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Abstract

This paper introduces the \compound con
uent hypergeometric" (CCH) distribution. The CCH
uni�es and generalizes three recently introduced generalizations of the beta distribution: the Gauss
hypergeometric (GH) distribution of Armero and Bayarri (1994), the generalized beta (GB) distri-
bution of McDonald and Xu (1995), and the con
uent hypergeometric (CH) distribution of Gordy
(forthcoming). In addition to greater 
exibility in �tting data, the CCH o�ers two useful properties.
Unlike the beta, GB and GH, the CCH allows for conditioning on explanatory variables in a natural
and convenient way. The CCH family is conjugate for gamma distributed signals, and so may also
prove useful in Bayesian analysis. Application of the CCH is demonstrated with two measures of
household liquid assets. In each case, the CCH yields a statistically signi�cant improvement in �t
over the more restrictive alternatives.
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The beta distribution is widely used in statistical modeling of bounded random variables. It is

easily calculated, can take on a variety of shapes, and, perhaps as importantly, none of the other

commonly used distribution functions have compact support.1 However, its application is limited

in important ways. First, as a two parameter distribution, it can provide only limited precision in

�tting data. It is desirable to have more parametrically 
exible versions of the beta to allow a richer

empirical description of data while still o�ering more structure than a nonparametric estimator.

Second, the beta does not o�er a natural and convenient means of introducing explanatory variables.

In a Beta(p; q) distribution, the parameters (p; q) jointly determine both the shape and moments

of the distribution. There is no satisfactory way of conditioning the mean by specifying p and q as

functions of explanatory variables and regression coe�cients. Third, the beta is inconvenient for

use in Bayesian analysis. It is conjugate for binomial signals, but not for signals of any continuous

distribution.

Recent research has contributed three generalizations of the beta which address one or more of

these limitations. Armero and Bayarri (1994) de�ne the Gauss hypergeometric (GH) distribution

by the density function

GH(x; p; q; r; �) =
xp�1(1� x)q�1(1 + �x)�r

B(p; q) 2F1(r; p; p + q;��)
for 0 < x < 1 (1)

with p > 0; q > 0 and where 2F1 denotes the Gauss hypergeometric function. The GH collapses to

the ordinary beta if either r = 0 or � = 0, and to the beta-prime if q = � = 1. Armero and Bayarri

apply the GH to a Bayesian queuing theory problem.

A related distribution is introduced by McDonald and Xu (1995) as the \generalized beta"

1Except, of course, the uniform distribution, which is a special case of the beta.
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(GB) distribution. The GB is de�ned by the pdf

GB(x; a; b; c; p; q) =
jajxap�1(1� (1� c)(x=b)a)q�1

bapB(p; q)(1 + c(x=b)a)p+q
for 0 < xa < ba=(1 � c) (2)

and zero otherwise with 0 � c � 1 and b; p and q positive. As in the ordinary beta distribution,

the parameters p and q control shape and skewness. Parameters a and b control \peakedness"

and scale, respectively. Given a = b = 1, the parameter c shifts the GB from the ordinary beta

distribution (c = 0) to the beta-prime distribution (c = 1).

Gordy (forthcoming) generalizes the beta in an unrelated direction. The \con
uent hypergeo-

metric" distribution CH(p; q; s) is de�ned by the pdf

CH(x; p; q; s) =
xp�1(1� x)q�1 exp(�sx)

B(p; q) 1F1(p; p+ q;�s)
for 0 < x < 1: (3)

where 1F1 is the con
uent hypergeometric function de�ned in Abramowitz and Stegun, eds (1968,

13.1.2) (hereafter cited as \AS").2 Gordy (forthcoming) shows that a beta prior and gamma signal

gives rise to a CH posterior and applies this property to auction theory.

In this paper, I unify and further generalize these three distributions. The constant of propor-

tionality in the new pdf is the product of a beta function and a compound con
uent hypergeometric

function. Therefore, I denote this distribution the \compound con
uent hypergeometric" (CCH).

The CCH is de�ned and described in Section 1. Special cases are discussed in Section 2. In partic-

ular, I show that the beta, GB, GH, CH and gamma distributions are all special cases of the CCH.

Empirical applications to measures of household liquid assets are provided in Section 3.

