
A Discrete Model of Discriminatory Price Auctions|

An Alternative to Menezes-Monteiro
�

Hans Hallery and Yvan Lengwilerz

January 21, 1998

Menezes and Monteiro, Math. Soc. Sci. (1995), show that a multi-unit discrimi-

natory price auction does not have a pure strategy equilibrium unless one imposes

some rather special conditions on the demand functions. This non-existence result

might indicate a problem either with the underlying auction procedure (as Menezes

and Monteiro suggest) or with the modelling approach (as we suggest). We observe

that the non-existence problem disappears if bids must come in multiples of smallest

units|a realistic feature. Moreover, we show that most of the analysis can be recast

in a discrete action model.
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1 Introduction

Treasuries apply two kinds of formats for auctions of �xed income securities, namely uniform
price and discriminatory price auctions. In the �rst format, price-quantity bids are ordered
with respect to price, from top to bottom. The auctioneer accepts quantities up to the amount

he is selling and all winners pay the price equivalent to the highest losing bid. In the second

format bids are ordered similarly, but each agent pays the amount equal to his bid.
At present, discriminatory auctions for bonds are more often used than uniform auctions,

but some countries have been experimenting with the auction format. The United States, for
instance, used to apply only discriminatory price auctions, but has recently started to issue some
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bonds via uniform price auctions (Nyborg and Sundaresan, 1996). The Bundesbank switched

from uniform price auctions to discriminatory price auctions for their repos (Nautz, 1995).

Much of the debate about how to sell Treasury bills is centered around the question, which

of these auction formats yields greater revenues for the Treasury (e.g. Friedman, 1960, Chari

and Weber, 1992). In order to compare the two formats, the equilibrium outcomes for each

format have to be determined. A rather obvious prerequisite for doing this is the existence of

an equilibrium in both auction formats under review.

Menezes and Monteiro (1995) (henceforth, MM) have proposed a highly stylized model of

discriminatory price auctions that could qualify as a model of Treasury bill auctions. They

show that a Nash equilibrium in pure strategies does not exist, unless bidders face demand

functions satisfying special restrictions. The non-existence is a consequence of the discontinuity

of payo� functions, which is due to the necessary rationing when both bidders propose the same

price. MM also conjecture that utilizing mixed strategies would in general not resolve the non-

existence problem. They suggest that there is a severe non-existence problem that could impair
the comparison of the two auction formats.

Non-existence might indicate a problem either with the auction procedure the model is
meant to capture, or with the model itself. MM seem to imply the former: \[. . . ] we show that
the existence of equilibriummay be a problem even when we consider a simple model of Treasury

bill auctions [. . . ]" (MM, page 286). In this paper, we suggest that it is rather the speci�c
model and not the underlying auction procedure that causes the problem. Non-existence is an
artifact of the MM model where prices and quantities are continuous variables. We assume

instead a �nite grid from which price-quantity pairs are chosen. Our note demonstrates that
most of the MM analysis can be recast in such a discrete action auction model where the non-

existence problem vanishes. Moreover, a discrete action model provides a better description of
reality than the continuous action model, since there are minimal increments (smallest units)
of prices and quantities in actual auctions. Adoption of a continuous action model can only be

justi�ed on the grounds that it is more amenable to analysis. If the continuous version fails in
this respect, we may as well discard it.

Our main �ndings for the discrete action model are, �rst, that the �nite action model has

a (possibly mixed) equilibrium [proposition 1]. MM show that both bidders submit the same
price in any pure strategy equilibrium of the continuous action model. We show, second, that

mixed equilibria of the �nite action game have a similar property: The price supports of the
equilibrium strategies of both bidders are close to each other [proposition 2]. With regard to

the existence of a pure strategy equilibrium, we show, third, that the necessary and su�cient

conditions identi�ed by MM for the continuous action model have similar counterparts in the
�nite action model [proposition 3]. Fourth, we �nd that pure strategy equilibria of the �nite

action model can exhibit some excess demand [corollary 2], but excess demand vanishes in
the limit as the grid becomes arbitrarily �ne [proposition 5]. Fifth, there is an equivalence

relationship between the pure strategy equilibria of the continuous action game and �-equilibria

of the �nite action game [proposition 6].
In the next section 2 we restate the MM model. We construct a �nite version of this model

in section 3, and consider the mixed extension in section 4. Section 5 deals with properties of

pure strategy equilibria. Section 6 considers the limit behavior of pure strategy equilibria as

the grid becomes arbitrarily �ne. Section 7 succinctly concludes.
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2 The Menezes-Monteiro model

Let us �rst recall the MM model. We follow their notation. There is a maximum quantity Y of

a homogeneous commodity that is to be sold in an auction. There are two bidders, i = 1; 2, each

having a demand function Di: [0; �p] ! IR+, assumed to be continuous and strictly decreasing.

