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Abstract
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labor share. Consequently, the paper focuses on the correlation between a measure of
rents and observable average Q. It also reassesses the empirical disconnection between
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1 Introduction

The purpose of this paper is to construct and analyse the properties of a series for Tobin’s

q that acknowledges the presence of pure profits. More specifically, this paper attempts to

quantify the Hayashi (1982) decomposition of ‘average’ Q, the observable ratio of the value

of the firm to its capital base, as

V

K
≡ Q = q + qπ , (1)

where the first term on the right hand-side is ‘marginal’ q, and the second term is the present

discounted value of monopoly profits. The importance of this decomposition is brought

to bear when considering the cornerstone of the q theory of investment, namely that it is

unobservable marginal q, and not average Q, which is a sufficient statistic for investment.

The vast empirical literature on investment proposes a number of explanations for the

empirical failure of average Q to account for investment fluctuations: capital market im-

perfections (Fazzari, Hubbard and Petersen, 1988), non-convex costs of capital adjustment

(Caballero, 1999), noise in share prices (Bond and Cummins, 2001), gross mis-measurement

of true capital (Hall, 2001). This paper documents another possible reason for the lack of

valuation-investment correlations that appears to have received little attention: the presence

of rents which accrue to firms with market power.

To motivate this point, it is useful to return to Hayashi’s (1982) seminal contribution to

the empirics of investment behavior. Hayashi showed that, under certain conditions discussed

below, the unobservable value of a marginal unit of a firm’s capital is equal to the observable

value of its average unit. This result warranted the substitution of average Q for marginal q

on the right-hand side of investment equations.

Hayashi also showed that relaxing the assumptions underlying this equivalence result

generates a wedge between average and marginal q which may capture a number of features:

putty-clay technology, the nature of the tax system, non-constant returns in production, or

rents accruing from market power. Although the first two features are certainly empirically

relevant, this paper focuses exclusively on the interplay between markup and scale which

generates the pure profits term qπ in equation (1). In this instance, firms are valued not
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only on the basis of the marginal unit of capital that they own (captured by marginal q), but

also on the present value of the profits that they extract from their monopoly positions (qπ).

These supernormal profits are interpreted as revenues that a firm obtains over and above

all opportunity costs, including in particular a market-determined rate of return on capital.

They are rents over whatever property right confers the monopoly power. Property rights are

used in the largest sense, including ownership of land, brand names, public reputations, fran-

chises, patents, all characteristics that allow the owner of the rights to create and perpetuate

monopoly power.

This paper follows the methodology developed by Abel and Blanchard (1986). To side-

step Hayashi’s conditions for substitution of average for marginal q, these authors make

assumptions about the profit function of firms to construct directly a measure for marginal

q. They then investigate whether this computed series is more successfully correlated with

investment than average Q. Similarly, this paper computes a measure of marginal q, but

the analysis accounts for a factor which Abel and Blanchard overlooked, namely the possible

existence of rents.

In effect, these authors conjectured that firms are price-takers and that the underlying

production function is homogeneous of degree one in inputs, implying that the average profit

of capital is equal to its marginal profit. The consequence of these assumptions is that,

with reference to equation (1), the authors implicitly build a constructed measure of q + qπ

instead of computing a series for q. That is, they do not differentiate between the returns

that arise from the productive use of an extra unit of capital from those that accrue only

from the market position of the firm. Yet equation (1) shows that this can be misleading for

the purpose of inference about the correlation between valuation and capital accumulation,

as marginal q is the sole driver of investment. In particular, Lafourcade (2003a) showed

in a calibrated general equilibrium model that this wedge between average and marginal q

could theoretically cause substantial swings in valuation which are indeed uncorrelated with

investment.

As was mentioned in the paragraph before last, this wedge depends on firms’ pricing power

and cost functions. Crucially, however, although both the markup and elasticity of scale are

variables of interest in themselves, it is only their ratio that matters for determining qπ. This
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paper’s leverage comes from observing that under the standard assumption of Cobb-Douglas

production, their ratio fluctuates inversely with the labor share. This implies that variations

in qπ can be quantified, and inferred from the sole labor margin, independently of hypotheses

about adjustment costs on the capital margin.

Given this simple observation, the paper is organized with two issues in mind: the re-

lationship between average Q and rents, and the link between investment and a rent-free

measure of marginal q.

Section 2 argues that average Q can fluctuate for reasons independent of capital adjust-

ment costs. In particular, it puts forward two possible explanations that may potentially

overlap: the existence of pure rents and the presence of intangible capital. The relative

merits of these reasons are analysed theoretically. The rest of the paper, however, focuses

exclusively on the rents channel.

Section 3 constructs sample paths of qπ by exploiting the congruence of variations in

the pure profit share with those of the labor share. The decomposition (1) is then used to

investigate the extent to which observed fluctuations in average Q are attributable to those

in qπ. Since qπ captures expectations of future monopoly profits, one must estimate the time-

series properties of the information set over which these expectations are formed. The section

considers both a univariate and a vector-autoregressive (VAR) approach to this computation.

The main result is that fluctuations in rents are significant and relatively strongly correlated

to observed average Q, but that these variations contribute only marginally—around 5%—to

fluctuations in observed average Q.

Section 4 investigates the impact of accounting for monopoly rents on Abel and Blan-

chard’s (1986) analysis of the correlation between marginal q and investment. Similarly, this

rents-based extension to the q theory adds very little explanatory power to the relationship

between valuation and investment. The final section concludes.
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2 Asset prices and rents

2.1 Campbell and Shiller (1988) revisited

Consider the workhorse of asset pricing models, the stochastic pricing equation:

1 = EtRt,t+1Pt+1 , (2)

where Pt+1 and Rt,t+1 are the gross return obtained from holding an asset between periods t

and t+1, and a stochastic discount factor used for pricing assets for that period, respectively.

