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I. Introduction

The Caganmodelof moneydemandunderhyperinfiation(Cagan1956)has been a workhorse

in monetaryeconomics,comparablein itsuse as a benchmark(and in its geometricallydiscounted

expectedvalue structure) to the dividend-stockprice model in fmancid economics and tie

permanentincome-consumptionmodel in macroeconomics. However, its empirical literature “-

differs in an importantway: most papers using the Cagan spectilcationestimatethe model’s

parametersand Rt pa.rdctiarrestrictions,but do not test the overallvalidityof the model. As

Taylor(1991)not=, the Caganmodelliteratureis largelyverificationist ratherthmfalsificationist.

Perhapsdue to this situation,the basic questionof whetheror not it is a useful model provokes

widedisagreement,evenwhenassessedon a commondataset.*

Part of tie confusion is tied to the fact that the Cagan model has mdtiple equilibria:

Explosive,rationalbubblesareconsistentwith the model’ssolution. In the literaturethat focuses

on bubbles, the validityof the Caganmodelis generallya maintained,but untested, hypothesis.

Thusdirectestimatesof bubblesmaybe biasedif the modelis misspecified,andtestswhichregard

deviationsfromthe “marketfundamentals”solutionas evidenceof bubblesmay be misclassifying

specificationerror. Otherstrandsof the Caganliteraturerule out apriori the existence of bubbles,

d~pite potentiallyseriousimplicationsfor estimatesandtests.

Durlaufand Hooker (1994)developeda methodologyfor testingthe model which does not

confoundbubblesand specificationerror. Thatmethodologyemploystwo transformationsof the

data: underthe nti of correctspecification,onetransformationis orthogonalto an informationset

no matterwhich of the mtitiple equilibriaobtains, while the other is orthogonalonly if the no-

bubbles equilibrium is realized. Thus sequential application of the tests allows separate

falsificationof themodel’sgeneralsolutionandra[ionalbubblecomponentsof that solution. This

paperextendsthatworkin threeways.

First,it presentsMonteCarloevidenceon the sizeandpowerof the tests. Mosthyperinflation

work, includingthat of Durlauf and Hooker, uses asymptotic distributions and very short,

1Mostpapersesdmatethe modelon the Germanhyperitiation samplefromthe early 1920s.



explosivedatasamples. As G. Evans (1991)and West (1994)have noted, thereis a shortageof

evidenceon the small-sampleperformanceof teswwithexplosivedata. Theteswin thispapermay

be implementedlinearly-using two-stage least squares-which greatly facilitatessimulation

experiments,in contrmt to the many nonlinear and iterativeapproachesin the hyperinflation

literature.Particdar attentionis paid to the hard-to-detectbubblesdescribedin G. Evans (1991), “-

and allegedto be present in the Germanhyperinflationand the recentPolish hyperinflationby

Blackbumand Sola (1992)andFunke,Hall,and Sola (1994)respectively.

Second,the paperderivesestimatorsof the model’sspec~lcationerror as a timeseries. The

analogyin the termstructureliteratureis theestimatedseriesoftermpremiaratherthanjust a scalar

measureof whetherthey are nonzeroor nonconstant. This addeddimensionmay provideuseful

informationon the natureof the rejections.As Kim (1996)arguesin the contextof the permanent

incomehypothesis,measuresof specificationerror are more likelyto shed light on the economic

magnitudesof the rejectionsthanaretest statistics.

FinWy, the paper appliesthe measures and tests to the classic interwar hyperinflationsin

Austria,Germany,Hungary,andPoland,andcomparesthemto resultsin the literature.

The paper is organizedas follows. SectionII reviews the Cagan model and the tests, and

derivesthe noiseestimators. SectionIII containsa discussionof somerecentandrelatedliterature.

In Section IV, Monte Carlo results for test size and power against several potential bubble

alternativesarereported. Applicationsof the teststo the interwarhyperinflationdataare presented

in sectionV, and sectionVI concludes.

II. The Model, Noise Estimators, and Specification Tests

TheCaganmodelis a structuralequationfor moneydemandwhichdependsuponthe expected

inflationrate. Thelinearformof the modelis

mt-pt = ~ + aE[(pt+l - pt)lQt] + Et (1)

where mt and pt are logs of the nominal money supply and price level at time t, Qt is an

informationset comprisedof variablesthat agents use to form time t expectationsof time t+l
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prices,~ is an unrestrictedconstantterm, a is a constantless than O, and Stis a stochasticmoney

demanddisturbance.Theparametera is the (semi-)elasticityof real moneydemandwith respect

to inflation,and is often the focus of attentionin the Caganmodel. Otherfactorsconventionally

assigneda rolein money demand,like interestrates and income,are resumedto be of secondary
.

importancerelativeto inflationandsatisfactorilycapturedin the constantand stochasticdisturbance

terms.

It is customaryto substituteforwardrecursivelyin (1) and express it in terms of the current

pricelevel. Further imposingthe transversalitycondition(thatthe discountedexpectationof the

limitingfuturepricegoesto zero)yieldsthe.fina!amntal pricesolution,

(2)

it dependsupon the expectedsequenceof current and future money supply levels and money

demanddisturbances. The general price solution. which we denotep: . does not impose the

transversalitycondition. The set of generalsolutions is Mlnite-dimensional;membersmay be

obtainedby addingany “bubble”processbt whichsatisfi=

(3)bt = 5 E(bt+llQt)

to the fundamentalpricesolution. Thebubblesmay be thoughtof as indexingthe solutions,with

bt = Ofor all t correspondingto the fundamentalsolution.

Observedprice level data may be partitionedinto three components. They may behave

accordingto the fundamentalsolution,may also contain a nonzerobubble component,and may

containelementsinconsistentwiththe generalsolution.Thesethreeelementsdefinean unobserved

componentsidentity:

whereStdenotesspectilcationerror (whichwe also refer to as modelnoise). It is this last term,

and i~ implicationsfor estimatesand tests, which has been ignoredin most of the Cagan model
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literature. DurlaufandHooker(1994)usedtransformationsof (4) and its orthogonalityproperties

underrationalexpectationsto generatetestsof whetherst andbt arenonzero.

Thesetransformationsuse the perfect foresight fundamenti price first employedby Shiner

and Siegel(1977)in anothercontext:

(5)

j=o

SinceE@YIQt)= ~ , the differencebetwmnthe fundamentaland perfectforesightfundamental

price is orthogonalto Qt. Denotingthat forecasterror vt - ~ - p ~ and substitutinginto (4)

yields

Pt -P; = Vr+ bt + st, (6)

the first transformationof (4). Applyingthe forwardquasi-differenceoperator@- -(1-~ L-1)

to (6)eliminatesthepredictablepart ofthebubbletermandyields

?-~+l= m(pt -p; ) = @(vt ) + 5 ft+l + @(sf), (7)

the secondtransformationof (4); ~t+lis the innovationin the bubbleprocess.