Moreover, D1(0) + D2(0) > Y and Di(�p) = 0 for both i. The above assumptions imply that

there exists a unique p� > 0 that clears the market, D1(p
�) +D2(p

�) = Y . Bidders are allowed

to bid a price between 0 and �p and a corresponding quantity between 0 and Y . (p; x) and (q; y)

will be used to denote the strategy chosen by bidder 1 and 2, respectively. If p > q, bidder 1 will

receive his demanded quantity x and bidder 2 will receive either y or the remaining quantity

Y � x, whichever is smaller. If p < q, an analogous allocation is implemented, with the roles of

both bidders reversed. If both bidders bid the same price, p = q, there are two cases to consider.

If their joint demand does not exceed the o�ered quantity, x+y � Y , then both bidders receive

their respective demand. Otherwise, the bidders have to be rationed. The rationing is assumed

to be proportional to the bids, i.e. bidder 1 receives xY=(x+ y) units and bidder 2 is allocated

yY=(x+ y) units. Payo�s (= consumer rents) are thus de�ned by

��1(p; x; q; y) :=
R Z�

1
(p;x;q;y)

0 (D�1
1 (s)� p) ds;

��2(p; x; q; y) :=
R Z�

2
(p;x;q;y)

0 (D�1
2 (s)� q) ds;

(1)

with

Z�
1 (p; x; q; y) :=

8><
>:
x; if p > q,

xY=maxfY; x+ yg; if p = q,
minfx; Y � yg; if p < q,

Z�
2 (p; x; q; y) :=

8><
>:
y; if q > p,
yY=maxfY; x+ yg; if q = p,
minfy; Y � xg; if q < p.

(2)

MM �nd a set of necessary and su�cient conditions for a pair of pure strategies to constitute
a Nash equilibrium.

Theorem 1 (Menezes-Monteiro). A quadrupel (p; x; q; y) constitutes a pure strategy equilib-

rium point of the continuous action game if and only if

(i) p = q,

(ii) D1(p) +D2(p) = Y ,

(iii) Di(p) = Z�
i (p; x; p; y),

(iv)
R Y�y
0 D�1

1 (s) ds � ��1(p; x; p; y) and
R Y�x
0 D�1

2 (s) ds � ��2(p; x; p; y):

3 A �nite version

In the MM model, a bidder's strategy set is S := [0; �p]� [0; Y ]. This means that a player can

choose prices and quantities with any degree of precision. The model is intended to capture
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Treasury bill auctions. According to U.S. Treasury regulations, Treasury bills, notes, and

bonds may be purchased in multiples of $1000.{ nominal value, and the submitted prices must

be equivalent to yields that can be expressed as multiples of half basis points (U.S. Treasury,

1997). So bidders are confronted with \smallest units." To model this, pick some integers �n � 2

and �m � 2, and let � := �p=�n and � := Y= �m. Then the set

S := fn� : n 2 f1; : : : ; �ngg| {z }
=:P

�fm� : m 2 f1; : : : ; �mgg| {z }
=:Y

is a grid on S, and this is the new strategy set we will use. We will call the game with this

�nite strategy space the �nite action game, whereas the original MM game will be referred to

as the continuous action game.

Note that in the continuous action game, if both bidders propose the same price, and

their joint quantity bid, x + y, exceeds the available supply, Y , then the �rst bidder receives

Y x=(x + y), and the second bidder receives the rest. Yet, these quantities need not be on
the quantity grid, which implies that fractions of smallest quantity units are allocated to the

bidders. This is not consistent with the very idea of smallest units. We take care of that in
the simplest possible way, by assuming that fractions are disposed of. (2) has to be adapted

somewhat. Let

�z1(x; y) := maxfz 2 Y : z � Y x=(x + y)g; (3)

and an analogous de�nition for �z2(x; y). �z1(x; y) is the next point on the quantity grid weakly
below Y x=(x+ y). The allocation in the �nite action game is then de�ned by

Z1(p; x; q; y) :=

8><
>:
x; if p > q,

minfx; �z1(x; y)g; if p = q,
minfx; Y � yg; if p < q,

Z2(p; x; q; y) :=

8><
>:
y; if q > p,
minfy; �z2(x; y)g; if q = p,

minfy; Y � xg; if q < p,

(4)

and payo�s �1 and �2 are given by (1), with the limits of integration, Z�
1 and Z

�
2 , replaced with

the new expressions Z1 and Z2. We will also need the following modi�ed demand functions:

In case � � Di(p) � Y , set

�Di(p) := maxfz 2 Y : z � Di(p)g;

D̂i(p) := minfz 2 Y : z � Di(p)g;
(5)

and

�Di(p) :=

8<
:

�Di(p) if
R �Di(p)
0 (D�1

i (s)� p)ds �
R D̂i(p)
0 (D�1

i (s)� p)ds,

D̂i(p) if
R �Di(p)
0 (D�1

i (s)� p)ds <
R D̂i(p)
0 (D�1

i (s)� p)ds.
(6)

In case Di(p) < �, set �Di(p) = �. In case Di(p) > Y , set �Di(p) = Y .
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Except for very small or huge demand, D̂i(p) is the point on the quantity grid which is equal

or just greater than Di(p). Similarly, �Di(p) is the point on the quantity grid which is equal or

just smaller than Di(p). �Di(p) is either equal to D̂i(p) or �Di(p), depending on which quantity

gives the player higher payo�, given that he has to pay price p per unit he receives.