Applied to equity holdings, this pricing equation yields the standard arbitrage equation

1 = EtRt,t+1
Vt+1 + Dt+1

Vt
, (3)

where Dt is the dividend the firm pays to its stockholders and Vt is the ex-dividend value of

the firm.

This equation can be used to analyse a number of financial indicators, grouped into price-

to-flow and price-to-stock ratios. In a landmark paper, Campbell and Shiller (1988) explore

the informational content of an element of the first group, the price-dividend ratio V/D.

By log-linearising the equation, forwarding it and imposing a transversality condition, they

show how a high ratio captures expectations of high future dividend growth or low returns.

Cochrane (1997) provides a thorough review of the ensuing literature that concentrates on

price-dividend ratios to forecast returns.

The same methodology can be applied for a member of the second group, average Q,

whose relationship with the price-dividend ratio is readily seen by splitting the latter into

two components:
Vt

Dt
≡ Vt

Kt+1

Kt+1

Dt
.

The price-to-flow dynamics of the price-dividend ratio are captured by average Q ≡ Vt
Kt+1

and the stock-to-flow dynamics of the (inverse of the) payout rate—what Abel and Blan-

chard (1986) call the average profit rate. In two recent papers, Robertson and Wright (2002a,

2002b) analyse the dynamic log-linear version of this identity in detail, in the spirit of Camp-

bell and Shiller. Where the price-dividend ratio predicts future dividend growth or returns,
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average Q should theoretically predict future investment (capital growth, in other terms),

returns and payouts (which captures profitability).

Both frameworks focus on forecasting returns in the long-run, and take dividends to be

an observable time-series process. However, going further upstream and making explicit

assumptions about the general equilibrium process for dividends may arguably shed some

light on the behavior of asset prices and their relationship to fundamentals.1

In the usual formulation, dividends are defined as the residual of output—importantly,

a value-added measure—after investment and labor are paid for. Under the assumption

of perfect competition and constant returns to scale in both product and factor markets,

value-added is exhausted by payments to inputs

Yt = rtKt + wtNt ,

where w and r are the competitive real wage and rental price of capital, respectively. Since

investment is the change in capital net of depreciation,2

It = Kt+1 − (1− δ)Kt ,

dividends are

Dt = Yt − wtNt − It

= (rt + (1− δ))Kt −Kt+1 ,

1Note that the current paper has nothing to say about debt, taxation or equity buybacks.
2The timing assumption is the following. Uncertainty arises from the nature of the income generating

process Yt, which is subjected to stochastic technology shocks or demand disturbances at the beginning of
period t, before time t allocations are made. Kt+1 is the capital stock at the close of period t, available for
production at the start of period t + 1. Because investment It is chosen at the beginning of period t, Kt+1

is known at that same moment. This implies that the dividend process Dt is also known at the beginning
of the period. Thus capital Kt+1, output Yt, consumption Ct, investment It, labor Nt and dividend Dt are
all part of the information set available at the end of period t over which expectations of future variables are
computed. The current framework is demand-driven, with no idle capacity. The implication for equation (3)
is that both Vt and Dt are part of the information set over which expectations are computed, but Vt+1 and
Rt,t+1 are not.
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where δ is the depreciation rate.3 Replace in the valuation equation (3) to obtain

1 = EtRt,t+1
Vt+1 + (rt+1 + (1− δ))Kt+1 −Kt+2

Vt
.

Multiplying both sides by average Q, and using the stochastic pricing condition (2) for capital,

whose expected return is rt+1 + (1− δ) , yields the following:

Vt

Kt+1
= EtRt,t+1

Vt+1 + (rt+1 + (1− δ))Kt+1 −Kt+2

Kt+1

Vt

Kt+1
− 1 = EtRt,t+1

Kt+2

Kt+1

(
Vt+1

Kt+2
− 1

)

Qt − 1 = EtRt,t+1Gt+1,t+2 (Qt+1 − 1) ,

where Gt,t+k ≡ Kt+k

Kt
is the k-period compound growth rate of capital. Clearly, the only

solution to this equation is Qt = 1 for all t, which means that V = K. This is the standard

result for valuation in the perfect competition-constant returns to scale framework with no

adjustment costs: the value of the firm is equal to its capital base at every point in time.

2.2 Average Q and the pure profit share

As is well-known, the neoclassical model’s explanatory power for asset price volatility is

particularly poor, insofar as capital movements are much smoother than fluctuations in val-

uation. This failure is usually explained by the absence of variation in the price of capital,

since installed and uninstalled capital are perfect substitutes in producing new capital. The

usual way of generating fluctuations in this price is to introduce installation costs.

This subsection, however, suggests another source of fluctuations in average Q, one which

stems from pricing power. Return to the arbitrage equation (3). Suppose that market power

prevails in product markets concurrently with increasing returns to scale. Factor markets

are still taken to be perfectly competitive, and the production function is assumed to be

3Note that the present definition of dividends differs from Abel and Blanchard’s (1986), where their op-
erational measure of dividends—or ‘profits’ in their terminology—is output net of the wage bill only. This
implies that their profit function is linear homogeneous in capital alone, which is inconsistent with the stan-
dard structure of q models (see Bond and Cummins (2001)). For comparative purposes, Section 4 will refer
back to their measure. For the rest of the paper, however, dividends are defined net of investment costs.
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homogeneous in capital and labor:

F (K,N) = FKK + FNN .

