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Intertemporal decision rules are indispensable in rational agent interpretations of

macroeconomic behavior where a distinction is drawn between agent perceptions, summarized

by agent forecasts of market events, and agent responses, subjected to dynamic constraints or

“frictions.” In theoretical macroeconomic models since Lucas (1976), rational expectations have

become the benchmark standard for representing the unobserved forecasts of agents.

Unfortunately, the record for empirical implementation of rational expectations models remains

dismal. A survey of existent journal publications by Ericsson and Irons (1995) summarizes an

extensive accumulation of empirical evidence against rational expectations, including frequent

rejections of rational expectations overidentifying restrictions. A review of policy simulation

models used by central banks and international agencies, such as documented in Bryant et al.

(1993), indicates that many key rational expectations specifications are either imposed or fit by

rough empirical calibrations.

Macroeconomists have adopted a variety of responses to the absence of strong empirical

support for rational expectations. One is to maintain the rational expectations hypothesis, while

aiming to interpret a more limited subset of empirical regularities as discussed by Kydland and

Prescott (1991). Another approach is to view rational expectations as a limiting case of complete

information in a more general treatment of the information processing abilities of agents, such as

the “bounded rationality” models of learning reviewed in Sargent (1993). Closely related is the

position that rational expectations are more likely to prevail at low frequencies, a view compatible

with tests of long-run theoretical restrictions in cointegrating relationships, as discussed by Watson

(1994). Others reject the hypothesis of model-based rational expectations, such as the use in

Ericsson and Hendry (1991) of rule-of-thumb extrapolations.

This paper examines an alternative explanation for the poor empirical properties of rational

expectations models. Because most rational expectations restrictions are inherently dynamic

due to the forecasting requirements of constraints on dynamic adjustment, a plausible source

of difficulty could be the sharp friction priors typically imposed on agent responses. The

standard dynamic specification in rational expectations models utilizes geometric lead response

schedules to anticipated future events and geometric lag responses to recent “news.” Because

this two-sided geometric response schedule is not a clear implication of economic theory, a

generalizedpolynomial frictionsspecification is explored in this paper. Suggested interpretations

of generalized frictions range from costs of adjusting weighted averages of current and lagged

actions to convolutions of geometric random delay distributions of agent responses.

For difference-stationary variables, the decision rules based on generalized frictions are shown

to be isomorphic to a class of “rational” error correction models.1 The parameters of the

1Discussion in this paper is aimed primarily at decision rules for difference-stationary variables, a specification
that is not rejected by standard tests of the integration order of most macroeconomic aggregates in postwar samples.
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decision rules are subject to tight cross-coefficient restrictions due to polynomial frictions and

cross-equation restrictions due to the assumption of rational expectations. A closed-form solution

that incorporates these restrictions is derived using two companion matrix systems, one a lead

system for the forward planning required by polynomial frictions and the other a lag system

associated with the agents' forecast model.2

Rational error corrections under polynomial frictions inherit many desirable properties of

atheoretic reduced-form time-series models, including serially independent equation residuals and

small standard errors relative to many theory-based alternatives. However, whereas conventional

error corrections and VARs have been criticized for in-sample overfitting attributable to large

numbers of estimated parameters, rational error corrections are subject to many overidentifying

restrictions which substantially reduce the number of free parameters.

To provide concrete illustrations of the consequences of restrictive priors on adjustment

costs, linear decision rules associated with alternative specifications of frictions are estimated

for producer pricing in several manufacturing industries. The basic specification is based on the

assumptions of difference-stationary producer prices and stationary price markups over costs of

production, assumptions that are not rejected for postwar U.S. producer prices.3

A difficulty with interpreting many reported rejections of rational expectations overidentifying

restrictions is that the rejections could be due also to misspecified models. An advantage of

the side-by-side comparisons reported in this paper is that several empirical problems, including

rejections of rational expectations restrictions, are unambiguously linked to the use of second-order

Euler equations rather than higher-order Euler equations.

The paper is organized as follows. Section I summarizes dynamic properties of the restricted

error correction that is implied by the standard decision rule with geometric response schedules.

Section II derives the error correction format of rational decision rules implied by a generalized

polynomial description of frictions. Several interpretations of polynomial frictions are suggested.

Section III presents empirical estimates of decision rules for industry pricing, comparing the

geometric responses of the standard decision rule with the responses of higher-order decision

rules. A tractable method of two-stage maximum likelihood estimation of rational error corrections

2Although this paper develops a general framework for formulating higher-order error correction decision rules,
there are several precedents for recasting decision rules as restricted error corrections or applying higher-order linear
decision rules to macroeconomic aggregates. Nickell (1985) appears to be the first paper to explore similarities
between second-order decision rules and error correction models. Generally, fourth-order decision rules have been
confined to empirical inventory models, such as Blanchard (1983), Hall, Henry, and Wren-Lewis (1986), Callen, Hall,
and Henry (1990), and Cuthbertson and Gasparro (1993). Exceptions are the applications of fourth-order decision
rules to employment in the coal industry by Pesaran (1991) and to the price of manufactured goods in Price (1992).

3State-independent frictions in pricing would not be expected to hold over all possible states, such as episodes of
extreme hyperinflation. Nevertheless, linear time series models appear to be a useful way to analyze sticky pricing in
periods of moderate inflation, vid. Sims (1992) and Christiano, Eichenbaum, and Evans (1994).
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is derived in the Appendix, including corrections required for the sampling errors of the second

stage. Section IV concludes.

I. Rational Error Correction under Geometric Frictions

Just as one-sided polynomials in the lag operator are characteristic of atheoretic, linear time

series models, two-sided polynomials in the lead and lag operators are a defining characteristic

of linear models of rational behavior. The principal vehicle of analysis in this paper is the dynamic

first-order condition linking a decision variable,yt, to its equilibrium objective,y�t ,

EtfA(L)A(BF )yt � A(1)A(B)y�t g = 0; (1)

whereEtf : g denotes expectations based on information at the end oft � 1; A(L) is a backwards

scalar polynomial in the lag operator,Ljxt = xt�j , ; A(BF ) is a forward scalar polynomial in the

lead operator,F jxt = xt+k,; andB is a discount factor,0 < B < 1.

In contrast to conventional backwards-looking time series models of the relationship between

yt andy�t , a notable feature of equation (1) is that the expectation of the current decision variable,

Etfytg = EtfA(1)A(B)A(L)�1A(BF )�1y�t g;

= Etf
1X

i=�1

wiy
�
t+ig; (2)

is a two-sided moving average of past and expected future values of the desired equilibrium,y�.

The agent response schedule,wi, determines the relative importance of past and future, where
1P

i=�1
wi = 1. Many models used in macroeconomics assume these relative importance weights are

adequately represented by two-sided geometric response schedules.

In the case of linear decision rules, there are two prominent rationalizations of geometric

response schedules. One is that changes in thelevelof the decision variable are subject to quadratic

adjustment costs, and this strictly convex friction induces geometric adjustments of the decision

variable toward its equilibrium. The second interpretation is that each agent is subjected to a

geometric distribution of random delays in adjustment, so that the level selected for a decision

variable in a given period is a weighted average of desired target settings over the expected interval

between allowable resets. As noted by Rotemberg (1996), the assumption of a geometric random

delay distribution leads to aggregate behavior that is observationally equivalent to that generated

by the assumption of quadratic costs on adjusting the level of the aggregate decision variable.

Under either interpretation, the required Euler equation is second-order, implying that the
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polynomial components of equation (1) are first-order polynomials,A(L) = (1 � �L) and

A(BF ) = (1 � �BF ), where0 < � < 1. As in Tinsley (1970), the optimal decision rule that

satisfies the Euler equation and the relevant endpoint (initial and transversality) conditions implies

partial adjustment of the decision variable to a discounted weighted average of expected forward

positions of the desired equilibrium.4 This decision rule solution is obtained by multiplying the

Euler equation (1) by the inverse of the lead polynomial,A(BF )�1,

Etf�ytg = �A(1)(yt�1 � y�t�1) + EtfA(1)
1X
i=0

(�B)i�y�t+ig; (3)

where�B is the geometric discount factor over the infinite planning horizon.

