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Summary

This paper analyzes tests of the Cagan hyperinflation-money demand model which have
several advantages relative to those in the literature. They do not confound specification
error with rational bubbles, are implementable with a linear procedure, and are frequently
able to detect periodically collapsing bubbles which have challenged existing tests. After a
Monte Carlo analysis, the tests are applied to data from hyperinflations in Austria,
Germany, Hungary, and Poland. Strong evidence of model misspecification is found for
Austria, while the model with a rational, explosive bubble component well-characterizes the
Polish data. Inferences for Germany and Hungary are mixed.
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I. Introduction

The Cagan model of money demand under hyperinflation (Cagan 1956) has been a workhorse
in monetary economics, comparable in its use as a benchmark (and in its geometrically discounted
expected value structure) to the dividend-stock price model in financial economics and the
permanent income-consumption model in macroeconomics. However, its empirical literature
differs in an important way: most papers using the Cagan specification estimate the model’s
parameters and test particular restrictions, but do not test the overall validity of the model. As
Taylor (1991) notes, the Cagan model literature is largely verificationist rather than falsificationist.
Perhaps due to this situation, the basic question of whether or not it is a useful model provokes
wide disagreement, even when assessed on a common data set.’

Part of the confusion is tied to the fact that the Cagan model has multiple equilibria:
Explosive, rational bubbles are consistent with the model’s solution. In the literature that focuses
on bubbles, the validity of the Cagan model is generally a maintained, but untested, hypothesis.
Thus direct estimates of bubbles may be biased if the model is misspecified, and tests which regard
deviations from the “market fundamentals” solution as evidence of bubbles may be misclassifying
specification error. Other strands of the Cagan literature rule out a priori the existence of bubbles,
despite potentially serious implications for estimates and tests.

Durlauf and Hooker (1994) developed a methodology for testing the model which does not
confound bubbles and specification error. That methodology employs two transformations of the
data: under the null of correct specification, one transformation is orthogonal to an information set
no matter which of the multiple equilibria obtains, while the other is orthogonal only if the no-
bubbles equilibrium is realized. Thus sequential application of the tests allows separate
falsification of the model’s general sofution and rational bubble components of that solution. This
paper extends that work in three ways.

First, it presents Monte Carlo evidence on the size and power of the tests. Most hyperinflation

work, including that of Durlauf and Hooker, uses asymptotic distributions and very short,

! Most papers estimate the model on the German hyperinflation sample from the early 1920s.



explosive data samples. As G. Evans (1991) and West (1994) have noted, there is a shortage of
evidence on the small-sample performance of tests with explosive data. The tests in this paper may
be implemented linearly—using two-stage least squares—which greatly facilitates simulation
experiments, in contrast to the many nonlinear and iterative approaches in the hyperinflation
literature. Particular attention is paid to the hard-to-detect bubbles described in G. Evans (1991),
and alleged to be present in the German hyperinflation and the recent Polish hyperinflation by
Blackburn and Sola (1992) and Funke, Hall, and Sola (1994) respectively.

Second, the paper derives estimators of the model’s specification error as a time series. The
analogy in the term structure literature is the estimated series of term premia rather than just a scalar
measure of whether they are nonzero or nonconstant. This added dimension may provide useful
information on the nature of the rejections. As Kim (1996) argues in the context of the permanent
income hypothesis, measures of specification error are more likely to shed light on the economic
magnitudes of the rejections than are test statistics.

Finally, the paper applies the measures and tests to the classic interwar hyperinflations in
Austria, Germany, Hungary, and Poland, and compares them to results in the literature.

The paper is organized as follows. Section II reviews the Cagan model and the tests, and
derives the noise estimators. Section III contains a discussion of some recent and related literature.
In Section IV, Monte Carlo results for test size and power against several potential bubble
alternatives are reported. Applications of the tests to the interwar hyperinflation data are presented

in section V, and section VI concludes.

II. The Model, Noise Estimators, and Specification Tests
The Cagan model is a structural equation for money demand which depends upon the expected

inflation rate. The linear form of the model is

my - pr =+ CE[(pr+1 - pHI2] + & (1)
where m; and p; are logs of the nominal money supply and price level at time ¢, € is an

information set comprised of variables that agents use to form time ¢ expectations of time z+1



prices, 3 is an unrestricted constant term, & is a constant less than 0, and & is a stochastic money
demand disturbance. The parameter «is the (semi-) elasticity of real money demand with respect
to inflation, and is often the focus of attention in the Cagan model. Other factors conventionally
assigned a role in money demand, like interest rates and income, are assumed to be of secondary
importance relative to inflation and satisfactorily captured in the constant and stochastic disturbance
terms.

It is customary to substitute forward recursively in (1) and express it in terms of the current
price level. Further imposing the transversality condition (that the discounted expectation of the

limiting future price goes to zero) yields the fundamental price solution,
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it depends upon the expected sequence of current and future money supply levels and money

demand disturbances. The general price solution. which we denote p¢ . does not impose the

transversality condition. The set of general solutions is infinite-dimensional; members may be

obtained by adding any “bubble” process b; which satisfies
br=o7 EbralQ) 3

to the fundamental price solution. The bubbles may be thought of as indexing the solutions, with

b; = 0 for all ¢ corresponding to the fundamental solution.

Observed price level data may be partitioned into three components. They may behave
according to the fundamental solution, may also contain a nonzero bubble component, and may
contain elements inconsistent with the general solution. These three elements define an unobserved

components identity:

pt=p, +bi+s1, 4)
where s; denotes specification error (which we also refer to as model noise). It is this last term,

and its implications for estimates and tests, which has been ignored in most of the Cagan model



literature. Durlauf and Hooker (1994) used transformations of (4) and its orthogonality properties
under rational expectations to generate tests of whether s; and b; are nonzero.
These transformations use the perfect foresight fundamental price first employed by Shiller

and Siegel (1977) in another context:
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Since E(p; 1Q) = p , the difference between the fundamental and perfect foresight fundamental
price is orthogonal to Q,. Denoting that forecast error v; = pf - p7 and substituting into (4)
yields

Pt-Pf = V+br+sy, 6)

the first transformation of (4). Applying the forward quasi-difference operator & =-(1 - % LY

to (6) eliminates the predictable part of the bubble term and yields
rn1= ©@r-pr )=0(v) + ?ﬁ—l Ste1 + D(sp), ()

the second transformation of (4); &, is the innovation in the bubble process.