Firms with market power reward inputs with less than their marginal products:

F (K,N) = µ (rK + wN) ,

where µ is the ratio of the price of value-added to marginal cost. However, in the presence

of fixed costs Φ, value-added is Y = F − Φ = 1
ηF , where η = F/(F − Φ) is a local measure

of elasticity of scale. Therefore,

ηY = µ (rK + wN) . (4)

This shows that unless the scale parameter is equal to the prevailing markup, pure profits

Π = (1− ηµ−1)Y are possible4. Writing the gross pure profit share as πt ≡ µη−1 = Y
wN+rK ,

dividends are

Dt = Yt − wtNt − It

= (πt − 1) (rtKt + wtNt) + (rt + (1− δ))Kt −Kt+1

=
(
1− π−1

t

)
Yt + (rt + (1− δ))Kt −Kt+1 . (5)

Dividends are now composed of two revenue flows: one arising from the competitive rental

market for capital, and the other—the first term on the right-hand side of (5)—generated

by an existing (possibly temporary) monopoly franchise in output markets. Replacing (5) in

the arbitrage equation (3) produces the following:

1 = EtRt,t+1
Vt+1 +

(
1− π−1

t

)
Yt+1 + (rt+1 + (1− δ))Kt+1 −Kt+2

Vt
,

4Note that the same result is obtained when returns to scale are introduced directly by assuming that the
production function is homogeneous of degree η > 1, so that

ηF (K, L) = FKK + FNN
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and equation (4) becomes

Qt − 1 = EtRt,t+1Gt+1,t+2 (Qt+1 − 1) + EtRt,t+1

(
1− π−1

t+1

) Yt+1

Kt+1
. (6)

Average Q can now fluctuate because of expectations of future monopoly profits.

As was mentioned previously, Hayashi derived an equivalent result. Yet the bulk of the

ensuing literature failed to test the empirical relevance of this extra term, either by assuming

away these pure profits or failing to differentiate them from the competitive return to capital.

A number of authors have argued that there are no rents to be exploited in the long run in the

US economy, as average Q is equal to one on average over the post-war period (Rotemberg and

Woodford, 1995). Regardless of how empirically controversial this statement is (Robertson

and Wright, 2002a), this does not preclude short-run pure profits. Assuming that entry-and-

exit dynamics erode any existing pure profits in the long-run indeed imposes the restriction

that µ = η and hence that Q = q = 1. However, in the short run, Q can still deviate from its

steady-state value if some temporary pure profits are expected in the future5. The magnitude

and the duration of this deviation will depend on the initial size of the extra profits generated

and the speed of subsequent entry, but entry need not be instantaneous. Consequently, these

deviations come over and above those that would be induced by the presence of adjustment

costs, and a fortiori fluctuations in investment. Because this measure of Q is solely dependent

on rents, it is renamed qπ (the superscript recalling the pure profit share). It is the same

term as that on the right-hand side of equation (1).

Taking a first-order Taylor-expansion around the steady-state rates of return and growth

R, G and around π = µη−1 = 1 and qπ + 1 = 1 (with deviations from the steady-state noted

with a ‘hat’) yields:

q̂π
t = RGEtq̂

π
t+1 + R

Y

K
Etπ̂t+1 .

5The equations in this section should be seen as the short-hand aggregation of symmetric firms producing
differentiated goods indexed i ∈ [0, n] (see Rotemberg and Woodford (1995) or Lafourcade (2003a)). Each is
faced with the same elasticity of demand and same sunk costs φ of producing at each point in time. Thus an
entrant with a new product earns the same profits as the producer of an existing good. Therefore, the presence
of sustained pure profits in existing markets induces entry in new markets, thereby increasing n, aggregate
fixed costs Φ =

∫ n

0
φdi, and decreasing aggregate profits for a given use of aggregate inputs. Sustained pure

profits are generated from technology or markup shocks.
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From the firm’s optimality condition on capital,

r = (1− α)
Y

K
, (7)

where (1− α) is the elasticity of output with respect to capital. The equilibrium, utility-based

stochastic discount factor is

R = βG−γ = (r + (1− δ))−1 , (8)

where γ is the coefficient of risk-aversion. Forwarding the previous expression, replacing

terms and assuming the relevant transversality condition holds, yields

q̂π
t =

rR

(1− α) ρ

∞∑

i=1

ρiEtπ̂t+i , (9)

where ρ = GR < 1 for the relevant sum to converge.

To the extent that pure profits are autoregressive, which they should intuitively be if entry

eliminates them in the long run, expected profits may be predicted by current profits.6 Some

interesting statistical properties arise from the discounted-sum formulation of this rents-based

measure of average Q, features reminiscent of the effect of the persistence of expected asset

returns on current asset prices discussed in Campbell, Lo and Mackinlay (1997, Chap. 7).

Mirroring their analysis, suppose that the expected pure profit share equals a zero-mean

variable which follows an AR(1) process:

Etπ̂t+1 ≡ π̂e
t = φπ̂e

t−1 + εt .

This implies:

q̂π
t =

rR

1− α

1
1− φρ

π̂e
t .

This equation gives the effect on average Q of variations through time in the expected pure

6As a flipside to this argument, it also seems intuitive that entry is rational only insofar as profits are
predictable.

10



0.016 0.018 0.02 0.022 0.024 0.8 0.85 0.9 0.95 1

2

4

6

8

10

φ

Relative volatility as a function of persistence and quarterly return

r−δ

σ
q

π/σ
π

e

0.8
0.85

0.9
0.95

1

1
1.002

1.004
1.006

1.008

2

4

6

8

10

 φ

Relative volatility as a function of persistence and quarterly growth

G

σ
q

π/σ
π

e

Figure 1: Sensitivity analysis

profit rate. That is,
σqπ

σπe
=

rR

1− α

1
1− φρ

,

where σz is the standard deviation of z. A change in the expected pure profit rate has a

greater effect on average Q when it is persistent.