To complete the derivation of the conventional decision rule, the data generating process of the

forcing term,y�t , must be provided. In linear decision rules, the decision variable,y, is cointegrated

with the conditional equilibrium target,y�, which is defined by a linear function ofq variables.5

y�t =
qX

j=1

bjxj;t: (4)

Agent forecasts of the target,y�t+i, are assumed in this paper to be generated byp-order VARs in

theq arguments,x0t = [x1;t; : : : ; xq;t]. Thus, the effective information set of agents is obtained by

stackingp lags of the regressors, into a single vector,z0t�1 = [x0t�1; : : : ; x
0
t�p]. The companion form

of the agent VAR forecast model is denoted byEtfztg = Hzt�1.6 Consequently, agent forecasts

of the forcing term of the Euler equation are generated by

Etfy�t+ig = �0�H
i+1zt�1; (5)

where thepq � 1 selector vector,��, contains the coefficients of the cointegrating relationship, (4),

that defines the equilibrium objective.

Substituting forecasts of the forcing term from (5) into the decision rule (3) yields

Etf�ytg = �A(1)(yt�1 � y�t�1) + A(1)�0�

1X
i=0

(�BH)i[H � In]zt�1;

= �A(1)(yt�1 � y�t�1) + h0�zt�1: (6)

4Historical references and discussion of issues in formulating linear decision rules with dynamic forcing terms are
found in Tinsley (1970, 1971).

5As needed, theq variables include deterministic trend, intercept, and seasonal dummy series. The concept of a
dynamic, frictionless equilibrium is discussed by Frisch (1936).

6Companion forms for a variety of linear forecasting models are illustrated in Swamy and Tinsley (1980).
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As shown in the first line of (6), given the matrix of the forecast model coefficients,H, and the

discount factor,B, a single friction parameter determines a geometric pattern of rational dynamic

responses,� = 1 � A(1). The second line of (6) indicates that the weighted sum of expected

forward changes in the forcing term,Etf�y�t+ig, can be reduced to the inner product of a restricted

coefficient vector times the industry information set

h� = (1� �)[H 0 � In][In � �BH 0]�1��; (7)

where equation (7) provides a transparent summary of rational expectations overidentifying

restrictions on the coefficient vector of the agent information vector,zt�1.

Thus, there are two principal differences between the dynamic format of the “rational” error

correction in equation (6) and the format of a conventional error correction withp lags of each

regressor. First, only one lag of the decision variable is specified by the second-order decision

rule in equation (6), whereas up top � 1 additional lags of the first-difference of the decision

variable may appear in a conventional error correction. Second, as indicated in equation (7), the

coefficient vector,h�, is completely determined by cross-coefficient restrictions due to the friction

parameter in the error correction coefficient,�, and cross-equation restrictions due to the forecast

model coefficients,H. By contrast, the coefficients of the information vector in a conventional

error correction are unrestricted.7

Residual independence and rational expectations overidentifying restrictions are frequently

rejected in macroeconomic studies of rational behavior.8 One interpretation of the often

disappointing empirical performances of conventional two-root decision rules, including rejections

of rational expectation restrictions, is simply that expectations of actual agents may not be formed

under conditions required for rational expectations, such as symmetric access to full system

information by all agents. However, the limited dynamic specifications illustrated in equation

(6) suggest another contributing factor—the arbitrary prior that agents responses are adequately

captured by two-sided geometric response schedules. The next section explores the dynamic

formats of higher-order Euler equations and rational error corrections associated with a polynomial

generalization of agent response schedules.

7In conventional error corrections, an unrestricted coefficient vector is applied to the first-difference of the
information vector.

8Examples of studies that report rejections of restrictions imposed by rational expectations include Sargent
(1978), Meese (1980), Rotemberg (1982), Pindyck and Rotemberg (1983), and Shapiro (1986). Significant residual
autocorrelations are indicated for rational expectations decision rules in Epstein and Denny (1983), Abel and Blanchard
(1986), and Muscatelli (1989). See also the extensive rational expectations literature review in Ericsson and Irons
(1995).
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II. Rational Error Corrections under Polynomial Frictions

The standard second-order Euler equation provides a two-sided geometric description of agent

responses to anticipated and past events. The geometric schedules are determined by the roots

of the first-order component polynomials, A(L) and A(BF). This section discusses decision rules

associated with higher-order Euler equations, where the degree of the component polynomials is

increased tom > 1. Thesem-order polynomials are obtained by relaxing the modeling prior that

agents aim to smooth only the levels of decision variables or, equivalently, that stochastic delays

of decision variable adjustment are generated only by geometric distributions. The first subsection

derives the closed form of rational error correction decision rules associated with higher-order

Euler equations. The second subsection briefly reviews some categories of polynomial frictions on

agent actions that are consistent with2m-order Euler equations.

II.1 Solving for Rational Error Correction Decision Rules with Higher-Order Euler Equations

As demonstrated later in this section, the Euler equation under polynomial frictions is the same as

that initially shown in equation (1), except the factor polynomials are nowm-order polynomials,

A(L) = 1 + a1L + : : :+ amL
m, instead of first-order polynomials.

To obtain the decision rule in the case of2m-order Euler equations, multiply by the inverse of

the lead polynomial,A(BF )�1, to give

EtfA(L)ytg = EtfA(BF )�1A(B)A(1)y�t g;
� Etfftg: (8)

The analytical solution for the forcing term of this equation,ft, is obtained by introducing a

second companion system that describes the forward motion of the(m � 1) � 1 lead vector,

gt � Etf[ft+m�1; : : : ; ft]
0g, over the planning horizon,

gt = EtfGgt+1 + A(B)A(1)�my
�
t g;

= EtfA(B)A(1)
1X
i=0

Gi�my
�
t+ig; (9)

where them� 1 selector vector,�m, has a one in themth element and zeroes elsewhere;Etfftg �
�0mgt; andG is them�m bottom row companion matrix of the lead polynomial,A(BF ),

G =

2
4 0 Im�1

�amBm �am�1Bm�1 : : : �a1B

3
5 :
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Substituting the solution of the forcing term,ft, from equation (9) into (8) yields the

generalized2m-order decision rule,

Etf�ytg = �A(1)yt�1+A�(L)�yt�1+EtfA(B)A(1)�0m

1X
i=0

Gi�my
�
t+ig;

= �A(1)(yt�1 � y�t�1)+A
�(L)�yt�1+EtfA(B)A(1)�0m

1X
i=0

[Im �G]�1Gi�m�y
�
t+ig: (10)

In the first line of (10), the lag polynomial is partitioned into a level and difference format,A(L) �
A(1)L + (1 � A�(L)L)(1 � L), whereA�(:) is an (m-1)-order polynomial whose coefficients

are moving sums of the coefficients of A(.), as shown in the Appendix. The second line of (10)

partitions the forward path of the target into an initial level and forward differences, and uses the

identity,�0m[Im �G]�1�m � A(B)�1, to isolate the error correction “gap,”yt�1 � y�t�1.

The final step in deriving the decision rule under polynomial frictions is to eliminate forecasts

of the equilibrium path,Etfy�t+ig, using the companion form of the forecast model. Substituting

forecasts of forward changesEtf�y�t+ig, from (5) into (10) provides the closed form solution of

the generalized rational error correction decision rule9

Etf�ytg = �A(1)(yt�1 � y�t�1)+A
�(L)�yt�1+A(B)A(1)�0m

1X
i=0

[Im �G]�1Gi�m�
0
�H

i[H � Ipq]zt�1;

= �A(1)(yt�1 � y�t�1)+A
�(L)�yt�1+h

0
�zt�1: (11)

There are two major differences in the dynamic formats of the polynomial frictions version of

rational error correction in equation (11) and the conventional geometric frictions variant shown

earlier in (6). First, use of them-order component polynomial,A(L), introducesm� 1 lags of the

dependent variable,A�(L)�yt�1 to accompany the single lag of the decision variable in the error

correction term.10 Second, in contrast to the single forward discount factor,�B, employed by the

decision rule under geometric frictions in (3), forecasts of anticipated changes in the equilibrium

path are now discounted by them eigenvalues embedded in the lead companion matrix,G.

