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1.  INTRODUCTION 

It is a well-known fact that continuous time stochastic processes cannot, in general, be

inferred from (evenly-spaced) discretely sampled data.  In recent years, however, there has been a

resurgence of interest in this class of identification problems.  Such research has been spurred by a

desire to estimate stochastic differential equations describing the dynamics of asset prices and

interest rates  (e.g., Lo (1988), Ait-Sahalia (1996a,b), Anderson and Lund (1997), Stanton

(1997)).  Theoretical developments, such as Hansen and Scheinkman’s (1995) extension of the

Generalized Method of Moments to continuous time models have had to rely on strong

assumptions in order to deal with the aliasing problem.  Duffie and Singleton (1993) and Gallant

and Tauchen (1996) devise simulation-based estimation methods with similar stipulations.

The vast majority of models of asset price dynamics, models of the term structure of

interest rates and derivative pricing formulae are based on the assumption of an underlying

continuous time process.  However, conclusions regarding the empirical relevance of such models

are reached via estimation and evaluation methods which use discrete data.  The relationship

between the theoretical model and estimated model is thus of paramount importance in

interpreting empirical results.

In the present paper, we approach the identification problem in a novel way.  The

distribution of the observed stochastic process is expressed as the underlying true distribution, f,

transformed by some operator, T.  Using a generalization of the Taylor series expansion, the

transformed function TBf can often be expressed as a linear combination of the original function f. 

By combining the information across a large number of such transformations, the original

measurable function of interest can be recovered.

This approach substantially widens the class of identifiable models relative to Hansen and

Sargent (1983), Hansen and Scheinkman (1995), and Hansen, Scheinkman and Touzi (1998).  For

example, in the context of diffusion models, we show that the infinitesimal generator that

characterizes local dynamic behavior can be arbitrarily well approximated by linear combinations

of conditional expectations operators.

An alternative way to view our approach is that we combine the information

corresponding to different sampling rates to approximate the true model arbitrarily well.  Section
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It is easy to see why the formula bears this alternative name.  The matrix exponential of a1

matrix A is defined as

by, for example, Coddington and Levinson (1955, p.64).
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(1)

2 describes the basic mathematical framework.  Section 3 presents some illustrative stochastic

processes of interest. Section 4 concludes.

2. THE EXPONENTIAL FORMULA

Consider a semigroup of operators indexed by h, T , from C[0,4) to C[0,4).  Assume thath

T  is continuous in the sense that T  = I and T  6 I, as h 6 0 (from the right), where I is theh 0 h

identity operator.

A remarkable result due to Hille and Phillips (1957) is the generalized Taylor formula,

where f is any bounded continuous function on [0,4), A =  is the infinitesimal

generator and A B f is r-th iterated application of A to f.  As usual, the notation A  should be takenr 0

to mean the identity operator.  The convergence in (1) is uniform in h. This expansion, also

referred to as the exponential formula of semi group theory, does not require differentiability.  1

Moreover, it defines expansions of not just functions but very general families of operators.  

The importance of the exponential formula is that it expresses a transformation of a given

measurable function as a linear combination of the original untransformed function.  The

particular measurable functions of interest to us may be random variables, their distributions or

other statistics of interest.  In many circumstances such as temporal aggregation, the

econometrician can only observe some transformation of the random variable(s) of interest.

A leading example is estimation of stochastic differential equations describing the

dynamics of interest rates  (e.g., Lo (1988), Anderson and Lund (1997), Ait-Sahalia (1996a,b)

and Stanton (1997)).  Since continuous data is not available, discretization (aggregation)
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complicates classical estimation procedures.  The transition densities associated with discrete

observations depend on the drift and diffusion functions in generally unknown ways.  The

underlying stochastic process cannot generally be inferred from the conditional expectations

operators associated with discrete data.  