2This function is denoted there asM and referred to as the \degenerate" hypergeometric function � in Gradshteyn

and Ryzhik (1965, 9.210.1). In Mathematica, it is the Hypergeometric1F1.
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1 De�nition of the CCH

I de�ne the CCH by the density function

CCH(x; p; q; r; s; �; �) =
xp�1(1� �x)q�1(� + (1� �)�x)�r exp(�sx)

B(p; q)H(p; q; r; s; �; �)
for 0 < x < 1=� (4)

for 0 < p, 0 < q, r 2 <, s 2 <, 0 � � � 1, and 0 < �.3 The function H is given by

H(p; q; r; s; �; �) = ��p exp(�s=�)�1(q; r; p + q; s=�; 1� �) (5)

where �1 is the con
uent hypergeometric function of two variables de�ned in Gradshteyn and

Ryzhik (1965, 9.261.1) by

�1(�; �; 
; x; y) =
1X

m=0

1X
n=0

(�)m+n(�)n
(
)m+nm!n!

xmyn (6)

and where (a)k is Pochhammer's notation, i.e., (a)0=1; (a)1= a; (a)k =(a)k�1(a + k � 1). For

convenience in exposition, I refer to H as a \compound con
uent hypergeometric" function rather

than as a \con
uent hypergeometric function of two variables."

In Appendix A, I show that equation (4) integrates to one. To guarantee that the CCH distri-

bution is well-de�ned everywhere on the parameter space, I prove in Appendix C the theorem

Theorem 1

For all (p; q; r; s; �; �) such that p > 0, q > 0, r 2 <, s 2 <, 0 < � � 1 and � > 0, H(p; q; r; s; �; �) is

a �nite positive real number.

It is straightforward to check that the moment generating function for the CCH is given by

M(t) =
H(p; q; r; s� t; �; �)

H(p; q; r; s; �; �)

3
� = 0 is handled as a special case. See the UH distribution in Section 2.
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and the kth order moments are given by

E(Xk) =
(p)k

(p+ q)k

H(p+ k; q; r; s; �; �)

H(p; q; r; s; �; �)
: (7)

Theorem 1 is su�cient to guarantee that all moments of X exist.

Given the restrictions on the parameters, the �1 function in equation (5) can always be ex-

pressed as an in�nite series in which all terms are non-negative (see Appendix B). Therefore, the

H function can be calculated without numerical round-o� problems. Despite its apparent com-

plexity, it is quickly calculated over most of the relevant parameter space.4 Computation time

decreases with p; � and � and increases with q; jrj and jsj. It appears that � and � jointly have

the largest e�ect. To take an easy example, computation of H(p=20; q=2; r=5; s=0; �=1; �=1)

to 14 places accuracy takes 0.0002 seconds on a SparcStation10. To take a more di�cult example,

H(2; 20; 15; 10; 0:01; 0:01) requires 0.6 seconds. To the extent that the CCH is employed to general-

ize the beta distribution, rather than the beta-prime distribution, computationally easy cases will

predominate in empirical applications.

Figures 1a, 1b and 1c plot the CCH pdf for a variety of parameter values. The �gures show that

the role of parameters p and q in the CCH is much the same as in the ordinary beta distribution.

Parameter � rescales the distribution for longer or shorter support. The remaining parameters r,

s and � \squeeze" the density function to the left or right. While the shapes portrayed in these

�gures are qualitatively familiar from the beta distribution, the CCH can also take on a wide range

of multi-modal or long-tailed shapes which the beta cannot. Examples are presented in Figure 2.

The parameter s allows for a convenient method of conditioning the CCH distribution on

exogenous variables. The bottom panel of Figure 1b shows that increasing (decreasing) s squeezes

the distribution to the left (right). In Appendix D it is proved that the mean changes monotonically

4Software in C and MATLAB is available upon request.
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Figure 1a: Compound Con
uent Hypergeometric PDFs
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Figure 1b: Compound Con
uent Hypergeometric PDFs (continued)
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Figure 1c: Compound Con
uent Hypergeometric PDFs (continued)
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Figure 2: Multi-modal and Long-Tailed CCH PDFs
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Example 1: p = 2; q = 3; r = 15; s = �20; � = 1; � = 0:25.
Example 2: p = 5; q = 1:2; r = 37; s = �26; � = 1; � = 0:36.
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with s, i.e.,

Proposition 2
dE(X)
ds = �Var(X) < 0:

Therefore, if zt is a vector of exogenous variables, it might be assumed thatXt � CCH(p; q; r; st; �; �)

for st = zt�. The regression coe�cients � are easily estimated along with the �xed parameters

(p; q; r; �; �) by maximum likelihood. The derivative of the function H with respect to s has a

simple analytic expression, so the computational burden of adding variables to zt is not especially

large.