Remark. If the price grid is relatively �ne compared to the quantity grid, and the demand

schedule is steep enough, then there can be several market clearing prices, forming the set

IP := fp 2 P : �D1(p) + �D2(p) = Y g:

Conversely, if the price grid is relatively coarse compared to the quantity grid, and the demand

schedule is 
at enough, then IP might be empty. Because demand schedules are downward

sloping, IP is the intersection of some interval with the price grid. If this interval is larger than

2�, then there is more than one market clearing price; if the size of this interval is between �

and 2�, then there is exactly one market clearing price; if this interval is smaller than �, then
there is possibly no (or at most one) market clearing price.

We assume that �D1(2�) + �D2(2�) > Y , making an assumption of the continuous action
MM model somewhat stronger. Note that, because both demand functions are assumed to be

decreasing, this implies �D1(�) + �D2(2�) > Y , �D1(2�) + �D2(�) > Y , and �D1(�) + �D2(�) > Y ;
a fact that will be useful later.

4 The mixed extension

Let ~S be the set of density functions over S, so

f 2 ~S :() f(p; x) � 0 and
X
S

f(p; x) = 1:

Let f 2 ~S and g 2 ~S denote the (possibly) mixed strategies chosen by bidder 1 and bidder 2,

respectively. De�ne then the payo� functions of the mixed extension of the game as follows,

~�1(f; g) :=
X

(p;x)2S

X
(q;y)2S

�1(p; x; q; y)f(p; x)g(q; y);

~�2(f; g) :=
X

(p;x)2S

X
(q;y)2S

�2(p; x; q; y)f(p; x)g(q; y);
(7)

A Nash Equilibrium (NE) is a strategy pro�le (f; g) such that

f 2 argmax
f 02 ~S

~�1(f
0; g) and g 2 argmax

g02 ~S

~�2(f; g
0):

Existence is immediate in the mixed extension of the �nite action model.

Proposition 1 (existence). The mixed extension of the �nite action game has a Nash equi-

librium.

Proof. This is Nash's (1950) Theorem. QED
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In the continuous action game, both bidders submit the same price in equilibrium (MM's

item (i) in theorem 1). Equilibria of the �nite action game in mixed strategies have a similar

property: The supports of the price components of both bidders' equilibrium strategies are

close to each other.

Proposition 2 (similar price supports). Given a strategy pro�le (f; g), let P and Q be the

support of the price component of f and g, respectively. Formally, P := fp 2 P : 9x f(p; x) >

0g, and analogously for Q. If (f; g) 2 NE, then the Hausdor�-distance of P and Q is at most

�. In other words, 8p 2 P 9q 2 Q such that q 2 fp��; p; p+�g and 8q 2 Q 9p 2 P such that

p 2 fq � �; q; q + �g.

Proof. Suppose not. Without loss of generality, assume that there exists p� 2 P such that

fp���; p�; p�+�g\Q = ;. We will show that this will lead to a contradition to the de�nition

of Nash equilibrium. We distinguish two cases.

Case 1, \9q� 2 Q s.t. q� > p�+�." Then bidder 2 can take away some weight from q� and
put it on p�+�, thereby increasing his expected payo�, contrary to the best response property
of g. Speci�cally, consider

g0(q; y) :=

8><
>:
g(q; y) for q 6= q� and q 6= p� + �,
0 for q = q�,

g(q�; y) + g(p� + �; y) for q = p� + �,

and set S� = f(q; y) 2 S : q 6= q�; q 6= p� + �g. Then

~�2(f; g
0) =

X
(p;x)2S

X
(q;y)2S�

�2(p; x; q; y)f(p; x)g(q; y) +

X
(p;x)2S

X
y2Y

�2(p; x; p
� + �; y)f(p; x)[g(q�; y) + g(p� + �; y)]

whereas

~�2(f; g) =
X

(p;x)2S

X
(q;y)2S�

�2(p; x; q; y)f(p; x)g(q; y) +

X
(p;x)2S

X
y2Y

[�2(p; x; p
� + �; y)f(p; x)g(p� + �; y)+

+ �2(p; x; q
�; y)f(p; x)g(q�; y)] :

The �rst payo� is greater, as can be seen from

~�2(f; g
0)� ~�2(f; g) =

X
(p;x)2S

X
y2Y

f(p; x)g(q�; y) [�2(p; x; p
� + �; y)� �2(p; x; q

�; y)] :

To sign this di�erence, recall that

�2(p; x; p
� + �; y) =

Z y

0
(D�1

2 (s)� (p� + �)) ds;
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and

�2(p; x; q
�; y) =

Z y

0
(D�1

2 (s)� q�) ds:

By assumption, q� > p�+�. So �2(p; x; p
�+�; y) > �2(p; x; q

�; y), and hence ~�2(f; g
0) > ~�2(f; g).