Just as the rational expectations restrictions were summarized by a coefficient vector under the

geometric frictions prior, coefficient restrictions of the generalized rational error correction also

can be compactly stated. As indicated in the last line of (11), the sum of the forward-looking terms

is again equivalent to the inner product of a weighting vector,h�, and the information vector,zt�1,

9The direct solution format using companion forms may be compared with alternative solution methods for linear
decision rules ranging from partial fractions expansions of the characteristic roots in Hansen and Sargent (1980) to
Schur decompositions in Anderson and Moore (1985) and Anderson, Hansen, McGrattan, and Sargent (1996).

10Note thatm will often be much smaller that the number of lags of the dependent variable in a conventional error
correction,m < q.
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Two types of restrictions are imposed on the coefficient vector,h�, under polynomial frictions:

the cross-coefficient restrictions imposed by the component polynomials of the Euler equation, as

summarized by the forward companion coefficient matrixG; and the cross-equation restrictions

imposed by the agents' forecast model, summarized by the lag companion coefficient matrixH.

To reveal these restrictions, successive column stacks are applied to simplify the solution for the

coefficient vector,h�.11

h� = A(1)A(B)vec([H 0 � Ipq]
1X
i=0

(H 0)i���
0
m(G

0)i([Im �G]�1)0�m);

= A(1)A(B)(�0m[Im �G]�1 
 [H 0 � Ipq])
1X
i=0

[G
H 0]ivec(���
0
m);

= A(1)A(B)(�0m[Im �G]�1 
 [H 0 � Ipq])[Impq �G
H 0]�1(�m 
 ��): (12)

This definition of the restricted coefficient vector in (12) provides a closed form solution for

the linear decision rule under polynomial frictions, and a summary of differences between the

unrestricted regression coefficients in a conventional error correction and the tightly restricted

coefficients of the information vector,zt�1, in a generalized error correction.

Finally, equation (11) indicates the friction parameters of the generalized rational error

correction are collected inA(1) andA�(:). This separable format is convenient for maximum

likelihood estimation by an iterative sequence of linear regressions, as discussed in the Appendix.

II.2 Higher-Order Euler Equations due to Polynomial Frictions

As noted earlier, standard rationalizations of the linear, second-order Euler equation are based on

the assumption of: (1) quadratic costs of adjusting the level of the decision variable, or (2) a discrete

geometric distribution of random delays in adjustments of the decision variable. Polynomial

extensions of these two prior specifications are discussed.

Adjustment costs on weighted averages of decision variables

One class of generalized frictions is associated with agent efforts to smooth weighted averages

of current and lagged values of decision variables. This smoothing is represented by quadratic

penalties onC(L)yt, whereC(L) is am-order polynomial in the lag operator,C(L) =
mP
j=0

cjL
j,

andC(1) = 0.

Agents choose a sequence of decision variables that minimize the criterion,�t, defined by a

11The column stack of the product of three matrices is denoted by vec(ABC) = (C 0 
 A)vecB, where
 denotes
the Kronecker product.
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second-order expansion of profits or utility around the path of equilibrium settings,

�t = Etf
1X
i=0

Bi[c00(yt+i � y�t+i)
2 + (C(L)yt+i)

2]g: (13)

The associated Euler equation is a2m-order equation in the lead and lag operators,

0 = Etf[c00 + s0 +
mX
k=1

sk(L
k + (BF )k)]yt � c00y

�
t g;

= EtfA(BF )A(L)yt � A(B)A(1)y�t g; (14)

where thesk coefficients in the first line of(14) are defined by coefficients of the friction

polynomial,C(L).

sk =
m�kX
j=0

cjcj+kB
j; k = 0; 1; : : : ; m;

Because the extended Euler equation in the first line of(14) is symmetric inL andBF , the equation

is unaffected if these two operator expressions are interchanged. This, in turn, implies that a

solution of the characteristic equation of the Euler equation, say��1, is also accompanied by the

reciprocal solution,B�. Consequently, the characteristic equation can be factored as shown in in

the second line of equation (14). The format of this Euler equation is the same as that shown earlier

in equation (1), except the factor polynomials are now explicitly identified asm-order polynomials.

The criterion and second-order Euler equation associated with the standard specification that

quadratic costs apply only to changes in thelevelof the decision instrument are nested in equations

(13) and(14), respectively, for the standard prior assumption thatm = 1.

Smoothing levels and differences

In a frequent interpretation of higher-order Euler equations, the decision variable,yt, is an asset

stock, and adjustment costs may be applicable not only to changes in the level of the asset but also

changes in the first-difference. An example is optimal inventory planning, whereyt indicates the

inventory stock at the end of periodt. The change in inventories,(1 � L)yt, equals production

less sales. Given exogenous sales, the assumption of quadratic costs on the level of production

implies a quadratic penalty on changes in the planned level of inventory,c1((1�L)yt)
2. Similarly,

quadratic costs associated with changes in the rate of production can be represented by a quadratic

smoothing penalty on changes in the planned first-difference of the inventory stock,c1((1�L)2yt)2.
Thus, in the example of inventory modeling, it is not uncommon to assume polynomial frictions of
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the general form,
P2

j=1 cj((1� L)jyt+i)
2.12

A generalized criterion for smoothing levels and higher-order differences,(1 � L)kyt, in

decision variables is

�t = Etf
1X
i=0

Bi[c00(yt+i � y�t+i)
2 +

mX
k=1

ck((1� L)kyt+i)
2]g; (15)

with the associated2m-order Euler equation,Etfc00(yt � y�t ) +
mP
k=1

ck[(1� L)(1�BF )]kytg = 0.

Smoothing weighted averages

A second generalization is the case where quadratic penalties are associated with weighted moving

averages of the decision instrument. For example, letyt denote new labor hires by a firm in

periodt. Suppose various job families within the firm require different durations of training by

supervisors, and the number of employees occupied by training in a given period is represented

by a fixed distribution of recent vintages of new hires,c0yt + : : :+ cm�1yt�m+1. Costs associated

with variations in the rate of training may be approximated by the quadratic penalty,((c0 + (c1 �
c0)L+ : : :+(cm�1� cm�2)L

m�1� cm�1L
m)yt)

2, which is a restatement of the polynomial friction

specification in equation (13).13

Another variation is the extension of quadratic penalties from smoothed one-period changes

in the level of the decision variable,(1 � L)yt+i, to smoothed changes in moving averages,(1 �
L)

k�1P
j=0

yt+i�j = (1 � Lk)yt+i. Examples include seasonal or term contracts where some costs are

associated with one-period averages, others with two-period averages, and so on. The criterion in

this instance takes the form,

�t = Etf
1X
i=0

Bi[c00(yt+i � y�t+i)
2 +

mX
k=1

ck((1� Lk)yt+i)
2]g; (16)

with the associated2m-order Euler equation,Etfc00(yt�y�t )+
mP
k=1

ck[(1�Lk)(1�BkF k)]ytg = 0.

Stochastic response delays

Given the tractability of linear first-order conditions, the quadratic adjustment cost specification is

widely used to characterize optimal adjustment. Applications include decision variables such as

nominal prices, extending from the seminal paper by Rotemberg (1982) to the recent example of

Hairault and Portier (1993), although the assumption of strictly increasing costs in the size of price

12See Hall, Henry, and Wren-Lewis (1986), Callen, Hall, and Henry (1990), and Cuthbertson and Gasparro (1993).