The termrt+lhas threecomponents,as maybe seenfromthe right-handsideof (7). The first

two of theseareorthogonalto S2tby definition:@(u) is the differenceof a periodtforecasterror

and a (coefficienttimes a) period t+l forecasterror, while the second componentis the same

coefficienttimesthenextperiod’sbubbleinnovation. me i-ma.lcomponentis a transformationof

the model’s specflcationerror. It cannot be orthogonalto Qf unless st itself is, because the

transformationis exactlythe inverseof the bubblegrowth rate—implyingthat if St is nonzeroand

@(st)1 Qt, thenSt grows at the rate of (andthus is observationallyequivalentto) a bubble. In

termsof the variablesin (l), rt+lmaybe written

~ffl Pt+l -Pt + *
1r~+l = — ‘t - G ‘t” (8)
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A. Specification Tests

The specificationtests are based on the orthogonalityproperti~ of pt - pf and rt+l.z

Projectionsof pl - p f onto time-t informationsets, which are referred to as stock tests, give

memuresof bt + Sr. Projectionsof rl+l onto the same informationsets, calledflow tests, give

measuresof (a transformationo~ modelnoise,@(st). If the correlationsofpt - p: and rt+l with ‘-”

the informationsets are both statisticallyindistinguishablefrom zero, then we may concludethat

the price seriesobeysthe fundamentalsolution. If thept -p; projectionis nonzerowhilethe rt+l

projectionis zero,thatis evidencefor the presenceof a bubble. If the rl+l projectionis nonzero,

then the pr - pf projectionshouldbe as well; in this case misspecflcationis presentand further

analysisis requiredto determinewhetheran explosivecomponentexists in additionto st.3 These

two typesof projections,therefore,permitdiscriminationbetweendifferenttypes of violationsof

the fundamentalpricesolution,and, as shown in Durlaufand Hooker (1994), containall of the

time-seriesimplicationsof the generalandfundamentalntil hypotheses.4

Projections of pl - pf andrt+lcannotbe directlyimplementedbecause&tis unobserved,and

the sumin (5) is infinite. We workwiththeirobservableanalogs:

and

(9)

(lo)

2It shouldbe notedif privateagentsobservea largerinformationset than do econometricians,thenpt -p; and
rt+l are notnecessarilyorthogonalto agents’informationsets,but are orthogonalto the econometrician’s
informationset (Sargent1987p. 334-335).
3If the pric~ differfrom the generalsblutionby an explosiveamoun~we mightcall thata bubblebutnot a rafiod
bubble.
4 That papercontainsproofs of the consistencyof the tests, and conditionsunder which laggedprices must k
includedin the informationset to detecta bubble.
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thatis, weignoreEtandapproximate(5)by truncatingthe sum-s The tests use transformationsof

ht+l and pt - p; which retainthe orthogonalitypropertiesof p~ - p J and r~+lunderparametric

wsumptionson St.

We choosetwoimportantandcommonidentifyingassumptionsabout &r:first. that it is equal

to zerofor all t, referredto as the exactcase,and second,whereit followsa randomwalk(Et= ~t.l
.

+ utwith ut L Qt-l). The exactspecificationhas been employedby Goodfriend(1982);the related

permanentincomeanddividend-stockpficemodelsare exactas well. Whileit is probablyoverly

restrictive,thiscaseprovidesa usefulbenchmark. The randomwalk is the standardspectilcation

in the literature,althoughits use is controversial.P. Evans (1978)givesan economicjusttilcation,

whileseveralauthorsprovidestatisticalsupport(mostlybasedon the autocorrelationof residuals).

Taylor (1991)has criticizedthis spec~lcation,notingthat it impliesthat prices and fundamentals

arenot cointegratedeven when a bubbleis not present, while Christian (1987)forceftily makes

the point that “decisionsabouthow to modeldisturbanceterms can have a signflcant impacton

parameterestimates.”

In the exact case, where Et = O for all t, ht+l = rt+l, so no transformationis necessary.

Similarly, pt -p; equalspl - p 7 up to the truncationapproximation. Under the randomwalk

assumption,ht+lis not necesstily orthogonalto Qt, becauseit involvesEtwhich is a functionof

past data. However,the problemmaybe solvedby differencing:

Aht+lmay then be regressedagainstelementsof Qt-l to test for spec~lcationerror relativeto the

model’sgeneralsolutionwhenEtfollowsa randomwalk.GNotethat in the randomwalk case, the

5We also ignorethe constanttermin (10);in the tests, an unrestrictedconstantterm is includedin the information
set. Whilepi is constructedusing ail availablemoney and price data (T is the last observationavailable),in the
teststrangesonlyacrossthepre-monetaryreformobservations.Regimeissuesare discussedbelow.
6In the particularcasewherespecificationerrortoo followsa randomwalk,the test willfail to detectit—aswillany
testbasedon thecovariancestructureof thedata-because it is observationallyequivalentto the disturbanmin the
model (l). One implication,stressedby Hamiltonand Whiteman(1985)and others,is that it is impossibleto
distinguishbetweenunobservablefundamentalswhichhave thesamestructureas eitherspec~lcationemoror
bubbles. The approachtakenin thispaper,and in themajorityof the Caganmodelliterature,is to makeparametric
errorprocessassumptionsand to test themas partof themodel.
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informa~onsetmustbe lagged,as contemporaneousvariablesare correlatedwith Aht+lunder the

null. It shouldbe notedhere that more general,but still parametric,cases cotid be handledin

similarways. For example,if Ast followeda finiteorder MAprocess, the informationset would

needto be laggedaccordingly,andif A&tfollowedan AR process,then (11)couldbe appropriately

quasi-differencedandthoseparametersestimatedalongwith a.
..

Similarly,in the randomwalk casept -p; is not necessarilyorthogonalto Qt, becauseit too

involvesEt. Againtheproblemmaybe solvedby differencing:

.

Apt - Api
x( )

= Avt + Abt+ Ast - & La-l

j
Ut+j (12)

j=O

is orthogonalto Qt-l under the fundamentalnufl hypothesis. Each of these projectionterms,

pt -pi md ht+landtheir first differences,may then be constructedgivenestimatesof the model

parameterstxandP.

In studying hyperinflationepisodes, the issue of monetaryregimechanges and coefficient

instabilityarises. Oneway of dealingwith this is to model the regimes, as Blackburnand Sola

(1992) do using a Markovswitchingprocess. We follow the majorityof the literaturein simply

truncatingthe datasamplesbefore expectationsof a regime change becomesignificant,with the

exceptionthat ourpt -pi series are constructedusingthe entiresample, includingpost-mone~

reform data. Two lines of reasoningsupport this practice: First, Flood and Hodrick (1986)

demonstratethat if the terminalvalue in the constructionof pt - pi containsa bubble, then the

bubblewillbe exactlycanceledout and stock tests will never revealit. However, in all cases the

hyperinflationseitherend or moderate,so it is unlikelythat a bubbleexists in the terminalvalue.