A simple calibration gives a feel for the magnitude of this effect. Take the quarterly values

that Rotemberg and Woodford (1995, 1996) use:

α = 0.64 r = 0.041 δ = 0.025 γ = 1 G = 1.004

A 1% increase in the expected profit rate from its equilibrium value of 1 increases q by 0.36%

if φ = 0.7, but by 1% for φ = 0.9, and 3.5% for φ = 0.98 (a value implicitly used by Rotemberg

and Woodford (1995)). In the limiting case where expectations are not mean reverting, i.e.

φ = 1 (a situation that is somewhat difficult to reconcile with the assumption of free entry),

these parameters would lead to an almost tenfold response of qπ for any given change in π̂e.
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Figure 1 traces the ratio of the standard deviations of qπ and π̂e as a function of the

steady-state quarterly real rate of return r, the steady-state growth rate of technology G

and the persistence parameter φ. Because G, β and R are pinned down by the steady-state

Euler equation (8), the first plot assumes that G = 1.004 while the subjective discount

factor β varies to generate the observed values of R. Similarly, the second plot assumes

β = 1.004/1.016 while G takes on different values, and R varies accordingly. Note the

magnifying effect φ has on the ratio of volatilities over the range of values of rates of return and

growth which are consistent with observed data. The parameter φ increases the sensitivity

of asset prices to the choices of underlying structural parameters such as the discount rate

and technology growth. This result motivates the next step in this paper: estimating the

data-generating process for rents, to obtain σπe and φ.

2.3 Average Q and intangibles

Before estimating the pure profit share, however, it is useful to compare the model developed

in this paper with a recent competing model of Tobin’s q.

Capital, the denominator of average Q, is usually taken to be the stock of tangible assets

of the firm (see, for example, Blanchard, Rhee and Summers (1993), Robertson and Wright

(2002a)). To be consistent with this definition, marginal q is the shadow price of these tan-

gible assets, and this price determines their accumulation. Accordingly, standard investment

regressions use private fixed investment as a measure of this accumulation. The fact that

firms may own other productive assets explains why average Q is a poor proxy for marginal

q, as the former reflects the value of all assets, while the latter captures the value of fixed

capital only.

In a recent paper, Hall (2001) argues that the interpretation of capital should include

intangible assets, valued at their own shadow price. That is, Hall suggests that the presence of

intangible capital also causes fluctuations in average Q conventionally defined that occur over

and above the variations due to fixed capital adjustment costs. By supposing an accumulation

process and a demand schedule for intangibles E similar to that of tangible capital K, Hall

decomposes the value of the firm into the shadow value of both capital stocks:

V = qKK + qEE .
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Dividing both sides by K shows that the wedge between average and marginal q is simply

qE E
K . However, because neither the stock of intangibles E nor its shadow price qE are ob-

servable in his framework, Hall infers the total shadow value of intangibles by stipulating a

series for the shadow value of physical capital qK . In other words, viewed from the decom-

position equation (1), Hall supposes that average Q is a fair representation of valuation and

computes a q series from a number of theoretical assumptions to infer qE E
K . In contrast,

this paper constructs the omitted variable qπ directly and analyse this series’ contribution to

fluctuations in Q.

To reiterate this point, consider the following static relationships, which underpin the

dynamic stochastic setting which was developed above. Hall considers that inputs, including

intangibles, are paid their marginal products, so that

Y = rK + wN + rEE ,

where rE is the competitive return to intangibles. To simplify further, consider Abel and

Blanchard’s (1986) definition of dividends, which abstracts from investment: D ≡ Y −wN =

rK + rEE. The value of the firm is the capitalized value of its future dividends,

rV = D ,

which implies that

Q = q +
rEE

rK
, (10)

where ‘marginal’ q is equal to 1 in the long-run. This paper, on the other hand, assumes

that firms extract pure profits from downward-sloping demand curves and non-convex cost

structures. That is, repeating equation (4):

Y = π (rK + wN) .

In this case,

Q = q +
π − 1

π

Y

rK
, (11)
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which is to be compared to (10) 7.

Both frameworks attempt to document the disconnect between average and marginal q by

formalising a missing variable bias. Yet, despite the overlap in the interpretation of intangibles

and monopoly rents, the methodology involved is substantially different. In the first case,

the bias arises from the mismeasurement of capital and the oversight of intangibles. In the

second, it arises because inputs are not paid their marginal products. A crucial difference

is that, as the next section shows, the latter bias is computable independently of either q

or Q, so that Hall’s (strong) requirement that current levels of Q be a fair representation of

valuation is not necessary.

Another essential difference lies in the long-run properties of the two models. Referring

to equations (10) and (11), it seems uncontroversial that marginal q should be stationary (it

is a cost derivative, so if it was integrated of order 1, total cost would be I(2), an order higher

than output). Thus average Q is I(0) if and only if the ratio on the RHS of either equation

is I(0). Equation(10) suggests that average Q is stationary only if tangibles and intangibles

are cointegrated. Equation (11), on the other hand, shows that average Q mean reverts to 1

only if entry precludes long-run monopoly rents. The underlying mean-reversion mechanisms

need not be the same.

The intangibles and rents biases can be combined in a single model. Re-writing equation

(4) so that it includes the payments to intangibles,

Y = π (rK + wN + REE)

7 Equation (11) points to the bias, discussed later in Section 4, that affects the q series derived in
Abel and Blanchard (1986). Their operational measure of the average profit of capital is

D

K
= r +

π − 1

π

Y

K
= r̃

while the marginal product of capital is r. This implies that their measure of marginal q, which is the
capitalized value of these future average profit rates, is actually a measure of average q:

V

K
=

V

D

D

K
=

r̃

r

If π 6= 1, the induced bias in this q series may have misled these authors in the analysis of the correlation
between q and investment (or K, in this simple example).
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produces the following expression for average Q :

Q = q +
rEE

rK
+

π − 1
π

Y

rK
. (12)

This equation points to the relative merits of the two frameworks. Hall assumes perfect

competition and constant returns to scale (i.e. π = 1), and attempts to compute E by

postulating rE and a process for marginal q and subtracting the latter from average Q.

