals described above, and then to "connect the dots.” But obviously, a

avactly i tha noinfardes intaminale ama fndamandant A atian o ol S0 b0 oo
holds exactly if the pointwise intervals are independent. A better approach is to use the
Bonferroni method to approximate the desired coverage level, by assigning (1 - a/n)% coverage
P rdinata 11 a raqnltinaonnfdanan framaal hao accennooa € ot Vanos 1 _ 2NO7 oo d
to each ordinate.” The resulting"confidence tunnel” has cov Tage Oi at ieast (1 - &)% and

therefore provides a conservative estimate of the tunnel.'?
A third approach to confidence tunnel construction is the supremum method of

Woodroofe and van Ness (1967) and Swanepoel and van Wyk (1986), which uses an estimate of

e 2mj . T
butionof SUP |f*(w) - fw)l, @, = =, j = 1, .., =1, to
O<w<n

! T 2

' In this section, for notational simplicity we focus on confidence tunnels for univariate
spectra. As will be clear, the extension to cross spectra is immediate.

' In the univariate case, typically n = T/2 - 1. In the multivariate case, the question arises
as to "how wide to cast the net” in forming confidence tunnels. One might view each element of
the spectral density matrix in isolation, for example, in which case each of the respective
confidence tunnels would use n = T/2 -1. At the other extreme, one could use n = N*(T/2-1),
effectively forming a tunnel for the entire matrix.

** Bonferroni tunneis achieve the desired coverage oniy for (1) independent vaiues of the
estimated function across ordinates, which is clearly violated in spectral density estimation as the
smoothing required for consistency resuits in averaging across frequencies, and (2) large n,
because (1 - a/n)* > (1 - @), for any finite n.
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construct a confidence tunnel for the curve. Specifically,'®

(1) Caleulate £*0(w), o, = iTTLJ i=1, . %-1..

(2) Find c such that:

{ If*()( ) f*( )I\ 1
{W.) - W.
P, sup | J J||sc = 1-a,
O<w.<w JITTE * o\
i Ve il Wy g |

- = 1

= TS0 T Ly e
. J T

Unlike the Bonferroni tunnels, the supremum tunnels attain asymptotically correct

T ,
— 1.
2
coverage rates even with statistical dependence among ordinates. Little is known, however,

about the comparative finite-sample performance of the Bonferroni and supremum tunnels, and

Estimation requires a loss function, or goodness-of-fit measure, for assessing closeness

between model and data. A strength of our approach is that many loss functions may be

1 . A raflanta tha roarle mmafaranaag 13
entertained; the particu opted reflects the user's preferences.

will be adequate. The function g measures the divergence between f_(w; 0) (model spectrum)

" This procedure is similar to the one advocated in Gallant, Rossi and Tauchen (1993).

' See Hannan (1970), p. 294.

51’“,,,,‘ i i 1 1 h . ~ o1 H - - - -_— PP N L
"* For an mieresting and early discussion of this and related points, see Pagan (1994).
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and f*(w) (estimate of data spectrum).'® We weight this divergence across frequencies by the
27j

b4

function w(w). In practice, we replace the integral with a sum over frequencies W, =

T
j = 1, ..., —-1. Quadratic loss with uniform weighting over all frequencies, for example,

N

- (- 2, , - vieldi - P *ro s \\2
2, b = (a-b)? and wlw) = 1, yielding C,(8) = E(fm(u,, 8) - £ (w)).

The goodness-of-fit measure may readily be tranbformed into dn estimation criterion by

tal-ino
tanurg

6, = argmin C_(6).
0 2

The Gaussian ML estimator is asymptotically ?f this form, for a particular and potenth\]ly

1 ()
‘\w 7
restrictive choice of g, f*, and w; it is argmax] - Z In f (w3 0) - =) —X—
AR 25 Iy 9],
To compute standard errors and interval estimates for parameters of intercst, and to test

hypotheses about the elements of 8__, we again use the Cholesky factor bootstrap. We proceed

gw?
aw

Y2

=5
2
=
>
)
:

U2

n
a

Al

(2) Numerically minimize C (8) to get B
(3) Repeat R times.
(4) Compute standard errors, form interval estimates, implement bias corrections, or test

e + Al b
1 PU CDCD uaul LT Ubdl

strap saimples direcily from ihe autocovariance mairix of
raie on our allowance for differentiai weighting by
frequency. There are at least two reasons for entertaining this possibility. First, use of a loss
function that weights differentially by frequency may be helpful in dealing with measurement

error, which often may not contaminate all frequencies equally. Thus, it would seem prudent to

16

Note that the model spectrum is either computable analyticaily or numerically to any
desired degree of accuracy. The data spectrum, on the other hand, is consistently estimable.
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downweight those frequencies that are assumed to be more contaminated by measurement error.
Second, use of a loss function that weights differentially by frequency may be important in

misspecified models. For example, as discussed by Hansen and Heckman (1996), model

misspecification may contaminate some frequencies more than others. Examples of this include

potential contamination at seasonal frequencies, as in th

e
Sims (1993). Watson (1993) also advocates the use of differenti

{
LR AV ¥ v ow

estimation, for the same reason, although he doesn't pursue the matter. As Watson notes,

estimator along the lines of Manski (198%).
3b. Multivaric

The multivariate analog of our earlier loss function is

Cow(®) = }G(Fm(w; 0), F*(w)) O W(w) do,

earlier univariate quadratic loss function, for example, is Cy,,,(6) = ) tr(D (w; ©) Dlw; 9)),
Vri ™ |
2 B il i -
where D(w; 0) = F (0; 0) - F(w), w, = =L, j=1, .., —-1
’ T I 2

0 ]
it is worth emphasizing how all parts of the spectruim contribute io loss in the multivariate case.

Consider, for example, a bivariate model (variables x and y) under quadratic loss. Then



_]_2_
( d,(@; 8) d (o 0))

D(w; 0) = N
4,005 © d,(@; )

J

where
d (w; 0) = £ (03 0) - f ()
dyy(wp 8) = £, (w; 8) - f(w)
d (w; 0) =f (0;0) -f (o)
Ay J Ay, J ~y J
d (w:0) =f (w0:0) - () = (w: 0) - £ (@) =d (c: O
yx ) 7 7 “yxh J/ xym\ J’ 7/ Xy\ J/ Xy\ _]’ /
Thus,

(D (w; 8)D(0:0)) = [d2(©:0) + d_(0:0)d_(:0)] + [d(0:0) + d_(:0)d. (:6)]
J J aa J iy J ya J Yy J iy J yx ]

= di(w; 8) + 2|d (w: )2 + d*(w: 6)
XX~ LI ¥ J i Yy J

= If (03 0) = (@) + 2[ref, _(w: 0)) ~ re(f (0
XX XX~ Xym>* ] Xy 3

+ 2lim(f . (w3 0)) - im(f (o)]* + [
L (OR)) (fy(e)

the ran
4. Application: The U.S. Cattle Cycle

Let us begin by summarizing the framework for assessing and estimating dynamic
stochastic models developed in sections 2 and 3 of this paper. We first perform a full second-

P O D P Y f 1~~~

nrdae A~
Ulull LULLY
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parameters, we develop an explicit loss function that reflects the specific objectives of the
investigation. Finally, we assess the sampling distributions of estimated parameters again using

the Cholesky factor bootstrap.

applying them to an important model of the cattle cycle developed by Rosen, Murphy, and
Scheinkman (RMS, 1994). This sim

AL IR AT AR 22 7= 2R A g ~22 210N LA AR

application of all the tools in our framework, and moreover, our findings provide new insight into
the RMS model and its agreement with the data.
4a. The Data

series in Figures 1 and 2, and the cycle is visually apparent. Moreover, the series are clearly

trending. Following RMS, we remove a linear trend from each series

Following RMS, we remove a linear trend from each series pri dditiona

throughout -- of a matrix graphic with univariate spectra plotted on the main diagonal, coherence
in the upper-right corner, and phase in the lower-left corner. Not all frequencies are of equal

interest, however. The frequencies most relevant to an investigation of the cattle cycle, typically

onr nraocedurec an
our proced S ar

be tailored to study specific applications. Thus, for much of our analysis, we concentrate on the

" The data were kindly supplied by Sherwin Rosen and were originally obtained from
Historical Statistics: Colonial Times to 1970 and Agricultural Statistics, published by the U.S.
Department of Agriculture.