The term r4,; has three components, as may be seen from the right-hand side of (7). The first
two of these are orthogonal to € by definition: ®(1y) is the difference of a period ¢ forecast error
and a (coefficient times a) period #+1 forecast error, while the second component is the same
coefficient times the next period’s bubble innovation. The final component is a transformation of
the model’s specification error. It cannot be orthogonal to € unless s, itself is, because the
transformation is exactly the inverse of the bubble growth rate—implying that if s; is nonzero and
d(sy) L Qy, then s; grows at the rate of (and thus is observationally equivalent to) a bubble. In

terms of the variables in (1), r;,; may be written

o 1 1
Tl = o PPt T Mo & 8)



A. Specification Tests

The specification tests are based on the orthogonality properties of p; - p;  and ry.q.”
Projections of p; - p7 onto time-t information sets, which are referred to as stock tests, give
measures of b; + s;. Projections of r;,; onto the same information sets, called flow tests, give
measures of (a transformation of) model noise, ®(s;). If the correlations of p; - pf and ry,; with
the information sets are both statistically indistinguishable from zero, then we may conclude that
the price series obeys the fundamental solution. If the p; - p; projection is nonzero while the r;,;
projection is zero, that is evidence for the presence of a bubble. If the ry,; projection is nonzero,
then the p; - p; projection should be as well; in this case misspecification is present and further
analysis is required to determine whether an explosive component exists in addition to s;.”> These
two types of projections, therefore, permit discrimination between different types of violations of
the fundamental price solution, and, as shown in Durlauf and Hooker (1994), contain all of the
time-series implications of the general and fundamental null hypotheses.*

Projections of p; - p; and ry,; cannot be directly implemented because &; is unobserved, and

the sum in (5) is infinite. We work with their observable analogs:

1
htl === pra-pr + T Mi=rat T & ®)
and
T-t-1 j
, 1
P = GZ(:%) mij + (g P, (10)
=

% It should be noted if private agents observe a larger information set than do econometricians, then p; - p}" and
ry+1 are not necessarily orthogonal to agents’ information sets, but are orthogonal to the econometrician’s
information set (Sargent 1987 p. 334-335).

* If the prices differ from the general sblution by an explosive amount, we might call that a bubble but not a rational
bubble.

* That paper contains proofs of the consistency of the tests, and conditions under which lagged prices must be
included in the information set to detect a bubble.



that is, we ignore & and approximate (5) by truncating the sum.” The tests use transformations of
hs.1 and p; - pr which retain the orthogonality properties of p; - p; and ry,; under parametric
assumptions on &.

We choose two important and common identifying assumptions about &: first. that it is equal
to zero for all 1, referred to as the exact case, and second, where it follows a random walk (& = &
+ uy with u; L Q; ;). The exact specification has been employed by Goodfriend (1982); the related
permanent income and dividend-stock price models are exact as well. While it is probably overly
restrictive, this case provides a useful benchmark. The random walk is the standard specification
in the literature, although its use is controversial. P. Evans (1978) gives an economic justification,
while several authors provide statistical support (mostly based on the autocorrelation of residuals).
Taylor (1991) has criticized this specification, noting that it implies that prices and fundamentals
are not cointegrated even when a bubble is not present, while Christiano (1987) forcefully makes
the point that “decisions about how to model disturbance terms can have a significant impact on
parameter estimates.”

In the exact case, where & = O for all ¢, hsy; = ryq1, SO no transformation is necessary.
Similarly, p; - p; equals p; - p7 up to the truncation approximation. Under the random walk
assumption, . is not necessarily orthogonal to ;, because it involves & which is a function of
past data. However, the problem may be solved by differencing:

1 1
Ahp = Ay + 7= &)= AD(U) + A5 G +AQ(s) + 7 ur (11)

Ah;,.; may then be regressed against elements of ;1 to test for specification error relative to the

model’s general solution when & follows a random walk.® Note that in the random walk case, the

5 We also ignore the constant term in (10); in the tests, an unrestricted constant term is included in the information
set. While p; is constructed using all available money and price data (7T is the last observation available), in the
tests ¢ ranges only across the pre-monetary reform observations. Regime issues are discussed below.

¢ In the particular case where specification error too follows a random walk, the test will fail to detect it—as will any
test based on the covariance structure of the data—because it is observationally equivalent to the disturbance in the
model (1). One implication, stressed by Hamilton and Whiteman (1985) and others, is that it is impossible to
distinguish between unobservable fundamentals which have the same structure as either specification error or
bubbles. The approach taken in this paper, and in the majority of the Cagan model literature, is to make parametric
error process assumptions and to test them as part of the model.
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information set must be lagged, as contemporaneous variables are correlated with Ahy,; under the
null. It should be noted here that more general, but still parametric, cases could be handled in
similar ways. For example, if Ag; followed a finite order MA process, the information set would
need to be lagged accordingly, and if Ag; followed an AR process, then (11) could be appropriately
quasi-differenced and those parameters estimated along with .

Similarly, in the random walk case p; - p; is not necessarily orthogonal to €, because it too

involves &. Again the problem may be solved by differencing:

oo

Aps- Api =Avi+Abi+As -1 D () ity (12)
j=0
is orthogonal to Q;.; under the fundamental null hypothesis. Each of these projection terms,
p: - pr and kg, and their first differences, may then be constructed given estimates of the model
parameters ¢t and 3.

In studying hyperinflation episodes, the issue of monetary regime changes and coetficient
instability arises. One way of dealing with this is to model the regimes, as Blackburn and Sola
(1992) do using a Markov switching process. We follow the majority of the literature in simply
truncating the data samples before expectations of a regime change become significant, with the
exception that our p; - p; series are constructed using the entire sample, including post-monetary
reform data. Two lines of reasoning support this practice: First, Flood and Hodrick (1986)
demonstrate that if the terminal value in the construction of p; - p; contains a bubble, then the
bubble will be exactly canceled out and stock tests will never reveal it. However, in all cases the
hyperinflations either end or moderate, so it is unlikely that a bubble exists in the terminal value.
Second, the estimates of o imply very heavy discounting of future values of money and prices: for
instance, with o = -3 the discount factor is only 0.75, which weights observations 48 months out
by 10-6. By contrast, the discount factor for monthly data is near unity in most finance and

macroeconomics applications.



The empirical representations of the p; - p; and rz,; projections onto £, are then regressions
of the objects above—p; - pr and h;, in the exact case, and Ap; - Ap; and Ahy,, in the random
walk case—on constants, lags of (differences of) money and prices, and possibly other
information assumed to be in Q,. We estimate o and  via GMM. using the flow projections
themselves as the orthogonality conditions, and by instrumental variables. The tests are of the
Wald form for the null hypothesis that all nonconstant regression coefficients equal zero. It is
important to include lagged prices, because if a bubble exists and the money supply is exogenous,
then projections on money may indicate orthogonality when in fact those lagged prices—which are
also part of Q—are correlated with p; - py or Ap; - Ap; . In Section IV, Monte Carlo evidence

on the performance of these tests is presented.