13In all examples, note that linear cost components can be accommodated by redefining the equilibrium target,y�
t
,

of the relevant decision variable.
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adjustments is often disputed. However, as noted by Rotemberg (1996), the aggregate response

arising from the quadratic adjustment cost model is equivalent to the aggregate adjustment of

agents subject to random decision delays drawn from an exponential distribution, as proposed

by Calvo (1983). Although it appears to have received little attention outside the field of

dynamic pricing, the stochastic delay model would appear to be a useful framework for modeling

adjustments in other market contexts when agent responses are dependent on unpredictable

transmissions of decisions, such as distributed production or communication networks.14

In a discrete-time implementation of the stochastic delay approach, each agentj controls a

decision variable,yj;t, with the associated equilibrium trajectory,y�j;t. When adjustment of a

decision variable occurs, the movement to equilibrium is complete but the timing of adjustment is

stochastic. The probability of an agent adjustment in theith period of the planning horizon, having

not adjusted in thei� 1 preceding periods, isri. The schedule of future adjustment probabilities is

represented by the lead polynomial,r(F ) = r0 + r1F + r2F
2 + : : :, where theri are nonnegative

andr(1) = 1. Using a discrete geometric distribution as the analogue of the exponential response

distribution in Calvo (1983), the generating function isr(F ) = A(1)A(F )�1, whereA( : ) is the

first-order polynomial,A(F ) = (1� �F ).

Given the constraint that the decision variable must remain at the level selected, say~yj;t, until

the next allowable adjustment period, the optimal setting that minimizes the expected sum of

squared deviations from the discounted path of equilibrium settings isEtf~yj;tg = Etfr(BF )y�j;tg.
Using simple sum aggregation, the aggregate of decision variables adjusted int is Etf~ytg =

Etfr(BF )y�t g. The aggregate decision variable is a normalized average of current and past vintage

decisions that survive int. In the example of a geometric delay distribution, the survival probability

in t of a past decision variable setting fromt�i is proportional tori.15 Thus, the generating function

for the normalized survival probabilities over an infinite horizon isr(L), and the aggregate decision

variable in periodt may be represented by

Etfytg = r(L)Etf~ytg;
= r(L)Etfr(BF )y�t g: (17)

The lag polynomial,r(L), remains to the left of the expectations operator on the right-hand-side

of (17) to ensure that the lagged expectations embedded in past decisions are represented in

14Effects of costly and stochastic communications in distributed production are discussed in Board and Tinsley
(1996). See also Bertsekas and Tsitsiklis (1989) for representative configurations of communication networks.

15The hazard function, the ratio of the adjustment probability,ri, to the survival probability at lagi, is constant for
the univariate geometric distribution, Johnson, Kotz, and Kemp (1993).
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the current aggregate,yt.16 Replacing the generating functions by the polynomial components

yields the analogue to the familiar second-order decision rule for the aggregate decision variable,

EtfA(L)ytg = EtfA(1)A(B)A(BF )�1y�t g.

Aggregated delay schedules

In principle, the choice of the appropriate stochastic delay distribution should be an empirical issue.

Remaining within the polynomial frictions framework of this paper, the approach suggested below

considers higher-order polynomial approximations of more general stochastic delay distributions.

As indicated, these generalizations can be interpreted as convolutions of component geometric

distributions.

It is unlikely that agents have perfect information about the distribution of delays or stochastic

congestion in future decisions. Suppose, for example, agents may be confronted by a “low-cost”

response distribution,r1(F ), or a “high-cost” response distribution,r1(F ), where the expected

response lag from the first distribution is smaller than that of the second. However, draws from

either delay distribution are random. In this example, the generating function of the effective

response probabilities is the product of the generating functions of the component response

probabilities,r(F ) = r1(F )r2(F ).17

More generally, in the case of random aggregation overm geometric response schedules, the

aggregate reset of decision variables adjusted int is Etf~ytg = Etf
mQ
j=1

rj(BF )y
�
t g. As in the

case of a univariate geometric distribution, a constant-hazard approximation permits the survival

distribution of past vintage decisions to be represented by the polynomial generating function of

the stochastic delays,
mQ
j=1

rj(L).18 Thus, under anm-order polynomial stochastic delay distribution,

16As discussed in Taylor (1993), some model specifications and instrumental methods of estimating decision rules
move the equivalent of the lag polynomial,r(L), inside the expectation operator.

17If v andw are non-negative independent random variables, the generating function of the convolution,v + w, is
the product of the generating functions ofv andw, Feller (1968).

18The mean absolute error of constant-hazard approximations of quarterly survival probabilities is about:02
percentage points for the first sixteen lags in the empirical decision rules using polynomial frictions discussed in
the next section. The reason for the relatively modest approximation errors can be shown using a partial fractions
representation of the approximation error. Denote the partial fractions expansion of anm-order polynomial generating

function by: A(1)A(L)�1 �
mP
j=1

�j(1 � �j)(1 � �jL)
�1, where the�j denote the characteristic roots ofA(L).

The error of the constant-hazard approximation of the survival probability at lagi is
mP
j=1

�j��
�1(�j � ��)�i�1

j
, where

�� � Ss(1 + Ss)
�1, andSs denotes the sum of the survival probabilities. In the case of the univariate geometric

distribution,�� is equal to the single root, and the approximation error is zero. In the case of convoluted geometric
distributions with a single dominant root, as with empirical examples in this paper,�� is generally very close to the
modulus of the dominant root. In addition, error components associated with smaller roots decay rapidly with lagi

because the spread for a smaller root,�j � ��, is scaled by powers of that root,�i�1
j

.
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the aggregate decision variable in periodt is represented by

Etfytg =
mY
j=1

rj(L)Etf
mY
j=1

rj(BF )y
�
t g: (18)

Substituting in the component polynomials of the generating functions for the stochastic delay

and survival probabilities yields a solution for the aggregate decision variable that is identical to

that derived earlier for the decision rule under polynomial frictions

EtfA(L)ytg = EtfA(1)A(B)A(BF )�1y�t g; (19)

where the component polynomials,A(L) andA(BF ), arem-order.

III. Empirical Examples of Rational Error Corrections for Industry Pricing

Empirical contrasts of second-order and higher-order rational error corrections are discussed in

this section. The examples used are pricing decision rules of six SIC two-digit manufacturing

industries: textiles, lumber, rubber & plastics, primary metals, motor vehicles, and scientific

instruments.19 In addition to an expected difference in statistical fits, the rational expectation

overidentifying restrictions are rejected by all but one of the second-order decision rules and by

none of the higher-order rules.

III.1 The Equilibrium Price

The equilibrium log price of the output of industryj with sj identical producers is represented by

p�j = �j +mcj; (20)

where�j is the log markup by producers andmcj is the log of marginal cost. Ignoring strategic

considerations, the markup is�j = �log
�
1� 1

sj�j

�
, where�j is the price elasticity of demand,

and the monopoly and competitive solutions are obtained assj ! 1 or sj !1. Gross production

is Cobb-Douglas in both purchased materials and rented services of primary factors. Also, returns

to scale are constant so that the log of marginal cost is proportional to the weighted average of log

input prices,

mcj / �cjp
c
j + �ijp

i
j + �vj p

v
j ; (21)

19Motor vehicles is a large subset of the SIC two-digit industry, transportation equipment.
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where pcj is the log price of primary commodity production inputs,pij is the log price of

intermediate materials purchased from other industries,pvj is the log unit cost of value added in

thej industry, and�cj + �ij + �vj = 1.

As indicated in (21), input price regressors are specific to industryj and constructed from

input-output weightings of industry producer prices. Industry producer prices at the SIC two-digit

level of aggregation are generally available only from the mid-1980s, and industry prices in earlier

periods were assembled from specific commodity prices, often at lower levels of aggregation. The

industry log unit cost of primary factors,pvj;t, was estimated by the log of hourly earnings,wj;t,

less the log of trend productivity,�j;t. The latter was constructed from smoothed estimates of the

log of industry industrial production less the log of industry employment hours.