** The fitted trends are aiso shown in Figures 1 and 2.

a o ~thh thn on ~ PR P -~ —~ RO, [ PR R, S
YV U DIHUULL LU dallpIC autvLuvalldlve
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frequency band corresponding to periods of 30 years to 4 years, indicated by the shaded region in
Figure 3 and subsequent figures.

Four features of the point estimates of the data spectrum stand out. First, the

at roughly a ten-year cycle. Second, both the consumption and stock spectra otherwise have

cycle. Finally, the phase shift varies with frequency; within the band of interest, the maximum
(about one year) is again at roughly a ten year cycle.?

In Figure 4 we present the data spectrum along with 90% confidence tunnels computed
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often onec maclknowledoed
OoIten goces unacxnowiCaged.

We begin with some accounting identities. The head count of all animals (y, ) is the sum

of the adult breeding stock (x,), the stock of calves (assumed equal to gx, _,), and the stock of

¢ facanmed eanal tn
v \uuu N

Y \ \IthfP
BALIVU WA Wi L J

o o
bl‘t_z b YY LAwA N 6 A

wn

The adult breeding stock consists of surviving stock from the previous period (assumed equal to

% Phase shift is measured in years by which consumption leads stock.

?! The detrended consumption and stock data are nevertheless highiy persistent. We
present some Monte Cario evidence in Appendix 1 that indicates that the Cholesky factor
bootstrap performs welil in such stationary, but highiy persistent, environments.

From this point onward, we adopt the log scale for consumption and stock specira
whenever confidence tunnels are included
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(1-6)x,_,) and the yearlings from t-1 entering the adult herd (gx,_,) less the number that are
marketed (c,),

= (1-8)x,_, + gx,; - ¢,

We are concerned with the equilibrium determination of ¢, and y,. The risk-neutral rancher

ts. which involves eauating X C
ts, which mvolves equating the exp

consumption. He receives net revenue g,=p,-m,, where p, is price and m, is finishing cost.
Alternatively, suppose the rancher holds an animal for breeding. Expected discounted net revenue

is the sum of expected discounted revenue from selling tomorrow plus expected discounted

revenue from market 1'[3 0

E[B(1-3)q,,, +[33gqt+3 -z,]. Total holding cost equals the sum of time t holding costs (h,),

discounted holding costs of the resultant time t+1 calves, and discounted h

Az

resultant time t+2 yearlings. That is, z,=h +Bgy h, ., +B*gy,h, ., (assuming proportional costs for

calveg and vearlinoe v and «v
calves ang yearings, v, and vy

In equilibrium, the expected marginal net revenue from marketing for consumption equals

the expected marginal discounted net revenue from holding for breeding; that is,

Elq] = E[B(1-d)q,,, + .ngq_:é - z].

We close the model by specifying the exogenous processes {m,, h,, d} as first-order

T
i

(4]
]
wn
54
Q
3
&
T
D
>
=
3

correlation parameter p.

The mndel ctr ructure imnlie
411V 11UV v uvilul v

in terms of a single disturbance, w,, which is a linear combination of the independent innovations
from the three AR(1) driving processes. In particular, ¢ ~ARMA(2,1) and y,~ARMA(4,2):
(1-A,L)(1-pL) ¢, = -(1 - $,L) o,

2
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(1-A4,L)(1-¢,L)(1-$,L)(1-pL) y, = (1 + gL + gL?) w,

where ¢, is the one unstable root and {¢,, ¢,} are the two stable roots of

2
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gB’A* + (1-8)pA - 1 = 0.

The associated univariate spectra are
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and the cross spectrum is
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These equations provide a full description of the model in the frequency domain. o isa
complicated function of the structural parameters, including some from the demand side of the

parameter and estimate it subject to no restrictions.
RMS do not estimate the cattle cycle model. Rather, they choose values for the

behavioral parameters and report that the calibrated model fits the data well. In the following

snantine srrn avrealiatelss actinnanta dlha camm AT nandd A aasimiaan e L il L i al . _LCTIAAO
SULLIULL, WU CAPLILILLY ©>tl C e HuAct alil COITpdle Ul JOAaizIgEs 1o LUode 01 NIVID
4c. A ing, E ing ng the Model
To assess agreeinent beiween a parameterized version of the model and the data, or to
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estimate parameters formally, it is necessary to construct an explicit loss function. We use a loss
function that explicitly incorporates the focus in the cattle cycle literature on cycles of roughly 10
years. The loss function, which measures divergence between model and data spectra only within

a particular frequency band, leads us to an estimator that we call band-restricted maximum

or less than 4 years.?