B. Model Noise Estimators
The basic idea for estimating model noise is to project r;,; onto an empirical measure of €2, to get
an estimate of ®(s;), and then to undo the transformation. The inverse of the forward quasi-
difference operator ®(-) gives the geometrically discounted expected future sum of the operand,
which can be solved using existing techniques and small modifications. We derive estimators for

both the exact and the random walk cases.’

1. Exact Case

In the exact case, note that

re = b = @) + 25 £t + @), (13)
so that by definition
Elrpsjar Q0] = EI(L - 227 L)s;1Q). (14)

Applying the inverse forward quasi-difference operator ®-1(-) to both sides (and exchanging the

order of integration with the expectations operator) yields

7 The idea of measuring model noise as an unobserved component in a signal extraction context is due to Durlauf and
Hall (1989). See Kim (1996) for an application to the permanent income hypothesis.
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Expression (15) is a version of a Hansen and Sargent (1980) / Sargent (1987, Ch XI.19)
“predicting geometric distributed leads” problem. It is a vector version, since the information set
Q, generally contains more than one variable, and the first term is nonstandard, as it begins one
period forward. Hansen and Sargent derive formulae for expressions like (15) in terms of the
elements of €, for the case where the variables in € follow a vector autoregressive process. Here
we also make that VAR assumption.

The second and third terms on the RHS of (15) are standard. Letting x; = [m; ps]’, ML)x; =

(1-ML- )VZLZ . - ALNx; = @y be its rth order autoregressive representation, and I denote a
conformable identity matrix;
hind r-l 4 . .
E| Y, xe x| =AM )T+ 2 ( DML | (16)
j=0 J=1 k=j+1

where A5 ) = 1- MG ) - g - - A
To compute the nonstandard first term on the RHS of (15), let

o0 o0
o \j o \j
=E 2 (H)’xnj | x¢; x¢.1; ... | andz=E Z(m)’xujnlxz; Xt-15 e | s

Jj=0 J=0
then y; = x; + -0% zs, implying z; = (y; - x,)/(% ). Thus the first term can be obtained as the

second element of

%{Ma{ﬂ)' - I+ /1(—) 12 [ Z (—k]lk]} L) x. an
J=1 k=j+l

Summing together the three terms, multiplied by their respective coefficients, yields S

2. Random Walk Case

In the random walk case, and parallel to (14),



E(Ahpsq 1 Q1) = E[AD(sy) | Q4] (18)

since E[AD(v) | Q1.1] = E[A&41 | Q111 = E[uy 1 €111 =0. This implies that As; can be estimated

via

A = ) (VB et | Qe]
Jj=0

. 1
= ) I Aprarsj - Apraj + ToAmig) |Q0i]) (19)
Jj=0

these terms are constructed with estimates of o from the associated orthogonality condition and

described above. Equation (19) is another Hansen-Sargent prediction problem, solved in the same

way as (15); it yields an estimate of the first difference of s;.

III. Discussion of Related Literature

The tests outlined above were designed to combine the insights of Hall (1978), that models
with expectations yield orthogonality conditions which can be used as specification tests, and of
West (1987) and Casella (1989), that a comparison of the general and fundamental solutions could
yield a test for bubbles. Durlauf and Hall (1989) demonstrated how to extract estimates of model
noise in the exact case, and showed that the variance of the noise series defines a lower bound that
may be used in “variance bounds” tests.

The West/Casella procedure compares estimates of the parameter ¢ from the model’s general
solution to an estimate from the fundamental solution in a Hausman test. In the absence of model
noise, it consistently identifies bubbles (although it does require a specification for the money
supply series). However, if observed prices contain a nonzero s; component, then both estimates
of o may be inconsistent, and thus the test will also be inconsistent. Other tests which interpret

deviations from the fundamental solution as evidence of bubbles share this drawback.
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An interesting recent strand of the Cagan model literature which tests for model
misspecification was begun by Taylor (1991) and Phylaktis and Taylor (1992, 1993).} Here the
fact that the fundamental solution of the model implies cointegration relationships (under
reasonable assumptions about the data generating processes) is exploited. This approach has the
advantage that it places relatively mild restrictions on expectational errors and money demand
innovations (that each is stationary), whereas most of the Cagan model literature includes
rationality and parametric error process restrictions in the null hypothesis.

There are prices to be paid for these advantages, however. The main problem is that both
stationary components of observed prices which do not fit the model, and nonstationary
components unrelated to money that do fit the model (i.e. bubbles), may exist. Testing the model
via cointegration will erroneously fail to reject in the former case, while in the latter, no
transformation of prices (or money, if it is endogenous as is usually the case) will render them
stationary, so cointegration tests are unimplementable. In small samples, differences of explosive
data may appear stationary and thus yield misleading results. G. Evans (1991) has shown that
some rational bubbles effectively mimic stationary processes, which may confound these two
problems.

The difficulty is illustrated by the fact that while the cointegration approach is essentially a
formalization of Diba and Grossman’s (1984) method, it is given a different interpretation. Diba
and Grossman tested for a nonstationary component in the response series (the price of gold in
their application) not also in the forcing variable; Hamilton and Whiteman (1985) applied their
procedure to the Cagan model and the German hyperinflation.” However, since correct
specification is a maintained hypothesis in these papers, the same evidence that the cointegration

approach would construe as misspecification is interpreted as a rational bubble. Again, the test is

¥ Other papers which test the specification of the model include P. Evans (1978), which estimates ARIMA models
for money and prices in the German hyperinflation and compares the processes obtained to those theoretically
implied by reasonable assumptions on the data generating process, and Salemi and Sargent (1979) and Christiano
(1987), which use likelihood-based tests. Only Salemi and Sargent allows for the possibility of bubbles, and they
all use asymptotic critical values in their tests.

® Both of these papers were written before the development of cointegration. Campbell and Shiller (1987) and Diba
and Grossman (1988) noted that geometric discount-expectations models of this type yield cointegrating relations.
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strictly unimplementable and the caveat above applies if in fact there is a bubble and an endogenous
money supply.

Thus, overall, we believe that the rational expectations/parametric approach and the
cointegration methodology have different advantages and disadvantages, and thus are useful as

alternative and complementary procedures.

IV. A Monte Carlo Study of the Specification Tests

The specification tests developed in Durlauf and Hooker (1994) are asymptotically distributed
as x2 random variables. There are several reasons that one should be concerned about the finite
sample properties of these tests, and of hyperinflation model tests more generally. First, the data
samples tend to be quite short—for example, the German hyperinflation’s 44 pre-reform
observations constitute a relatively long dataset. Second, the series are quite explosive; combining
the known low power of unit root tests with short data samples means that there is considerable
uncertainty about the appropriate degree of differencing or other detrending procedures, ARIMA
model specifications, etc. Finally, these and other tests commonly employ two-stage procedures
where the sampling error of the test statistic itself is compounded with that from a previous stage’s
parameter estimation.