Beyond the inherent arbitrariness of actually postulating the unobservable q process (more

specifically the value of the stable root of his system), his implied measure of rEE could be

grossly inaccurate if π actually differs from 1. On the other hand, this paper is concerned with

the empirical connection between the measurable value of rents and average Q. However,

subtracting the former from the latter does not produce the right measure of marginal q for

the purpose of analysing the behavior of fixed investment, because of the second term in (12),

the ‘noise’ that stems from the presence of intangibles.

Clearly, this paper’s framework could include Hall’s methodology for constructing q∗ in

(12). Given that the third term on the right-hand side can be computed independently of the

other two, as the next section shows, this would enable us to decompose valuation into three

terms: the productivity of physical capital, of intangible capital, and monopoly rents. For

conciseness, however, this paper argues that the third term is of valuable interest in itself.

The next section focuses exclusively on rents and their relation to average Q. Thus, in what

follows, intangibles are ignored and a full empirical analysis of (12) is left for future research.

3 Estimating co-movements of Q and monopoly rents

With reference to equation 1, this section analyses the extent to which q, qπ and the part of

qπ which is orthogonal to q contribute to movements in Q. This decomposition is attempted

in levels. Since the steady-state value of qπ is zero from the assumption of free entry, qπ can

be replaced by its percentage deviation from one as defined in subsection 2.2, so that

Q = q + q̂π .

Since q̂π is an expected present value variable, one must determine the time-series prop-
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erties of the information set over which these expectations are formed. Subsection 3.2 looks

at a simple univariate process, while subsection 3.3 considers a VAR process. Interest in the

latter is threefold: assessing the impact of the choice of information set, gauging the impor-

tance of second-order terms in the approximation performed for equation (9), and computing

a version of Abel and Blanchard’s (1986) q series for Section 4. Subsection 3.4 comments on

the VAR estimation. Subsection 3.5 present the central results concerning the comovements

of average Q and the various computed series of q̂π.

3.1 Rents and the labor share

To compute the first-order approximation for the q̂π process, consider the optimality condition

along the labor margin, which is also the operational definition of the markup µ as the ratio

of price (here, normalized to 1) to marginal cost (the ratio of wage to marginal product):

FN (Kt, Nt) = µtwt .

Multiply and divide by the labor input, use the assumption that the production function F

is linear homogeneous in its inputs and the definition of the returns to scale index η = Fy−1

to obtain

α ≡ NtFN (Kt, Nt)
F (Kt, Nt)

= µt
Yt

F (Kt, Nt)
wtNt

Yt

α =
µt

ηt
st ≡ πtst . (13)

The standard assumption in much of the macroeconomic literature about the labor elas-

ticity of output is that it is equal to the labor share. Yet as equation (13) points out, this is

only true if there are no pure profits (π = 1). Inversely, if this elasticity is constant—as in the

Cobb-Douglas framework used in this paper—movements of the labor share must be matched

by offsetting movements in the pure profit share. This implies the two fundamental points

of the paper. Although individual series for µt and ηt are of interest in themselves and have

spawned a large literature, only their ratio matters for valuation purposes, and this ratio is

simply captured by movements in the observable labor share. Second, tautologically within

the class of Cobb-Douglas production functions, the labor share does not depend on assump-
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tions about the behavior of the capital margin. That is, no assumptions are necessary about

capital adjustment costs to compute the pure profit share, since to a first approximation, the

latter can be computed from the labor margin only.

3.2 Simple univariate process

The data used throughout the paper is described in Appendix 6.5. The procedures below

follow Abel and Blanchard (1986) in that all variables that enter the computation of q̂π are

exponentially detrended before any estimation is done. Therefore, this paper has nothing to

say about trend movements. The choice of modelling trends as deterministic is controversial,

but I simply follow the standard business cycle literature convention. Lafourcade (2003b)

examines similar correlations within a stochastic trend framework.

Figure 2 plots the logarithm of the corporate sector labor share over the past 50 years.

This series exhibits relatively pronounced movements. As figure 3 shows, the quarterly labor

share seems to follow an AR(1) process with an autocorrelation coefficient φ̂ ' 0.925. Al-

though not reported here, ADF and Phillips-Perron tests confirm that the labor share (before

detrending) is a mean-reverting series over the period 1952Q1 to 2001Q3 (which is the sample

this paper will focus on, mainly because the Federal Reserve’s data for capital is available

only in quarterly format from 1952 onwards). Thus at first pass, the profit rate’s dynamic

behavior lies just short of the region of interest shown in figure 1 where the magnifying effect

is reinforced. Contrary to the approach Rotemberg and Woodford (1999) take, where these

authors limit a similar analysis to the subperiod 1973Q1 to 1993Q1 in view of the possible

structural breaks at the onset of the 1970s and 1990s, this paper will assume that the process

for the labor share is stationary and invariant over the entire post-war period.8

From (9), the q̂π series is defined by

q̂π
t = − rR

(1− α) ρ

ρφ̂

1− ρφ̂
ŝt ≡ f(φ̂)ŝt . (14)

Note that q̂π
t is a discounted sum of variables, starting at time t + 1, whose expectations are

8It is well-known that estimates of AR(1) coefficients are biased downward in small samples, but the bias
runs the other way in the presence of structural breaks. Investigating whether these two biases offset each
other in the unit-root test of the labor share is, however, beyond the scope of this paper.
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Figure 2: Logarithm of the corporate labor share
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Figure 3: Quarterly time-series properties of the labor share
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Figure 4: Estimated PDV of pure profits and root mean squared error bands

determined with information available at time t. Although the labor share ŝt is part of this

information set, the parameter φ is not known with certainty. Appendix 6.3 discusses the

computation of parameter uncertainty bands around point estimates of a univariate AR(1)

process such as q̂π
t , and argues for the use of a second-order version of the delta method.