In Figure 5 we display the model spectrum evaluated at the Band-ML parameter
estimates. Given the objective of constructing a simple model that is consistent with periodic

behavior in these series, a surprising finding is that neither the consumption nor the stock model

declines monotonically, which contrasts somewhat with the point estimate of the phase shift,
which has a local peak at roughly the ten-vear cycle. Finally, the model coherence reminds ug of

yet another of the model’s limitations: because it is driven by a single shock, the model is
singular, which produces unit coherence at all frequencies regardless of the parameter
configuration.

To evalnate dive

To evaluate divergence between mo id dat

together with the earlier-discussed 90% confidence tunnels for the data spectrum, produced with
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lements provide comparative assessments of cross-variable dynamics
2 r~_ . _ Ty .. 1 WAY . 1 . 10111 1 1 ~ 1 s 4w oan 1 M -
Uaussian band-IviL 18 the maximum bkeinood analog or engle’s (1Y/4) band-spectral

linear regression. Band-ML may of course be undertaken for modeis much more complicated
than simple linear regression, such as the present one.
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Figure 6 reveals some divergence between model and data beyond the earlier-discussed
fact that the model spectrum fails to display the internal spectral peaks found in the data spectrum.
First, the rate of decay of the model consumption spectrum appears significantly slower than that
the consumption model and data spectra a

LELR 8 5 UM LAV 2 2 2252223 LRR A0

the relevant frequency range, they begin to deviate substantially for cycles with periods of 4 years
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shightly outside the lower region of the 90% confidence tunnel for cycles of about 20 years and
less. Third, the phase shift implied by the model tends to be significantly larger than the phase

shift found in the data over the frequencies of interest. Finally, model and data coherence diverge;

parameters using the simplex algorithm, which is a derivative-free method, as implemented in the

between 0.65 and 1.00, the fertility rate to be between 0.00 and 1.00, the death rate to be between
0.00 and 1.00, the persistence parameter to be between 0.00 and 1.00, and the scale parameter to
be between 0.10 and 7.00. We start the iterations with the RMS parameter values for the

dicconnt rate fertilitv rate death rate an
giscount rate, reriinty rate, geath rate, ar

$ L

estimates. In contrast, the RMS model has proven to be quite difficult to estimate using more
traditional approaches. For example, Hansen, McGrattan, and Sargent (1997) find that standard

time-domain ML fails to converge unless the discount factor is fixed prior to estimation.
We present the Band-ML estimates and the RMS parameter values in Table 1. We have

two main findings. First, several of the parameter values obtained by band-restricted maximum

1 : noa rhAacan e Ten monrtinalaor tha actismmnta ~Lsblin Annsl —ns
Likelihood are similar to those chosen by RMS. In particular, the estimate of the death rate
26 DAACQ A2d ot sanam e OIS TR SR T (NP DU T
RIVIS {ia not report a value 101 the scale parameter; we start it at 1.7.
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parameter (.08) is nearly identical to the RMS value (0.10), and the estimate of the producer’s
discount factor (.86) is close to the RMS value (0.91). The estimated fertility parameter (0.67) is
lower than but nevertheless close to the RMS value (0.85), which RMS choose based on
biological considerations.

Our second main finding is that the band ML estimate of the persistence parameter, which

is a fundamental object in the RMS model, differs substantially from the RMS va RMS

]I o
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choose a fairly persistent value of 0.6. In contrast, we find that optimizing the band-ML loss
process (0.2). This implies that the RMS
model has a strong internal propagation mechanism: the model takes shocks with relatively little
serial correlation and transforms them into series that display substantial persistence in

equilibrium. This dimension of the RMS model differs fundamentally from standard dynamic

important contribution of the RMS model is that the rich nature of its dynamic propagation
mechanisms may be adapted to help researchers in other fields construct models with stronger
internal propagation.