Lemma 3 d
dsH(p; q; r; s; �; �) = �

p
p+qH(p+ 1; q; r; s; �; �):

The proof is in Appendix D.

Like the beta, the CCH displays a simple re
ection property. If X � CCH(p; q; r; s; �; �) and

if Y = 1=� � X, then Y � CCH(q; p; r;�s; �; 1=�). Like the CH, the CCH may be useful in

Bayesian decision problems, because it is conjugate for gamma distributed signals. If the prior for

an unknown random variable X is the CCH(p; q; r; s; �; �) and signal W j(X=x) � Ga(�; x), then

the posterior distribution of Xj(W=w) is CCH(p+ �; q; r; s+ w; �; �).

2 Special cases

Generalized Beta: When s = 0, r = p+ q, � = (1� c)=b, and � = 1� c, the CCH simpli�es to

the GB with a = 1. The CCH distribution can easily be extended to accommodate a peakedness

parameter a as well, which is ignored here to simplify exposition. The restriction is relatively minor,

because if X � GB(a; b; c; p; q) then X can be rescaled as ~X � Xa
� CCH(p; q; r=p+ q; s=0; �=

(1� c)=b; �=1� c).
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Gauss Hypergeometric: When s = 0 and � = 1, the CCH(p; q; r; s=0; �=1; �) simpli�es to

the GH(p; q; r; �) for � = (1� �)=�. The function H simpli�es to

H(p; q; r; s=0; �=1; �) = �r2F1(r; q; p + q; 1� �) = 2F1(r; p; p+ q;�(1� �)=�) (8)

where the last transformation follows from AS15.3.4.

Con
uent Hypergeometric: When � = 1 and � = 1, CCH(p; q; r; s; � = 1; �=1) simpli�es

to the con
uent hypergeometric distribution CH(p; q; s). It is clear from transformation (T4) in

Appendix B that H(p; q; r; s; �=1; �=1) = 1F1(p; p+ q;�s).

Gamma: When � = 0 and s > 0, CCH(p; q; r; s; �=0; �) simpli�es to the gamma distribution

Ga(p; s). Whereas the GB distribution includes the gamma distribution as a limiting case, the

CCH includes the gamma as a special case.

Con
uent HypergeometricU: An interesting limiting case of the CCH arises as � ! 0 and

� ! 0 such that �(1 � �)=� ! � for a constant value � such that s=� � 0. The limiting distribu-

tion is based on the \U" con
uent hypergeometric function de�ned in AS13.1.3.5 Let the \UH"

distribution be de�ned by the pdf

UH(x; p; r; s; �) =
xp�1(1 + �x)�r exp(�sx)

�(p)U(p; p+ 1� r; s=�)
for 0 < x <1: (9)

In Appendix A it is shown that this density integrates to one. Moments are given by

E(Xk) = (p)k
U(k + p; k + p+ 1� r; s=�))

U(p; p+ 1� r; s=�))
:

5This function is denoted as the \degenerate" hypergeometric function 	 in Gradshteyn and Ryzhik (1965,

9.210.2). In Mathematica, it is the HypergeometricU.
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When s = 0, � = 1 and r = p + q, the UH(p; r=p + q; s=0; �=1) simpli�es to the beta-prime.

When � = 0 or r = 0, the UH(p; r; s; �) for s > 0 simpli�es to the gamma distribution Ga(p; s).

3 Empirical applications

To demonstrate the use of the CCH distribution, I model two measures of household liquid assets:

the ratio of household liquid assets to total household �nancial assets, and the log of household

liquid assets. The distributions of these variables across households are important in understanding

motives for saving and the determinants of porfolio allocation. For example, the bu�er-stock model

of saving (Carroll 1992) and the life-cycle model (see, e.g., Poterba and Samwick 1997) di�er in

implications for the cross-sectional distribution of liquid assets. Cross-sectional patterns in portfolio

share assigned to liquid, low risk assets may permit tests or calibrations of models of portfolio choice,

such as Laibson (1997) and Bodie, Merton and Samuelson (1992). More directly, the distributions

of these variables may shed light on the e�ects of income distribution and demographic transitions

on savings and on market risk-premia, and on the importance of liquidity constraints in aggregate

consumption.