Industry producer prices in the U.S. do not reject the hypothesis of difference-stationarity

over postwar samples. A common format was used to explore cointegration constructions of the

equilibrium price of each industry

p�j;t = c0 + �cjp
c
j;t + �ijp

i
j;t + �vj p

v
j;t + c1�t + c2t: (22)

Given data limitations of the trend productivity estimates, both industry log productivity trends,

�j;t and time trends,t, were added as additional regressors, and the intercept,c0 contains both

the log margin,�j, as well as proportional mean errors in measurements of unit cost inputs. The

relevant industry input share weights,(�cj ; �
i
j; �

v
j ), are displayed in the initial columns of Table 1.

These share weights are not estimated but defined by benchmark input-output estimates, obtained

by manipulating the Bureau of Economic Analysis (1991) industry use and make tables.

As shown in the columns headed byf(t) in Table 1, additional trend productivity regressors

were required for cointegration in three industries. As noted above, the log price of primary factors

already incorporates trend productivity,pvj � wj � �j. Because this assigns a weight of��v to

�j, the additional positive coefficients lower the effective contribution of the trend productivity

constructions. Finally, as shown in the last column of Table 1, the hypothesis that the cointegrating

discrepancy,pj;t � p�j;t is I(1) is rejected at the90% confidence level or higher for all industries.

III.2 Empirical Estimates of Pricing Decision Rules under Geometric Frictions

Table 2 presents summary statistics for second-order pricing rules of the six manufacturing

industries, estimated under the prior of geometric frictions. Estimated parameters of the industry

decision rules and VAR forecast model parameters were obtained by the maximum likelihood

estimator described in the Appendix.20

20Industry prices are quarterly averages of monthly, seasonally unadjusted series from the US Bureau of Labor
database on commodity and industry producer prices for the 1954-1995 sample. As noted earlier, the equilibrium
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The estimated error correction coefficients,A(1) in Table 2, indicate the average quarterly

reduction rates planned for the price “gap,”pt�1 � p�t�1, of each industry. The proportion of

explained variation in quarterly price changes can be substantial, withR2 in three industries

ranging from .3 to .6. The row in Table 2 labeled�R2(%) indicates that for four industries,

the modal source of explained variation is the sample variability of industry forecasts of future

equilibrium prices, as captured by the rational forecast term,h0�zt�1. Table 2 also contains the

estimated mean lag of producer responses to unexpected shocks and the estimated mean lead of

responses to anticipated events. The mean lead of the industry planning horizon is typically smaller

than the mean lag response due to discounting of forward events.

Three characteristics of these estimated equations suggest significant dynamic specification

problems. First, the mean lag responses appear to be unusually large relative to previous estimates

of response lags for manufacturing prices.21 Second, serial independence of the residuals is

rejected for all but one industry at 95% confidence levels. Although it is possible that producers

may have serially correlated information that has not been included in the industry forecast models,

it is plausible also that residual correlations could be due to misspecifications of the frictions in

producer responses.

A final indication of potential misspecifications is indicated in the bottom row of Table 2. This

row, labeledLR(h�jzt�1), lists the rejection probabilities of a likelihood ratio test to determine

if the data prefers an unrestricted forecast model of forward equilibrium price changes to the

rational forecasts embedded in the geometric frictions version of rational error correction. With

one exception (motor vehicles), the rational expectations overidentifying restrictions are rejected

at 99% confidence levels.

III.3 Empirical Estimates of Pricing Decision Rules under Polynomial Frictions

Estimates of the industry pricing rules under the polynomial generalization of frictions are listed

in Table 3. Because the conventional two-root decision rule,m = 1, is nested in the generalized

frictions model, it is interesting to note that additional lags of the dependent variable are always

price forecast model for each industry is a VAR containing the equilibrium price and the prices of production inputs.
Although seasonality is not pronounced in most industry prices (one exception is motor vehicles, as noted later), all
industry VARs contained at least four lags in regressors, and seasonal dummies were added to all VAR and error
correction equations. To reduce space, estimates of equation intercepts and seasonal dummy coefficients are not
reported in the tables. In all equations presented here, the quarterly discount factor,B, was set to:98, approximating
the postwar annual real return to equity of about8%; empirical results are not noticeably altered by moderate variations
in B.

21In analysis of the Stigler-Kindahl data of producers' prices, Carlton (1986) reports an average adjustment
frequency of about once a year. Reduced form regressions by Blanchard (1987, Table 8) for the U.S. manufacturing
price aggregate indicate a mean lag of about two quarters. By contrast, the levels friction model in Rotemberg (1982)
suggests a mean lag of about 12 quarters for the U.S. GDP deflator.
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significant in the industry pricing models, generally consistent with polynomial components of

orderm = 2 or m = 3.22 In the case of motor vehicles, the preferred specification ism =

5, requiring four lags of the dependent variable. This is due to a significant seasonal pattern in

the producer price of motor vehicles which could not be adequately captured by fixed seasonal

dummies.

Without exception, all of the problems noted for the estimated decision rules under geometric

frictions in Table 2 are eliminated under polynomial frictions. The percentage of explained

variation,R2, is considerably higher for most industries in Table 3; mean lags are more plausible;

the assumption of serially independent residuals is retained in all industries; and the rejection

probabilities in the bottom row in Table 3 indicate that the rational expectations overidentifying

restrictions are not rejected at confidence levels of 95% or higher. The latter is noteworthy because

rejections of rational expectations overidentifying restrictions are often interpreted as evidence

of non-rational forecasting by agents or of inadequate specifications of agent forecast models of

forcing terms. Because theonly difference between industry model specifications used in the

side-by-side comparisons of Table 2 and Table 3 is the degree of the Euler equation polynomials,

m, the culprit, at least in these examples and for the statistical properties considered, is rigid priors

on the specification of dynamic frictions.

More intuitive insights into the dynamic effects of the higher-order lag and lead polynomials

are obtained by rearranging the Euler equation to define the current period response weights to lags

and expected leads of the forcing term,Etfp�t+ig, implied by the industry decision rules,

Etfptg = EtfA(1)A(L)�1A(B)A(BF )�1p�tg;

= Etf
1X

i=�1

wip
�
t+ig; (23)

where negative subscripts,i < 0, denote responses to lagged events and positive subscripts,i > 0,

responses to anticipated events. The lag and lead weights of the six estimated industry decision

rules are displayed in the panels of Figure 1. The dotted lines are the friction weights generated by

the two-root decision rules (m = 1) reported in Table 2 and the solid lines are the friction weights

associated with the2m-root decision rules (m > 1) shown in Table 3.

Several effects of the generalization of frictions are apparent from the plots of the industry

friction weights in Figure 1. In each panel, the vertical line is positioned in the current period

22This is not an isolated finding. Every macroeconomic aggregate to which the generalized frictions model was fit in
the FRB/US macroeconomic model also rejected the conventional prior thatm = 1, vid. Brayton and Tinsley (1996).
As discussed in a recent literature survey by Taylor (1997), many studies of empirical staggered contract models for
wages do not support geometric response schedules, including an estimated bimodal distribution of contract lengths
in Levin (1991).
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(i = 0). The mean lag of responses to unanticipated events is captured by the weighted average

of lags using the friction weights to the left of center. The friction weights are nearly symmetric

about the current period with the mean lead, associated with weights to the right of center, slightly

smaller than the mean lag due to the discounting of future events. Thus, the net mean response lag

to perfectly anticipated events is small for most industries.

Larger mean leads require longer planning horizons and are characteristic of the flatter friction

weight distributions indicated by the dotted lines in Figure 1 for the two-root decision rules,m = 1.

Thus, vertical distances between the two sets of friction weight distributions in each panel are

indicative of differences between the industry mean leads of Table 2 and the corresponding mean

leads of Table 3.

As shown in the panels of Figure 1, relatively low-order friction polynomials,A(B)A(BF )�1,

can generate a variety of flexible shapes, including the seasonal weights at distances of�4 quarters

indicated for the motor vehicles industry, SIC 371. Some estimated friction distributions are

relatively flat for several quarters, while others fall off rapidly from the modal weight in the

current quarter. The plots in Figure 1 do not support the two-sided geometric distribution prior

that is consistent with two-root decision rules,m = 1. In almost all industries, the drawback

of a two-sided geometric response schedule is an inability to capture relatively stronger industry

responses to events in a one - or two-quarter neighborhood of the current quarter.