Second,theestimatesof a implyveryheavydiscountingof futurevaluesof moneyandprices: for

instance,with a = -3 the discountfactoris only 0.75, which weigh~ observations48 monthsout

by 10-6. By contrast, the discountfactor for monthly data is near unity in most finance and

macroeconomicsapplications.



Theempiricalrepresentationsof thept -pf and rt+l projectionsonto Qt are then regressions

of the objects above—pt-p; and ht+l in the exact case, and Apt- Ap~ andAht+lin the random

walk case-on constants, lags of (differences of) money and prices, and possibly other

informationassumedto be in Qf. We estimatea and ~ via GMM. using the flow projections

themselvesas the orthogonalityconditions,and by instrumentalvariables. The tests are of the ‘-”

Waldform for the null hypothesisthat all nonconstantregressioncoefficientsequal zero. It is

importantto includelaggedprices,becauseif a bubbleexists and the moneysupply is exogenous,

thenprojectionsonmoneymayindicateorthogonalitywhenin fact those laggedprices-which are

also part of Qrare correlatedwithpt -pi or Apt - Ap~ . In SectionIV,MonteCarloevidence

on theperformanceof thesetestsis presented.

B. Model Noise Estimators

The basicideaforestimatingmodelnoise is to projectrt+l onto an empiricalmeasureof Q~to get

an estimateof @(st), and then to undo the transformation. The inverse of the forward quasi-

differenceoperator0(.) gives the geometricallydiscountedexpectedfuture sum of the operand,

whichcanbe solvedusingexistingtechniquesand smallmodflcations. We deriveestimatorsfor

boththe exactandthe randomwalkcases.7

1. ExactCase

In the exactcase,notethat

r-t+l= ht+l = @(vt ) + ~ gt+l + @(~t)> (13)

so thatby definition

E[rt+j+lIQt] = E[(l - ~ L-l)st I~t]. (14)

Applyingthe inverseforward quasi-differenceoperatorO-l(.) to both sides (and exchangingthe

orderof integrationwiththeexpectationsoperator)yields

7Theideaof measuringmodelnoiseas an unobservedcomponentin a signalextractioncontextis due to Durlanfmd
Hall (1989). See Kim (1996)for an applicationto thepermanentincomehypothesis.
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j=()

Expression (15) is a vert [on of a Hansen and Sargent (1980) / Sargent (1987, Ch X1.19)

“predictinggeometricdistributedleads”problem. It is a vectorversion, since the informationset ..

Qt generallycontainsmore than one variable,and the first termis nonstandard,as it begins one

periodforward. Hansen and Sargent derive forrntdaefor expressionsme (15) in ~rms of tie

elementsof Qt for the casewherethe variablesin Qt followa vectorautoregressiveprocess. Here

we alsomakethatVARassumption.

The secondandthird termson the RHS of (15)are standard. Lettingxt = [mfpt]’, A(L)xt=

(1 - AIL - ~L2 ----- &Lr)xt = q be its tih orderautoregressiverepresentation,and I denotea

conformableidentitymatrix;

[m “

E ~ (fi)Jxt+j Ixf; Xl-l; . . .1[=A(5 1 (16)
~1 ~ + ~1 ~ ~(fi)~-~A~)L~ xr

j=() j=l ~=j+l

where 1(A ) = 1- Al(fi ) - A(5 )2- ... - ‘~(~ )r-

To computethenonstandardfirst termon the RHSof (15),let

[m “
Yt = ~ ~ (~~xr+j 1‘t; ‘t-l; .””1[ 1andzt=~ ~(fi~xt+j+,lxt;xt-,; ;

j=() j=o

thenyt = Xr+ A Zt, implying Zt = (Yt- xt)l(~ ). Thus the first term can be obtainedas the

secondelementof

r-1 r

}
2(fi)-1 - I + A(fi)-l~ [ ~ (~)k-jlk] Lj) xt.

j=l ~=j+l

Summingtogetherthe threeterms,mdtiplied by theirrespectivecoefficients,yields; t.

(17)

2. RandomWalkCase

Inthe randomwalkcase,andparallelto (14),
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E(Ahf+lIQt.l) = E[A@(s~)I~f-1]> (18)

sinceE[A@(vt)IQt-l]= EIA~t+lIQt-l]= E[ufIQf-l]= O. This impliesthatAstcan be estimated

via

w

A< = - z (~YIEAht+j+l I~t-1]
j=()

00

=-~(~P{E[(~APt+l+j-APt+j‘*A~t+j)lQ~-ll}; (19)

j=O

these terms are constructedwith estimatmof a from the associatedorthogonalityconditionand

describedabove. Equation(19)is anotherHansen-Sargentpredictionproblem,solvedin the same

wayas (15);it yieldsan estimateof thefirst differenceof st.

III. Discussion of Related Literature

The tests outlinedabovewere designedto combinethe insightsof Hall (1978), that models

with expectationsyieldorthogonalityconditionswhich can be used as spectilcationtests, and of

West(1987)andCasella(1989),that a comparisonof the generaland fundamentalsolutionscodd

yielda testfor bubbles. Durlaufand Hall (1989) demonstratedhow to extractestimatesof model

noisein theexactcase,andshowedthat the varianceof the noiseseriesdefinesa lower bound that

maybe usedin “variancebounds”tests.

TheWestiCasellaprocedurecomparesestimatesof the parametera from the model’sgeneral

solutionto an estimatefromthefundamen~ solutionin a Hausmantest. In the absenceof model

noise, it consistentlyidentiles bubbles (althoughit does require a spectilcationfor the money

supplyseries). However,if observedprices containa nonzerost component,then both estimates

of a may be inconsistent,and thus the test will also be inconsistent. Othertests which interpret

.-.

deviationsfromthefundamentalsolutionas evidenceof bubblessharethis drawback.
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An interesting recent strand of the Cagan model literature which tests for model

misspectilcationwas begun by Taylor (1991)and Phylaktisand Taylor (1992, 1993).8 Here the

fact that the fundamental solution of the model implies cointegrationrelationships (under

reasonableassumptionsaboutthe data generatingprocesses)is exploited. This approachhas the

advantagethat it places relativelymild restrictionson expectationalerrors and money demand

innovations (that each is stationary), whereas most of the Cagan model literature includes

rationalityandparametricerrorprocessrestrictionsin the nullhypothesis.

Thereare prices to be paid for these advantages,however. me main problem is that both

stationary components of observed prices which do not fit the model, and nonstationary

componentsunrelatedto moneythatdofit themodel (i.e. bubbles),may exist. Testingthe model

via coirttegrationwill erroneously fail to reject in the former case, while in the latter, no

transformationof prices (or money, if it is endogenousas is usually the case) will render them

stationary,so cointegrationtestsareunimplementable.In small samples, differencesof explosive

datamay appearstationaryand thus yieldmisleadingresults. G. Evans (1991) has shown that

some rationalbubbles effectivelymimicstationaryprocesses, which may confound these two

problems.

