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Abstract

This paper studies the finite sample properties of the kernel regres-
sion method of Boudoukh, Richardson, Stanton and Whitelaw (1998)
for estimating multifactor continuous–time term structure models.
Monte Carlo simulations are employed, with a grid-search technique
to find the optimal kernel bandwidth. The performance of the estima-
tor is also studied under model misspecification. Irrelevant regressors
reduce efficiency and induce additional biases in the estimates. Using
Treasury bill data, I test whether the estimates produced by the non-
parametric estimator are statistically distinguishable from estimates
obtained under a parametric model. The kernel regressions pick up
nonlinearities that the parametric model cannot capture.
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In a series of recent papers, researchers in finance have developed non-
parametric methods for estimating the drift and diffusion functions of con-
tinuous time stochastic processes. Stanton (1997) pioneered a method based
on the theory of weak approximations of the expectations of functions of
stochastic processes. His methodological innovation was to estimate the ex-
pectations using kernel regression methods, and then invert them in order
to recover the drift and diffusion functions of the underlying processes. The
method has been applied to the problem of estimating univariate continuous
time models of the term structure. More recently, Boudoukh et al. (1998)
extended the estimator to the problem of estimating multivariate term struc-
ture models. Although different in important respects, the method developed
by Ait–Sahalia (1996) is related to the Stanton and BRSW estimators in that
it also relies on nonparametric techniques and is also applied to the problem
of pricing interest rate derivative securities.1

One of the more provocative conclusions reached by Ait–Sahalia (1996),
Stanton (1997), and Boudoukh et al. (1998) is that the short rate drift ap-
pears to be nonlinear. This conclusion is at odds with the rest of the term
structure literature, because in virtually all previous work, the short rate is
modeled with a linear drift. In part to investigate the robustness of this re-
sult, Pritsker (1998) and Chapman and Pearson (1999) look at the properties
of the Stanton and Ait–Sahalia estimators in finite samples. In both of these
papers, the authors concluded that the nonlinearity result is not robust, and
could be an artifact of the finite sample properties of the estimator. However,
the authors do not formally test this hypothesis.

In this paper, I study the finite sample properties of the BRSW estimator
for multifactor models.2 Monte Carlo simulations of data from the stochas-
tic volatility model of Andersen and Lund (1997a) are used to examine how
closely the estimator fits the known drift and diffusion functions. The Ander-
sen and Lund (1997a) model is used because it provides a reasonably good
fit to Treasury data, although in their final analysis the authors reject the
model using a chi–squared test.

I first focus on the problem of kernel bandwidth selection. Because the
asymptotically optimal bandwidths are functions of the derivatives of the
unknown joint density of the data generating process, I use a grid–search
technique to find the bandwidths that minimize a sum of squared errors cri-
terion. I find that, even with the optimal bandwidths, the estimator exhibits
a high degree of bias with forty years of data simulated at weekly frequency.
However, the sampling variance of the estimator is high, so that from a hy-
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pothesis testing point of view, the biases are likely to be irrelevant.
The performance of the BRSW estimator is also analyzed under model

misspecification. The results show that if one uses the BRSW estimator to fit
a misspecified model in which irrelevant arguments of the drift and diffusion
functions are included, the efficiency of the estimator decreases markedly.
Somewhat more surprising is the result that including irrelevant conditioning
variables introduces additional bias in the estimates. The additional biases
are a result of adding dimensions along which biases from truncation and
correlated residuals can affect the estimator.

These biases and inefficiencies highlight that, while nonparametric esti-
mators might free one from the need to specify the particular functional forms
for the various estimands, one still must correctly specify the arguments of
the functions (and thus the correct set of conditioning variables in the kernel
regressions). In other words, nonparametric estimators do not obviate issues
of specification; rather, such issues are removed to a higher level of generality.

My main conclusion is that the BRSW estimator, and related kernel re-
gression methods, are primarily useful as diagnostic tools when used in the
context of term structure modeling. Given the problems associated with
bandwidth selection when the data are autocorrelated, and given the prob-
lems of calculating reliable standard errors for kernel regression estimators,
it is more productive to use the kernel regression methods to test if a given
parametric specification is an adequate description of the data. In other
words, the more general kernel regression estimator can be used to try and
“pick up” nonlinearities in the data that a parametric model might miss. An
important advantage of this approach is that the finite sample distributions
of test statistics based on the BRSW estimator can be bootstrapped under
the null hypothesis that the parametric model is the “true” data generating
process. Thus, one can produce quantiles for the hypothesis test statistics
that are robust against finite sample biases in the BRSW estimator. I demon-
strate this by applying the BRSW estimator to test the Andersen and Lund
(1997a) model of the term structure. The results of the hypothesis tests
show that the biases of the BRSW estimator do not fully explain the differ-
ences between the estimates obtained under the BRSW estimator and the
parametric estimator. There appear to be significant nonlinearities in the
evolution of the short rate that the parametric model cannot capture.

This paper is organized as follows. In the next section, I examine the
dynamic behavior of the Andersen and Lund (1997a) stochastic volatility
model, which is used in the Monte Carlo simulations in the following sec-
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tions. Section II discusses the BRSW estimator and kernel regression, and
contains the main results on fitting the Andersen and Lund (1997a) model.
Section III discusses the performance of the estimator in the context of model
misspecification. Section IV presents the results of hypothesis tests on the
Andersen and Lund (1997a) model, and the final section concludes.

I Dynamic Behavior of the Stochastic

Volatility Model

In this section, I discuss the calculation of weak solutions of the Andersen and
Lund (1997a) model (henceforth, the “AL model”). An interesting feature of
the AL model is that it fails to satisfy the conditions sufficient to guarantee
the existence of a unique solution, raising questions about the stability of
the system, as well as questions about the existence of a stationary density.
Maintaining the assumption that the system has a solution, I use a weak
numeric solution algorithm and an extension of the Kolmogorov-Smirnov test
to determine whether or not the transition densities of the system converge
at long trajectories. From the results, we can conclude that the system has
a stationary density at the parameters considered.

The specification of the AL model is given as:

drt = κ1(µ − rt)dt + σt

√
rtdW1,t (1)

d log σ2
t = κ2(θ − log σ2

t )dt + ξdW2,t, (2)

where W1 and W2 are independent standard Wiener processes.
The set of sufficient conditions for the existence of a solution to this

system includes the conditions that the drift and diffusion functions satisfy
Lipschitz and growth conditions (see Karatzas and Shreve (1991) and Ait–
Sahalia (1996) for different formulations of the conditions). The specification
of the diffusion function of the interest rate process (1) causes the system to
violate the growth condition. The relevant condition is given by:

σ2r + ξ2 ≤ k(1 + r2 + (log σ2)2). (3)

This condition must apply uniformly in t, meaning that the constant k must
apply for all t simultaneously. It is easy to show that there is no k that sat-
isfies condition (3). For any k, let log σ2 = r, so that σ2 = er. Substituting,
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we have:

err + ξ2 ≤ k(1 + 2r2), or (4)

err + ξ2

(1 + 2r2)
≤ k. (5)

The left-hand side of (5) clearly diverges as r → ∞, showing that the growth
condition is violated by the model. In essence, the model fails to satisfy the
growth condition because the diffusion function in the interest rate process
involves an exponential transformation of the volatility state variable.