All data come from the 1995 Survey of Consumer Finances. The SCF provides data on the

assets and liabilities of U.S. households (see Kennickell, Starr-McCluer and Sund�en (1997) for a

general description). In order to provide adequate representation of the highly skewed distribution

of assets, the SCF oversamples wealthy households, so in all calculations below I apply SCF sample

weights to obtain unbiased estimates of the population distribution. Weights are normalized to

mean one to avoid biasing the size of test statistics.6

I de�ne liquid assets, LIQ, as the sum of checking deposits, savings deposits, money market and

6Parameters estimated on the unweighted samples do di�er from the results reported below, but are qualitatively

similar. In particular, LR test statistics yield the same conclusions.

11



money market mutual fund deposits, and call accounts at brokerages. Total �nancial assets, FIN,

includes LIQ, stocks, bonds, trusts, cash value of whole life insurance, and other �nancial assets.7

Weighted median and mean sample values are $1,600 and $13,261 for LIQ and $10,000 and $88,629

for FIN. Roughly 9% of households have no �nancial assets and roughly 13% have no liquid assets.

Roughly 20% have positive liquid assets but no other �nancial assets. To bound the liquidity ratio

in (0; 1), I assume household i has an additional ci dollars in \pocket cash," and another fi dollars

in small loans to friends, where ci and fi are iid draws from a Uniform(0; 150) distribution. I then

de�ne LIQRATi � (LIQi + ci)=(FIN + ci + fi).
8 The top panel of Figure 3 shows a U-shaped

histogram for LIQRAT. Roughly half of U.S. households maintain either a very low or very high

percentage of household �nancial assets in liquid deposits.

Table 1 presents the results of maximum likelihood estimation of distribution parameters for

LIQRAT using the beta, con
uent hypergeometric, Gauss hypergeometric and CCH distributions.9

Because 0 and 1 are natural bounds for LIQRAT, � is �xed to 1.10 The estimated distributions are

plotted in the bottom panel of Figure 3. All of the estimated distributions are U-shaped, but they

do di�er visibly. Furthermore, LR tests strongly reject (at well beyond 1% levels) the equivalence

of the restricted distributions to the CCH. The CCH thus o�ers a signi�cantly better �t to the

data than beta, CH or GH.

It might be expected that LIQRAT will depend on household characteristics. Higher income

households may have less need to keep savings in a highly liquid form. Higher levels of education

7These are standard de�nitions used in analysis of the SCF data. See the URL

<http://www.bog.frb.fed.us/pubs/oss/oss2/95/codebk95pt5.html> at the Federal Reserve Board's web

site.
8This procedure causes estimated parameters to vary with each set of random draws. I have run the program

many times, however, and �nd that results appear to be stable.
9Standard errors are obtained using the method of Berndt, Hall, Hall and Hausman (1974). I abstract from

variation associated with the inclusion of imputed values in the SCF by using only the �rst set of implicates. Rubin

(1987) discusses correction to the standard errors for multiply imputed data. In this application, the correction should

be quite small and is ignored.
10The GB is not included in this comparison because it is equivalent to the beta when restrictions a = 1 and

c=b = 1� � = 0 are imposed.
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Figure 3: Distribution of Liquid Asset Ratio
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Table 1: Estimated Distributional Parameters for Liquidity Ratioy

Beta CH GHz CCH

p 0:501 0:646 1:062 0:939
(0:011) (0:017) (0:051) (0:034)

q 0:687 0:477 0:526 0:649
(0:011) (0:018) (0:015) (0:026)

r 1:052 6:296
(0:050) (2:819)

s 1:585 �5:732
(0:109) (1:867)

� 0:032 0:285
(0:007) (0:086)

LogLik: 838:08 939:87 1022:1 1042:5

y: Standard errors in parentheses. 4299 observations in sample.

Sample weights are normalized to have mean one. � is �xed at

1.
z: The parameter � in the standard form for the GH is given by

� = (1� �)=�.

may be associated with greater sophistication in �nancial matters, and so a greater propensity

to hold assets other than liquid deposits. Compared to households in the 35-65 age group, older

and younger households are likely to have higher LIQRAT. Older households may be more risk

averse, and so prefer safer asset allocations. Younger households may be more likely to face income

uncertainty and to have near-term goals for saving (e.g., downpayment for home purchase), and

thus to have greater demand for both safety and liquidity. In Table 2, I present results from the

estimation of the conditional distribution LIQRATi � CCH(p; q; r; si; 1; �). I assume si = zi�,

where the zi include household income, and dummy variables for the age and level of education of

the head of household, and � is a vector of coe�cients.