Cyclical Variations in Pricing Margins

Thus far, specification of the desired industry price settings has proceeded under the assumption

that relevant arguments are difference-stationary, with estimation of industry “target” paths,p�t , by

cointegration. However, economic theory may suggest additional stationary variables as possible

arguments of the desired target.23 If there is prior information that agents' perceptions of the

forcing terms of Euler equations are significantly influenced by additional variables, this prior

information should be introduced into the model to avoid possible distortions in estimated frictions.

An example is useful to illustrate how the distinction between friction and forecast parameters is

maintained for trial arguments of the forcing term by imposing dynamic friction restrictions.

In the present example of a price markup model, cyclical indicators such as industry capacity

utilization rates may capture variations in planned margins,�t, due to boom or bust pricing

strategies or cyclical movements in the price elasticity of demand. The Euler equation for industry

price is restated to include the effect of current and lagged industry utilization rates,ut�i,24 on the

23As discussed by Wickens (1996), economic theory is required for structural interpretations of cointegrations.

24Industry utilization rates are constructed by the FRB staff from surveys of capacity utilization, see Raddock
(1985). Log industry utilization rates are stationary, and the error correction responses of capacity output are either
insignificant or an order of magnitude smaller than that of industry output. Sample means are removed sout can be
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current price target,

EtfA(BF )A(L)pt � A(B)A(1)[p�t +D(L)ut]g = 0; (24)

wherep�t continues to denote I(1) arguments of the equilibrium target, andD(L) is anm0-order

polynomial inL. It is convenient to assumem0 = 1, which is the minimal order necessary to

distinguish between pricing effects of changing utilization rates and effects of higher or lower

levels of capacity utilization,D(L) = d0 + d1L.

Multiplying through by the inverse of the lead polynomial,A(BF )�1, and substituting in

forecasts from the agents' information set,zt�1, defines the augmented rational error correction

where the industry price decision rule now contains an infinite-horizon forecast of forward industry

utilization rates, discounted by them eigenvalues contained in the frictions companion matrix,G.

Using the simplifying operations discussed earlier, the closed-form of the extended rational error

correction solution is

Etf�ptg = �A(1)(pt�1 � p�t�1) + A�(L)�pt�1 + h0�zt�1 +
1X

k=0

dkh
0

uk
zt�1; (25)

The additional coefficient vectors,huk (k = 0; 1), define discounted sums of the expected forward

path of the industry utilization rate,

hu0 = A(1)A(B)[�0m 
H 0][Imn �G
H 0]�1(�m 
 �u0);

hu1 = A(1)A(B)[�0m 
 In][Imn �G
H 0]�1(�m 
 �u1); (26)

where then � 1 selector vectors,�uk , locateut�k in the information vector,zt, now extended to

include current and lagged values of the industry utilization rate. Because industry log utilization

rates are stationary, the restricted coefficient vectors in (26) differ somewhat from that derived for

forecasts of difference-stationary trend prices,h�, in (12).

Effects of adding industry utilization rates to the rational error correction are reported in

Table 4. The rejection probabilities in the row labeledLR(D(L)) indicate that expected forward

utilization rates are a significant determinant of pricing at a 90% level of confidence in three of the

six industries. Cyclical markup effects associated with the level of the industry utilization rate are

indicated in the next row of Table 4, labeledD(1). Procyclical margins are indicated for primary

metals (SIC 33) and countercyclical margins for motor vehicles (SIC371).

All significant features of the rational error corrections in Table 3 are retained in Table 4,

including serially independent residuals and nonrejection of the RE overidentifying restrictions

interpreted as industry output deviations from trend or preferred utilization.
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which are now extended to include forecasts of forward utilization rates. Thus, the polynomial

frictions description of industry pricing appears to be robust to the addition of a conventional

determinant of cyclical pricing.

IV. Concluding Comments

After two decades of research in macroeconomics, the rational expectations conjecture is a fixture

in theoretical macroeconomic models but is routinely rejected in empirical macroeconomic models

that test the associated overidentifying restrictions. Rather than indicting the rational expectations

assumption, it appears that the main culprit may be the arbitrary tight prior used to characterize

dynamic frictions in macroeconomic models.

The workhorse of macroeconomic descriptions of rational dynamic behavior is the

conventional linear decision rule with two characteristic roots, where one determines the geometric

discount factor of anticipated events and the other provides a geometric description of lagged

responses to unanticipated shocks. The two-sided geometric lead and lag response schedules are

generally motivated by ageometric frictionsprior where agents aim to smooth levels of activity

or are subject to geometric random delays. Although it leads to tractable models of economic

behavior, the geometric frictions prior is not based on compelling economic theory and is usually

rejected by macroeconomic data.

An alternative specification ofpolynomial frictionsis suggested in this paper which appears

to eliminate many of the empirical drawbacks of the conventional frictions specification. The

generalized frictions specification can be interpreted as the result of agents that smooth linear

combinations of current and lagged actions or a consequence of convoluted geometric distributions

of stochastic delays in decisions.

Polynomial frictions lead to higher-order Euler equations whose decision rules are solved

generally by numerical techniques. A method of obtaining closed-form solutions is presented that

uses two simple, first-order companion systems: a lead system for the forward planning required

when agent actions are restricted by frictions; and a lag system for the agents' forecast model of the

Euler equation forcing term. A tractable method of maximum likelihood estimation by a sequence

of regressions is outlined in the Appendix.

Empirical models of producer pricing are estimated for six manufacturing industries. The

second-order decision rule implied by the geometric frictions prior is nested within the polynomial

frictions specification and rejected by the data for all industries. The decision rules based on

geometric frictions had poor empirical properties, including overstatement of mean lags, strong

residual correlations, and rejections of rational expectation restrictions. Rational error corrections
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using the generalized friction specification eliminated these empirical shortcomings, including

the rejection of rational expectations restrictions. The estimated generalized friction models of

industry pricing generally required fourth-order or sixth-order decision rules.

Polynomial descriptions of frictions define a rich class of rational error correction

specifications. The empirical applications indicate that higher-order decision rules provide

empirical fits comparable to reduced-form error corrections and, unlike the latter, provide useful

distinctions between lags due to forecasts of market events and lags due to constrained agent

responses to these forecasts.
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Appendix: Estimation of Rational Error Corrections

This appendix outlines the two-stage maximum likelihood estimator for rational error

corrections used for the empirical examples in this paper. The estimator requires only a sequence

of regressions. Because linear rational error corrections have closed-form solutions, analytical

solutions are available for all required gradients.

Estimating the Rational Error Correction Decision Rule

The assumption of rational behavior leads to overidentified decision rules whose parameters

are nonlinear functions of parameters in the companion matrix of the forecast model,H, and

parameters in the companion matrix,G, of the frictions polynomial,A(:). However, the forecast

model of forcing terms often can be reasonably approximated by a system that is linear in the

unknown parameters. There are significant computational advantages to adopting a two-stage

maximum likelihood procedure when the forecast model can be estimated by standard linear

estimators. Assuming the forecast model is linear in the unknown parameters and has normally

distributed forecast errors, maximum likelihood estimates of the column stack of forecast model

parameters,̂hx, are obtained by a GLS estimator, or even OLS regressions if the forecast model

equations have identical regressors.