So g0 is a better response for bidder 2 against f , contradicting the Nash equilibrium property.

Case 2, \8q 2 Q q < p���." In other words, maxQ < p���. In this case, as before, but

with reversed roles for both players, bidder 1 can decrease the weight on (p�; x) and increase

the weight on (maxQ + �; x), for all x, thereby increasing his expected payo�, given strategy

g of bidder 2. QED

5 Equilibria in pure strategies

In this section we provide necessary and su�cient conditions for a pure strategy equilibrium
to exist (proposition 3)|a �nite game counterpart of MM's theorem. We start by exploiting

immediate implications of proposition 2 for Nash equilibria in pure strategies.

Corollary 1 Let (p; x; q; y) 2 P � Y � P � Y be a Nash equilibrium in pure strategies. Then

either p = q or (p; q) = (�; 2�) or (p; q) = (2�; �).

Proof. Suppose (p; x; q; y) is a Nash equilibrium. As a corollary of proposition 2 we know that
jp� qj � �. There are three possible cases: p = q, p = q � �, and p = q + �. Suppose q > 2�.

We want to show that in these circumstances, no best reply of player 1 will have a price
component p = q� �. To see this, note �rst that if p = q � �, then bidder 1 will either receive
his bid x, or the amount not purchased by bidder 2, Y �y, so Z1(q��; x; q; y) = minfx; Y �yg.

Consider then the alternative strategy (�; �D1(�)). We have

�1(q � �; x; q; y) =
Rminfx;Y�yg
0 (D�1

1 (s)� (q � �)) ds

<
Rminfx;Y�yg
0 (D�1

1 (s)� �) ds

�
Rminf �D1(�);Y�yg
0 (D�1

1 (s)� �) ds
= �1(�; �D1(�); q; y);

provided that minfx; Y � yg 6= 0. Now x � � > 0 by de�nition. It remains to rule out

Y �y = 0. But if y = Y , player 2 could increase his pro�t by bidding (2�; Y ), contradicting the

equilibrium property. Hence y < Y has to hold for a best response by player 2. Having dealt
with all possibilities, we conclude that (q� �; x) cannot be a best reply for player 1, for any x.

Conversely, if p > 2�, then player 2's best reply will not have a price component q = p��. As
a consequence, in any Nash equilibrium, if p > 2� or q > 2�, we must have p = q.

If one of the prices, p or q, is less than or equal to 2�, then the above argument does not

go through. We then have either have p = q (equal to � or to 2�), or we have (p; q) = (�; 2�)
or (p; q) = (2�; �). QED
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Corollary 2 Let (p; x; q; y) 2 P � Y � P � Y be a Nash equilibrium in pure strategies. Then

(a) �D1(p) + �D2(q) � Y .

Proof. Suppose (p; x; q; y) is a Nash equilibrium. By corollary 1, there are four cases to be

considered.

Case 1, \p = q = �." By assumption �D1(�) + �D2(�) > Y [see end of section 3].

Case 2, \p = �; q = 2�." By assumption, �D1(�) + �D2(2�) > Y

Case 3, \p = 2�; q = �." By assumption, �D1(2�) + �D2(�) > Y .

Case 4, \p = q > �." We show that if �D1(p) + �D2(q) < Y , then player 1 (or, analogously,

player 2) has a better reply, contradicting the equilibrium property. �D1(p) + �D2(q) < Y

and optimal quantity choice implies x = �D1(p); y = �D2(q) and x + y < Y . Consider the

alternative strategy (�; x) for player 1. Since by assumption x+y < Y , we have Z1(p; x; p; y) =

Z1(�; x; p; y) = x. Thus player 1 receives the same amount but pays less. Hence his payo� is

greater. As a consequence, (p; x) cannot be a best reply. QED

Proposition 3 (pure strategy equilibrium). Let (p; x; q; y) 2 P � Y � P � Y be a pair of

pure strategies satisfying p = q. Then (p; x; q; y) is a Nash equilibrium point if and only if the

following set of conditions is satis�ed.

(b) Z1(p; x; q; y) = minf �D1(p); �z1(Y; y)g, and equivalently for player 2,

(c)
Rminf �D1(�);Y�yg
0 (D�1

1 (s)� �) ds � �1(p; x; q; y), and equivalently for player 2,

(d)
R �D1(p+�)

minf �D1(p);�z1(Y;y)g
(D�1

1 (s)� p) ds � � �D1(p+ �), and equivalently for player 2.

Note an interesting di�erence to MM's theorem. Their condition (ii) guarantees that the

market clears. In the �nite action auction game, according to condition (a), market clearing
provides only an upper bound for the resulting equilibrium price, so there can be excess demand
in equilibrium. Condition (d), however, restrains the amount of excess demand that is possible

in any pure strategy equilibrium.