The difficultyis illustratedby the fact that while the cointegrationapproachis essentiallya

formalizationof Diba and Grossman’s(1984)method, it is givena differentinterpretation.Diba

and Grossmantestedfor a nonstationarycomponentin the response series (the price of gold in

their application)not also in the forcing variable;Hamiltonand Whiteman(1985) appliedtheir

procedure to the Cagan model and the German hyperinflation.9 However, since correct

specflcationis a maintainedhypothesisin these papers, the same evidencethat the cointegration

approachwouldconstrueas mlsspecificationis interpretedas a rationalbubble. Again,the test is

8Otherpaperswhichtest the specificationof themodelincludeP. Evans (1978),whichestimatesARIMAmodels
formoneyandpricesin the Germanhyperinflationand comparestheprocessesobtainedto thosetheoretically
impliedby reasonableassumptionson tie datageneratingprocess,and Salemiand Sargent(1979)andChristian
(1987),whichuse likelihood-basedtests. OnlySalemiand Sargentallowsfor thepossibilityof bubbles,and they
all use asymptoticcriticalvaluesin their tests.
9Bothof thesepaperswerewrittenbefore the developmentof cointegration.Campbelland Shiner (1987)andDiba
andGrossman(1988)notedhat geometricdiscount-expectationsmodelsof thistypeyieldcointe~ting relations.
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strictlyunimplementableandthe caveataboveappliesif in factthereis a bubble

moneysupply.

Thus, overall, we believe that the rational expectations/parametric

andan endogenous

approach and the

cointegrationmethodologyhave differentadvantagesand disadvantages,and thus are usefti as

alternativeandcomplementaryprocedures.

IV. A Monte Carlo Study of the Specification Tesfi

The specificationtestsdevelopedin Durlaufand Hooker (1994) are asymptoticallydistributed

m %2randomvariables. Thereare severalreasons that one shouldbe concernedaboutthe ftite

samplepropertiesof thesetesfi, and of hyperinflationmodeltess more generally. First, the data

samples tend to be quite short-for example, the German hyperinflation’s44 pre-reform

observationsconstitutea relativelylongdataset. Second,the series are quiteexplosive;combining

the known low power of unit root tests with short data samplesmeans that there is considerable

uncertaintyaboutthe appropriatedegreeof differencingor other detrendingprocedures,ARIMA

modelspecifications,etc. Finally, these and othertests commonlyemploytwo-stageprocedures

wherethe samplingerrorof the test statisticitselfis compoundedwiththat from a previousstage’s

parameterestimation.

In the simulations,we generatedata accordingto the exactand the randomwalk versionsof

the Cagan model with an exogenousmoney supply. The money supply is assumedto be the

particularARIMA(1,2,0)process from univariateestimationon the German dataset with the

parametersgivenin Table 1. Fundamentalpricesarethencomputedfrom the moneysupplyseries

via (2), using the Hansen-Sargentformulas for predictinggeometticdistributed leads. The

simulatedmoney supply and fundamentalprice series are thus both 1(2).10 The innovationto

moneydemanddisturbances(inthe randomwalkcase)is takento be a standardnormalvariate.

Lneachreplication,the samplelengthis 50 observationswith another 50 used to construct

(10);theseareset roughlyto correspondto the Germandatasetwherethe numbersare 44 and 40,

10West (1994)suggeststhat it wotid be desirableto know how
whenthefundamentalequilibriumdatafollowan I(2)process.

hyperinflationmodel and bubbles tests perform
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respectively. To reflectuncertaintyabout the correctspecification,tests are performedwhere the

informationsets consistof first difference and of seconddifference lags of moneyand prices.

We performour tests on datawhere prices obey the fundamenti solution and fundamentalplus

bubblessolutions. Twodifferentbubbletypes are considered,a simplefirst order autoregressive

processwhichgrowsat the appropriaterate, and the periodicallycollapsingbubblesstudiedin G. “--

Evans (1991).

To determmesmall-samplecriticalvalues,we computethe90th,95th, and 99th percentilesof

the empiricaldistributionsof the flow and the stock tests, for informationsets containingtwo

throughfour lagsof firstandseconddifferencesofmoneyandprices(seeTable 1). Ten thousand

replicationsare performedfor each Table 1 reveals that the empirical distributionsdeviate

signtilcantlyfromtheirasymptotic~z limits. In the exactcase,the firstdifference informationset

testsarequitepoorlybehaved,witha tendencyto verylargetest statisticsas the numberof degrees

of freedomrisesor the distanceoutin the tail increases. This tendencyis exacerbatedin the stock

test statistics relative to the flow test statistics. With the (appropriate)second difference

informationset,the tests are considerablybetterbehaved,althoughin severalcases criticalvalues

aremorethanthreetimestheirasymptoticcounterpm.

The same pattern of deteriorationin the tails and as the number of degrees of freedom

increasesholds for the randomwalk tests statisticswith first difference regressors. The critical

valuefor a IO~otestwithfourelementsin the informationsetis aboutthe asymptoticvalueof 13.3

in boththe flowandstocktests,but the empiricalvaluesthen rangeup to two and threetimesthe

asymptoticvalues. Curiously,the test statisticsfor the randomwalk case with seconddifference

regressorsare in manycases smallerthan their asymptoticvalues, particularlyfor the 10% tests

andlarger informationsets. In the applicationsin the next section,we focus somewhatmore on

thebetter-behavedexacttestswithseconddifference regressorsand randomwalk tests with first

difference regressors.

Table2 reportsthe results of power and Type I error calctiationswhen a nonfundamental

solution obtains;here we simtiate data adding bubbles to the fundamentalsolution for prices.
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Each of these experimentsis performed for three different actual values of a which are

representativeof thoseestimatedin theliteratureandfor onethousandreplicationsin eachcase. In

the first section of the table, a standardAR(1) process with coefficient(u-l)/a is added to the

fundamentalprice series, and in the secondsectionperiodicallycollapsingbubblesas studiedby

G. Evans (1991) are added. These bubbles are the same as the AR(1) bubbles when they are

below a threshold;once they cross it they grow at the faster rate (a-1)/za with probabilityn and

crashto a meanlevelbelow the thresholdwith probability(l-z).ll The tests use the 95% critical

valuesand 3 lags of seconddifference regressorsfor the informationset.

me flow and stock tests togetherare quite successfulat distinguishinga standardbubble in

the I(2) data. In 75Y0to 99Y0of the simulations,the flow test (correctly)fails to rejectwhilethe

stock test (correctly)rejects. This compares favorably to the simulationresults of Diba and

Grossman(1988), whereunit root tests are appliedto bubbleswhich are assumedto be directly

observable.The size is somewhattoo small, however, with fewer than 5Y0of the flow statistics

leadingto (false)rejection.