Turning to the second stage of estimation, discussion will ignore estimation of unconstrained

linear parameters such as intercepts and fixed seasonals. The vector of unknown friction parameters

is � = [�A(1); a�1; : : : ; a�m�1]
0

. Usingyt to denote the dependent variable (�pt for the industry

price decision rules) and assuming normally distributed description errors, the log of the marginal

likelihood of� is

Ly(�) = �(T=2)log�2�y � (T=2)log(2�)� 1

2�2�y

TX
t=1

(yt � �0zy;t�1 � h0�zt�1)
2; (A:1)

wherezy;t�1 includes both the lagged error correction,pt�1�p�t�1, andm�1 lags of the dependent

variable, and�2�y � E[(yt � �0zy;t�1 � h0�zt�1)
2]. Maximum likelihood estimates of the friction

parameters,̂�, are defined by the zeroes of the gradients of (A.1) with respect to the friction

parameters,gy(�̂), given the first-stage estimates of the forecast model coefficients,ĥx. The format

of these nonlinear equations is well-suited for Gauss-Newton estimation using iterative regressions

of the form,

(yt � �̂(i)
0

zy;t�1 � h0�(�̂
(i); ĥx)zt�1) =

�
zy;t�1 + [@h0�(:jĥx))=@�]zt�1

�0
(�̂(i+1) � �̂(i)): (A:2)
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Adjusting for the Sampling Variability of the Forecast Model Parameters

As noted, forecast model parameters estimated in the first step,ĥx, are used to initialize gradients

of the friction parameters in the second step. A well-known, but often ignored, consequence is

that the second-step estimator understates the sampling errors of the estimated friction parameters,

�̂, unless account is taken of the sampling uncertainty of the first-step estimates of the forecast

model parameters. Murphy and Topel (1985) cite empirical examples where uncorrected t-ratios of

two-stage maximum likelihood estimators are overstated by more than100%. Analytical solutions

of the correction for “generated regressor” bias in two-stage maximum likelihood estimation

of rational error corrections are presented below, along with empirical estimates of thet-ratio

corrections for the examples of industry pricing decision rules.

Using more compact notation, let� denote the concatenation of the unknown parameters of

the forecast model,hx, and the friction parameters,�. Similarly, g(�̂) will denote the stack of the

relevant likelihood gradients,gx(ĥx) andgy(�̂). For aT -period sample, the mean-value theorem

implies that the
p
T -normalization of the difference between the sample estimate,�̂ and the plim,

�o, is provided by rearranging the first-order expansion of the gradients aroundg(�o),

p
T (�̂ � �o) = [� 1

T
rg(��)]�1[ 1p

T
g(�o)];

wherer denotes the gradient ofg wrt � 0, and the rows ofrg(��) are evaluated at��,

on the segment connectinĝ� and �o. If the normalized Hessian approaches a fixed limit,

plim[� 1
T
rg(��)] ! M , and the marginal likelihood functions satisfies standard regularity

conditions then, as demonstrated in White (1994), the likelihood estimates are distributed

asymptotically as the normal distribution,

p
T (�̂ � �o)

a� N(0;M�1V (M 0)�1); (A:3)

whereV denotes the expected value of the gradient covariance,V = Ef[ 1
p
T
g(�o)][ 1

p
T
g(�o)]0g.

An advantage of the two-stage estimation approach is that the structure of the sampling errors

in (A:3) is substantially simplified when the industry forecast model is not a function of the friction

parameters,�. To see this, partitionM andV to reflect the separate contributions of the forecast

coefficients,hx, and the adjustment cost parameters,�.

M =

2
4 Mhx;h0

x
Mhx;�0

M�;h0

x
M�;�0

3
5 ; V =

2
4 Vhx;h0

x
Vhx;�0

V�;h0

x
V�;�0

3
5 :

Because the parameters of the forecast model,hx, are not functions of the friction parameters,�,

the upper right hand partition ofM is zero,Mhx;�0 = 0. This, in turn, implies that the inverse of
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M required for equation(A:3) simplifies to

M�1 =

2
4 M�1

hx;h0

x
0

�M�1
�;�0M�;h0

x
M�1

�;�0 M�1
�;�0

3
5 :

Substituting this partitioned inverse into(A:3) yields the following expression for the asymptotic

covariance of the adjustment cost parameters,

var(�̂ � �o) = M�1
�;�0 +M�1

�;�0[M�;h0

x
M�1

hx;h0

x
M 0

�;h0

x

� V 0
hx;�0M

�1
hx;h0

x
M 0

�;h0

x
�M�;h0

x
M�1

hx;h0

x
Vhx;�0]M�1

�;�0: (A:4)

The last two terms in(A:4) are zero if the residual of the rational error correction is uncorrelated

with residuals of the VAR forecast model,Vhx;�0 = 0.

The nonzero partitions ofM are replaced with the following sample estimates:

Mhx;h0

x
= E[� @2Lx

@hx@h0

x
] = E[gx(hx)gx(hx)

0]:

M�;�0 = E[� @2Ly

@�@�0
] = E[gy(�)gy(�)

0]:

M�;h0

x
= E[� @2Ly

@�@h0

x
] = E[gy(�)gy(hx)

0]: (A:5)

Components required by(A:5) can be assembled from gradients and covariances produced in the

first and second stages of the estimation. Analytical solutions of required gradients are indicated

below.

Empirical Estimates of Sampling Error Bias

The magnitude of “generated bias” adjustments in thet-ratios of the estimated industry pricing

rules can be gauged from Table 4. Along with the adjustedt-statistics in parentheses, (: ) that

are reported in all three tables, Table 4 also lists the unadjustedt-statistics from the second step

estimation in brackets, [: ]. Although the extent of adjustment varies, the maximum downward

adjustment oft-ratios is around 20%. An intuitive explanation for the generally modest reductions

in statistical significance is that much of the forecast model uncertainty is “averaged out” over the

forecast horizon by the discounted average of equilibrium price change forecasts,h0�zt�1.

Analytical Gradient Solutions

Nonlinear interactions of the frictions parameters and the forecast model parameters are confined

to the scalar summary of industry forecasts in the decision rule,h0�zt�1. Usingn � pq to reduce
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subscript clutter. then� 1 coefficient vectorh� is completely defined byH, then� n companion

matrix of the industry forecast model, and them friction arguments,�. From (12), the restricted

coefficient vector,h�, can be partitioned into four components

h� = [A(B)][A(1)][�
0

m(Im �G)�1 
 (H 0 � In)][(Inm �G
H 0)�1][�m 
 ��];

= [A(B)] [A(1)] [W1] [W2] [w1]; (A:6)

where the first four partitions on the last line of(A:6) are functions of the unknown frictions

parameters,�.

To indicate the partial derivatives with respect to thejth argument of the parameter vector,

�(j), the following notation conventions are used. Element-by-element differentiation of vectors

and matrices is represented by the relevant subscripted�n(j) vector(s). For example, the partial

derivative of then� 1 vectorb with respect to its second element is@b=@b(2) = [0; 1; 0; : : : ; 0]0 =

�n(2). Similarly, the partial derivative of them � n of matrix B with respect to itsijth element is

denoted by@B=@B(ij) = �m(i) 
 �
0

n(j). Twom �m transformation matrices are useful also:T1 is

an upper-triangular matrix for effecting moving-summations, with�1 in each element of the first

row and1 in each of the remaining nonzero elements;T2 is a reverse-diagonal discounting matrix

with �Bm�i+1 in them� i + 1th element of theith row.

As shown in the main text, the bottom row of them�m companion matrix,G, of the friction

lead polynomial contains powers of the discount factor,B, and the parameters of the friction lag

polynomial,a0 = [a1; a2; : : : ; am]. The relationship between these parameters and the friction

parameters,�, in the decision rule likelihood,(A:1), is given by� = T1a � �m(1). Denotingg0 as

the bottom row of G, then it is seen thatg0 = a0T 02 = (�0+ �
0

m(1))T
0�1
1 T 02. In turn, them�m matrix

G is defined byG = T3 + �m(m) 
 g0, whereT3 is constructed by borderingIm�1 by a column of

zeroes on the left and a row of zeroes on the bottom. It follows that the partial derivative ofG with

respect to thejth element of� is, @G=@�(j) = �m(m) 
 �
0

m(j)T
0�1
1 T 02.