Figure 4 plots the series with the associated two RMSE bands over the period 1952Q3

to 2001Q3. Observe that the uncertainty band is quite tight, although it increases for large

departures from the sample mean, particularly in the early-70s and mid-90s. For the rest

of the analysis, this sample path of q̂π is assumed to be the notional one. Figure 6 on

page 25 plots it against the level version of average Q, demeaned over the same period.

The assumption that underlies this plot is that Q is a cointegrating vector, hence that it is

stationary (an issue dealt with below).

3.3 Multivariate process and second-order approximation

This subsection provides two amendments to the computations above. First, it estimates the

time-series properties of the labor share in a vector-autoregressive framework, as the VAR

may provide more accurate forecasts than univariate filtering by exploiting information from
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other macroeconomic variables. Second, it extends the Taylor expansion that led to equation

(9). Indeed, the derivations in subsection 2.2 omitted cross-correlation terms that appear

in the form of a discounted sum. Yet, the infinite sum of discounted second-order terms

could potentially have first-order effects on q̂π. Conveniently, these second-order terms will

be captured by the same VAR framework.

Including quadratic terms in (9) leads to the amended equation

q̂π
t =

rR

(1− α) ρ

∞∑

i=1

ρiEtπ̂t+i

(
1 + R̂t,t+i + Ĝt+1,t+i+1 + m̂t+i

)
, (15)

where the terms in parentheses are the trend deviations of the compound discount factor, the

compound (nominal) growth rate of capital and the nominal output-capital ratio, respectively.

To compute the expected cross-correlations, the information set over which expectations

are formed needs to be specified. Following the procedure used in Abel and Blanchard (1986)

and Rotemberg and Woodford (1996), this set is captured by a VAR which contains the

logarithms of the growth rate of real output, the average propensity to consume, detrended

hours worked, the nominal output-capital ratio, output price inflation and the labor share.

That is, expectations are captured by the first-order companion system:

Zt+1 = AZt + εt+1, where

Z ′t =
[

X ′
t X ′

t−1 . . .
]
, εt ↪→ IID (0,Ω) ,

X ′
t =

[
∆ŷt ĉt − ŷt n̂t m̂t ∆p̂t ŝt

]
.

The VAR is a crude way of capturing sample correlations of the constituents of the Q̂

series, and can be seen as the reduced form of a structural model whose inner workings

however are not the purpose of this paper. The dynamics of the system composed of the

first three elements have been extensively studied by Rotemberg and Woodford. The last

three elements are included to compute the expectations of pure profits. Z is similar to the

information vector used by Abel and Blanchard, but differs in the choice of measure for the

discount factor. Indeed, they use a weighted average of equity and debt yields, whereas this
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paper uses the consumption-based pricing kernel9. This choice bears heavily on results in

the next section, and will be discussed in time. Because average Q is computed as a ratio

of two nominal variables, Z should capture information about price dynamics, hence the

inclusion of inflation. Finally, notice that deviations of the output-capital ratio are defined

for end-of-period capital: m̂t = (p̂t + ŷt)− (p̂k
t + k̂t+1).

All four terms on the right-hand side of equation (15) can be expressed as functions of

the Z vector alone.

First, note that the growth rate of capital and the capital-output ratio can be conveniently

combined:

Ĝt+1,t+i+1 + m̂t+i = (ŷt+i − ŷt) + (p̂t+i − p̂t) + m̂t

= (e1 + e5)
i∑

j=1

Zt+j + e4Zt

where ei is the 1× 6n vector which selects the ith element of Z, and n is the number of lags

in the VAR specification.

Second, consider the consumption-based stochastic discount factor R. General equilib-

rium models have long failed to account jointly for the equity-premium and risk-free rate

puzzles (see Kocherlakota (1996) for example). One relatively successful solution to this

problem involves generalising the representative consumer’s utility function, and more specif-

ically, introducing habit formation in consumption. Although it is generally accepted that

Campbell and Cochrane’s (1999) additive approach provides a better resolution of the puzzles,

this paper adopts Abel’s (1998) ‘catching up with the Joneses’ formulation of one-lagged mul-

tiplicative external habits. The reason is purely for convenience, since the former authors’

specification requires modelling an extra variable, the consumption-surplus ratio, whereas

9 Abel and Blanchard construct their marginal q measure from the VAR properties of an estimated infor-
mation set over which the forecasts of the profit function are computed. Bond and Cummins (2001) attack
the issue from a different angle, by building a similar series with actual real-time profit forecasts of financial
analysts. They confirm the finding that the weak relationship between investment and observed average q
can be attributed to the weak relationship between valuation and expectations of future profits. That is,
a constructed measure of the right-hand side of equation (1) is more successful than observed average q in
explaining investment fluctuations. Although Bond and Cummins’ results are derived from a dataset with
arguably more potent explanatory content than the aggregate data that Abel and Blanchard use, this paper
will remain within the VAR framework developed by the latter, and will attempt to quantify the added value
of accounting for the presence of monopoly rents.
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Abel’s formulation is entirely captured by the Z vector described above.

Indeed, in the latter case, the discount factor is computed as

Rt,t+i = βi

[
Ct+i

Ct

]−γ [
Ct+i−1

Ct−1

]κ(γ−1)

,

where γ is the coefficient of risk aversion and κ governs the degree of time-non-separability.10

The leverage of this formulation is that a high κ compensates a high γ, so that the coefficient

of risk aversion can be raised to solve the equity premium puzzle without compounding

the riskless rate puzzle11. For the purpose of the paper, time-nonseparability increases the

volatility of marginal utility for a given degree of smoothness of consumption, a feature which

could boost the cross-correlation terms involved in equation (15).