In the simulations, we generate data according to the exact and the random walk versions of
the Cagan model with an exogenous money supply. The money supply is assumed to be the
particular ARIMA(1,2,0) process from univariate estimation on the German dataset with the
parameters given in Table 1. Fundamental prices are then computed from the money supply series
via (2), using the Hansen-Sargent formulas for predicting geometric distributed leads. The
simulated money supply and fundamental price series are thus both 1(2)."" The innovation to
money demand distrbances (in the random walk case) is taken to be a standard normal variate.

In each replication, the sample length is 50 observations with another 50 used to construct

(10); these are set roughly to correspond to the German data set where the numbers are 44 and 40,

19 West (1994) suggests that it would be desirable to know how hyperinflation model and bubbles tests perform
when the fundamental equilibrium data follow an I(2) process.
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respectively. To reflect uncertainty about the correct specification, tests are performed where the
information sets consist of first differenced and of second differenced lags of money and prices.
We perform our tests on data where prices obey the fundamental solution and fundamental plus
bubbles solutions. Two different bubble types are considered, a simple first order autoregressive
process which grows at the appropriate rate, and the periodically collapsing bubbles studied in G.
Evans (1991).

To determine small-sample critical values, we compute the 90th, 95th, and 99th percentiles of
the empirical distributions of the flow and the stock tests, for information sets containing two
through four lags of first and second differences of money and prices (see Table 1). Ten thousand
replications are performed for each. Table 1 reveals that the empirical distributions deviate
significantly from their asymptotic %2 limits. In the exact case, the first differenced information set
tests are quite poorly behaved, with a tendency to very large test statistics as the number of degrees
of freedom rises or the distance out in the tail increases. This tendency is exacerbated in the stock
test statistics relative to the flow test statistics. With the (appropriate) second differenced
information set, the tests are considerably better behaved, although in several cases critical values
are more than three times their asymptotic counterparts.

The same pattern of deterioration in the tails and as the number of degrees of freedom
increases holds for the random walk tests statistics with first differenced regressors. The critical
value for a 10% test with four elements in the information set is about the asymptotic value of 13.3
in both the flow and stock tests, but the empirical values then range up to two and three times the
asymptotic values. Curiously, the test statistics for the random walk case with second differenced
regressors are in many cases smaller than their asymptotic values, particularly for the 10% tests
and larger information sets. In the applications in the next section, we focus somewhat more on
the better-behaved exact tests with second differenced regressors and random walk tests with first
differenced regressors.

Table 2 reports the results of power and Type I error calculations when a nonfundamental

solution obtains; here we simulate data adding bubbles to the fundamental solution for prices.
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Each of these experiments is performed for three different actual values of o which are
representative of those estimated in the literature and for one thousand replications in each case. In
the first section of the table, a standard AR(1) process with coefficient (a-1)/a is added to the
fundamental price series, and in the second section periodically collapsing bubbles as studied by
G. Evans (1991) are added. These bubbles are the same as the AR(1) bubbles when they are
below a threshold; once they cross it they grow at the faster rate (o-1)/7o with probability 7 and
crash to a mean level below the threshold with probability (1-7)."" The tests use the 95% critical
values and 3 lags of second differenced regressors for the information set.

The flow and stock tests together are quite successful at distinguishing a standard bubble in
the I(2) data. In 75% to 99% of the simulations, the flow test (correctly) fails to reject while the
stock test (correctly) rejects. This compares favorably to the simulation results of Diba and
Grossman (1988), where unit root tests are applied to bubbles which are assumed to be directly
observable. The size is somewhat too small, however, with fewer than 5% of the flow statistics
leading to (false) rejection.

The success of the tests is best illustrated, however, in their ability to detect the periodically
collapsing bubbles. G. Evans (1991) showed that when the per-period probability that the bubble
does not crash, =, is less than 0.95, the Bhargava N; test has virtually no ability to detect
collapsing bubbles and the N, tests correctly identify fewer than 12% of them.'? Furthermore,
these results assume the bubbles to be directly observed. The p; - p7 /ru tests, by contrast,

successfully identify bubbles about 50% of the time when & is 0.95 (43% with & = -1, 47% with

' Tn G. Evans (1991), the bubbles have no trend in the sense that the mean level they return to after a crash and the
peak levels they reach are constant across time (cf. his Figure 2). When adding such a bubble to a strongly trended
series like hyperinflationary prices, the bubble becomes negligible relative to the fundamentals as time passes. In
the simulations, we adapt Evans’ bubbles by having them crash back to the level of the money supply (which shares
the price level’s stochastic trend) rather than a constant. The bubbles are generated according to the formulas

bry1 = [(o-D/adby + Nesy if by < Tp; by = (my + [(0-1)/w0d 641 (by - aomyl(0-1)} + Npy1 i by > 71
where 7, is a white noise shock, 8; is an exogenous i.i.d. Bemoulli process taking the value 1 with probability 7
and 0 with probability 1-7, and 7; is a finite-variance deviation from m;. Most of the interesting variation in these
bubbles occurs across values of the two parameters varied in the table, o and 7.

12 The Bhargava tests used by Diba and Grossman and Evans are unit root tests which allow for rejection of a unit
root in favor of either an explosive or a stable alternative. A rejection in favor of the latter would lead to acceptance
of the fundamental solution, since it would not affect the order of integration of money or prices.
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o = -3, and 54% with o = -5) while they are an unobserved component of I(2) data. Remarkably,
the power of the tests also does not deteriorate as 7 falls except in the &= -1 case: with a=-3 or -
5, the percentage of correct rejections is between 45% and 55% across the full range of values of
7. The size does rise somewhat as 7 falls, with 10-20% of the bubbles interpreted as noise when
the bubbles are crashing every other period or more (7 = 0.50 or 0.25). The success of the tests in
identifying these bubbles can be explained as follows. Rational bubbles have two salient
characteristics: they are explosive, and they follow a particular time-series pattern given by (3).
The Bhargava unit root test focuses on bubbles’ explosiveness, and so misses them when they
crash often enough to appear stationary. However, the frequent crashes do not sufficiently change

the autocorrelation structure, and so can be detected by orthogonality tests.

V. Empirical Results for Interwar Hyperinflation Data

Having investigated the performance of the tests, we now turn to an analysis of the data from
four interwar hyperinflation episodes, in Austria, Germany, Hungary, and Poland. The source for
the data is Young (1925) (the data source used by Sargent (1986)), with the exception of
Germany, where we use the data in Flood and Garber (1980). The results reported for Germany
are those obtained by Durlauf and Hooker (1994) interpreted here using critical values from the
Monte Carlo simulations.