Using these definitions, analytical expressions for the gradients required by the Gauss-Newton

regression in(A:2) are constructed from the following partial derivatives:

@A(B)=@�(j) = ��0m(m)T2T
�1
1 �m(j);

@A(1)=@�(j) = �
0

m(m)T
�1
1 �m(j);

@W1=@�(j) = �
0

m(m)[Im �G]�1[@G=@�(j)][Im �G]�1 
 (H 0 � In);

@W2=@�(j) = [Imn �G
H 0]�1[(@G=@�(j))
H 0][Imn �G
H 0]�1:

Finally, the gradient of the likelihood of friction parameters with respect to the vector of

forecast model parameters,gy(hx) � @Ly=@h
0
x, is required for the construction ofM�;h0

x
. Let hx

denote the column stack of the firstnx rows of the companion matrix of the full forecast model,H.
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The ordered elements of this(nxn)� 1 vector are referenced byhx;(kij), wherekij � (j� 1)nx+ i

for 1 � i � nx and1 � j � n. Using this subscripting convention, the required elements of

@h�=@hx are

@W1=@hx;(kij) = �
0

m(m)[Im �G]�1 
 [�n(j) 
 �
0

n(i)]:

@W2=@hx;(kij) = [Imn �G
H 0]�1[G
 (�n(j) 
 �
0

n(i)][Imn �G
H 0]�1;



Table 1
Cointegration Construction of Industry Price Trend a

p�t / �cpct + �ipit + �vpvt + f(t):

industry cost shareb f(t)
industry SIC �c �i �v � t SEEc ADFd

textiles 22 .051 .339 .610 .359 -.0027 .036 -5.45���

(5.9) (-4.6)

lumber 24 .113 .145 .741 .0025 .082 -3.47��

(19.4)

rubber & 30 .011 .449 .540 .278 -.0005 .024 -3.85��

plastics (10.1) (1.6)

primary 33 .071 .168 .761 .875 -.0019 .053 -4.59���

metals (6.9) (-2.6)

motor 371 .005 .410 .585 .0023 .036 -3.10�

vehicles (14.2)

scientific 38 .007 .341 .652 .0036 .046 -3.44��

instruments (48.7)

aIndustry-specific log input prices aggregated with industry input share weights into primary commodity,pc,
intermediate material,pi, and value-added,pv , input categories. The log of the unit cost of industry value added
is estimated by the log of the industry labor compensation rate,w, less the log of industry trend productivity,�.

bConstructed from the 1982 US industry input-output accounts, Bureau of Economic Analysis (1991).

cSample span 1957q1-1995q4.

dRejection of the hypothesis that the cointegrating discrepancy,pt � p�
t
, is I(1) at 90% (*), 95% (**), and 99%

(***) confidence levels, using critical values in MacKinnon (1991).



Table 2
Industry Price Adjustment Under Geometric Frictions a

�pt = �A(1)[pt�1 � p�t�1] + h0�zt�1 + at:

manufacturing industries
SIC 22 SIC 24 SIC 30 SIC 33 SIC 371 SIC 38

rubber & primary motor scientific
textiles lumber plastics metals vehicles instruments

friction
parametersb m = 1 m = 1 m = 1 m = 1 m = 1 m = 1

A(1) .09 .05 .21 .13 .13 .08
(2.1) (1.2) (4.4) (3.0) (5.0) (3.9)

R2 .10 .13 .44 .11 .62 .28
SEE .018 .030 .011 .022 .010 .010

BG(12) c .00 .03 .00 .00 .00 .06

friction weights

mean lag (qtrs) 10.2 19.4 3.8 5.9 6.6 10.9
mean lead (qtrs) 8.3 13.7 3.4 6.9 5.7 8.7

price trend,�p�,
expectations

�R2(%) d 98% 7% 98% 86% 10% 70%

LR(h�jzt�1) e .00 .01 .00 .00 .31 .01

aSample span 1957q1-1995q4.

bm denotes the order of the polynomial,A(L)�1, that generates friction weights.

cRejection probability of serially independent residuals, Breusch-Godfrey test (12 lags).

dProportion ofR2 due to forward price trend expectations,h0
�
zt�1 � EtfA(1)

1P
i=0

(�B)i�p�
t+i
g.

eRejection probability of RE overidentifying restrictions on industry expectation coefficient vector,h�.



Table 3
Industry Price Adjustment Under Polynomial Frictions a

�pt = �A(1)[pt�1 � p�t�1] + A�(L)�pt�1 + h0�zt�1 + at:

manufacturing industries
SIC 22 SIC 24 SIC 30 SIC 33 SIC 371 SIC 38

rubber & primary motor scientific
textiles lumber plastics metals vehicles instruments

friction
parametersb m = 3 m = 2 m = 3 m = 3 m = 5 m = 2

A(1) .09 .09 .15 .14 .10 .06
(2.8) (2.5) (4.3) (4.2) (4.7) (3.4)

A�(1) .58 .35 .45 .56 .38 .36
(8.0) (4.3) (5.2) (6.9) (3.4) (4.8)

R2 .55 .23 .60 .43 .70 .38
SEE .012 .028 .009 .018 .009 .009

BG(12) c .77 .49 .94 .93 .98 .98

friction weights

mean lag (qtrs) 3.4 6.6 2.7 2.1 5.1 9.2
mean lead (qtrs) 3.3 5.8 2.6 2.1 5.0 7.8

price trend,�p�,
expectations

�R2(%) d 2% 1% 12% 6% 5% 18%

LR(h�jzt�1) e .07 .26 .15 .71 .31 .18

aSample span 1957q1-1995q4.

bm denotes the order of the polynomial,A(L)�1, that generates friction weights.

cRejection probability of serially independent residuals, Breusch-Godfrey test (12 lags).

dProportion ofR2 due to forward price trend expectations,h0
�
zt�1.

eRejection probability of RE overidentifying restrictions on industry expectation coefficient vector,h�.



Table 4
Industry Price Adjustment with Cyclical Margins a

�pt = �A(1)[pt�1 � p�t�1] + A�(L)�pt�1 + h0�zt�1 +
1X

k=0

dkh
0
uk
zt�1 + at:

manufacturing industries
SIC 22 SIC 24 SIC 30 SIC 33 SIC 371 SIC 38

rubber & primary motor scientific
textiles lumber plastics metals vehicles instruments

friction
parametersb m = 3 m = 2 m = 3 m = 3 m = 5 m = 2

A(1) .09 .08 .15 .15 .11 .06
[2.9]c [2.2] [4.6] [4.4] [5.7] [3.6]
(2.9) (2.2) (4.2) (4.3) (4.5) (3.2)

A�(1) .59 .34 .44 .49 .21 .36
[8.1] c [4.3] [6.5] [5.7] [1.8] [5.1]
(7.6) (4.2) (5.2) (5.5) (1.6) (4.8)

R2 .57 .23 .60 .45 .71 .38
SEE .012 .028 .009 .018 .009 .009

BG(12) d .88 .42 .72 .95 .81 .99

capacity utilization
expectations

LR(D(L)jzt�1) e .07 .60 .95 .04 .05 .77

D(1) 0.22 0.11 -0.03 0.32 -0.23 0.48
[0.4] c [0.1] [-0.3] [1.6] [-2.4] [0.6]
(0.4) (0.1) (-0.3) (1.5) (-1.9) (0.6)

LR(h�; huk jzt�1) f .05 .47 .06 .87 .09 .09

aSample span 1957q1-1995q4.

bm denotes the order of the polynomial,A(L)�1, that generates friction weights.

ct-statistics in brackets, [.], arenotadjusted for generated regressor bias; see discussion in Appendix.

dRejection probability of serially independent residuals, Breusch-Godfrey test (12 lags).

eRejection probability of no pricing response to expectations of forward utilization rates,h0
uk
zt�1 (k = 0; 1).

fRejection probability of RE overidentifying restrictions on industry expectation coefficient vectors,h� andhuk .



Figure 1: Quarterly Lag and Lead Friction Weights of Producer Pricing Decision Rulesa
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aGenerated by Euler equations containing2m-order polynomials in lag and lead operators.