To make the exponential transform in the interest rate diffusion explicit,
rewrite the AL model in the following equivalent form 3:

drt = κ1(µ − rt)dt +
√

eσtrtdW1,t (6)

dσt = κ2(θ − σt)dt + ξdW2,t, (7)

Because it fails to satisfy the growth condition, there might not be a
unique Ito process in <2 that satisfies (6) – (7). In practice, it’s difficult to
use numeric methods to verify the existence of a unique solution. I assume
that a solution exists, and instead focus on the dynamic stability of the
system. For certain parameterizations of the drift and diffusion functions,
the model will exhibit explosive behavior, and thus fail to have a stationary
density. Determining whether or not the model is explosive is a problem to
which we can apply a numeric solution algorithm.

Kloeden and Platen (1995) derive a number of algorithms for comput-
ing weak solutions of systems of SDEs like the AL model. The solution
algorithms operate on a finite time interval [0, T ]. A key feature of the algo-
rithms is the discretization of the time interval into M smaller time steps of
length ∆, where ∆ = T

M
. The simplest method is the Euler scheme, which

has a degree of accuracy that is inversely proportional to the length of the
time step ∆. The following set of recursive formulae show how to generate
values of r and σ:

rt = rt−1 + κ1(µ − rt−1)∆ +
√

eσt−1rt−1∆η1,t (8)

σt = σt−1 + κ2(θ − σt−1)∆ + ξ
√

∆η2,t, (9)

where η1,t and η2,t are independent standard normal deviates, and r0 and σ2
0

are given. Where necessary, I’ll use r̃ and σ̃ to indicate values of r and σ
computed from the discrete system in (8) and (9).
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Understanding the dynamic behavior of the AL model, as well as eval-
uating the nonparametric estimator in the next section, both boil down to
computing the expectations of different functions of the state variables r and
σ:

E [f(rT , σT )] , (10)

where f(·) is a smooth function. Kloeden and Platen (1995) prove that the
expectation of f(·), calculated at (r̃T ,σ̃T ), converges to the true expectation
as ∆ → 0:

lim
∆→0

|E [f(rT , σT )] − E [f(r̃T , σ̃T )] | = 0. (11)

By choosing
f(r, σ) = (r, σ), (12)

we can use the Euler scheme to compute the moments of transition densities
of the AL model.

It is useful to first consider whether or not the transition densities appear
to be converging in location and scale. To do so, I use Monte Carlo simu-
lations to generate moments of the transition densities of the model. From
each of 25 different starting points, equally dispersed on the square of values:

{
(r, σ) : 0.02 ≤ r ≤ 0.20,−7.00 ≤ log σ2 ≤ −5.00

}
(13)

I simulate 1,000 batches of 100 trajectories. The last point of each trajectory
is saved, forming a batch of 100 draws from the transition density defined
by the starting point and the length of the trajectories. I compute the mean
and variance of each batch of saved points. Thus, at the end of a run,
we have 1,000 independent draws of the first two moments of each of the 25
transition densities. Eight such runs are completed, the first with trajectories
one year in length, the second with five year trajectories, and so on for ten,
twenty, thirty, forty, fifty, and finally sixty year trajectories. The parameters
employed are shown in table I, and ∆ = 1

52
.5

Table II displays univariate statistics for the pooled data (N = 25, 000),
with which we can perform some unscientific “eyeball tests” for convergence.
If the null hypothesis of convergence is correct, the moments of the transition
densities should converge to the moments of the stationary density. The
means should converge as follows:

lim
T→∞

E[rT ] = µ = 0.0596, (14)

lim
T→∞

E[σT ] = θ = −6.3599. (15)
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Examining the values in the second column (labeled ‘Mean’) of table II,
it’s clear that the first moments (E[·] values) of the transition densities are
converging to these values. The interest rate mean hits the value in (14)
at around thirty years, and then bounces around within a narrow confidence
interval. The volatility mean converges quite rapidly and very precisely to the
value in (15), reflecting the higher degree of mean reversion in the volatility
drift function. 6

The second moments should converge approximately as follows:

lim
T→∞

Var[rT ] ≈ 0.00032 (16)

lim
T→∞

Var[σT ] ≈ 0.7780, (17)

The approximate value for the second moment of r is calculated as the vari-
ance of the stationary density of a square–root process:

drt = κ1(µ − rt)dt + σ
√

rtdWt (18)

with σ fixed at eθ. The variance is given by eθµ
2κ1

. The approximate value for
the second moment of σ is calculated as the stationary variance of a constant
diffusion process:

dσt = κ2(θ − σt)dt + ξdWt. (19)

The variance of this process is given by ξ2

2κ2
. From column seven of table II,

it appears that the variances (Var[·] values) are converging to neighborhoods
of the values in (16) and (17). In the case of the interest rate process, we
would probably reject the null hypothesis that the variance is equal to the
value in (16), even for the sixty year trajectories. Of course, this is because
the process is not really the square–root process that we used to compute
the variance. For the volatility process, we would probably accept the null
hypothesis that the variance is equal to the value in (17). The means of
Var[σ·] are close to the value in (17), and the standard deviation around the
means is relatively large. The variance of the volatility process converges
to the value in (17), while the variance of the interest rate process does
not converge to (16), because the dependence between the interest rate and
volatility processes is expressed in the diffusion function of the interest rate
process. The volatility process does in fact evolve like the Vasicek process
that we used to compute the variance in (17).

While the transition densities appear to be converging in the first two
moments, they still might have different distribution functions. Moreover,
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it’s hard to assess joint significance using table II. Assuming that a solution
to the system exists, we would like to show that the system is stationary,
defined to mean that the transition densities converge to a common density
with finite moments, as the length of the time interval increases:

lim
T→∞

π(rT , σT |r0, σ0)
d→ π(r, σ), (20)

for r0 ∈ <++ and σ0 ∈ <, and where π(rT , σT |r0, σ0) is the transition density
between times 0 and T , and π(r, σ) is the stationary density. If we use
the discrete system in (8)-(9) to make draws from the transition densities
defined by different starting points (r0, σ0) and time intervals [0, T ], and these
densities exhibit convergence as T increases, then we can interpret this as
evidence supporting our hypothesis that the system has a stationary density
at the parameter values in table I.4

To rigorously test for convergence in distribution when the true distri-
bution is unknown, we can use an adaptation of the Kolmogorov- Smirnov
(KS) test for bivariate densities, due to Fasano and Franceschini (1987). The
one dimensional KS test statistic is based on the maximum value of the ab-
solute difference between two cumulative distribution functions. A direct
generalization of this statistic to higher dimensions is not possible because
cumulative probability is not well defined in more than one dimension. How-
ever, an analogous statistic can be based on the integrated probabilities in
each the four natural quadrants at a given point (ri, σi). The analog to the
KS statistic is the maximum difference over the data points and over the
quadrants of the integrated probabilities. In essence, the algorithm for com-
puting the statistic searches through the data for the point at which the
difference in the proportions of data in one of the four natural quadrants
formed by the point is maximized. Fasano and Franceschini (1987) work out
an approximation to the probability of realizing the observed maximum dif-
ference in proportions, under the null hypothesis that the two densities are
identical.7