Results are presented in Table 2. Estimates for p; q; r and � are close to those for the uncondi-

tional CCH (last column of Table 1). The � coe�cients are individually and jointly di�erent from

zero at the 1% con�dence level. As predicted, higher income and higher level of education shift the

distribution to the left. The young (AGE< 35) and the old (AGE> 65) maintain higher liquidity
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ratios than those in between.

Table 2: Estimated Conditional Distribution for Liquidity Ratioy

Coe� S.E.

p 0:9450 0:0347
q 0:6497 0:0262
r 4:8953 2:0656
� 0:2485 0:0796

CONSTANT �7:6773 1:5430
LOG(1+INCOME) 0:3779 0:0243

AGE< 35 �0:5675 0:0973
AGE> 65 �0:2441 0:0920

EDU1 (NO HS DIPLOMA)z �1:1686 0:1146
EDU2 (HS DIPLOMA)z �0:6659 0:0987

EDU3 (SOME COLLEGE)z �0:4702 0:1131

LogLik: 1194:75

y: 4299 observations in sample. Sample weights are normalized

to be mean one. � is �xed at 1.
z: COLLEGE DIPLOMA is the reference category for the ed-

ucation dummies.

Figure 4 demonstrates the e�ect of conditioning through s on the CCH distribution. Subject

1 is a 25 year old high school drop-out earning $20,000 per year; subject 2 is 70 years old, had

some college, and earns $40,000 per year; and subject 3 is a 45 year old college graduate earning

$100,000 per year. Parameters are taken from Table 2. All three distributions are U-shaped, but

that of Subject 1 is most tilted towards high LIQRAT and that of Subject 3 is most tilted towards

low LIQRAT. The means of these three distributions are 0.31, 0.22, and 0.16, respectively.

The second measure of household liquidity is the log of total household liquid assets (including

the randomly drawn amount of pocket cash). This is de�ned as LOGLIQi � log(1 + LIQi + ci).

The top panel of Figure 5 shows a single-peaked histogram for LOGLIQ.

Table 3 presents the results of maximum likelihood estimation of distribution parameters for

LOGLIQ using the gamma, generalized beta and CCH distributions. In principle, LOGLIQ is

unbounded (so � = 0), but for the purposes of this example I allow � to be estimated freely. I also
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Figure 4: Conditional CCH PDFs for Liquid Asset Ratio
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include in Table 3 estimates for two special cases of the CCH. The �rst, labelled GB(s), is the GB

extended to include an exp(�sx) term. The second, labelled CH(�), is the CH with the (1� x)q�1

term generalized to (1� �x)q�1.

The estimated distributions are plotted in the bottom panel of Figure 5. All are single-peaked,

but di�erences are clearly visible. Once again, LR tests strongly reject (at well beyond 1% levels)

the equivalence of the restricted distributions to the CCH. The CH(�) is closest to the CCH, both in

likelihood and to the eye. The GB and GB(s) appear to underperform even the gamma distribution.

In the estimation of the full CCH, r has an especially large standard deviation. This can be seen

in the estimation of the CCH distribution for LIQRAT in Table 1 as well, but is more pronounced

here. One reason is simply that fairly large changes in r are needed to produce moderate changes

in the distribution (see Figure 1b). However, it appears that joint identi�cation of r; � and s may

sometimes be weak.

Table 3: Estimated Distributional Parameters for Log(Liquidity)y

Gamma GBz GB(s)z CH(�)z CCH

p 10:284 37:562 49:417 2:480 0:446
(0:038) (0:309) (0:169) (0:150) (0:387)

q 3:589 17:836 20:741 14:326
(0:168) (0:750) (0:791) (2:848)

r [p+ q] [1] �15:797
(15:476)

s 1:405 �2:954 �1:686 �1:079
(0:012) (0:083) (0:086) (1:064)

� 0:055 0:055 0:055 0:055
(0:002) (0:001) (0:001) (0:001)

� [�] [1] 0:214
(0:161)

LogLik: �9506:4 �9779:0 �9674:7 �9260:5 �9247:9

y: Standard errors in parentheses. 4299 observations in sample. Sample weights are normalized

to have mean one.
z: The GB is estimated with restriction a = 1; the parameter � is equivalent to c=b in the standard

form for the GB. The GB(s) distribution is the GB extended to include an exp(�sx) term.