Proof. SUFFICIENCY. Suppose (p; x; p; y) satis�es (b) to (d). We have to show that this

implies that (p; x; p; y) is a Nash equilibrium. In other words, we must establish that there is
no alternative strategy (p0; x0) for agent 1 which is a better reply than (p; x), and similarly for

player 2. We consider three kinds of deviations separately.
First, consider a deviation to a strategy (p0; x0) such that p0 > p. These strategies have the

advantage that player 1 avoids being rationed. The cheapest way to achieve that e�ect is by

out-bidding his rival by the smallest possible price increment, �. The preferred quantity to
purchase for player 1 at this price is by de�nition �D1(p + �). Thus, the best candidate for a

better reply is (p+ �; �D1(p + �)). The payo� is

�1(p+ �; �D1(p+ �); p; y) =
R �D1(p+�)
0 (D�1

1 (s)� (p+ �)) ds

�
Rminf �D1(p);�z1(Y;y)g
0 (D�1

1 (s)� p) ds [by (d)]

= �1(p; x; p; y); [by (b)]
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so (p+ �; �D1(p+ �)) is not a better reply than (p; x).

Next, consider deviations of the form (p; x0) [so the price component is unchanged compared

to the original strategy (p; x)]. From (b) we know that Z1(p; x; p; y) is equal either to �D1(p)

or to �z1(Y; y), whichever is smaller. Suppose, �rst, that Z1(p; x; p; y) = �D1(p). That means

that the quantity component x in the strategy leads to the allocation of the preferred quantity,
�D1(p), at price p. In this case, clearly, no alternative quantity component x0 can make things

better for player 1. So suppose, second, that Z1(p; x; p; y) = �z1(Y; y) < �D1(p). That means that

player 1 is rationed. He cannot purchase his preferred quantity at price p. The best he can do

then is to bid the maximum allowed quantity, Y , which allows him to purchase �z1(Y; y) units.

Any alternative quantity component x0 leads to an allocation of at most �z1(Y; y) units, so no x
0

is better than x.

Finally, consider deviations (p0; x0) with p0 < p. The advantage of these deviations is that

player 1 pays less per unit he receives. However, he can get at most the residual demand,

i.e. the quantity not demanded by player 2. The best candidate for a deviation of this sort
is (�; �D1(�)). This strategy leads to an allocation of Z1(�; �D1(�); p; y) = minf �D1(�); Y � yg

units to player 1, and his payo� is

�1(�; �D1(�); p; y) =
Rminf �D1(�);Y �yg
0 (D�1

1 (s)� �) ds

� �1(p; x; p; y); [by (c)]

so (�; �D1(�)) is not a better response than (p; x).
This establishes that there is no pro�table deviation for player 1. Analogous arguments can

be made for player 2, hence (p; x; p; y) is indeed a Nash equilibrium.

NECESSITY. Suppose that (p; x; p; y) is a Nash equilibrium point. We derive conditions

(b), (c), and (d) in three steps.

Step 1, \8z 2 [0; Y 2=(Y + y)] \ Y 9x 2 Y s.t. Z1(p; x; p; y) = z, and similarly for player 2."
This says that, if both players set the same price, then, for any quantity z on the grid between
0 and Y 2=(Y + y), player 1 can always �nd a quantity bid x, such that z is allocated to him.

That means that there are no \holes" (besides the grid) in the set of quantities player 1 can
purchase.

Let z 2 [0; Y 2=(Y + y)] \ Y. If z + y � Y , then x = z will do. In case z + y > Y , we want

to �nd x 2 Y such that x + y > Y and

z = �z1(x; y) = max

(
w 2 Y : w �

x

x+ y
Y

)
:

Checking x = z and x = Y yields

z

z + y
Y < z �

Y

Y + y
Y:

Since x=(x+ y) is increasing in x, there is a smallest x 2 Y with z � x
x+y

Y . As a consequence,

z < x. Hence x� Y= �m 2 Y and

x� Y= �m

x� Y= �m+ y
Y < z �

x

x+ y
Y:
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Next we claim j
x

x+y
Y �

x�Y= �m

x�Y= �m+y
Y j < �. This implies that z is the only grid point in the interval

[ x�Y= �m

x�Y= �m+y
Y; x

x+y
Y ] and, therefore, z = �z1(x; y). The claim amounts to

x

x + y
�

x� Y= �m

x+ y � Y= �m
<

1

�m
or

�mx

�mx+ �my
<

�mx + x+ y � (1 + 1= �m)Y

�mx + �my � Y
or

�myY + (x + y)Y < �m(x+ y)(x+ y);

which holds true, since Y < x + y implies �mY y < �m(x + y)y and Y � �mz < �mx implies

(x + y)Y < �m(x + y)x.