The transition densities of the discrete system in (8)-(9) converge to the
transition densities of the continuous–time system at rate

√
∆ (see Kloeden

and Platen (1995) or Brandt and Santa–Clara (1999) for proofs). Thus, the
discrete system can be used to draw random samples from transition densities
that closely approximate the densities of the continuous–time system. To
carry out the convergence test, I use two starting values that are widely
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apart on the (r, σ) plane. The points that I use are:

{(µ + 2σ̂r, θ + 2σ̂σ), (µ − 2σ̂r, θ − 2σ̂σ)} . (21)

The points are two standard deviations away from the long-run means of
the processes, and four standard deviations from one another.8 The standard
deviations σ̂r and σ̂σ are approximated using the square roots of the values for
Var[r60] and Var[σ60] from table II, respectively. From each of these points,
I use the discrete system in (8)-(9) to simulate 20,000 trajectories, saving
the last point on each trajectory. The two sets of points form large samples
of the two transition densities. The bivariate KS test is applied to the two
samples to test whether or not they are drawn from identical distributions.
I repeat this exercise for trajectories of lengths between one and forty years.
The parameterization of the system and the length of the time step are the
same as before.9

Table III displays the results. The first column gives the trajectory
lengths in years. The second and third columns display the bivariate KS
test statistic and the approximate p–value, respectively. From the results,
we can conclude that the two distribution functions become indistinguishable
after forty years. The approximation to the p–value becomes imprecise for
values above 0.2. However, given the large sample sizes, and the results from
table II, we can conclude with a high degree of confidence that the system
does in fact have a stationary density.

The length of time at which the transition densities appear to converge is
consistent with the behavior of the system reported in Andersen and Lund
(1997a). In order to simulate draws from the stationary density, Andersen
and Lund (1997a) ran the Euler simulator for approximately thirty-eight
years. The authors found that using longer trajectories had no significant
effects on their results. Their results are consistent with the finding here that
the distributions converge at trajectories of around forty years in length.10

To sum up, it is reasonable to conclude that, at the parameter values
considered here, the AL model is stable and has a stationary density. Both
of these features are prerequisites for the consistency of the BRSW estimator,
and we will make use of some of the results in table II in what follows. In the
next section, we turn to considering the behavior of the BRSW estimator in
finite samples.
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II Nonparametric Estimation

Assume that the term structure is determined by two state variables, the
short rate r and the volatility of the short rate σ:

drt = αr(rt, σt)dt + βr(rt, σt)dWr,t, (22)

dσt = ασ(rt, σt)dt + βσ(rt, σt)dWσ,t, (23)

where Wr,t and Wσ,t are independent Wiener processes, and suppose that
we observe data generated from these processes at discrete time intervals of
length ∆. The Euler method of the previous section is one way to relate our
discrete observations to the drift and diffusion functions of the continuous–
time processes. The Euler discretization for this system is given by:11

rt+1 − rt = αr∆ + βr

√
∆ηr,t+1, (24)

σt+1 − σt = ασ∆ + βσ

√
∆ησ,t+1, (25)

where, as before, ηr and ησ are independent standard normal deviates. It’s
easy to see that the observations in equations (24) and (25) satisfy the fol-
lowing relationships:

1

∆
E [rt+1 − rt|Ft] = αr + O(∆), (26)

1

∆
E [σt+1 − σt|Ft] = ασ + O(∆), (27)

1

∆
E

[
(rt+1 − rt)

2|Ft

]
= β2

r + O(∆), (28)

1

∆
E

[
(σt+1 − σt)

2|Ft

]
= β2

σ + O(∆), (29)

where O(∆) means terms for which it is true that lim∆→0
O(∆)

∆
< ∞, and

Ft denotes the information set at time t. The methodological innovation of
Boudoukh et al. (1998) is to note that, if we compute estimates of the first
and second conditional moments on the left hand sides of equations (26) -
(29), we will have estimates of the drift and diffusion functions accurate to
O(∆).

In order to estimate the conditional moments in equations (26)-(29) with
minimal a priori structure on the drift and diffusion functions, a kernel re-
gression method is used. First, we define a grid of interest rate and volatility
values at which to estimate the conditional moments. Then, at each grid
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value (ri, σj), the estimates of the conditional moments are computed as
follows:

E [ri,t+1 − ri,t|(ri, σj)] =
T−1∑
t=1

W (t)(rt+1 − rt) (30)

E [σi,t+1 − σi,t|(ri, σj)] =
T−1∑
t=1

W (t)(σt+1 − σt) (31)

E
[
(ri,t+1 − ri,t)2|(ri, σj)

]
=

T−1∑
t=1

W (t)(rt+1 − rt)2, and (32)

E
[
(ri,t+1 − ri,t)2|(ri, σj)

]
=

T−1∑
t=1

W (t)(σt+1 − σt)2, (33)

where W (t) is the Nadaraya–Watson product weight function:

W (t) =
Khi,j

(ri − rt)Khi,j
(σj − σt)

T∑
t=1

Khi,j
(ri − rt)Khi,j

(σj − σt)
, (34)

and

Khi,j
(x) =

1√
2π

e
− 1

2

(
x

hi,j

)2

(35)

is the Gaussian kernel, and i, j = 1, 2, . . . , N . The smoothing parameters
hi,j, or “bandwidths,” are the way one trades off bias against variance in
the fit. Large bandwidths reduce local variation, but increase bias. Small
bandwidths fit local phenomena, at the cost of increased variance.

Theoretic results for kernel regression estimators show that the optimal
bandwidths will be proportional to T− 1

6 . However, the constant of propor-
tionality is a complicated function of the joint density and its derivatives, the
function to be estimated and its derivatives, the bandwidths, and the prop-
erties of the kernel function. Since under the AL model the joint density
function is not known, it is not possible to derive a closed–form expression
for the optimal bandwidth. Instead, one must rely on numerical procedures.
I conduct a search over a grid of bandwidth values in order to arrive at
an optimal bandwidth for data generated by the AL model using the Euler
approximations.12 For the interest rate drift function, I search over scaling
factors φr = 1, 2, 4, 6, 8, 10, 12 for the bandwidth φrσ̂rT

− 1
6 that minimizes the

sum of squared errors (SSE), computed as the sum over the estimation grid
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of the squared deviations of the estimated surface from the true surface. For
the interest rate diffusion, I search over a 7× 7 grid of integer scaling factors
φr and φσ to find the bandwidth vector (φrσ̂r, φσσ̂σ)T− 1

6 that minimizes the
SSE. For the volatility process functions, I search for scaling factors in the
same way as for the interest rate functions. Table IV displays the optimal
scaling factors and the associated SSEs.