For Austria, the money series consists of notes in circulation and deposits, while the price
index is a retail price index of 52 commodities. Their intersection is available from 1921:1-24:6;
stabilization was achieved through intervention of the League of Nations and the signing of its
Protocols in October 1922, but reactions began in August of that year. Hence the data employed in
the tests run from 1921:1-22:7, while the data from 1922:8-24:6 are employed in the construction
of (10). For Germany, the available data run from January 1920 until December 1926; the last
datapoint unaffected by significant expectations of a regime change is August 1923 (LaHaye
1985). Data from 1923:9 through the end of 1926 are used in the construction of (10). For

Hungary, the intersection of money stock (currency and deposits) and prices runs 1921:7-25:3;
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Sargent (1986) identifies 1924:3 as the reform date so that is used as the first out-of-sample period.
Finally, the Polish money stock data consist of just currency; the intersection runs 1921:1-24:4

with the reform date taken as January 1924.

A. Specification Tests

The empirical results for Austria strongly reject the Cagan model with rational expectations in
both the exact and random walk error specifications. In the exact case, reported in Table 3a, two
of the information sets are correlated with the Ay, at the 5% level and another is at the 10% level,
and all the information sets but one are significantly correlated with p; - p; . The rejections of the
model in the random walk case, in Table 3b, are even stronger. The standard errors are quite
large, particularly for the exact model, so that in no case could the null hypothesis of & = 0 be
rejected at the 5% level. There is no evidence that a bubble is present in the data for Austria.

Durlauf and Hooker (1994) showed that using asymptotic critical values implies strong
evidence against the model for Germany; the results in Tables 4a and 4b using the empirical critical
values are less clear-cut. In the exact specification, the better-behaved tests with second
differenced regressors support the existence of a bubble, while in the random walk case, there is
some evidence of misspecification and no evidence of a bubble. The estimates of ¢ are also
considerably more precise than for Austria, with many of the #-ratios above 2 in absolute value.

The results for Hungary are similar to those for Germany: there is some evidence for a bubble
in the exact case, and the random walk specification is strongly rejected. However, the standard
errors for ¢ are large, with most ¢-ratios in the range of -0.5 to -1.5.

The evidence for Poland supports the existence of a rational bubble. No significant
specification error is detected in either the exact or the random walk case, and with two exceptions
the estimated ¢ values are in a narrow range (-0.87 to -2.08). By contrast, the fundamental null
hypothesis is rejected for nearly all of the information sets. The estimates of ¢ are generally more

precise than for Austria and Hungary, but less than for Germany.
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It is instructive to compare these results with some of those obtained by other authors with
similar datasets and specifications. Interestingly, the results here are quite different from
Christiano’s (1987); he found that imposing the random walk error assumption led to large
standard errors for the o estimates with German data. However, we do obtain large standard
errors with the other data sets, under both error process assumptions.

Salemi and Sargent (1979) and Taylor (1991) tested the Cagan model with similar data sets for
each of these four episodes. The former authors employed the same restrictions that we do in the
random walk version of the model, although in a VAR/maximum likelihood framework and with
some different assumptions about trends. Taylor’s test is considerably less restrictive, allowing
deviations from rational expectations (as long as the forecasting errors are stationary) and any
stationary money demand disturbance as well. It should be noted that acceptance of the random
walk version of the model is would correspond to a cointegration-approach rejection, although this
result does not obtain for any of the datasets. Similarly, acceptance of the model using the
cointegration-approach could be consistent with rejection of either the exact or the random walk
version, due to the existence of stationary specification error."?

The results for Austria are somewhat contradictory. In contrast to our strong rejection of the
model, Salemi and Sargent did not reject the random walk version; they did, however, find that the
estimates of & were very imprecise and mostly wrong-signed. Taylor (1991) rejected the model
for Austrian data using residual-based cointegration tests but accepted it using a Johansen test.

Salemi and Sargent rejected the model for Germany in most cases; only with their Model 3
representation and second German dataset did they accept the restrictions of the model at
conventional significance levels. Taylor found that residual-based tests support the model for

Germany, while the Johansen test accepts non-cointegration.

13 Salemi and Sargent (1979) use asymptotic critical values in their analysis. 1 refer to their tests of rational
expectations but not exogeneity of the money supply. Taylor uses both the standard cointegration critical values in
Engle and Yoo (1987) and small sample values from Blangiewicz and Charemza (1990). There is considerable
disagreement about the the small sample power of cointegration tests, c.f. Engle and Granger (1987), Hakkio and
Rush (1991), and Hooker (1993).
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Contradictory results are likewise obtained by these authors for Hungary. Salemi and Sargent
found that the model with rational expectations is rejected in all cases but one; Taylor found that the
residual-based tests provide weak evidence for cointegration, while the Johansen test accepts non-
cointegration at the 5% and 10% levels for his two datasets.

The results of these authors are most consistent with our results in the case of Poland. Salemi
and Sargent found that the model fit these data well, and obtained estimates of o and standard
errors very close to those in tables 6a and 6b. Furthermore, they found explosive eigenvalues in
each of their estimations (consistent with the existence of a bubble). Taylor found evidence for
cointegration using both residual-based and Johansen tests. Since these latter tests should reject
for nonstationary, nonfundamental price components, it may be that the bubble detected by Salemi

and Sargent and the p; - p; tests was of the periodically crashing variety.

B. Model Noise Estimates

Estimates of the model noise component p; are presented in Figures 2a-d. Since the money
and price data are quite explosive, the estimated noise is scaled to the price series and their ratio is
plotted. This is also the method recommended by Kim (1996) for gauging the economic
magnitude of specification error. Estimates are constructed assuming a 6th order VAR
specification for the [m; p;]’ vector in (16), using the mean estimated value of ¢ across the first
and second differenced information sets, respectively.

For Austria, the noise is initially estimated to comprise 12 or 20% of the price data, according
to the two estimates, falling over time so that by halfway through the dataset it is negligible. It then
rises briefly, and is again negligible by the end of the sample. The two estimates are quite parallel,
with the second differences information set indicating less noise. This is consistent with the flow
test results, which rejected more with first differenced information sets. The average size of the
noise component is less than 10% of the price series, suggesting that the Cagan model with rational

expectations and a random walk error may be a reasonable representation of the data. The large
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size of the noise component in the first few months corresponds to relatively low and stable rates
of inflation, where the Cagan model may be a poorer descriptor.

For Germany, noise estimated using first differences is a relatively steady and large fraction of
prices, fluctuating in the range of 30-50%. By contrast, the noise series from second differenced
data drops off sharply and is near zero for roughly the last year of the hyperinflation. Again, these
results are consistent with the flow test results, and the noise components are again largest in the
early months when prices are relatively low and stable. The noise estimates in the Hungary data
are much smaller, and exhibit a less marked drift over the sample. The second differences
specification generates noise estimates that are nearly zero throughout the sample, and the first
differences specification yields noise about 10% of prices. This supports the model as a useful
data description. For Poland, both specification error estimates are in the 5-8% range, and not
very volatile. While the first differences estimate rises above 10% in the last two observations, the
general solution of the model seems to provide a close approximation to the data, strengthening the

interpretation of the fundamental solution rejections as evidence of a bubble.