me success of the tests is best illustrated,however, in their abilityto detectthe periodically

collapsingbubbles. G. Evans(1991)showedthat when the per-periodprobabilitythat the bubble

does not crash, n, is less than 0.95, the Bhargava N1 test has virtuallyno ability to de~ct

collapsingbubblesand the N2 tests correctlyidentify fewer than 12Y0of them.12 Furthermore,

these results assumethe bubblesto be directlyobserved. The pt - pl /rt+l tests, by contrast,

successfullyidentifybubblesabout50Y0of the timewhen z is 0.95 (43Y0with a = -1, 47~0with

II In G Evm~ (1991),tie bubbleshaveno trendin the sense that the mean level they rem to aftera ~ash ‘d *e
peaklevelstheyreach are constantacrosstime(cf.his Figure2). When addingsuch a bubble to a stronglymded
serieslikehyperinflationaryprices, the bubblebecomesnegligiblerelativeto the fundamentalsas time passes. In
the simulations,we adaptEvans’bubblesby havingthemcrash back to the levelof themoney supply(which shins
thepricelevel’s stochastictrend)ratherthana constant. The bubblesare generatedaccordingto the formulas

bt+l = [(a-1)/a]bt + qt+l if b?< Tt;br+l = {mr+ [(a-1 )/na]6t+I(bt - mt/(a-l)} + qr+l if b~> Tz.
whereqt is a whitenoise shock f3ris an exogenousi.i.d. Bernoulliprocesstaking the value 1 with probabilityz
and Owithprobabilityl-z, and rt is a finite-variancedeviationfromrnf. Most of the interestingvariationin these
bubblesoccursacrossvaluesof the twoparametersvaried in tie table, a and z.
12The Bhargavatestsusedby Dibaand Grossmanand Evans are unit root tests which allow for rejectionof a unit
root in favorof eitheran explosiveor a stablealternative. A rejectionin favorof the latter would leadto acceptance
of the fundamentalsolution,sinceit wouldnot affectthe orderof integrationof moneyor prices.
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a = -3, and 54%with a = -5) while they are an unobservedcomponentof I(2) data. Remarkably,

thepowerof the trots alsodoesnot deteriorateas nfalls exceptin the a= -1 case: witha= -3 or -

5, thepercentageof correctrejectionsis between45% and 55% across the fti rangeof valuesof

n. The size doesrise somewhatas z falls,with 10-20Yoof the bubblesinterpretedas noise when

the bubblesare crashingeveryotherperiodor more (n= 0.50 or 0.25). The successof the tests in “--

identifyingthese bubbles can be explained as follows. Rational bubbles have two salient

characteristics:they are explosive,and they follow a particulartime-seriespatterngiven by (3).

The Bhargavaunit root test focuseson bubbles’ explosiveness,and so misses them when they

crashoftenenoughto appearstationary.However,the frequentcrashesdo not sufficientlychange

the autocomelationstructure,andsocan be detectedby orthogonalitytests.

V. Empirical Results for Interwar Hyperinflation Data

Havinginvestigatedthe performanceof the tests,we nowturn to an analysisof the datafrom

four interwarhyperinflationepisodes,in Austria,Germany,Hungary,andPoland. Thesourcefor

tie data is Young (1925) (the data source used by Sargent (1986)), with the exception of

Germany,wherewe use the data in Flood and Garber (1980). The resultsreportedfor Germany

are those obtainedby Durlaufand Hooker (1994) interpretedhere using criticalvalues from the

MonteCarlosimtiations.

For Austria,the moneyseriesconsists of notes in circtiation and deposits, while the price

indexis a retailpriceindex of 52 commodities. Their intersectionis availablefrom 1921:1-24:6;

stabilizationwas achievedthrough interventionof the League of Nations and the signing of im

Protocolsin October1922,but reactionsbeganin Augustof thatyear. Hencethe dataemployedin

the testsrun from 1921:1-22:7,while the data from 1922:8-24:6are employedin the construction

of (10). For Germany,the availabledata run from January 1920 until December1926;the lmt

datapointunaffectedby signKlcantexpectationsof a regime change is August 1923 (LaHaye

1985). Data from 1923:9throughthe end of 1926 are used in the constructionof (10). For

Hungary, the intersectionof moneystock (currencyand deposits)and prices runs 1921:7-25:3;
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Sargent(1986)identifies1924:3as the reformdateso that is usedas the first out-of-sampleperiod.

Finally, the Polish money stock data consist of just currency;the intersectionruns 1921:1-24:4

withthe reformdatetakenas January1924.

A. Specification Tests

The empiricalresulfiforAustriastronglyreject the Caganmodelwith rationalexpectationsin

boththe exactandrandomwalk error specifications. In the exactcase, reportedin Table3a, two

of the informationsetsare correlatedwiththeht+lat the 590leveland anotheris at the 1070level,

andall the informationsetsbut oneare significantlycorrelatedwithpt -p; . The rejectionsof the

modelin the randomwalk case, in Table 3b, are even stronger. The standarderrors are quite

large, particularlyfor the exactmodel, so that in no case could the null hypothesis of a = Obe

rejectedat the 5Y0level. Thereis no evidencethata bubbleis presentin the datafor Austria.

Durlauf and Hooker (1994) showed that using asymptoticcritical values implies strong

evidenceagainstthe modelfor Germany;the restifi in Tables4a and4b using the empiricalcritical

values are less clear-cut. In the exact specification, the better-behavedtes~ with second

difference regressorssupport the existenceof a bubble, while in the randomwalk case, thereis

some evidenceof misspecificationand no evidenceof a bubble. The estimatesof a are also

considerablymoreprecisethanfor Austria,withmanyof the t-ratiosabove2 in absolutevalue.

The restits forHungaryaresimilarto thosefor Germany:thereis some evidencefor a bubble

in the exactcase, and the randomwalk spectilcationis stronglyrejected. However, the standard

errorsfor a are large,withmost t-ratiosin the rangeof -0.5to -1.5.

The evidence for Poland supports the emstence of a rational bubble. No significant

specificationerroris detectedin eithertheexactor the randomwalk case, and with two exceptions

theestimateda valuesare in a narrowrange (-0.87 to -2.08). By contrast, the fundamentalmdl

hypothesisis rejectedfor nearlyall of the informationsets. The estimatesof a are generallymore

precisethanfor AustriaandHungary,but less than for Germany.

16



It is instructiveto comparethese resultswith some of those obtainedby other authors with

similar datasets and specifications. Interestingly, the results here are quite different from

Christiano’s (1987); he found that imposing the random walk error assumption led to large

standarderrors for the a estimateswith German data. However, we do obtain large standard

errorswiththe otherdatasefi, underboth errorprocessassumptions.