The results in table IV show that, for the drift functions, the more highly
autocorrelated interest rate data require relatively more smoothing. This
is because a wider bandwidth leads to more cancellation of biases, and the
biases tend to be more serious with more highly autocorrelated data, as will
be discussed shortly. The large SSE on ασ reflects a high degree of bias at
extreme values of σ. If along the volatility dimension the solution grid were
restricted to values in the range (−4.9,−6.8), for example, the SSE on ασ

would be two orders of magnitude smaller.13

In the following discussion, I report pointwise averages for fits of the drift
and diffusion functions over a 25 × 25 grid of equally–spaced values on the
square defined by14:

{(r, σ) : 0.02651 < r < 0.16731,−7.0 < σ < −4.6}. (36)

The pointwise averages are computed over 1000 simulations from the AL
model. The “true” functions are parameterized using the values shown in
table I in the previous section. The simulated data are drawn at a weekly
frequency, with twenty–five inter–week draws.15 Each trajectory is forty years
in length. I run off fifty years of data before drawing simulated values, in
view of the results from the previous section.16

Figures 1 and 2 display the fitted and true surfaces, as well as 95% point-
wise confidence surfaces, for the fits obtained using the bandwidth scaling
factors in table IV. In general, the fitted surfaces exhibit significant biases
near the boundaries of the data, but the sampling variances are so high that
the biases are likely to be irrelevant from the point of view of hypothesis
testing. Only in a few small regions do the true surfaces “break through”
the 95% confidence region. The quality of the fits is in general better for
the volatility process, reflecting the higher degree of mean reversion for this
process.

As discussed in Chapman and Pearson (1999), two effects induce bias in
the estimated surfaces. Near the boundaries of the data, the kernel function is
truncated, and since it is symmetric, this skews the weights toward the center
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of the data. This can have predictable effects on the estimates. Taking the
interest rate drift as an example, near the lower boundary of r, the weights
will be biased toward higher values of r where the observed drifts tend to
be less positive, or even negative. This biases the estimates near the lower
boundary downward. The opposite is true for high values of r. Similar
reasoning follows along the volatility dimension, because the volatility process
is also mean-reverting.

The second form of bias results from the correlation of the residuals with
the regressors near the edges of the data. The nonparametric regression
model for the drifts is given by:

rt+∆ − rt = αr + εr,t+∆ (37)

σt+∆ − σt = ασ + εσ,t+∆ (38)

where the ε·,t+∆ are disturbances. Unbiased estimation requires that:

E [εr,t+∆|rt, σt] = 0, and (39)

E [εσ,t+∆|rt, σt] = 0. (40)

Bias arises because, in fact, the nonparametric estimator works with a finite
data set for which (39) and (40) don’t necessarily hold at the boundaries of
the data. For example, at the data point where:

(rt, σt) = (rmax, σ), (41)

it must be the case that:

rt+∆ − rt ≤ rmax − rt. (42)

In other words, at the upper boundary of the observations on r, the residual
in equation (37) must be negative, and ceterus paribus this causes downward
bias in the point estimate of the drift function of the interest rate process.
Moreover, to the extent that the residuals εr and εσ are correlated, bias will
also be induced in the drift of the volatility process. This form of bias does
not affect the diffusion estimates, because the sign of (rt+∆ − rt)

2 is always
positive.

Returning to figures 1 and 2, we see that, for high interest rates, the in-
terest rate drift function estimate is biased upward, indicating that the effect
of truncation bias is dominant. The opposite pattern holds for the estimates
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of the volatility drift function. The estimates of the diffusion function of the
interest rate exhibit complicated patterns of bias, as illustrated in the lower
panel of figure 1. This is because the interest rate diffusion is a function of
both state variables, and in addition, the interest rate data are highly per-
sistent. The function is well estimated at the center of the data, but toward
the corners of the surface, significant biases are in evidence. Looking at the
lower panel of figure 2, we find that the surface is estimated with much less
bias.

It is useful to compute numerical measures of error, both for diagnostic
purposes and as a prelude to the test statistics used below. I compute three
error measures, based on the L1, L2 and L∞ norms. To “estimate” the L1

norm, I use the simple formula

L̂1 =
∑

i

∑
j

|f̂i,j − fi,j|, (43)

where i and j run over the solution grid, f̂i,j denotes the estimated function
value at (ri, σj), and fi,j denotes the true value.17 The L2 norm is similar,
except that we “integrate” the squared errors over the solution surface:

L̂2 =
∑

i

∑
j

(f̂i,j − fi,j)
2. (44)

Finally, inspired by the Kolmogorov–Smirnov test of the previous section, I
compute an estimate of the L∞ norm:

L̂∞ = max
i,j

|f̂i,j − fi,j|. (45)

Table V displays these error measures for the surfaces shown in figures 1 and
2.

Examining the results in table V, we see that the measures L̂1 and L̂2 are
driven by extreme errors. This can be deduced from the fact that the L̂∞
measure tends to be large relative to the L̂1 measure. The error measures
for βr and βσ underscore the success of the kernel method for estimating
diffusion functions. In both cases, the L̂1 and L̂2 measures are at least an
order of magnitude smaller than the corresponding measures on the drift
functions. The relatively large values of the error measures on ασ highlights
the influence of the choice of the solution set on the estimator, noted earlier.

The inefficiency of the estimator can be measured by integrating the re-
gion between the upper and lower 95% confidence surfaces. The measure
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that I compute is given by:

EFF =
∑

i

∑
j

(f̂
(+)
i,j − f

(−)
i,j ), (46)

where f̂ (+) denotes a point on the upper surface, and f̂ (−) on the lower
surface. Thus, a larger value for EFF indicates greater inefficiency, the con-
fidence surfaces being farther apart. Table VI displays the calculations for
the surfaces in figures 1 and 2. The inefficiency measures in table VI are
primarily useful for comparisons between estimators. I defer a discussion of
these results until the next section, where I consider the performance of the
BRSW estimator when the model is misspecified.

III Misspecification

The estimates in the previous section were computed for the unrealistic case
where we assumed a priori knowledge of the arguments to the drift and
diffusion functions, and could thus use the correct conditioning variables in
the kernel regressions. In other words, we estimated the following system:

drt = αr(rt)dt + βr(rt, σt)dWr,t (47)

dσt = ασ(σt)dt + βσdWσ,t, (48)

in which all the arguments coincide with the arguments of the corresponding
functions in the AL model.

Suppose we were to estimate the more general system in (22)-(23). In this
case, the drift functions and the diffusion function of the volatility process
are misspecified. The drift function for the interest rate process depends
only on the level of the interest rate, as shown in (47), but under the more
general model we will condition on the levels of the interest rate and volatility.
Similarly, for the volatility drift, we’ll condition on both state variables when
in fact the drift only depends on the level of volatility, as shown in (48). The
volatility diffusion will be highly misspecified. For this function, we condition
on both state variables when in fact the diffusion is constant. It is interesting
to look at how these forms of misspecification affect the estimator.

Figures 3 and 4 display the various estimated surfaces. Introducing ir-
relevant conditioning variables introduces additional biases in the estimates
due to the correlations in the residuals at the data boundaries, as discussed
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above. Starting with the top panel of figure 3, the surface has a distinct
slope along the volatility dimension for high values of r. For low values of
r, the surface also has a non–zero slope along the σ axis, although it is less
pronounced.