Step 2, \Z1(p; x; p; y) = �z1(x; y) = minf �D1(p); �z1(Y; y)g, and similarly for player 2." It

follows from corollary 2 that x+ y � Y . [For otherwise, x+ y < Y � �D1(p) + �D2(p). Without
loss of generality, let us pick player 1 and assume that x < �D1(p) and x < Y �y. Then the player
could increase his payo� by choosing x0 = minfY � y; �D1(p)g. Hence in equilibrium, x+ y � Y

must hold as asserted.] But x + y � Y implies the �rst equality, Z1(p; x; p; y) = �z1(x; y).
For the second equality, suppose �D1(p) � �z1(Y; y). This implies, by step 1, that there exists

some x0 such that Z1(p; x
0; p; y) = �D1(p). �D1(p) is by de�nition the preferred quantity for

player 1, given price p, so any best reply must be such that Z1(p; x
0; p; y) = �D1(p).

Suppose now that �D1(p) > �z1(Y; y). This means that player 1 cannot receive the quantity he

demands at the price p. Any strategy with price component p and with a quantity component
x such that less then the maximum possible quantity, �z1(Y; y), is allocated to player 1, can be
beaten by the alternative strategy (p; Y ). Thus, any best reply with price component p must

be such that Z1(p; x; p; y) = �z1(Y; y). [Note that this does not imply x = Y .] This proves (b).

Step 3. In what follows, (p0; x0) denotes an alternative strategy for player 1. We derive the
implications of the fact that in equilibrium, there cannot be such an alternative strategy that
is a better reply for player 1 against (p; y) than (p; x).

Consider �rst alternative strategies with p0 < p. In this case, player 2 will not be rationed,
and player 1 will receive either the amount not purchased by player 2, Y � y, or his bid, x0,

whichever is smaller. Clearly, the best candidate for an alternative move of this kind is to bid
the lowest possible price, �, and the demand at this low price, �D1(�). We have

�1(�; �D1(�); p; y) =
Z minf �D1(�);Y�yg

0
(D�1

1 (s)� �) ds:

This cannot be greater than �1(p; x; p; y) [otherwise (p; x) would not be a best reply], which

implies (c).

Consider now deviations with p0 > p. In this case player 1 will not be rationed. Clearly, the

best candidate for such an alternative move is (p + �; �D1(p + �)). If this move is not better

than the original one, then there is no alternative move with p0 > p that could beat (p; x). The

payo� is

�1(p+ �; �D1(p+ �); p; y) =
Z �D1(p+�)

0
(D�1

1 (s)� (p+ �)) ds:
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Because (p; x) is a best reply, this term cannot be greater than �1(p; x; p; y). Combined with

step 2, this implies (d). QED

6 Asymptotic properties

Intuitively, a �ner grid moves the �nite action model closer to the continuous action model. In

this section we investigate in which sense this intuition is con�rmed.

According to corollary 1, the �nite action game has two types of equilibria. One type

involves the same price bids by both players (p = q, as in the continuous action game); the

other type involves unequal and close to zero price bids by both bidders. Subject to some

additional restriction on the demand functions, proposition 4 shows that this latter type of

equilibrium ceases to exist if the grid is �ne enough. From corollary 2 we know that there

can be excess demand in equilibrium. Proposition 5 implies that equilibrium excess demand

vanishes if the price grid is �ne enough compared to the quantity grid, and if both grids become
arbitrarily �ne. Proposition 6 establishes that there is an equivalence relationship between the

equilibria of the continuous action game and the �-equilibria of the �nite action game, with �

depending on the �neness of the grid.

Proposition 4. Suppose D1(0) > Y=2 and D2(0) > Y=2. Then, for small enough � and �,

p = q in any pure strategy equilibrium.

Before moving on to the proof, observe that, if (�; x; 2�; y) 2 P � Y � P � Y is a Nash
equilibrium, then Z2(�; x; 2�; y) > Y=2. For otherwise, by step 1 in the previous proof, player 2

could acquire the same quantity at a lower price, contradicting the equilibrium property. Of
course, Z2(�; x; 2�; y) � �D2(2�). Therefore, the additional requirement made in this propo-
sition that D1(0) > Y=2 and D2(0) > Y=2 adds less restriction to the model than one might

think at �rst glance.

Proof. Fix some � 2 (0; 1) with Di(�) > Y=2, for i = 1; 2, and choose some E > 0 such that

Di(�) > Y=2 + 4E for i = 1; 2 and Y > Y=2 + 4E. Set �0 = (E�)=(2Y ) > 0 and �0 = E=3 > 0.
This implies that � < (E�)=Y , 2� < E, and �Di(�) � �Di(2�) > Y=2+3E, for all � � �0, � � �0,

i = 1; 2. Let us proceed with su�ciently small � and �, i.e. � � �0 and � � �0. Given the
prices p = � and q = 2�, maximization of her payo� with respect to quantity has player 2 bid

y = �D2(2�) so that player 1 receives Z1(�; x; 2�; y) < Y=2� 3E. Now consider the alternative

strategy (2�; x0) for player 1 where x0 is chosen so that Z1(2�; x
0; 2�; y) = Z1(�; x; 2�; y)+k� and

k is maximal with k� � 3E. Then k� � 2E. When making this change, player 1 gains at least