Salemiand Sargent(1979)andTaylor(1991)testedthe Caganmodelwithsimilardatasewfor

eachof thesefour episodes. Theformerauthorsemployedthe same restrictionsthat we do in the

randomwalk version of the model, althoughin a VAR/maxirnumlikelihoodframeworkand with

some differentassumptionsabout trends. Taylor’stest is considerablyless restrictive,allowing

deviationsfrom rationalexpectations(as long as the forecastingerrors are stationary)and any

stationarymoneydemanddisturbanceas well. It should be noted that acceptanceof the random

walkversionof themodelis wouldcorrespondto a cointegration-approachrejection,althoughthis

restdt does not obtain for any of the datasew. Similarly, acceptanceof the model using the

cointegration-approachcouldbe consistentwith rejectionof either the exact or the random walk

version,dueto the existenceof stationaryspecificationerror.l3

Theresultsfor Austriaaresomewhatcontradicto~. In contrastto our strong rejectionof the

model,Salemiand Sargentdidnot rejectthe randomwalkversion;theydid,however,find that the

estimatesof a were very impreciseand mostlywrong-signed. Taylor(1991) rejectedthe model

forAustriandatausingresidual-basedcointegrationtestsbut acceptedit usinga Johansentest.

Salemiand Sargentrejectedthe modelfor Germanyin most cases; only with their Model3

representationand second German dataset did they accept the restrictions of the model at

conventionalsignificancelevels. Taylor found that residual-basedtests support the model for

Germany,whilethe Johansentes~acceptsnon-cointegration.

13sale~i ~d Sagent (1979) use asymptotic cfiticd values in their analysis. I refer to thefi tests of ratio~
expectationsbut not erogeneityof the moneysupply. Taylorusesboth the standardcointegrationcriticalvatua in
Engle and YOU(1987)and small sample values from Blangiewiczand Charemza(1990). There is considerable
disagreementabout the the small samplepower of cointegrationtests, cf. Engle and -ger (1987),Hakkio and
Rush(1991),and Hooker(1993).
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Contradictoryresultsarelikewiseobtainedby theseauthorsfor Hungary. Salemiand Sargent

foundthatthe modelwithrationalexpectationsis rejectedin allcasesbut one;Taylorfoundthat the

residual-basedtestsprovideweakevidencefor cointegration,whilethe Johansentest acceptsnon-

cointegrationat the 5~0and 10Yolevelsfor his two datasets.

Theresulmofthwe authorsaremostconsistentwith ourresultsin the caseof Poland. Salemi

and Sargentfound that the model fit these data well, and obtainedestimatesof a and standard

errorsverycloseto those in tables6a and 6b. Furthermore,they found explosiveelgenvaluesin

eachof theirestimations(consistentwith the existenceof a bubble). Taylor found evidencefor

cointegrationusing both residual-basedand Johansen tests. Sincethese latter tests should reject

fornonstation~, nonfundamentalpricecomponents,it maybe that the bubbledetectedby Salemi

and Sargentand thepf -p; testswas of the periodicallycrashingvariety.

B. Model Noise Estimates

fitimates of the modelnoise componentpl are presentedin Figures2a-d. Sincethe money

andpricedataarequiteexplosive,theestimatednoiseis scaledto the price series and their ratio is

plotted. This is also the method recommendedby Kim (1996) for gauging the economic

magnitude of specificationerror. fitimates are constructed assuming a 6th order VAR

spec~lcationfor the [mtPt] vector in (16), using the meanestimatedvalue of a across the first

andseconddifference informationsets,respectively.

ForAustria,thenoiseis initiallyestimatedto comprise12or 20% of the price data, according

to the twoestimates,fallingovertimeso thatby halfwaythroughthe datasetit is negligible.It then

risesbriefly,andis agan negligibleby the end of the sample. The twoestimatesare quiteparallel,

withtheseconddifferencesinformationset indicatingless noise. This is consistentwith the flow

test results, whichrejectedmore with first difference informationsew. The averagesize of the

noisecomponentis less than 109oof the priceseries,suggestingthat theCaganmodelwithrational

expectationsand a randomwalk error may be a reasonablerepresentationof the data. The large
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sizeof the noisecomponentin the first few months correspondsto relativelylow and stablerates

of inflation,wherethe Caganmodelmaybe a poorerdescriptor.

ForGermany,noiseestimatedusingfust differencesis a relativelysteadyandlargefractionof

prices,fluctuatingin the rangeof 30-50%. By contrast, the noise series from seconddifference

datadropsoff sharplyandis near zerofor roughlythe last yearof the hyperinflation. Again, these “--

resultsareconsistentwith the flow test results, and the noise componenfiare againlargestin the

earlymonthswhen prices are relativelylow and stable. The noise estimatesin the Hungary dam

are much smaller, and exhibit a less marked drift over the sample. The second differences

spectilcationgeneratesnoise estimatesthat are nearly zero throughoutthe sample, and the first

differencesspetilcation yieldsnoise about 10%of prices. This supports the model as a useful

datadescription. For Poland, both spectilcationerror estimatesare in the 5-8% range, and not

veryvolatile. Whilethe f~st differencesestimaterisesabove 10%in the last two observations,the

generalsolutionof themodelseemsto providea closeapproximationto the data, strengtheningthe

interpretationof the f~mdamentalsolutionrejectionsas evidenceof a bubble.

VI. Summary and Conclusions

This paperhas analyzedtests of the Caganhyperinflation-moneydemandmodelwhichhave

severaladvantagesrelativeto thosein theliterature:Theydonot confoundspecificationerror with

rationalbubbles, they are implementablewith a linearprocedure,and they are frequentlyable to

detectthe periodicallycollapsingbubbleswhich have challengedexistingtests and inferences. A

MonteCarlo analysisshows that the ftite samplepropertiesof the tests may be quite different

fromtheirasymptoticcounterpm, butthatthe testsmay containconsiderablepower.

The empiricalresults show strong evidenceof modelmisspecificationfor Austria, while tie

modelwitha rational,explosivebubblecomponentwell-characterizesthe Polish data. Inferences

for Germany and Hungary are mixed, varying across spectilcationof the money demand

disturbanceandthe informationsetsusedin the tests.
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Table 1: Critical Values for Wald Flow and Stock Test Statistics

A. ExactModelCase. 1stDifference Regressors

Urf Ws

m w w m w M

Z-1agin~ set 12.97 19.87 95.90 48.59 88.81 1016.44

B.