The CH(�) distribution is the CH with the (1�x)q�1 term generalized to (1��x)q�1. Imposed

parameter restrictions are shown in hard brackets.
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Figure 5: Distribution of Log Liquid Assets
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Conclusion

Recent work on extending the beta distribution has given rise to three non-nested generalizations:

the Gauss hypergeometric distribution of Armero and Bayarri (1994), the generalized beta dis-

tribution of McDonald and Xu (1995), and the con
uent hypergeometric distribution of Gordy

(forthcoming). In this paper, these divergent strands are uni�ed into a new six parameter distribu-

tion, which I denote the \compound con
uent hypergeometric" distribution. Plots of the CCH for

a variety of parameter values show that the CCH density can take not only the familiar variety of

U-shaped and single-peaked forms of the beta distribution, but also a variety of multi-modal and

long-tailed forms.

Use of the CCH is demonstrated with two measures of household liquid assets. In each example,

estimated CCH distributions are qualitatively similar to estimates using more restrictive distribu-

tions, but the additional precision in �t is highly signi�cant statistically and clearly visible in plots

of the �tted densities.
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A Integrating the CCH density

Let A be the integral

A �

Z 1=�

0

xp�1(1� �x)q�1(� + (1� �)�x)�r exp(�sx)dx (10)

where 0 < p, 0 < q, r 2 <, s 2 <, 0 < � � 1, and 0 < �. Make the change of variable u = 1 � �x

to get

A = ��p exp(�s=�)

Z 1

0

(1� u)p�1uq�1 (1� (1� �)u)�r exp((s=�)u)du: (11)

Take the series expansion of the exponential function to get

A = ��p exp(�s=�)
1X

m=0

(s=�)m

m!

Z 1

0

uq+m�1(1� u)p�1 (1� (1� �)u)�r du

= ��p exp(�s=�)

1X
m=0

(s=�)m

m!

�(q +m)�(p)

�(p+ q +m)
2F1(r; q +m; p+ q +m; 1� �)

= B(p; q)��p exp(�s=�)

1X
m=0

(q)m
(p+ q)mm!

� s
�

�m 1X
n=0

(r)n(q +m)n
(p+ q +m)n n!

(1� �)n

= B(p; q)��p exp(�s=�)

1X
m=0

1X
n=0

(q)m+n (r)n
(p+ q)m+nm!n!

� s
�

�m
(1� �)n

where (a)i is Pochhammer's notation, i.e., (a)0=1; (a)1=a; (a)i=(a)i�1(a + i � 1). The second

line follows from the �rst by AS15.3.1, and the third line from the second by AS15.1.1. By the

de�nition of H(p; q; r; s; �; �) in equation (5), the last line gives A = B(p; q)H(p; q; r; s; �; �), which

guarantees that equation (4) integrates to unity.

For the UH limiting case, solve

A =

Z
1

0

xp�1(1 + �x)�r exp(�sx)dx

20



by the change of variable u = �x. The solution is

A = ��r
Z

1

0

up�1(1 + u)�r exp(�(s=�)u)du

= ��r�(p)U(p; p+ 1� r; s=�) (12)

where U is the \U" con
uent hypergeometric function (see AS13.1.3 and AS13.2.5).

B Transformation rules for the �1 function

In the remaining appendixes, it will be convenient to make use of alternative expressions for the

nested in�nite series in the de�nition equation (6) for �1. For 0 < � < 
 and 0 � y < 1,

�1(�; �; 
; x; y) =

1X
m=0

(�)m
(
)m

xm

m!
2F1(�; �+m; 
 +m; y) (T1)

= exp(x)

1X
m=0

(
 � �)m
(
)m

(�x)m

m!
2F1(�; �; 
 +m; y) (T2)

=

1X
n=0

(�)n(�)n
(
)n

yn

n!
1F1(�+ n; 
 + n;x) (T3)

= exp(x)

1X
n=0

(�)n(�)n
(
)n

yn

n!
1F1(
 � �; 
 + n;�x): (T4)

These transformations are derived using straightforward manipulations of the nested in�nite series.

All that is needed is the rule (a)m+n = (a)m(a+m)n and the Kummer transformation 1F1(a; b; x) =

exp(x)1F1(b� a; b;�x) (see AS13.1.27).