V1. Summary and Conclusions

This paper has analyzed tests of the Cagan hyperinflation-money demand model which have
several advantages relative to those in the literature: They do not confound specification error with
rational bubbles, they are implementable with a linear procedure, and they are frequently able to
detect the periodically collapsing bubbles which have challenged existing tests and inferences. A
Monte Carlo analysis shows that the finite sample properties of the tests may be quite different
from their asymptotic counterparts, but that the tests may contain considerable power.

The empirical results show strong evidence of model misspecification for Austria, while the
model with a rational, explosive bubble component well-characterizes the Polish data. Inferences

for Germany and Hungary are mixed, varying across specification of the money demand

disturbance and the information sets used in the tests.

19



References

Blackburn, K. and M. Sola (1992), ‘Market Fundamentals Versus Speculative Bubbles: A New
Test Applied to the German Hyperinflation’, University of Southampton Discussion Papers in
Economics and Econometrics No. 9208.

Blangiewicz, M. and W. Charemza (1990), ‘Cointegration in Small Samples: Empirical
Percentiles, Drifting Moments, and Customized Testing’, Oxford Bulletin of Economics and
Statistics, 52, 303-315.

Cagan, P. (1956), ‘The Monetary Dynamics of Hyperinflation’, in M. Freidman, ed., Studies in
the Quantity Theory of Money, University of Chicago Press, Chicago.

Campbell, J. Y. and R. J. Shiller (1987), ‘Cointegration and Tests of Present Value Models’,
Journal of Political Economy, 95, 1062-1088.

Casella, A. (1989), ‘Testing for Rational Bubbles with Exogenous or Endogenous Fundamentals:
The German Hyperinflation Once More’, Journal of Monetary Economics, 24, 109-122.

Christiano, L. J. (1987), ‘Cagan’s Model of Hyperinflation Under Rational Expectations’,
International Economic Review , 28, 33-49.

Diba, B. T. and H. I. Grossman (1984), ‘Rational Bubbles in the Price of Gold’, NBER Working
Paper No. 1300.

Diba, B. T. and H. 1. Grossman (1988), ‘Explosive Rational Bubbles in the Stock Prices?’,
American Economic Review, 78, 520-530.

Durlauf, S. N. and R. E. Hall (1989), ‘Bounds on the Variances of Specification Errors in Models
with Expectations’, NBER Working Paper No. 2936.

Durlauf, S. N. and M. A. Hooker (1994), ‘Misspecification versus Bubbles in the Cagan
Hyperinflation Model’, in C. Hargreaves (ed.), Non-Stationary Time Series Analysis and
Cointegration, Oxford University Press, Oxford.

Engle, R. F. and C. W. J. Granger (1987), ‘Cointegration and Error Correction: Representation,
Estimation, and Testing’, Econometrica, 55, 251-277.

Engle, R. F. and B. S. Yoo (1987), ‘Forecasting and Testing in Cointegrated Systems’, Journal of
Econometrics, 35, 143-159.

Evans, G. W. (1991), ‘Pitfalls in Testing for Explosive Bubbles in Asset Prices’, American
Economic Review, 81, 922-930.

Evans, P. (1978), ‘Time-Series Analysis of the German Hyperinflation’, International Economic
Review , 19, 195-209.

Flood, R. P. and P. M. Garber (1980), ‘Market Fundamentals versus Price-Level Bubbles: The
First Tests’, Journal of Political Economy, 88, 745-770.

Flood, R. P. and R. J. Hodrick (1986), ‘Asset Volatility, Bubbles, and Process Switching’,
Journal of Finance, 41, 831-842.

Funke, M., S. Hall, and M. Sola (1994), ‘Rational Bubbles During Poland’s Hyperinflation:
Implications and Empirical Evidence’. European Economic Review, 38, 1257-1276.

20



Goodfriend, M. S. (1982), ‘An Alternative Method of Estimating the Cagan Money Demand
Function in Hyperinflation Under Rational Expectations’, Journal of Monetary Economics, 9,
43-57.

Hakkio, C. S. and M. Rush (1991), ‘Cointegration: How Short is the Long Run?’, Journal of
International Money and Finance, 10, 571-81.

Hall, R. E. (1978), ‘Stochastic Implications of the Life Cycle-Permanent Income Hypothesis:
Theory and Evidence’, Journal of Political Economy, 86.971-987.

Hamilton, J. D. and C. H. Whiteman (1985), ‘The Observable Implications of Self-fulfilling
Expectations’, Journal of Monetary Economics, 16, 353-973.

Hansen, L. P. and T. J. Sargent (1980), ‘Formulating and Estimating Dynamic Linear Rational
Expectations Models’, Journal of Economic Dynamics and Control, 2, 7-46.

Hooker, M. A. (1993), ‘Testing for Cointegration: Power versus Frequency of Observation’,
Economics Letters, 41, 359-362.

Kim, C. (1996), ‘Measuring Deviations from the Permanent Income Hypothesis’, International
Economic Review , 37, 205-225.

LaHaye, L. (1985), ‘Inflation and Currency Reform’, Journal of Political Economy, 93, 537-560.

Phylaktis, K. and M. P. Taylor (1992), ‘The Monetary Dynamics of Sustained High Inflation’,
Southern Economic Journal , 58, 610-622.

Phylaktis, K. and M. P. Taylor (1993), ‘Money Demand, the Cagan Model and the Inflation Tax:
Some Latin American Evidence’, Review of Economics and Statistics, 75, 32-37.

Salemi, M. K. and T. J. Sargent (1979), ‘The Demand for Money During Hyperinflation Under
Rational Expectations: II’, International Economic Review, 20, 741-758.

Sargent, T. J. (1986), Rational Expectations and Inflation, Harper & Row, New York.
Sargent, T. J. (1987), Macroeconomic Theory, Second Edition, Academic Press, Orlando.

Shiller, R. J. and J. J. Seigel (1977), ‘The Gibson Paradox and Historical Movements in Real
Interest Rates’, Journal of Political Economy, 85, 891-907.

Taylor, M. P. (1991), ‘The Hyperinflation Model of Money Demand Revisited’, Journal of
Money, Credit, and Banking, 23, 327-351.

West, K. D. (1987), ‘A Specification Test for Speculative Bubbles’, Quarterly Journal of
Economics, 102, 553-580.

West, K. D. (1994), ‘Rational Bubbles During Poland’s Hyperinflation: Implications and
Empirical Evidence: Comment’, European Economic Review, 38, 1282-1285.

Young, J. P. (1925), for the Commission of Gold and Silver Inquiry, the United States Senate,

European Currency and Finance, Volumes 1 and 2, U.S. Government Printing Office,
Washington.