c<

3-lagin$ set 23.98 39.65 311.29 102.60 243.86 9542.24

4-lag infiset 40.11 68.80 797.49 199.39 608.77 44182.82

ExactModelCase.2ndDifference Regressors

Wf Ws

m m m w m m

2-lagin$ set 10.58 15.14 36.59 17.79 27.34 55.37

3-lag infiset 18.23 26.32 56.24 30.13 45.41 87.61

4-lag infiset 26.85 37.56 75.80 46.03 66.88 142.57

WalkCase. 1stD~

2-lag inf sel 14.62 20.23 33.92 17.34 22.90 37.28

3-lag infiset 19.44 26.59 53.70 21.98 29.96 57.80

4-lag infiset 22.78 31.52 69.01 25.66 35.43 82.52

2-lag in. set 11.14 14.80 24.70 13.35 18.23 29.98

3-lag infiset 7.91 11.48 31.19 8.91 13.28 32.45

4-lag inJ set 6.37 9.46 21.47 7.46 10.98 25.90

Notes: Simulations based on 10000 replicationsof length 50 samples (witb an additional50 out-of-sample
observationsto construct the stock test). The money supply is an exogenous ARIMA (1,2,0) process with
autoreg~sive coefficient0.74, drift equal to 0.02, and innovation variance 0.12 (estimatedfrom tbe ~
univariatedata). The fundamentalprice seriesis constructedaccordingto equation(2) in tie text using Hansen-
Sargentpredictionformtias for tie expectationalterms. “n-Zaginformationset’ refm to the contemporaneousplus
n-1 lags of eitherfirst or seconddifferencesof botb money and prices in the exactcase, and n lags in the random
walk case;e.g. the 2 lagsiseconddifferencesinformationset for the exact case containsA2mt, A2pt, A2rnr-1,@
Azpt-l. ~ 1Ses~ated Using2SLS with the informationset m ins~en~.



Table 2: Power and Twe I Error in Data with Bubbles

Power: YOof re~licationswhich Twe I Error: % of replicationswhich

acceptflowandrejectstocktest electflowtestr’

“Stan&rd” Bubbles

I a= -3~=-

75.37 99.79

Periodically Collapsing Bubbles

mm

z = .999 94.30 98.02

n = .99 70.47 81.64

n = .95 43.43 47.26

n = .85 33.02 45.40

n = .75 31.89 47.08

n = .50 29.56 47.02

K = .25 29.72 54.39

5~=-

99.38

~ = -5

98.23
82.56
54.18
47.23
48.59

51.11
53.01

1~=-

5.26

~ = -1

0.00
0.48
0.66
1.20
2.31
9.12

18.16

-3a=

0.21

-3~.

0.62
2.08
5.69
5.23
5.41

12.34
16.58

M

0.62

a = -5

0.83
3.41
7.43
7.98
9.95

12.04
18.37

Notes: Simulationsbasedon 1000replicationsof length50 samples(withan additional50 out-of-sample
observationsto constructthe stockte~t). SeeTable 1~orconstru~tionof the moneyand fundamenmlpriceseries.
Therandomwalkcase,f~st difference/three lagsinformationis used; a is esdrnatedusing2SLSwiti that
informationsetas instruments.The standardbubblesare AR(1)proasses with coefHcient(cc-l)/a and shocks
NID(0,.12);theperiodicallycollapsingbubblesare motiled versionsof thosein Evans(1991)describedin fmmote
10 of the text.



Table 3a: Estimates and Tests for Exact Model Specification. Austria

Znfomtion Set:

FirstDi#eremes

2 lags

3 lags

4 lags

-3.37 6.38
(14.34) (18.05)

-5.41 6.73
(30.83) (26.21)

-5.37 6.73
(31.05) (26.32)

M– ~s–

4.80 67.31*

60.71** 842.29**

74.12** 3019.59**

SecondDifferences ~ L m. ws–

2 lags 0.11 5.64 0.16 1.18
(1.53) (9.41)

3 lags -2.14 6.07 53.54** 54.98**
(9.26) (15.98)

4 lags -2.48 6.10 24.61 57.51*
(10.55) (16.27)

Notes: Standarderrors,consistentforheteroscedasticity,m parentheses. hformation setsconsistof thespecified
numberof contemporaneouspluslagsof eitherfirstor seconddifferenc= of bothmoneyandprices(e.g.the2

lags/seconddifferencesinformationset containsA2rnt,A2pf,A2rnt.1,and A2pr.1). ~~and Ws areWald statisti~
for the flow and stocktesw;mymptoticallyunderthenull theyhave a X2distributionwith degreesof freedomequal
to thenumberof elementsof the informationset (twotimes the numberof lags);empirid criticalvaluesfrom
simulationson hyperinflationdataare givenin Table 1. *, **,and *** denotesignificanceat the 10,5, and IYo
levels.



Table 3b: Estimates and Tests for Random Walk Model Specification. Austria

Infomtion Set:

FirstDifferewes & m– Ws

2 lags -0.29 3.73 2.22
(0.32)

3 lags -0.82 65.45*** 70.84***
(0.47)

4 lags -1.00 27.43* 400.73***
(0.71)

SecondDifferences Ws

2 lags -0.53 75.67*** 71.31***
(0.52)

3 lags -0.59 66.78*** 66.25***
(0.66)

4 lags -0.35 283.69*** 139.45***
(0.29)

Notes: Standarderrors,consistentforheteroscedasticity,in parentheses. Informationsetsconsistof thespecified
numberof lags of eitherfwstor seconddifferencesof bothmoneyand prices(e.g.the2 lags/seconddifferences

informationset contains42m1.1,Azpt-l,A2mt-2,and A2pf-2). Wf and Ws areWald statisticsfor tie flow and
stocktests;asymptoticallyunderthenull theyhavea X2distributionwiti degreesof freedomequalto thenumberof
elementsof rheinformationset (twotimesthenumberof lags); empiri~ criticalvaluesfrom simtiationson
hyperinflationdataare givenin Table 1. *, **,and ***denotesi~n~l~ce at the 10,5, and l~olevels.



Table 4a: Estimates and Tests for Exact Model Specification, Germanv

InformationSet:

FirstDifferences & L

2 lags -4.21 1.59
(1.83) (0.35)

3 lags -4.20 1.62
(1.76) (0.36)

4 lags -4.36 1.68
(1.86) (0.38)

M–

15.51*

27.74*

47.80*

Ws

58.36*

85.49

77.64

SecondDifferences & & M– Ws

2 lags -1.07 1.15 0.66 48.75**
(5.74) (21.79)

3 lags -1.45 1.15 7.19 170.93***
(0.69) (0.28)

4 lags -2.26 1.15 32.64* 175.96***
(1.08) (0.31)

Notes: Standardemrs, consistentforheteroscedasticity,m parentheses. Informationsetsconsistof thespecified
numberof contemporaneouspluslagsof eitherfwstor seconddifferencesof bothmoneyandprices(e.g.the2

lags/seconddifferencesinformationset contains42mt,A2pr,A2mt.1,and A2P1.1).Wf and Ws areWald statistics
for the flowand stocktests;asymptoticallyunderthenufl tiey have a X2distributionwith degreesof freedomequal
to thenumberof elemen~of the informationset (twotimes the numberof lags);empiricalcriticalvaluesfrom
simulationson hyperinflationdataare givenin Table 1. *, **, and *** denotesignificanceat the 10,5, ~d 1~0
levels.