The utility of equation (1) is that in many cases deformations of the underlying process can

be expressed as linear functions of the true underlying process. The expansion cannot be

“inverted” in the sense that exp(Af) does not generally identify Af.  However, in this article we

discuss a method of combining the information in sets of expansions which is sufficient to

approximate Af arbitrarily well. 

In particular, we can use the generalized Taylor series to write,

for any multiple of h.  Inspection of the expansions in (2) suggests that it might be possible to

combine the information across expansions to recover the leading term, f. 

In the next proposition, we show that this is indeed the case.  Moreover, it will become

apparent that any desired term in the expansion can be recovered by similar methods.  It will turn

out that in many cases the second term of the expansion, Af,  will be of particular interest.  The

infinitesimal generator, when it exists, describes the local behavior of stochastic processes.

As an illustration, consider the first order linear combination, 

2T Bf - T Bf = f - h A Bf.  This combination yields an estimate of f with error of sizeh 2h
2 2 

h A Bf.  We would like to establish a method of approximating f such that the error term can be2 2 

made arbitrarily small.

Since it should cause no confusion, we will use operator notation and suppress

dependence on the test function, f.  For example, we would write (1) more compactly as T  = 3h

h /r! A .r r

Before proceeding, we will need to make following assumption.
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The weights, w , can also be calculated by combinatoric methods.  In particular, w (k) is2
i i

given by , a formula that arises naturally in the context of iterated bootstrap bias

correction (e.g., Hall (1992)).  
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ASSUMPTION A1: The operator T  is a weak contraction.  That is, ||T Bf || # ||f|| for all f0ü , theh h
2

space of square integrable measurable functions.  In operator notation, ||T ||#1 by which we meanh

that ||TBf|| # ||f|| for =1.

The contraction property is not overly restrictive in probabilistic contexts.  For example,

consider convolution operators

where F (y) is a given family of distribution functions indexed by h.  It is known that convolutionh

operators are weak contractions (e.g., Feller (1971), p. 257).  For our purposes, leading examples

include the expectations operator and the translation operator.

Without loss of generality let h=1. Let w(k) be the k-vector that solves the linear

equations implied by k of the expansion in equation (2),

It should be clear that w(k) depends on the order, k, so we will suppress this dependence for

notational simplicity. By construction, the linear combination  = I + n(k) A /k!  k

where n(k) = .    This leads us to the following identification result.2

PROPOSITION 1: Under assumption A1, the function f can be approximated to within any desired
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accuracy by linear combinations of {T :h>0} in the sense that  in the L  norm.h
2

PROOF:

As indicated, the linear combination I + n(k)/k! A . We will proceed byk

showing that | n(k)/k!| =O(1) and that ||A || 6 0.  Combined these two results, the Cauchy-k

Schwartz inequality implies that || n(k)/k! A || # || n(k)/k!|| ||A || 6 0.k k

First consider the asymptotic behavior of n(k)/k! which is given by

where we have used the fact that k  /k! is approximately exp(k) for large k. It is easy to show thatk

as k 6 4, w (k)6 0,æ i<k but equals ±1 for i/k so that n(k) = ±1.i

Now it remains to consider lim ||A ||.  It is straightforward to show that the weakk

contraction property of T  implies that A is itself a contraction.  In particular, for any h>0 h

||exp[h (TBf-f)]|| = ||exp[h TBf  - h f ]|| # exp|| h TBf  - h f || # exp(I) by the contraction-1 -1 -1 -1 -1
h h h

property (see discussion in Feller (1971), p.353).  Thus ||A||6 0 as k 6 4 and the result follows byk 

Hölder’s inequality since ||A || # ||A|| 6 0.k k 
 þ

 

Proposition 1 establishes conditions under which the leading term in the exponential

formula can be recovered.  Consider next approximation of the second term in the Taylor

expansions, ABf.  Let v(k) be the k-vector that solves the linear equations,
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By construction we have that  = A + n(k)/k! A .  k 

PROPOSITION 2: The generator A can be approximated to within any desired accuracy by linear

combinations of {T :t>0} in the sense that  in the uniform norm induced by the Lt
2

norm.