21



Table 1:

Critical Values for Wald Flow and Stock Test Statistics

A. Exact Model

2-lag inf. set
3-lag inf. set
4-lag inf. set

B. Exact Model Case, 2nd Differenced Regressors

2-lag inf. set
3-lag inf. set
4-lag inf. set

1st Differenced Regresso

C. Random Walk Case, 1st Differenced Regressors

2-lag inf. ser
3-lag inf. set
4-lag inf. set

D. Random Walk Case, 2nd Differenced Regressors

2-lag inf. set
3-lag inf. set
4-lag inf. set

Notes: Simulations based on 10000 replications of length 50 samples (with an additional 50 out-of-sample
observations to construct the stock test). The money supply is an exogenous ARIMA (1,2,0) process with
autoregressive coefficient 0.74, drift equal to 0.02, and innovation variance 0.12 (estimated from the Gemman
univariate data). The fundamental price series is constructed according to equation (2) in the text using Hansen-
Sargent prediction formulas for the expectational terms. ‘“n-lag information ser” refers to the contemporaneous plus
n-1 lags of either first or second differences of both money and prices in the exact case, and n lags in the random

walk case; e.g. the 2 lags/second differences information set for the exact case contains A2my, A2p;, A2myq, ad

Wr.
12.97 19.87 95.90
23.98 39.65 311.29
40.11 68.80 797.49
Wr.

0.90 0.95 099
10.58 15.14 36.59
18.23 26.32 56.24
26.85 37.56 75.80

_Wr.

0.90 095 0.99
14.62 20.23 33.92
19.44 26.59 53.70
22.78 31.52 69.01

Wr.

090 095 0.99
11.14 14.80 2470

7.91 11.48 31.19

6.37 9.46 2147

Ws
0.90 0.95 0.99
48.59 88.81 1016.44
102.60 243.86 9542.24
199.39 608.77 44182.82
W
0.90 0.95 0.99
17.79 27.34 55.37
30.13 4541 87.61
46.03 66.88 142.57
Ws
0.90 095 0.9%
17.34 2290 37.28
21.98 29.96 57.80
25.66 35.43 82.52
Ws
0.90 0.95 099
13.35 18.23 29.98
8.91 13.28 32.45
7.46 10.98 25.90

A2p,.,. ais estimated using 2SLS with the information set as instruments.



Table 2: Power and Type I Error in Data with Bubbles

Power: % of replications which Type I Error: % of replications which
accept flow and reject stock test reject flow test

“Standard” Bubbles

o=-1 g=-3 ox=-5 oa=-1 a=-3 a=-5

75.37 99.79 99.38 5.26 0.21 0.62

Periodically Collapsing Bubbles

a=-1 a=-3 a=-5 a=-1 o=-3 a=-5
n =.999 94.30 98.02 98.23 0.00 0.62 0.83
T =.99 70.47 81.64 82.56 0.48 2.08 3.41
T =95 43.43 47.26 54.18 0.66 5.69 7.43
7 = .85 33.02 45.40 47.23 1.20 5.23 7.98
nt=.75 31.89 47.08 48.59 2.31 5.41 9.95
T =.50 29.56 47.02 51.11 9.12 12.34 12.04
 =.25 29.72 54.39 53.01 18.16 16.58 18.37

Notes: Simuiations based on 1000 replications of length 50 samples (with an additional 50 out-of-sample
observations to construct the stock test). See Table 1 for construction of the money and fundamental price series.
The random walk case, first differences/three lags information is used; ¢ is estimated using 2SLS with that
information set as instruments. The standard bubbles are AR(1) processes with coefficient (a-1)/cx and shocks
NID(0,.12); the periodically collapsing bubbles are modified versions of those in Evans (1991) described in footnote
10 of the text.



Table 3a:

Estimates and Tests for Exact Model Specification. Austria

Information Set:
First Differences

2 lags

3lags

4 lags

Second Differences

2 lags

3 lags

4 lags

P

-3.37
(14.34)

-5.41
(30.83)

-5.37
(31.05

Al
&

0.11
(1.53)

-2.14
(9.26)

-2.48
(10.55)

6.38
(18.05)

6.73
(26.21)

6.73
(26.32)

L

5.64
(9.41)

6.07
(15.98)

6.10
(16.27)

60.71**

74.12%*

Wy
0.16

53.54%*

24.61

Ws_

67.31*

842.20**

3019.59**

Ws

1.18

54.98**

57.51*

Notes: Standard errors, consistent for heteroscedasticity, in parentheses. Information sets consist of the specified
number of contemporaneous plus lags of either first or second differences of both money and prices (e.g. the 2

lags/second differences information set contains A2m;, A%p;, A2m,.1, and A2p;.1). Wfand Ws are Wald statistics

for the flow and stock tests; asymptotically under the nuil they have a 22 distribution with degrees of freedom equal
to the number of elements of the information set (two times the number of lags); empirical critical values from
simulations on hyperinflation data are given in Table 1. *, ** and *** denote significance at the 10, 5, and 1%

levels.



Table 3b: Estimates and Tests for Random Walk Model Specification, Austria

Information Ser:

First Differences

2 lags

3 lags

4 lags

Second Differences

2 lags

3lags

4 lags

P

-0.29
(0.32)

-0.82
0.47)

-1.00
0.71)

&

-0.53
(0.52)

-0.59
(0.66)

-0.35
(0.29)

65.45%**

27.43*

Wy
75.67***

66.78%**

283.69***

Ws

2.22

70.84%**

400.73***

Ws

T1.31%**

66.25%**

139.45%*x*

Notes: Standard errors, consistent for heteroscedasticity, in parentheses. Information sets consist of the specified
number of lags of either first or second differences of both money and prices (e.g. the 2 lags/second differences

information set contains A2m;.1, A2p,.1, A2my.2, and A2p;.p). Wfand Ws are Wald statistics for the flow and

stock tests; asymptotically under the nuil they have a ¥ distribution with degrees of freedom equal to the number of
elements of the information set (two times the number of lags); empirical critical values from simulations on
hyperinflation data are given in Table 1. *, ** and *** denote significance at the 10, 5, and 1% levels.



Table 4a: Estimates and Tests for Exact Model Specification, Germany

Information Set:

First Differences b _& Wr Ws_
2 lags -4.21 1.59 15.51* 58.36*
(1.83) (0.35)
3lags -4.20 1.62 27.74* 85.49
(1.76) (0.36)
4 lags -4.36 1.68 47.80* 77.64
(1.86) (0.38)
Second Differences N _& Wr Ws_
2 lags -1.07 1.15 0.66 48.75**
(5.74) (21.79)
3lags -1.45 1.15 7.19 170.93%**
(0.69) (0.28)
4 lags -2.26 1.15 32.64* 175.96***
(1.08) (0.31)

Notes: Standard errors, consistent for heteroscedasticity, in parentheses. Information sets consist of the specified
number of contemporaneous plus lags of either first or second differences of both money and prices (e.g. the 2

lags/second differences information set contains A2my, A2py, A2my.1, and A%p;.;). Wfand Ws are Wald statistics

for the flow and stock tests; asymptotically under the null they have a xz distribution with degrees of freedom equal
to the number of elements of the information set (two times the number of lags); empirical critical values from

simulations on hyperinflation data are given in Table 1. *, **, and *** denote significance at the 10, 5, and 1%
levels.