Table 4b: Estimates and Tests for Random Walk Model Specification. Germanv

Inforrn4rtionSet:

FirstDifferences & m– Ws

2 lags -1.30 8.05 12.48
(0.96)

3 lags -0.79 28.46** 24.15*
(0.24)

4 lags -0.80 30.30* 24.57
(0.18)

SecondDifferences Q w- Ws

2 lags -0.75 14.12* 6.63
(0.27)

3 lags -0.74 14.29** 12.81*
(0.54)

4 lags -1.03 26.49*** 56.84***
(0.21)

Notes: Standarderrors,consistentforheteroscedasticity,in parentheses. Informationsetsconsistof thespecified
numberof lagsof eitherFrostor seconddifferencesof botbmoneyand prices(e.g.the2 lags/seconddifferences
informationset containsA2?nr.1,A2pr-1,A2mt-2,and A2pr-2).~Tfand Ws areWald statisticsfor the flow and
stocktests;asymptoticallyunderthenull theyhavea X2distributionwith degreesof freedomequalto thenumberof
elementsof theinformationset (two timesthe numberof lags); empiricalcriticalvaluesfrom simtiationson
hyperinflationdataare givenin Table 1. , ,* ** ~d ***denotesignflcaw at the 10,5, ad 170levels.



Table 5a: Estimates and Tests for Exact Model Specification, Hungary

InformationSet:

FirstDifferences

2 lags

3 lags

4 lags

-7.91 1.81
(10.25) (0.69)

-8.08 1.79
(10.26) (0.66)

-6.29 1.45
(6.23) (0.52)

m– &.–

16.28* 110.42**

17.24 41O.73**

17.85 451.74*

SecondDifferences k ~- w–

2 lags -1.29 0.94 2.88
(1.43) (0.37)

3 lags -1.24 0.88 3.49
(1.38) (0.35)

4 lags -1.30 0.88 6.72
(1.48) (0.35)

%––

0.65

1.10

7.18

Notes: Standarderrors,consistentforheteroscedasticity,in parentheses. Informationsewconsistof thespecified
numberof contemporaneouspluslagsof eithert-ustor seconddifferencesof bothmoneyand prices(e.g.the2

lags/seconddifferencesinformationset containsA2mt,A2pt,A2mt.1,and A2pr-1).Wf and Ws areWald statistics
for tie flow andstocktests;asymptoticallyunderthenull theyhave a X2distributionwith degreesof freedomequal
to the numberof elementsof the informationset (two times the numberof lags);empiricalcriticalvaluesfrom
simulationson hyperirdlationdataare givenin Table 1. *, **,and *** denotesignificanceat the 10,5, ad IYo
levels.



Table 5b: Estimates and Tests for Random Walk Model Specification. Hungary

InformationSet:

FirszDifferences

2 lags

3 lags

4 lags

-1.68
(1.05)

-1.31
(0.84)

-1.02
(0.49)

w– Ws

27.57** 11.14

28.62** 11.62

50.87** 22.73

SecondDifferences & m- Ws

2 lags -0.78 21.34** 9.86
(0.68)

3 lags -0.78 50.09*** 17.61**
(0.49)

4 lags -1.05 34.00*** 15.61**
(0.59)

Notes: Standarderrors,consistentforheteroscedasticity,in parenthes=. Informationsetsconsistof thespecified
numberof lagsof eitherf~st or seconddifferencesof bothmoneyandprices(e.g.the2 lags/seconddifferences

informationset containsA2mt.1,A2pI-1,A2mt-2,~d A2P1-2).Wf andWS MeWdd statisticsfor the flow ~d
stocktests;asymptoticallyunderthenull theyhavea X2distributionwithdegreesof freedomequalto thenumberof
elementsof tie informationset (tsvotimes the numberof lags); empiricalcriticalvaluesfrom simtiationson
hyperinflationdataare givenin Table 1. *, **,~d ***denotesign~lcanceat the 10,5, ad l~o levels.
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Table 6a: Estimates and Tests for Exact Model Specification. Poland

InformationSet:

FirstDifferemes & L m– Ws

2 lags -1.88 1.33 4.67 89.83**
(1.16) (0.35)

3 lags -1.95 1.37 6.91 131.01*
(1.17) (0.35)

4 lags -1.98 1.38 5.11 153.16
(1.21) (0.36)

SecondDifferences & &

2 lags -1.97 1.38
(1.51) (0.40)

3 lags -2.08 1.41
(1.52) (0.39)

4 lags -1.86 1.33
(1.24) (0.35)

m-
1.15

6.25

7.46

Ws

20.40*

104.89***

89.22**

Notes: Standarderrors, consistentfor heteroscedasticity,in parentheses. Informationsets consist of the specified
numberof contemporaneousplus lags of either fnst or second differencesof both money and prices (e.g. the 2
lags/seconddifferencesinformationset contains42mt, A2Pt,A2mt-lTand A2PI-1).Wf md Ws MeWdd statistics
for the flow and stocktes~; asymptoticallyunderthe null theyhave aX2 distributionwith degr= of tiedom equal
to the number of elementsof the informationset (two times the number of lags); empiricalcritical values from
sirnuhtionson hyperinflationdataare given in Table 1. *, **, ~d *** &note sign~lcanee at the 10, 5, md IYo
levels.



Table 6b: Estimates and Tests for Random Walk A40del Specification, Poland

[formation Set:

FirfiDifferences & w- Ws

2 lags -0.87 5.27 9.82
(1.22)

3 lags -1.28 11.10 19.69
(1.18)

4 lags -5.94 4.57 44.78**
(8.90)

SecondDifferences & m- Ws

2 lags -0.87 8.00 3.37
(1.09)

3 lags -1.03 4.33 7.52
(1.15)

4 lags -6.50 3.73 26.30***
(9.96)

Notes: Standarderrors,consistentfor heteroscedasticity,inparentheses. Informationsetsconsistof thespecified
numberof lagsof eitherfwstor seconddifferencesofbothmoneyandprices (e.g.the2 lags/seconddifferences
informationset containsA2mt.1,A2pr-1,A2mr-2,and A2pt-2). W“fand Ws areWald statisticsfor the flow and

stocktests;asymptoticallyunderthenull theyhavea Xzdistributionwith degreesof freedomequalto thenumberof
elementsof the informationset (twotimesthenumberof lags); empiricalcriticalvaluesfrom simtitions on
hyperinflationdataare givenin Table 1. *, **,and ***denotesign~leanceat the 10.5. and 1%levels.
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Figure la: Monthly Growth Rates of Price Level and Money Supply, Austria
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Figure lb: Monthly Growth Rates of Price Level and Money Supply, Germany
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Figure Ic: Monthly Growth Rates of Price Level and Money Supply, Hungary
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Figure Id: Monthly Growth Rates of Price Level and Money Supply, Poland
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Figure 2a: Ratio of Specification Error to Price Series, Austria
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Figure 2b: Ratio of Speculation Error to Price Series, Germany
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Figure 2c: Ratio of Specification Error to Price Series, Hungary
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Figure 2d: Ratio of Specification Error to Price Series Poland
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