Comparing the top panel of figure 4 to the top panel of figure 2, we
see that for the volatility drift, the irrelevant conditioning information leads
mainly to a loss of efficiency. There is only slight evidence of increased bias.
The results for the volatility diffusion function are similar.

Table VII shows the error measures for the correct and misspecified fits.
In general, the errors increase, although there are some important excep-
tions. For αr, both the L̂1 and L̂2 measures improve under the misspecified
model, showing that the introduction of the irrelevant conditioning variable
facilitated additional bias cancellations. The diffusion function βr is correctly
specified under both models and thus the error measures don’t change. For
the volatility process, the irrelevant conditioning information significantly
worsens the fit for both the drift and diffusion functions. In sum, the re-
sults here and above show that irrelevant conditioning information has an
ambiguous effect on the magnitude and sign of bias.

As we would expect, the inclusion of irrelevant conditioning variables
results in greater inefficiency. Table VIII displays the inefficiency measure
given by equation (46) for the misspecified model. Comparing these values
to the values in table VI, we see that the value of EFF is in general greater
under the misspecified model. The efficiency loss is greatest for the volatility
diffusion, where we have introduced two irrelevant variables. The value of
EFF jumps from 54.4 to 90.0. The value of EFF for βr doesn’t change because
in both cases we’ve estimated the function with both conditioning variables.

The main points to take away from the results of this section and the
previous section are that the kernel regression estimator has significant finite
sample biases, but that the variance of the estimator is high enough that
there is reason to doubt that the biases are relevant for hypothesis testing.
In a real–data situation, of course, one can’t know the sampling variance,
or the degree of bias in the estimator. In light of these facts, a question
that plays to the strengths of the kernel estimator is to ask if the estimator
produces estimates of the drift and diffusion functions that are statistically
distinguishable from a known parametric estimator. In other words, does the
more general kernel estimator “pick up” anything in the data that the para-
metric estimator might be missing? In this context, Monte Carlo methods
can be used to bootstrap the finite–sample distributions of statistics based
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on the nonparametric estimator.

IV Hypothesis Tests

In this section, I use Treasury bill data to test the hypothesis that the BRSW
estimator produces estimated surfaces that are statistically indistinguishable
from the surfaces implied by the estimates in table I. The test proceeds in
two stages. First, the quantiles of three different test statistics for the BRSW
estimator are bootstrapped under the null hypothesis that the AL model is
the true data generating process. Second, the BRSW estimator is applied to
the Treasury data, and the values of the test statistics are computed. Finally,
the values of the test statistics computed for the Treasury data are compared
to the bootstrapped quantiles.

The Treasury data used to proxy the riskless short rate are the same
data that are used by Andersen and Lund (1997a). I use the three-month
Treasury–bill yield, at weekly (Wednesday) frequency from 1962-1999.18 The
data are obtained from the H.15 release of the Federal Reserve System. I
convert the series from a bank discount basis to an investment basis prior to
analysis, and Tuesday values are substituted for Wednesday values when the
Wednesday value is missing.

I also make use of data on the slope of the term structure. The data used
to form the slope of the term structure are the same data used in Boudoukh
et al. (1998). I use the yields on Treasury securities at constant, ten–year
maturities, again from the H.15 release. The slope of the term structure is
computed as the difference between the ten–year rate and the three–month
rate.

The slope of the term structure is used in the estimation procedure be-
cause the volatility process is not directly observable. Estimates of the volatil-
ities are obtained by first fitting the level and slope data using the BRSW
estimator, and using the estimates of the interest rate diffusion function from
this first stage to compute the implied volatilities. The three–month rates
and implied volatilities are used in the estimation of the functions of the
“true” processes.19 In the first stage, I estimate βr(rt, St) from the following
system:

drt = αr(rt, St)dt + βr(rt, St)dWr,t (49)

dSt = αS(rt, St)dt + βS(rt, St)dWS,t, (50)
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where St is the slope of the term structure at time t. The estimate β̂r(r, S)
is then used to infer the volatility process observations. An observation st is
obtained by plugging in (interpolating where necessary) the observed values
(rt, St) to obtain β̂r(rt, St) = st.

20 Finally, to make the volatility process
consistent with the AL model, I make the transformation σt = ln(s2

t /rt).
The series of implied σ values has the same unconditional mean as the

volatility process estimated by Andersen and Lund (1997a). The estimated
unconditional mean for the AL model is reported in table I as −6.3599.
The unconditional mean of the volatility values inferred using the BRSW
estimator and observations on the level and slope of the term structure is
−6.3557. It is reassuring that two estimators agree on this parameter.

Using the Monte Carlo methods of the previous section, I bootstrap the
distribution of three different statistics, under the null hypothesis that the AL
model is the “true” data generating process. The test statistics are the mean
squared error (MSE), mean absolute error (MAE) and maximum absolute
deviation (MAD), defined as follows:

MSE =
δ(r, σ)

N2
L̂2 (51)

MAE =
δ(r, σ)

N2
L̂1 (52)

MAD = δ(r, σ)L̂∞, (53)

where L̂1, L̂2 and L̂∞ are defined in equations (43)-(45) in the previous
section, and δ(r, σ) is a “trimming function” used to reduce the effect of
boundary biases on the statistics. I used δ(·) to trim the solution grid to a
21 × 21 square, thus removing the outer two rings of data. The quantiles
of the statistics are found by compiling the values of the statistics for 1,000
simulated draws from the AL model using the Euler method of the previous
section. Table IX displays the 90% and 95% quantiles for the three statistics.

If the null hypothesis is true, when we apply the BRSW estimator to the
Treasury data and compute the statistics on the resulting estimated surfaces,
we should obtain values for the statistics that fall into the middle of the
bootstrapped distributions. If the null hypothesis is false, the statistics will
fall into the upper tails of the distributions, and we can conclude that the
kernel estimator is “picking up” something in the data that is missed by the
parametric estimator.

The distributions of the test statistics are computed under the misspec-
ified model; this allows the for the best chance of picking up something in
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the data that the parametric model might miss. For each function and each
statistic, I search over an 18 × 18 grid for the pair of integer scaling values
(φr, φσ) that produce bandwidths (φrσ̂r,φσσ̂σ)T− 1

6 that minimize the statis-
tic in question. This approach finds the bandwidth values that minimize
the statistics for the model that maximizes the likelihood of finding signifi-
cant differences between the nonparametric and parametric estimates. The
statistic–minimizing bandwidths are shown in table X. Figures 5 and 6 dis-
play the fitted surfaces for the bandwidth values that minimize the MSE
criterion, as well as the surfaces under the AL model.