Table 4b: Estimates and Tests for Random Walk Model Specification. Germanv

Information Set:

First Differences

2 lags

3 lags

4 lags

Second Differences

2 lags

3 lags

4 lags

-1.30
(0.96)

-0.79
0.24)

-0.80
(0.18)

&

-0.75
0.27

-0.74
(0.54)

-1.03
(0.21)

28.46**

30.30*

Wi
14.12*

14.29%**

26.49%*x*

Wi

12.48

24.15%*

24.57

Ws_

6.63

12.81*

56.84***

Notes: Standard errors, consistent for heteroscedasticity, in parentheses. Information sets consist of the specified
number of lags of either first or second differences of both money and prices (e.g. the 2 lags/second differences
information set contains Azm,_l, Azp,_l, Azml_z, and Azpt_z). Wfand Ws are Wald statistics for the flow and

stock tests; asymptotically under the null they have a y2 distribution with degrees of freedom equal to the number of
elements of the information set (two times the number of lags); empirical critical values from simulations on
hyperinflation data are given in Table 1. *, **, and *** denote significance at the 10, 5, and 1% levels.



Table 5a:

Estimates and Tests for Exact Model Specification, Hungary

Information Set:

First Differences

2lags

3 lags

4 lags

Second Differences

2 lags

3 lags

4 lags

A
(04

-7.91
(10.25)

-8.08
(10.26)

-6.29
(6.23)

A
&

-1.29
(1.43)

-1.24
(1.38)

-1.30
(1.48)

A

B

1.81
(0.69)

1.79
(0.66)

1.45
(0.52)

Pal

L

0.94
(0.37)

0.88
(0.35)

0.88
(0.35)

16.28*

17.24

17.85

3.49

6.72

w

110.42%**

410.73**

451.74*

0.65

1.10

7.18

Notes: Standard errors, consistent for heteroscedasticity, in parentheses. Information sets consist of the specified
number of contemporaneous plus lags of either first or second differences of both money and prices (e.g. the 2

lags/second differences information set contains Azmt, Azpz, Azmt_l, and Azpt_l). Wrand Ws are Wald statistics

for the flow and stock tests; asymptotically under the null they have a x* distribution with degrees of freedom equal
to the number of elements of the information set (two times the number of lags); empirical critical values from
simulations on hyperinflation data are given in Table 1. *, **, and *** denote significance at the 10, 5, and 1%

levels.



Table 5b: Estimates and Tests for Random Walk Model Specification, Hungary

Information Set:

First Differences o Wr_ Ws_
2 lags -1.68 27.57** 11.14
(1.05)
3 lags -1.31 28.62** 11.62
(0.84)
4 lags -1.02 50.87** 22.73
' (0.49)
Second Differences o Wr_ Ws
2 lags -0.78 21.34%** 9.86
(0.68)
3 lags -0.78 50.09%** 17.61**
(0.49)
4 lags -1.05 34.00*** 15.61**
(0.59)

Notes: Standard errors, consistent for heteroscedasticity, in parentheses. Information sets consist of the specified
number of lags of either first or second differences of both money and prices (e.g. the 2 lags/second differences

information set contains AZm;.1, A2p;.1, A®my.2, and A2p; 3). Wfand Ws are Wald statistics for the flow and

stock tests; asymptotically under the nuil they have a 2% distribution with degrees of freedom equal to the number of
elements of the information set (two times the number of lags); empirical critical values from simulations on
hyperinflation data are given in Table 1. *, **, and *** denote significance at the 10, 5, and 1% levels.



Table 6a: Estimates and

Tests for Exact Model Specification. Poland

Information Set:

First Differences e
2 lags -1.88
(1.16)
3 lags -1.95
(1.17)
4 lags -1.98
(1.21)
Second Differences N
2 lags -1.97
(1.51)
3 lags -2.08
(1.52)
4 lags -1.86
(1.24)

Notes: Standard errors, consistent for heteroscedasticity, in parentheses. Information sets consist of the specified
number of contemporaneous plus lags of either first or second differences of both money and prices (e.g. the 2

lags/second differences information set contains A%my, Azp,, A%my_q, and Azpt_l). Wfrand Ws are Wald statistics

for the flow and stock tests; asymptotically under the null they have a xz distribution with degrees of freedom equal
to the number of elements of the information set (two times the number of lags); empirical critical vaiues from

B

1.33
(0.35)

1.37
(0.35)

1.38
(0.36)

il

1.38
(0.40)

1.41
(0.39)

1.33
(0.35)

simulations on hyperinflation data are given in Table 1.

levels.

6.91

5.11

6.25

7.46

Ws_

89.83**

131.01*

153.16

Ws_

20.40*

104.89%**

89.22%**

* % and *** denote significance at the 10, 5, and 1%



Table 6b: Estimates and Tests for Random Walk Model Specification, Poland

Information Ser:

First Differences b Wr Ws_
2 lags -0.87 5.27 9.82
(1.22)
3 lags -1.28 11.10 19.69
(1.18)
4 lags -5.94 4.57 44 78**
(8.90)
Second Differences b Wr_ Ws_
2 lags -0.87 8.00 3.37
(1.09)
3 lags -1.03 4.33 7.52
(1.15
4 lags -6.50 3.73 26.30%**
(9.96)

Notes: Standard errors, consistent for heteroscedasticity, in parentheses. Information sets consist of the specified
number of lags of either first or second differences of both money and prices (e.g. the 2 lags/second differences

information set contains Azmt_l, Azp,_l, Azm,_z, and Azp,_z). Wrand Ws are Wald statistics for the flow and

stock tests; asymptotically under the null they have a y? distribution with degrees of freedom equal to the number of
elements of the information set (two times the number of lags); empirical critical values from simulations on
hyperinflation data are given in Table 1. *, ** and *** denote significance at the 10. 5. and 1% levels.



1a: Monthly Growth Rates of Price Level and Money Supply, Austria
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Figure 1c: Monthly Growth Rates of Price Level and Money Supply, Hungary
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Figure 1d: Monthly Growth Rates of Price Level and Money Supply, Poland
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Figure 2a: Ratio of Specification Error to Price Series, Austria
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Figure 2b: Ratio of Specification Error to Price Series, Germany
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Figure 2c: Ratio of Specification Error to Price Series, Hungary
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