In additi
in acqanty

and data, we can assess their sampling uncertainty within our framework. Standard errors are of
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bootstrap procedures allow us to estimate the entire sampling distributions of the estimated
parameters; we report in them in Figure 7. The estimated sampling distributions of the discount

factor, the depreciation rate, and the persistence parameter are fairly concentrated, while the

igtrihiits £ fartilite; »atn 10 e ,.«.w.n,.u.l
estimated sampling distribution of fertility rate is more dispersed.
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parameters. Perhaps the most interesting relationship is the strong negative correlation between
the discount factor and the fertility rate, which occurs because the discount factor and the fertility

rate enter multiplicatively in one of the cubic equations that define the ARMA polynomials. This

useful to applied economists in many fields. The framework is flexible -- it can be used by
researchers to formally evaluate purely calibrated models, and it can also be used by researchers

interested in estimating parameters and conducting inference. Moreover, it is graphical and

time-domain approaches, such as Canova, Finn and Pagan’s (1994) approach based on estimated

VARc

Our analysis of the RMS model of cattle cycles illustrated the use of our tools for
assessing agreement between models and data at pre-set parameter values, as well as for formally

estimating models and performing statistical inference. In addition, it shed new light on the

Our analysis also revealed several deficiencies of the model, not the least of which is its inability to

The ultimate goal of the research program of which this paper is a part is to facilitate

Ailfnrnit vacanenk AL
ainciciit ISS¢aicii 6o

strategies, thereby bringing modern dynamic economic theory into closer and more frequent
contact with dynamic economic data. As economists use richer and more complicated models to
understand a wider variety of data, we hope that our framework will find use in discerning the
nd inconsistent -- with data. That information

can in turn be used to construct new and improved models.
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Table 1
Parameter Estimates
Band-Restricted Maximum Likelihood Estimation

(o]
el
Q
o~

Parameter: B g

Estimati
Calibration Method

Band-ML L6 .67 .08 .21 2.10
(.03) (09) (03) (10) (37

RMS 909 85 .10 .60 NA
(NA) (NA) (NA) (NA) (NA)

Notes to Table: { is the discount factor, g is the is the fertility rate, d is the death rate, and p is the
persistence parameter. Band-ML denotes band-restricted maximum likelihood estimation, with the
frequency band used for estimation corresponding to periods from 30 to 4 years. Standard errors,
based on 200 bootstrap replications, appear in parentheses. RMS denotes the Rosen-Murphy-
Scheinkman calibrated parameters. (They have no standard errors, because they were not estimated.)

Table 2
Estimated Parameter Correlations
Band-Restricted Maximum Likelihood Estimation

B 1.00
g -73 1.00
§ .49  -37 1.00

p -19 .10 .06 1.00

Notes to Table: [ is the discount factor, g is the fertility rate, & is the death rate, and p is the
persistence parameter. Estimated parameter correlations are based on 200 bootstrap replications.
The frequency band used for estimation corresponds to periods from 30 to 4 vears.



Figure 1
U.S. Cattle Consumption, 1900-1990
Actual and Estimated Trend
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Notes to Figure: We show cattle consumption (solid line) and the estimated kinked-linear trend
(dashed line).

Figure 2
U.S. Cattle Stock, 1900-1990
Actual and Estimated Trend
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Notes to Figure: We show cattle stock (solid line) and the estimated kinked-linear trend (dashed
line).



Figure 3
Estimated Spectral Density Matrix
U.S. Cattle Consumption and Stock
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Notes to Figure: We detrend all data using the kinked-linear method. We show the point estimate
of each element of the spectral density matrix. The frequency band indicated by vertical dashed lines
corresponds to cycles with periods of 30 to 4 years and is the band of primary relevance for studying
cattle cycles.



Figure 4
Estimated Spectral Density Matrix and Confidence Tunnels
U.S. Cattle Consumption and Stock
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Notes to Figure: We detrend all data using the kinked-linear method. We show the point estimate
together with a 90% confidence tunnel for each element of the spectral density matrix. The frequency
band indicated by vertical dashed lines corresponds to cycles with periods of 30 to 4 years and is the
band of primary relevance for studying cattle cycles.