The observed statistics are displayed in table XI. Except for the inter-
est rate drift function, the null hypothesis is rejected at the 95% level for
each function and statistic. For the interest rate drift function (αr), the

90th quantiles are 0.000048, 0.0057 and 0.013 for the MSE, MAE, and MAD
statistics, respectively. From table XI, we see that the observed statistics
are 0.000033, 0.0049, and 0.0089, respectively – all less than the associated
quantile values and thus within the 90% acceptance region. For the interest
rate diffusion (βr), we see that the observed statistic values are greater than
the 95% quantiles for each statistic, indicating rejection of the hypothesis
that the Treasury data are drawn from the distribution implied by the AL
model. Similarly, the observed statistics for the volatility process functions
(ασ and βσ) indicate rejection of the null hypothesis.

In sum, the results support the conclusion that the Treasury data are
not generated by the AL model. However, the results do not support the
conclusion of nonlinearities in the interest rate drift function. The results
indicate that the interest rate diffusion and the volatility process drift and
diffusion functions exhibit nonlinearities that are not captured by the AL
model.

It is important to emphasize that these hypothesis test results are robust
against any residual kernel biases that may be present in the estimates, be-
cause we have bootstrapped the finite sample distributions of the statistics
under the null hypothesis that the parametric model is the true data generat-
ing process. The quantiles that are reported in table IX are thus “corrected”
for kernel bias by the bootstrap.
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V Conclusion

In this essay, I used Monte Carlo simulations from the Andersen and Lund
(1997a) stochastic volatility model of interest rates to study the finite sample
properties of the BRSW estimator. The estimator exhibited complicated
patterns of bias and a high sampling variance. The introduction of irrelevant
conditioning information resulted in increased inefficiency in all cases, and
increased bias in most cases. I tested whether the BRSW estimates were
statistically distinguishable from the parametric estimates, and found that
the BRSW estimator indeed appeared to be picking up dynamics in the data
that the parametric estimator missed.

As part of this research, I worked out a method to test whether or not a
system of stochastic differential equations is stationary. The algorithm that
I used for performing the test involved the first–order Euler discretization
scheme for simulating trajectories from the model, and an extension of the
Kolmogorov–Smirnov test. As mentioned earlier, it would be useful to ex-
tend the bivariate Kolmogorov–Smirnov test to the case of k–samples. It is
possible that the k–sample generalization can be derived much the same way
that the univariate k–sample KS test is derived from its two sample ana-
logue. While the full k–sample bivariate statistic would be computationally
burdensome to calculate, the wide range of applications for which it would
be useful would seem to justify its development.

In the econometrics literature, and in the research pipeline, there are
many different estimators for the drift and diffusion functions of continuous
time stochastic processes. For example, one can turn to the efficient method
of moments estimator of Gallant and Tauchen (1996) or the simulated like-
lihood method of Brandt and Santa–Clara (1999). It would be useful to
compare the finite sample properties of these estimators against a common
benchmark, such as the maximum likelihood estimator for a model in which
the transition densities are known in closed form. To date, little work has
been done to understand the relative performance of the different estimators.
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Appendix

Kernel regression, particularly in multiple dimensions, is necessarily a compu-
tationally intensive procedure. However, a parallel computer can make short
work of even fairly large problems, because kernel regression lends itself eas-
ily to parallelization. In this appendix, I discuss a very simple algorithm that
I’ve developed for doing kernel regression on a parallel computer.

In two dimensions, kernel regression using the Nadaraya-Watson estima-
tor essentially boils down to computing the following formula repeatedly over
a grid of solution points:

f̂(xi, yj) =
T∑

t=1

W (t)g(xt, yt; xi, yj), (54)

where W (t) is the weighting function from equation (34) in the body of the
paper, and g(·) is a known function of the data and the solution point. We
compute this equation for {xi, yj}N

i,j=1.
A naive parallel algorithm for this problem is to simply break up the

solution grid into chunks, and to assign the chunks to the available processors.
This algorithm is in general inefficient unless one also works out an algorithm
for balancing the load across the processors, which is a difficult problem,
particularly on a shared machine. A more efficient approach is to rely on
the operating system for load balancing, and to assign small bits of the task
(single grid points) to lightweight processes for execution. The bit of pseudo–
code below shows how I implemented such an algorithm using the pthreads
library on a Sun workstation running the Sun Solaris 2.6 operating system.

The outer while loop checks the completion condition, where the size of
the problem is given by the parameter n = N . The if–statement inside the
while loop ensures that a limited number of threads are running at one time,
where the maximum number of threads is given by nt. This mechanism
prevents the program from loading the machine with so many lightweight
processes that they begin to compete with one another for resources, de-
grading performance. When the limit nt is reached, the algorithm waits for
threads to join (terminate), and then fires off more threads as needed. The
routine Kernel Thread is the routine in which the actual computations are
done.
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i = 0;
count = 0;
while ( i < n ) {

if ( count < nt ) {
if ( pthread_create((pthread_t *) &thread_id,

(pthread_attr_t *) &thread_attributes,
Kernel_Thread,
(void *) (thread_data + i)) ) {

perror("pthread_create");
return;

}
count++;
i++;

} else {
thr_join((thread_t) 0,

(thread_t *) &thread_id,
(void **) NULL);

count--;
}

}
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The algorithm is efficient, driving a Sun Ultrasparc with three processors
to around 80% of maximum efficiency in terms of cpu utilization. Over a so-
lution grid with 144 points, using 2,080 data points, the algorithm computed
4,000 iterations of the BRSW estimator for the AL model in approximately
eleven minutes. When the number of data points was increased to 208,000,
the program drove the machine to nearly maximum efficiency, and ran in one
hour, forty minutes.
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Footnotes

1. In what follows, I refer to the the Boudoukh et al. (1998) estimator for
multifactor models as the “BRSW estimator.”

2. The Ait–Sahalia (1996) estimator is difficult to adapt to multivariate
models, so I do not consider it here.

3. One can verify that (6)-(7) are equivalent to (1)-(2) using Ito’s Lemma
and the transformation σ̂t = log σ2

t . In equations (6)-(7), I have omitted
the ‘ˆ’ symbol on σt for notational brevity.

4. It is important to keep in mind our maintained hypothesis that the
system has a unique solution. We might conclude that the system is
stationary, but if our maintained hypothesis is in error, the transition
densities could be converging to the stationary density of a different
system! This is similar to the problems that can arise when solving
a partial differential equation with a finite difference algorithm that
is inconsistent. However, as we’ll see below, the transition densities
appear to converge, and there is no evidence of convergence to the
“wrong” density.

5. In private communications, the authors indicated that the parameters
reported in Andersen and Lund (1997a) reflect rescalings of the diffu-
sion function. The parameter values in table I are from Andersen and
Lund (1997b), in which the authors correct the values for the rescal-
ing. In tests similar to those reported here, I found that the system
was borderline stationary, perhaps even nonstationary, at the values
actually published in Andersen and Lund (1997a).

6. The standard deviations are reported at zero due to rounding. In reality
they are on the order of 10−14. The tight standard deviations reflect
the use of the antithetic variance reduction technique.

7. Unlike the standard one dimensional KS test statistic, the bivariate
statistic is slightly distribution–dependent. In future work, I plan to
study the test statistic a little more closely. For more information on
the test statistic, see the paper cited in the text and Press, Teukolsky,
Vetterling and Flannery (1994).
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8. Picking points farther out in the tails of the distribution will bias the
test toward finding convergence at longer trajectories. On the other
hand, from the results in table II, we can make some assessment of the
probability of observing the points that are chosen for the test. One
should pick points far enough out in the tails so that the probability of
observing points that could generate different results is very low, but
not so far out that the test becomes computationally infeasible.