When y < 0, apply the transformation rule (AS15.3.4)

2F1(a; b; c; y) = (1� y)�a2F1(a; c � b; c; y=(y � 1))
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to the form (T2) to get

�1(�; �; 
; x; y) = exp(x)
1X

m=0

(
 � �)m
(
)m

(�x)m

m!
(1� y)��2F1(�; 
 � �+m; 
 +m; y=(y � 1))

= exp(x)(1 � y)��
1X

m=0

1X
n=0

(
 � �)m
(
)mm!

(�)n(
 � �+m)n
(
 +m)n n!

(�x)m
�

y

y � 1

�n

= exp(x)(1 � y)��
1X

m=0

1X
n=0

(
 � �)m+n(�)n
(
)m+nm!n!

(�x)m
�

y

y � 1

�n

= exp(x)(1 � y)���1(
 � �; �; 
;�x; y=(y � 1)): (T5)

If y < 0, then 0 < y=(y � 1) < 1, so forms (T1){(T4) can be applied to the �1 term in the last

line.

C Bounding the function H

In this appendix, I prove Theorem 1. From the de�nition of H in equation (5), it is clear that H is

�nite and positive everywhere on the parameter space if and only if the nested in�nite series given

by �1(q; r; p + q; s=�; 1 � �) converges to a positive real number for all p > 0, q > 0, r 2 <, s 2 <,

0 < � � 1 and 0 < �. Therefore, it is su�cient to show that �1(�; �; 
; x; y) converges to a positive

real number for all 0 < � < 
, � 2 <, x 2 < and either 0 � y < 1 (i.e., for � � 1) or y < 0 (i.e., for

� > 1).

The techniques needed to bound �1 depend on the signs of �, x and y. Assume �rst that � > 0,

0 � y < 1, and x � 0. For this case, we need the lemma

Lemma 4 For all x � 0 and 0 < � < 
, 1 � 1F1(�; 
; x) � exp(x).

Proof: Expand the 1F1 series as

1F1(�; 
; x) =

1X
m=0

(�)m
(
)m

xm

m!
:
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The �rst term (m = 0) equals 1 and remaining terms are non-negative, so the summation must be

greater than or equal to 1. Since � < 
, each term must be less than xm=m!, so

1F1(�; 
; x) <
1X

m=0

xm

m!
= exp(x): �

Consider the form for �1 given by (T3). Given 0 � y < 1, each term in the expansion is

non-negative, so

�1(�; �; 
; x; y) =
1X
n=0

(�)n(�)n
(
)n

yn

n!
1F1(�+ n; 
 + n;x)

<

1X
n=0

(�)n(�)n
(
)n

yn

n!
exp(x) = exp(x) 2F1(�; �; 
; y)

where the inequality follows from Lemma 4. The 2F1 series converges for all y inside the unit circle

(AS15.1.1), so this expression is �nite. Taking the lower bound,

�1(�; �; 
; x; y) =

1X
n=0

(�)n(�)n
(
)n

yn

n!
1F1(�+ n; 
 + n;x)

�

1X
n=0

(�)n(�)n
(
)n

yn

n!
= 2F1(�; �; 
; y) � 1

where the �rst inequality follows from the lower bound in Lemma 4. The �rst term (n = 0) in the

2F1 series expansion equals 1 and remaining terms are non-negative, so the summation must be

greater than or equal to 1.

Next, assume x < 0. We need the lemma:

Lemma 5 For x < 0, 0 < � < 
 and n � 0,

1 � 1F1(
 � �; 
 + n;�x) � 1F1(
 � �; 
;�x) < exp(�x):

The proof is similar to that of Lemma 4.
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Consider the form for �1 given by (T4). Given 0 � y < 1, each term in the expansion is

non-negative, so

�1(�; �; 
; x; y) = exp(x)
1X
n=0

(�)n(�)n
(
)n

yn

n!
1F1(
 � �; 
 + n;�x)

� exp(x)

1X
n=0

(�)n(�)n
(
)n

yn

n!
1F1(
 � �; 
;�x)

= exp(x) 1F1(
 � �; 
;�x) 2F1(�; �; 
; y) < 2F1(�; �; 
; y)

where both inequalities follow from Lemma 5. To get a lower bound,

�1(�; �; 
; x; y) = exp(x)

1X
n=0

(�)n(�)n
(
)n

yn

n!
1F1(
 � �; 
 + n;�x)

� exp(x)
1X
n=0

(�)n(�)n
(
)n

yn

n!
= exp(x) 2F1(�; �; 
; y):

Thus, for � > 0 and 0 � y < 1, �1 converges to a positive �nite number for all x 2 <.