PROOF:

By slight modification of the proof to proposition 1.
þ

The implication of this result is that the infinitesimal generator can be approximated

arbitrarily well with discrete observations.

3. EXAMPLES

In this section, we illustrate the identification scheme in the context of some well known

classes of continuous-time stochastic processes.

Diffusion Processes

Consider an n-dimensional, stationary, continuous-time Markov process, {x }, defined ont

the probability triple ( ,�,ê). Associated with this process is the semi-group of conditional

expectation operators, {T :t$0}, defined byt

where f0ü (Q), where Q is the stationary distribution of x .  2
t

Let A be the associated generator, 
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(8)

(9)

(10)

which is well defined on a set of test functions, f (the limit is taken in the sense of the L -norm). 2

Let D denote the subset of functions in L  for which (8) holds.  As noted in Hansen and2 

Scheinkman (1995), T =  = exp(A).  More generally, the exponential formula

applied to the conditional expectation operator yields,

 The exponential series  is absolutely convergent in the uniform norm for every operator

T with finite norm (e.g., Hirsch and Smale (1974), p. 83).  

In this case, the first term in the exponential formula represents the stationary distribution. 

The second term, containing the infinitesimal generator of the semigroup of conditional

expectations operators, describes the local behavior of the transitions.  Recovery of the generator

follows from proposition 2.

Aliasing in Absolutely Summable Processes

Assume that x  is stationary with finite second moments.  By the Wiener-Khintchinet

Theorem, the normalized integrated spectrum (the spectral distribution), F( ), exists and is

nonnegative, nondecreasing, and right continuous (Priestley (1981), p.219). 

DEFINITION: Define the folding operator from C[0,4] to C[0,4], T , such that  h

This operator is associated with wrapping the x-axis around a circle of length 2 h.  Its most

familiar application relates the spectral density of a continuous time process to its discretely
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(11)

sampled counterpart. That is, the spectral density of the process x  sampled at frequency 1/h, ist

given by T  f( ) which we denote f () for notational simplicity.  The fact that  = TBf( )h h h

immediately indicates that f() cannot, in general, be recovered from discrete data.  This is the

traditional formulation of the aliasing problem.

Rather than work with the spectral density, it will be convenient to work with the more

general formulation:

where F( ) is the spectral distribution function. Assumption B1 is sufficient to ensure the

existence of F().

ASSUMPTION B1: The process x  possesses an absolutely summable autocorrelation function,t

.

This assumption is equivalent to assuming an absolutely continuous spectral distribution, ensuring

the existence of f(), the spectral density (e.g., Priestley (1981), p.219).

Before moving to the main results of interest, it will be useful to establish two lemmas

regarding the behavior of the spectral density.  The proofs are given in the appendix.

LEMMA 1: As 64, 60.

Lemma 1 indicates that the spectrum asymptotes to zero.  This result is not surprising in

light of the fact that the integral of the spectrum, the variance, is assumed to be finite.  Lemma 1 is

used to establish the following result, a slight modification of the Integral Test.

LEMMA 2: Let g(x) be a positive function defined on [0,4) such that lim  g(x)=0.  Then  x64

converges if converges. 
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In what follows, we establish the existence of the generator of  with respect to h. It

will then be possible to apply the generalized Taylor series expansion as above.

PROPOSITION 3: Under assumptions B1,  exists and is finite.

PROOF: See appendix.

Proposition 3 together with assumption B1 is sufficient to establish that the Taylor series

expansion is valid and converges for all h.  This allows F( ) to be recovered arbitrarily well

without continuously recorded data.

PROPOSITION 4: Under assumptions B1, F( ) can be identified from data sampled at intervals of

length h#1.

PROOF: See appendix.

Proposition 4 indicates that the aliasing problem disappears given suitable data availability. 

Put another way, the spectrum of any such continuous time model can be estimated with

discretely-sampled data.  