9. It would be useful to have a k–sample bivariate Kolmogorov–Smirnov
test, with which one could simultaneously test the convergence of bi-
variate transition densities defined by a surface of k starting points. To
my knowledge, no such test has been developed.

10. It’s unclear how the efficient method of moments estimator used in An-
dersen and Lund (1997a), or other simulation estimators, are affected
when the first draws of simulated trajectories are not drawn from the
stationary density of the process. To my knowledge, a formal study of
the issue has not been completed. In related work, Brandt and Santa–
Clara (1999) report that fixing the first observation has little effect on
the simulated maximum likelihood estimator that they develop, but the
extent to which this finding generalizes to other estimators is unknown.
Of course, the effects must be limited in a large sample, simply because
the effect of any single observation on the likelihood function will be
limited. In the main, it is a small sample issue.

11. When no confusion will arise, in what follows I omit the arguments to
the drift and diffusion functions. They are to be understood.

12. The cross-validation approach to bandwidth selection is not useful for
highly autocorrelated data. See Härdle (1990) for a short discussion,
and Pritsker (1998) for a more in–depth discussion of the problems.

13. The solution grid was chosen to be consistent with the hypothesis tests
in section four.

14. The set of valid (r, σ) values is defined by the observed Treasury bill
data in section four. The set contains all of the observed data points.

15. The inter-week draws ensure that, during the simulations, the dis-
cretized process for the interest rate never takes on negative values.

28



In addition, with the inter–week draws, the data are simulated at a de-
gree of accuracy that is greater than the accuracy of the nonparametric
estimator. Thus, the accuracy of the weak solution does not bound the
accuracy of the estimator.

16. A parallel kernel estimator is used in order to manage the computa-
tional load. The parallel kernel estimator is discussed in the appendix.

17. To be precise, one ought to compute the L1 norm using a quadrature
integration method or the like, especially if the function surfaces ex-
hibit radical gradients. Because our surfaces are very well–behaved,
the simple formulas used here suffice for our purposes.

18. Andersen and Lund (1997a) use data for the period from 1954-1995; in
all other respects the series are the same.

19. See Duffie and Kan (1996) for a discussion.

20. To estimate the interest rate diffusion, I used bandwidths (σ̂r, σ̂σ)T− 1
6

= (7.384985e−03, 3.579158e−03), where the σ̂ symbols denote sample
standard deviations.
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Table I: Parameter Values

This table lists the parameter values used in the Monte Carlo simulations through-
out the paper. The parameters are taken from Andersen and Lund (1997b). The
stochastic system is given by:

drt = κ1(µ − rt)dt + σt
√

rtdW1,t

d log σ2
t = κ2(θ − log σ2

t )dt + ξdW2,t

Parameter Value
κ1 0.1633
µ 0.0595
κ2 1.0397
θ -6.3599
ξ 1.2719

30



Table II: Simulation Results

This table reports the results of Monte Carlo simulations to generate moments of the
transition densities of the AL model. From each of 25 different starting points, 1,000
batches of 100 trajectories are simulated. The last point of each trajectory is saved,
forming a batch of 100 draws from the transition density defined by the starting point and
the length of the trajectory. The mean and variance of each batch of saved points is then
computed. At the end of a run, the procedure produces 1,000 independent draws of the
first two moments of each of the 25 transition densities. Eight such runs are completed,
the first with trajectories one year in length, the second with five year trajectories, and
so on for ten, twenty, thirty, forty, fifty, and finally sixty year trajectories. In the table,
the ’Mean’ columns show the average over the 25 densities of the moment in question,
and the ’Std Dev’ columns show the dispersion of this moment over the 25 densities. The
’Min’ and ’Max’ columns show the minimums and maximums of each moment over the 25
densities, respectively.

Moment Mean Std Dev Min Max Moment Mean Std Dev Min Max
E[r1] 0.0769 0.0420 0.0163 0.1401 Var[r1] 0.0002 0.0001 0.0000 0.0011
E[r5] 0.0685 0.0218 0.0353 0.1050 Var[r5] 0.0004 0.0002 0.0000 0.0020
E[r10] 0.0634 0.0097 0.0462 0.0830 Var[r10] 0.0005 0.0001 0.0001 0.0018
E[r20] 0.0602 0.0022 0.0529 0.0682 Var[r20] 0.0004 0.0001 0.0001 0.0019
E[r30] 0.0596 0.0013 0.0547 0.0658 Var[r30] 0.0004 0.0001 0.0002 0.0016
E[r40] 0.0595 0.0012 0.0547 0.0647 Var[r40] 0.0004 0.0001 0.0001 0.0016
E[r50] 0.0594 0.0012 0.0549 0.0651 Var[r50] 0.0004 0.0001 0.0001 0.0015
E[r60] 0.0594 0.0012 0.0547 0.0651 Var[r60] 0.0004 0.0001 0.0001 0.0016
E[σ1] -6.2339 0.2473 -6.5838 -5.8841 Var[σ1] 0.6971 0.1399 0.2701 1.4404
E[σ5] -6.3580 0.0037 -6.3632 -6.3527 Var[σ5] 0.7932 0.1590 0.2567 1.6098
E[σ10] -6.3598 0.0000 -6.3599 -6.3598 Var[σ10] 0.7936 0.1596 0.3470 1.5934
E[σ20] -6.3599 0 -6.3599 -6.3599 Var[σ20] 0.7945 0.1591 0.2875 1.5405
E[σ30] -6.3599 0 -6.3599 -6.3599 Var[σ30] 0.7950 0.1589 0.2838 1.6439
E[σ40] -6.3599 0 -6.3599 -6.3599 Var[σ40] 0.7942 0.1589 0.2723 1.6174
E[σ50] -6.3599 0 -6.3599 -6.3599 Var[σ50] 0.7950 0.1597 0.3147 1.5621
E[σ60] -6.3599 0 -6.3599 -6.3599 Var[σ60] 0.7934 0.1593 0.3054 1.5795
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Table III: Bivariate KS Test Results

This table displays the results of the bivariate Kolmogorov-Smirnov test for
convergence in distribution of the transition densities of the AL system. Two
transition densities are tested for convergence. The densities are defined by
starting points that are two standard deviations away from the long–run
means of each process, and about four standard deviations away from one
another, and by the length of the trajectories. The first column displays the
length of the trajectories, the second column shows the test statistic, and the
final column shows the p–Value.

Years KS p–Value
1 0.9991 0.0000
5 0.8735 0.0000
10 0.4928 0.0000
20 0.1061 0.0000
30 0.0240 0.0012
40 0.0100 0.5327
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Table IV: Scaling Factors and Sum of Squared Errors

This table reports the results of a grid search for the optimal scaling factors on
the bandwidths of the kernel estimator for each function of the system. The
first column lists the function, and the second and third columns display the
relevant scaling factors that minimized the sum–of–squared error criterion.
The final column displays the resulting SSE value.