Conveniently, this specification leads to the deviation form

R̂t,t+i = −γ (ĉt+i − ĉt) + κ (γ − 1) (ĉt̄+i−1 − ĉt−1)

= eR1 (Zt − Zt+i)− eR2

i∑

j=1

Zt+j ,

where eR1 ≡ γe2 − κ (γ − 1) e8 and eR2 ≡ γe1 + κ (γ − 1) e7. Replacing in (15), one obtains

the measure of q̂π consistent with the information vector Z:

(1− α)ρ
rR

q̂π
t = −e6

[
T1t + T2t(eR1 + e4)′ − T3t(eR1)′ + T ′4t(e1 + e5 − eR2)′

]
,

where the Ti terms are derived in Appendix 6.2. The term T1 is the VAR-equivalent of

‘univariate’ q̂π which was constructed in the previous subsection, while T2, T3, and T4 are the

quadratic correction terms.

3.4 VAR estimation

A detailed consideration of the point estimates of the VAR is of limited interest, and the

results are reported in Appendix 6.1. Table 3 reports the VAR results obtained over the period

10Note that the condition κ (γ − 1) > 0 is required for habit formation to affect the discount factor.
11At the same time, however, a high κ produces counterfactual volatility in the expected real interest rate

(see Campbell et al. (1997)).
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1952Q1 to 2001Q3. The autoregression includes only two lags, so as to avoid overfitting.

This point notwithstanding, the choice of two lags is consistent with the Akaike information

criterion.

As should be expected when looking at raw data over the past fifty years, the VAR

estimation exhibit symptoms of econometric misspecification. Indeed, standard augmented

Dickey-Fuller tests applied to the output-capital ratio m (not reported here) do not reject

the null hypothesis of non-stationarity. In the current framework, this translates into some of

the eigenvalues of the estimated matrix Â lying close to the unit circle, a result that bears on

the elements of the long-run multiplier matrix B̂ = (I − ρÂ)−1 that feeds in turn into the Ti

terms. The amplitude of these eigenvalues is reported in Table 4. However, from a theoretical

point of view, and with Kaldor’s stylized fact in mind of a roughly constant capital-ouput

ratio, it seems reasonable to assume that the ratio is bounded in the long-run. In fact, the

failure of the tests is most probably due to the size of the sample. Regardless, insofar as the

main purpose of the VAR is to extract in-sample forecasts, the issue of non-stationarity is

minor and the sample path of q̂π seems consistent with stable roots.

Nevertheless, if one assumes on the basis of the unit root tests that the capital-output

ratio is I (1), the least square regressions of the other variables are unbalanced because they

capture correlations between series of different orders. To account for this problem, the VAR

is also estimated with the restriction that the parameters of the output-capital ratio are zero

at all lags for all equations except its own. The results are reported in the bottom panel of

Table 3. This is done to restore balance between regressors and regressands. Although the

matrix Ã of coefficients derived under these restrictions may coincidentally be the same as

the ‘unrestricted’ matrix Â, the computation of the matrix B of long-run multipliers could

compound marginal differences up to a substantial size. The results that follow are therefore

presented under both sets of coefficients Â and Ã. Performing correlation analysis along both

information sets is a useful gauge of how sensitive the results are to the point estimates.

Another point worth emphasising is that the assumption that the estimated VAR(2) is

the correct representation of how expectations are formed forces the labor share to follow a

second-order process that is quite different from the univariate one derived in subsection 3.2.

Lastly, because the matrix Â is stochastic, standard error bands are computed for the
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Figure 5: VAR-estimated PDV of pure profits (unrestricted – solid, restricted – dashed) with
standard error bands

VAR-based constructed measure of q̂π. This is done for both information sets. Appendix 6.4

derives the necessary computations. Note that the bands are wider than in the univariate

case. One reason is that, as Appendices 6.3 and 6.4 discuss, the univariate error bands

are corrected for small-sample bias and a second-order approximation of the delta method,

whereas the multivariate error bands are not. Another reason is that the bands weigh more

heavily the more poorly estimated parameters of the other VAR regressors of the labor

share (the row of Â corresponding to st). These points notwithstanding, in the light of the

stationarity problem discussed above, the error bands are only a relatively weak indicator

of the confidence one has in the computed series tracking the notional one. Figure 5 plots

q̂π under both information sets and the assumption of logarithmic utility, with the standard

error bands of the restricted case. The fact that the two series are visually nearly coincidental

seems to indicate that the restriction imposed through Ã is not particularly stringent. This

assertion holds for variations in the coefficients of risk aversion and time-non-separability.
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Figure 6: Q̂ (thick – right) vs univariate (solid – left) and VAR q̂π (dotted – left)

3.5 Results

This subsection analyses the correlations and variances between average Q and the measures

of q̂π computed under different information sets. Comparing Q and q̂π is somewhat prob-

lematic. Indeed, in the case of linear q̂π, the labor share is assumed to be I (0) over the

sample period, but standard ADF tests do not reject the hypothesis that Q is a unit-root

process. More specifically, it is difficult to discriminate between an AR(1) process with high

autocorrelation coefficient and a simple random walk. Again, this goes against theory, as

it implies that the residually-defined marginal q series (a measure of real marginal cost) is

non-stationary. This problem is probably due to the sample size and the notoriously low

power of unit-root tests to discriminate between such cases. To avoid tedious analysis of

orders of integration, the innovations of both processes are compared instead of the variables

themselves. Since q̂π is a component of Q, its innovation is also a component of the latter’s

innovation, regardless of what process Q follows. One can therefore analyse the correlation

and size properties of these innovations, thus giving an indication of the contribution of q̂π to

fluctuations in Q. Both measures of discounted pure profits are plotted against average Q in

figure 6 (the VAR-estimated one having been computed under the assumption of logarithmic
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utility).