2E �D�1
1 (Z1(2�; x

0; 2�; y)) and loses at most 2�Y . Next Z1(2�; x
0; 2�; y) � Y=2 < D1(�). Hence

D�1
1 (Z1(2�; x

0; 2�; y)) > D�1
1 (D1(�)) = �. Hence the gains are at least 2E� while the losses are

at most 2�Y . Since � is su�ciently small, the gains exceed the losses, and (p; q) = (�; 2�)

cannot be part of an equilibrium. QED

For the next proposition, the price grid ought to be �ne enough relative to the quantity

grid so that the cost of raising the price by one unit is small compared with the gain from
receiving a larger quantity. Given any � and � with D1(0) > 2� and D2(0) > 2�, we shall say
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that � is small enough relative to �, if � < �0(�) where �0(�) is de�ned as follows: For

p 2 [0; D�1
i (2�)], de�ne the strictly positive and continuous function

�i(�; p) :=
Z Di(p)��

Di(p)�2�
(D�1

i (s)� p)ds:

On the compact interval [0; D�1
i (2�)], �i(�; �) assumes a minimum ��

i (�) > 0. Set

�0 = minf��
1;�

�
2g and �0 = �0=Y .

Proposition 5. Suppose D1(0) > 2�, D2(0) > 2� and � small enough relative to �. If

(p; x; p; y) 2 P �Y �P �Y is an equilibrium, then �D1(p)+ �D2(p) � Y +6�, i.e. excess demand

is at most 6�.

An immediate corollary of this is that if both components of the grid, � and �, converge to

zero and � converges su�ciently fast relative to �, then equilibrium excess demand eventually

vanishes.

Proof. For �m = 2; : : : ; 6, the assertion is trivially true. From here on assume �m � 7 such that

D1(0) > 2� and D2(0) > 2�. Also assume � < �0(�).
Next let (p; x; p; y) be a Nash equilibrium of the �nite game associated with � and �. We

start with some useful observations:

1. p < �p.

2. If (p; x; p; y) is a Nash equilibrium and �D1(p) > �z1(x; y) + 3�,
then x = Y and Z1(p; x; p; y) = �z1(Y; y) � Y=2 � 2�.

3. �z1(x; y) + �z2(x; y) � Y .

One obtains that if �Di(p) � �zi(x; y) + 3� for both i, then �D1(p) + �D2(p) � Y + 6�. We are

done, if we can show that �Di(p) > �zi(x; y) + 3� cannot occur. Without loss of generality, sup-
pose �D1(p) > �z1(x; y) + 3�. We claim that then by placing the alternative bid (p + �; �D1(p)),

investor 1 could get �1(p + �; �D1(p); p; y) > �1(p; x; p; y), contradicting the hypothesis that
(p; x; p; y) is a Nash equilibrium. Therefore, to the contrary �D1(p) � �z1(x; y) + 3� has to hold.
To show the claim, we distinguish two cases.

Case 1, j �D1(p)�D1(p)j < �. Then D1(p) > �z1(x; y) + 2�. Further

�1(p+ �; �D1(p); p; y) =
R �D1(p)
0 (D�1

1 (s)� (p+ �))ds

=
R �D1(p)
0 (D�1

1 (s)� p)ds� � �D1(p)

=
R �z1(x;y)
0 (D�1

1 (s)� p)ds+
R �D1(p)

�z1(x;y)
(D�1

1 (s)� p)ds� � �D1(p)

� �1(p; x; p; y) +
RD1(p)��
D1(p)�2�

(D�1
1 (s)� p)ds� � �D1(p)

� �1(p; x; p; y) + �0(�)� � �D1(p)

� �1(p; x; p; y) + [�0(�)� �]Y > �1(p; x; p; y):
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Case 2, j �D1(p) � D1(p)j � �. In this case, �D1(p) = Y and D1(p) � Y + �. There exists

p0 2 (p;D�1
1 (2�)) with D1(p

0) = �D1(p) and, consequently,R �D1(p)
�z1(x;y)

(D�1
1 (s)� p)ds >

RD1(p
0)

�z1(x;y)
(D�1

1 (s)� p0)ds

>
RD1(p

0)��
D1(p0)�2�

(D�1
1 (s)� p0)ds � �0(�):

The remainder of the argument is the same as in case 1. QED

For equilibria of the form (p; x; p; y) 2 S�S, further asymptotic results can be obtained by

letting the grid lengths go to zero. In accordance with the rationale of our �nite action model,

such a result is only of interest if (p; x; p; y) lies on all the grids involved.

Proposition 6. Consider two strictly increasing sequences �nk; k 2 IN; and �mk; k 2 IN; in

INnf1g. Let Pk; Yk, and Sk denote the corresponding sequences of grids and �k and �k denote

the corresponding sequences of grid lengths. Set �k = 3�k � �p. Suppose that (p; x; p; y) 2 S � S

is a point that belongs to Sk � Sk for all k.