We do not require increasingly frequently sampled data, as for example, Bai and Perron

(1998) do in the context of structural breaks. Of course, in any given application it is possible that

the sampling frequency needed for consistent estimation is not available.  Nevertheless, our result

indicates that in a sense aliasing is not an inherent theoretical feature of continuous parameter

models.

Possibly Nonstationary Linear Markov Models

The identification of continuous time stochastic processes has traditionally proceeded

under the assumption of strict stationarity (e.g., Hansen and Sargent (1983), Hansen, and

Scheinkman (1995), Ait-Sahalia (1996a) Hansen, Scheinkman and Touzi (1998)).  In many

circumstances, however, confining attention to stationary models would be quite restrictive. In

this section we study loosening stationarity at the cost of narrowing the class of permissible

models.  In particular, replace assumption B1 with the following condition.
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Restricting attention to first-order Markov models is not consequential.  Higher order3

models can be transformed into an expanded state-space such that the expanded process is
Markovian (e.g., Priestley (1981)).  
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(12)

(13)

(14)

ASSUMPTION B2: x  is described by a finite-dimensional first-order Markov model:t

where D is the differential operator, g  is continuous time vector white noise with intensity matrixt

V .  The square matrix  is real and finite.0
3

Discretely sampled data will have the form,

where B  = exp() and  has intensity matrix W  = . 0 0

Although we cannot use the methods based on spectral densities, the parameters

governing the dynamics of the data, , can be recovered in an analogous way. This is possible

since the relation B  = exp() is obviously a manifestation of the exponential formula we have0

been exploiting throughout.  In fact, a more general statement of the aggregation problem is that 

B  = G (  ) /n! where  is the sampling frequency. Using the information contained in multiple0
n

sampling frequencies it is possible to identify .

PROPOSITION 5: Under assumption B2,  can be identified from data sampled at intervals of length

#1.

PROOF: 

Taking the appropriate linear combination, produces  + O(n(k) /k! ). The remainder vanishes k

as k 64 in parallel with the proof to proposition 4.
þ



12

4. CONCLUSIONS

In this paper we deal with the identification problem by studying the information content

in sets of discretely sampled data with increasingly low sampling frequencies.  It had previously

been established that first-order Markov models could be identified with restrictions on the

intensity matrix of the innovation process (Hansen and Sargent (1983).  Analogous results in

Hansen and Scheinkman (1995) establish identification of diffusion processes which possess self-

adjoint generators. In this paper, we show that such rotational restrictions are unnecessary. 

It seems likely that the basic identification principle advocated here might be useful in

contexts other than temporal aggregation.  The application of generalized Taylor expansions may

prove meaningful in more general identification and estimation problems in which an unwanted

data transformation can be expressed as an operator.
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APPENDIX

Proof of Lemma 1

A necessary condition for convergence of any series, , is that a 60.  Let a =n n

where >0 so that  = .  It follows that a necessary condition for  to exist

(which must by assumption 2) is that 60 for all >0.  Since , the

result follows.
þ

Proof of Lemma 2

Note that = $  where the inequality follows from the nonnegativity

of g(x).
þ

Proof of Proposition 1

Write .  So

, where f( ) is the spectral density.4

Since <4,  converges by Lemma 2. It remains only to show the

convergence of the infinite sum, .  We will do this by application of the Root

Test.  Namely, we show that lim sup <1. 

Suppose not, so that lim sup $1.  Then k would be greater than or

equal to 1 infinitely often and $1/k infinitely often.  But this contradicts the fact that

 converges.
þ
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Proof of Proposition 4

Write the folding operator as expansions around the spectral distribution,

As before, appropriate linear combinations yield F( ) plus a remainder term of n(k) /k! h .  From k 

the proof to proposition 1, | n(k)/k!| = 1.  For h <1 h  = o(1) and the result follows.  For h=1, thek

remainder term is known, since h  /1.k
þ