When � � 0, use forms (T1) and (T2) for �1 and the transformation for the 2F1 given in

AS15.3.3:

2F1(�; �; 
; y) = (1� y)
����2F1(
 � �; 
 � �; 
; y): (13)

The following lemma bounds the values of the 2F1 terms in �1.

Lemma 6 For 0 � y < 1, 0 < � < 
, and � � 0,

0 < 2F1(�; �; 
; y) � 1:

Proof: Apply equation (13). The �rst term in the expansion of 2F1(
� �; 
 ��; 
; y) is 1 and the

rest are non-negative, so 2F1(
 � �; 
 � �; 
; y) � 1. Since 
 � � � � > 0 and 0 < (1 � y) � 1,

the right hand side of equation (13) must be strictly positive, so 0 < 2F1(�; �; 
; y). To show the
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upper bound, I show �rst that the derivative of 2F1(�; �; 
; y) with respect to y is non-positive for

� � 0. AS15.2.1 gives:

d

dy
2F1(�; �; 
; y) =

��



2F1(� + 1; � + 1; 
 + 1; y):

If �+1 > 0, then the �rst term in the expansion of 2F1(�+1; �+1; 
+1; y) is 1 and the rest are non-

negative. If �+1 � 0, then the argument just used to show 0 < 2F1(�; �; 
; y) applies here as well.

In either case, 2F1(�+1; �+1; 
+1; y) > 0. Since ��=
 � 0, the derivative d
dy 2F1(�; �; 
; y) � 0 for

all 0 � y < 1. Therefore, 2F1(�; �; 
; 0) = 1 is the upper bound on 2F1(�; �; 
; y) for 0 � y < 1:�

The remaining arguments parallel those used earlier. For x � 0, use (T1) and Lemma 6 to show

0 < �1(�; �; 
; x; y) � 1F1(�; 
; x):

For x < 0, use (T2), Lemma 6 and the Kummer transformation to demonstrate the same bounds.

Thus far, it has been assumed that 0 � y < 1. For the case y < 0, rule (T5) gives

�1(�; �; 
; x; y) = exp(x)(1� y)���1(~�; �; 
;�x; ~y)

where ~� � 
 � � > 0, ~� < 
 and 0 � ~y � y=(y � 1) < 1. It has already been established that the

right hand side �1 converges to a �nite positive number, so �1(�; �; 
; x; y) must as well.�

D Proposition 2 and Lemma 3

To show Lemma 3, substitute the expression for �1 in rule (T2) into equation (5) to get

H(p; q; r; s; �; �) = ��p
1X
i=0

(p)i
(p+ q)i i!

�
�s

�

�i

2F1(r; q; p+ q + i; 1� �):
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Take the derivative with respect to s:

d

ds
H(p; q; r; s; �; �) = ��p

1X
i=1

(p)i
(p+ q)i i!

�
�i

�

��
�s

�

�i�1

2F1(r; q; p+ q + i; 1� �)

= ���(p+1)
1X
i=0

(p)i+1
(p+ q)i+1 i!

�
�s

�

�i

2F1(r; q; p+ q + i+ 1; 1 � �)

= ���(p+1)
1X
i=0

p(p+ 1)i
(p+ q)(p+ q + 1)i i!

�
�s

�

�i

2F1(r; q; p + q + i+ 1; 1 � �)

= �
p

p+ q
H(p+ 1; q; r; s; �; �)

where the second line follows from a shift of index in the �rst line.�

To show Proposition 2, take the derivative of equation (7) with respect to s and use Lemma 3

to substitute for derivatives of H. This gives

dE(Xk)

ds
=

(p)k
(p+ q)k

�
p

p+ q

H(p+ k; q; r; s; �; �)

H(p; q; r; s; �; �)

H(p+ 1; q; r; s; �; �)

H(p; q; r; s; �; �)
�

p+ k

p+ q + k

H(p+ k + 1; q; r; s; �; �)

H(p; q; r; s; �; �)

�

= E(Xk)E(X) �E(Xk+1):

Proposition 2 is a special case of this result.�
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