(A) If (p; x; p; y) is a Nash equilibrium of the continuous action game, then it is (for each k)

an �k-equilibrium of the respective �nite action game.

(B) If (p; x; p; y) is not a Nash equilibrium of the continuous action game, then it is not (for

large k) an �k-equilibrium of the respective �nite action game.

Proof. (A) It su�ces to provide the argument for player 1. An analogue holds for player 2. If

(p; x; p; y) is a Nash equilibrium of the continuous action game, then ��1(p; x; p; y) � ��1(p
0; x0; p; y)

for all (p0; x0) 2 S. Fix k 2 IN. The above inequalities imply ��1(p; x; p; y) � ��1(p
0; x0; p; y)

for all (p0; x0) 2 Sk. Now observe that for all (p00; x00; q00; y00) 2 Sk � Sk, Z1(p
00; x00; q00; y00) �

Z�
1(p

00; x00; q00; y00), with the di�erence at most �k. In the payo� formula (1), p00 2 [0; �p] and
D�1

1 (s) 2 [0; �p] and therefore jD�1
1 (s)� p00j � �p. Hence

j��1(p
00; x00; q00; y00)� �1(p

00; x00; q00; y00)j =

�����
Z Z�

1
(p00;x00;q00;y00)

Z1(p00;x00;q00;y00)
(D�1

1 (s)� p00) ds

�����
�

Z Z�

1
(p00;x00;q00;y00)

Z1(p00;x00;q00;y00)
jD�1

1 (s)� p00j ds

�

Z Z�

1
(p00;x00;q00;y00)

Z1(p00;x00;q00;y00)
�p ds

= [Z�
1(p

00; x00; q00; y00)� Z1(p
00; x00; q00; y00)] � �p

� �k � �p =
1

3
�k:

Since this inequality applies to (p; x; p; y), (p0; x0; p; y) 2 Sk � Sk, the �k-equilibrium condition

follows: �1(p; x; p; y) � �1(p
0; x0; p; y)� 1

3
�k � �1(p

0; x0; p; y)� �k for all (p
0; x0) 2 Sk.
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(B) If (p; x; q; y) is not a Nash equilibrium of the continuous action game, let us assume

without loss of generality that player 1 gains from deviation. Then there exists (p0; x0) 2 S

with ��1(p; x; p; y) < ��1(p
0; x0; p; y). Let us �x such a strategy (p0; x0) and choose � > 0 such that

��1(p
0; x0; p; y)� ��1(p; x; q; y) > 5�.

Case p0 = p. For each k, set xk = minfz 2 Yk : x0 � zg. Observe that the function
~Z1(X) � Z�

1(p;X; p; y) is continuous in X and xk ! x0 as k !1. Hence for su�ciently large

k, jZ�
1(p; xk; p; y) � Z�

1 (p; x
0; p; y)j < �=�p and, by variation of an argument used in the proof

of (A),

j��1(p; xk; p; y)� ��1(p; x
0; p; x)j < �.

Based on the proof of (A), we conclude further that

j��1(p; x; p; y)� �1(p; x; p; y)j < �k and

j��1(p; xk; p; y)� �1(p; xk; p; y)j < �k.

For su�ciently large k, we obtain �k < � and, by repeated application of the triangle inequality,
�1(p; xk; p; y) > �1(p; x; p; y)+ 2� > �1(p; x; p; y) + �k or �1(p; x; p; y) < �1(p; xk; p; y)� �k. This

shows that (p; x; p; y) is not an �k-equilibrium.

Case p0 > p. For each k, set xk = minfz 2 Yk : x
0
� zg and pk = minfq 2 Pk : p

0
� qg.

For su�ciently large k, pk > p. Since jpk � p0j � �, it follows
j��1(p

0; x0; p; y)� ��1(pk; x
0; p; y)j < �kY .

Similar reasoning as in the previous case yields for su�ciently large k: �k < �, �kY < � and

j��1(pk; xk; p; y)� ��1(pk; x
0; p; x)j < �;

j��1(p; x; p; y)� �1(p; x; p; y)j < �k;

j��1(pk; xk; p; y)� �1(pk; xk; p; y)j < �k.
Hence, for su�ciently large k, repeated application of the triangle inequality yields

�1(pk; xk; p; y) > �1(p; x; p; y) + � > �1(p; x; p; y) + �k
which implies that (p; x; p; y) is not an �k-equilibrium.

Case p0 < p. Use the same logic as for the case p0 > p. QED

7 Conclusion

The problem of non-existence of an equilibrium in the discriminatory price auction can be
overcome by resorting to the realistic assumption of smallest bid increments. The resulting

�nite action game shares several features of the continuous action game. For a meaningful
comparison, a uniform price auction should also be modelled as a �nite action game, with the

same price and quantity grids as the discriminatory price auction. Our analysis suggests that

this can be done.
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