Function φr φσ SSE
αr 6.0 – 0.00273
βr 2.0 1.0 0.00277
ασ – 1.0 0.14943
βσ – 2.0 0.00829
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Table V: Error Measures

This table reports measures of error in fit for the kernel estimates displayed
in figures 1 and 2. The error measures are defined as:

L̂1 =
∑

i

∑
j

|f̂i,j − fi,j|,

L̂2 =
∑

i

∑
j

(f̂i,j − fi,j)
2,

L̂∞ = max
i,j

|f̂i,j − fi,j|,

where f̂i,j denotes the kernel estimate at point i, j on the solution grid, and
f denotes the true value.

Function L̂1 L̂2 L̂∞
αr 1.744913e-02 2.799722e+00 9.110867e-03
βr 4.321830e-03 9.906933e-01 1.201149e-02
ασ 4.221677e-01 1.005452e+01 1.003910e-01
βσ 9.791103e-03 2.473750e+00 3.958000e-03
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Table VI: Inefficiency Measure

This table reports the value of an inefficiency measure for the estimates
displayed in figures 1 and 2. The inefficiency measure is defined as:

EFF =
∑

i

∑
j

(f̂
(+)
i,j − f̂

(−)
i,j ),

where f̂
(+)
i,j denotes the upper 95% confidence value at point (ri, σj) on the

solution surface, and f̂
(−)
i,j denotes the lower 95% value.

Function EFF
αr 6.56
βr 9.06
ασ 1068.59
βσ 54.44
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Table VII: Error Measures under Misspecification

This table reports measures of error in fit for the kernel estimates displayed
in figures 3 and 4. The error measures are defined as:

L̂1 =
∑

i

∑
j

|f̂i,j − fi,j|,

L̂2 =
∑

i

∑
j

(f̂i,j − fi,j)
2,

L̂∞ = max
i,j

|f̂i,j − fi,j|,

where f̂i,j denotes the kernel estimate at point i, j on the solution grid, and
f denotes the true value.

Function L̂1 L̂2 L̂∞
αr 1.718060e-02 2.773228e+00 9.949927e-03
βr 4.321830e-03 9.906933e-01 1.201149e-02
ασ 5.777287e-01 1.257005e+01 1.707380e-01
βσ 3.256718e-02 4.120876e+00 1.014200e-02
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Table VIII: Inefficiency Measure under Misspecification

This table reports the value of an inefficiency measure for the estimates
displayed in figures 3 and 4. The inefficiency measure is defined as:

EFF =
∑

i

∑
j

(f̂
(+)
i,j − f̂

(−)
i,j ),

where f̂
(+)
i,j denotes the upper 95% confidence value at point (ri, σj) on the

solution surface, and f̂
(−)
i,j denotes the lower 95% value.

Function EFF
αr 6.67
βr 9.06
ασ 1201.86
βσ 90.09
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Table IX: Bootstrapped Quantiles

This table reports the bootstrapped quantiles of three different statistics,
computed under the null hypothesis that the AL model is the “true” data
generating process. The test statistics are the mean absolute error (MAE),
mean squared error (MSE), and maximum absolute deviation (MAD), de-
fined as follows:

MAE =
δ(r, σ)

N2
L̂1 (55)

MSE =
δ(r, σ)

N2
L̂2 (56)

MAD = δ(r, σ)L̂∞, (57)

where L̂1, L̂2 and L̂∞ are defined as:

L̂1 =
∑

i

∑
j

|f̂i,j − fi,j|,

L̂2 =
∑

i

∑
j

(f̂i,j − fi,j)
2,

L̂∞ = max
i,j

|f̂i,j − fi,j|,

where f̂i,j denotes the kernel estimate at point i, j on the solution grid, and
f denotes the true value. The function δ(r, σ) is a “trimming function” used
to reduce the effect of boundary biases on the statistics. I used δ(·) to trim
the solution grid to a 21 × 21 square, thus removing the outer two rings of
data. The quantiles of the statistics are found by compiling the values of
the statistics for 1,000 simulated draws from the AL model using the Euler
method.

95th Quantiles 90th Quantiles
Function MSE MAE MAD Function MSE MAE MAD
αr 0.000054 0.006009 0.013931 αr 0.000048 0.005736 0.013033
βr 0.000034 0.003841 0.020105 βr 0.000027 0.003423 0.018463
ασ 1.305474 0.406894 1.453917 ασ 1.128532 0.355319 1.193143
βσ 0.001622 0.040272 0.042565 βσ 0.001057 0.032504 0.035641
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Table X: Bandwidth Scalings for Observed Statistic Values

This table reports the bandwidth scalings for the kernel estimates based on
Treasury data. For each function and each statistic, I search over an 18× 18
grid for the pair of integer scaling values (φr, φσ) that produce bandwidths

(φrσ̂r, φσσ̂σ)T− 1
6 that minimize the statistic in question. This approach finds

the bandwidth values that minimize the statistic that maximizes the prob-
ability of finding significant differences between the BRSW and EMM esti-
mators.

MSE MAE MAD
Function φr φσ φr φσ φr φσ

αr 4.0 12.0 4.0 12.0 4.0 12.0
βr 1.0 1.0 2.0 1.0 1.0 12.0
ασ 1.0 10.0 1.0 12.0 12.0 1.0
βσ 6.0 8.0 6.0 6.0 12.0 12.0
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Table XI: Observed Statistic Values

This table reports statistic values computed on Treasury data. The statistics
are defined as:

MAE =
δ(r, σ)

N2
L̂1 (58)

MSE =
δ(r, σ)

N2
L̂2 (59)

MAD = δ(r, σ)L̂∞, (60)

where L̂1, L̂2 and L̂∞ are defined as:

L̂1 =
∑

i

∑
j

|f̂i,j − fi,j|,

L̂2 =
∑

i

∑
j

(f̂i,j − fi,j)
2,

L̂∞ = max
i,j

|f̂i,j − fi,j|,

where f̂i,j denotes the kernel estimate at point i, j on the solution grid, and
f denotes the value implied by the AL model. The function δ(r, σ) is a
“trimming function” used to reduce the effect of boundary biases on the
statistics. I used δ(·) to trim the solution grid to a 21 × 21 square, thus
removing the outer two rings of data. The bootstrapped quantiles of the
statistics are displayed in table IX.

Function MSE MAE MAD
αr 0.000033 0.004941 0.008971
βr 0.004405 0.041261 0.204983
ασ 10.724300 2.713032 5.731216
βσ 0.031650 0.150124 0.318428
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Figure 1: Estimates for Interest Rate Process
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Figure 2: Estimates for Volatility Process
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Figure 3: Estimates for Misspecified Interest Rate Process
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Figure 4: Estimates for Misspecified Volatility Process
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Figure 5: Interest Rate Process

Interest Rate Drift

parametric

0.05

0.1

0.15
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

r

sigma

kernel

Interest Rate Diffusion

parametric

0.05

0.1

0.15
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

r

sigma

kernel

45



Figure 6: Volatility Process
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