Figure §
Model Spectrum Evaluated at Band-ML Estimates
U.S. Cattle Consumption and Stock
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Notes to Figure: We detrend all data using the kinked-linear method. We show the model spectrum
evaluated at the band-restricted maximum likelihood parameter values, for each element of the
spectral density matrix. The frequency band indicated by vertical dashed lines corresponds to cycles
with periods of 30 to 4 years and is the band of primary relevance for studying cattle cycles.



Figure 6
Model Spectra, and Data Spectra Confidence Tunnels
U.S. Cattle Consumption and Stock
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Notes to Figure: We detrend all data using the kinked-linear method. We show the 90% confidence
tunnel for the data spectrum, together with the model spectrum evaluated at the band-restricted
maximum likelihood parameter values, for each element of the spectral density matrix. The frequency
band indicated by vertical dashed lines corresponds to cycles with periods of 30 to 4 years and is the
band of primary relevance for studying cattle cycles.



Figure 7
Bootstrap Estimates of Sampling Distributions
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Notes to Figure: Estimated sampling distributions are based on 200 bootstrap replications.



Appendix 1
Finite-Sample Properties of the Cholesky Factor Bootstrap

In this appendix, we describe the results of a Monte Carlo comparison of the finite-sample
properties of the Cholesky factor bootstrap and conventional asymptotics. The experiment is
small by necessity, as Monte Carlo evaluation of bootstrap procedures is extremely burdensome
computationally, but we believe that it sheds some interesting light on the finite-sample
performance of the bootstrap.

We use a data-generating process with realistic dynamics, given by

AN1., ™ —
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1 « Lo 1 1NN
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which corresponds to Rudebusch’s (1993) estimate for detrended log GNP and is representative
of the dynamics of a typical detrended macroeconomic series.

We examine the empirical coverage of the nominal 80% and 90% intervals constructed
using the Cholesky factor bootstrap and conventional asymptotics. We examine two bootstrap
intervals, parametric (Gaussian) and nonparametric. At each of 1000 Monte Carlo replications,
we apply the Cholesky factor bootstrap with 2000 bootstrap replications. At each bootstrap
replication we estimate the spectral density at frequencies 7/6 and /2.

In Table Al, we present the empirical coverage rates for bootstrap and asymptotic
confidence intervals for three innovation distributions. First, we set €, ~ iid N(0,1). At frequency
/6, the actual coverage of all three intervals exceeds nominal coverage. However, both the
parametric and nonparametric bootstrap coverage rates are much closer to nominal coverage than
those of the asymptotic approximation. At frequency /2, the asymptotic intervals similarly
deliver excessively high coverage rates but the parametric bootstrap interval in particular (and to a
lesser extent the nonparametric) display nearly exact coverage.

Second, we set €, to a conditionally Gaussian GARCH(1,1). As expected, the
nonparametric bootstrap outperforms the parametric bootstrap in this case. However, neither the
nonparametric bootstrap nor the asymptotic approximation appear definitively best in terms of
actual coverage.

Finally, the innovation is iid x2(2) , normalized to have zero mean and unit variance. As
with iid N(0,1) innovations, we find that the asymptotic approximation tends to give rise to
excessively wide confidence intervals. At a nominal coverage level of 90%, both bootstraps
deliver more accurate coverage rates. At the nominal 80% level, only the parametric bootstrap
dominates the asymptotic interval.
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Table A1
Empirical Coverage
Bootstrap and Asymptotic Confidence Intervals

Parametric =~ Nonparametric

Nominal Bootstrap Bootstrap Asymptotic
Coverage Interval Interval Interval
5 ian Inn .
f(m/6) .80 .827 .831 912
.90 913 910 974
f(m/2) .80 795 780 .827
.90 .904 901 .980
Conditionally G .
GARCH(1.1) Innovations
f(m/6) .80 .696 718 767
.90 .808 .838 .845
f(r/2) .80 770 .818 .789
.90 .863 905 .924
N iz hlj
Innovations
f(m/6) .80 .843 .862 913
.90 916 .933 .963
f(n/2) .80 798 .852 .824
.90 901 .939 .979

Notes to Table: For each innovation distribution, we generate data from an AR(2) with

parameters 1.335 and -.401, with sample size T=100. We perform 2000 bootstrap iterations in
each of 1000 Monte Carlo trials.