{γ, κ} {1, 0} {2, 0} {2, 1} {2, 0.15} {11, 0.15}
A Â Ã Â Ã Â Ã Â Ã Â Ã

corr(q̂π
ml, q̂π

mq) 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.994 0.995
σ2(q̂π

mq)
σ2(q̂π

ml)
1.039 1.060 1.049 1.072 1.038 1.059 1.048 1.070 1.134 1.168

ml : multivariate linear, mq : multivariate quadratic

Table 1: Correlation and relative variances of linear vs quadratic q̂π

In the first instance, table 1 reports results on the usefulness of the quadratic approxi-

mation. This approximation depends on a number of features, three of which are the focus

here: the coefficient of risk aversion γ, the habit formation coefficient κ, and the informa-

tion set over which the expectations are computed. The parameters α, R and G (and hence

ρ ≡ RG) are calibrated as in section 2.2, so that the discount rate β is assumed to ‘clear’ the

habit-formation Euler equation. Hence this is the framework of the first part of figure 1. The

table reports the benchmark case of logarithmic utility in the first two columns, and then

variations on γ and κ. Notice that the quadratic approximation is for all intents and purposes

unnecessary, as the correlation with the linear approximation is almost perfect. Moreover,

the former is only very slightly more volatile than the latter. That is, the quadratic correction

terms T2, T3, and T4 have minute effects on the computation of q̂π. These results are similar

in spirit to those developed in Abel and Blanchard (1986). The last two columns report the

results for the parameter values chosen by Abel (1998), which involve a higher coefficient

of risk aversion than usually accepted. The habit-induced ‘kick’ to cross-correlation terms

that was hoped for does not materialize. In other words, the second-order feature of cross-

correlations, even in present discounted form, dominates this attempt to engineer greater

volatility of marginal utility.

Given the practical irrelevance of the quadratic approximation, table 2 focuses on statistics

concerning co-movements between average Q and linear measures of q̂π. The difference

between the latter two resides in the estimation of the process for the labor share. In the

univariate case, the labor share is AR(1) whereas it is ARDL(2,2) in the multivariate case,

so that the choice of information set also matters for the latter. Moreover, this table takes

the framework of the second part of figure 1, where the subjective discount rate is held
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Correlations between q, q̂π and Q = q + q̂π

univariate multivariate linear
q̂π
u qu q̂π

ml qml corr(q̂π
ml, q̂π

mq)

γ = 1 A = Â 0.543 0.996 0.572 0.995 0.998
A = Ã 0.471 0.996 0.998

γ = 2 A = Â 0.996 0.566 0.995 0.998
A = Ã 0.472 0.996 0.998

Fractions of the innovation variance of Q accounted by q̂π and q

univariate multivariate linear
σ2(q̂π

u)
σ2(Q)

σ2(qu)
σ2(Q)

σ2(q̂π
u |qu)

σ2(Q)

σ2(q̂π
ml)

σ2(Q)
σ2(qml)
σ2(Q)

σ2(q̂π
ml|qml)

σ2(Q)

γ = 1 A = Â 0.032 0.980 0.025 0.055 1.066 0.042
A = Ã 0.045 1.055 0.038

γ = 2 A = Â 0.036 0.980 0.027 0.057 1.068 0.044
A = Ã 0.048 1.059 0.041

Table 2: Correlations and variances

fixed and the rate of return ‘clears’ the Euler equation. For comparative purposes, the table

reports only the benchmark logarithmic case and the case with γ = 2, κ = 0, as the statistics

were observed to be only mildly sensitive to the choice of these parameters. Indeed, again,

habit-formation seems to carry little sway in this framework.

Consider first the univariate case. The two series q̂π and Q display a correlation coefficient

of 0.543, which is in fact (minus) the correlation between Q and the labor share, since q̂π is

simply a multiple of the latter. However, the magnitude of the divergence of scale between

the two series is the salient feature of the innovation variances. Indeed, the variance of the

innovation in q̂π represents little more than 3% of the variance of Q’s innovation (a fact quite

apparent from Figure 6, although the latter displays the scale for the series themselves, not

their innovations). By implication, the ratio of innovation variances of the marginal q series

to that of average Q is close to 1.

The table also reports the variance of the innovation component of q̂π that is orthogonal to

marginal q. This statistic is equal to the innovation variance of q̂π time 1−ρ2, where ρ is the

correlation coefficient between q̂π and marginal q. It is quite clear that this orthogonal com-

ponent explains very little of the volatility of average Q. Thus, and this is the central result

of the paper, even though q̂π is positively correlated with average Q, it induces movements
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in the latter that are much smaller than the actual ones. Given that φ̂, the autocorrelation

coefficient for the labor share, is an estimated parameter, overturning this result would seem

to require implausible assumptions about the subjective discount rate, the depreciation rate

and the growth rate, as discussed in subsection 2.2. Hence this first estimate of variations in

the measure of monopoly rents has only very modest effects on one’s account of the sources of

fluctuations in average Q, and leaves much to be explained. Admittedly, this void is captured

by adjustment costs and the volatility of investment, and/or the presence of intangibles, both

of which enter the composition of the residual series q.

Consider now the VAR-based measure of discounted pure profits with average Q. The

fact that this linear construction forces the labor share to follow a second-order autoregres-

sive distributed lag process bears heavily on the correlation of the q̂π series with Q̂. This

correlation is not dependent on assumptions about the coefficient of risk aversion, but is sen-

sitive to the choice of information set. In the unrestricted case, the correlation with average

Q is higher than in the univariate case, but this conclusion is reversed with the restricted

information set. The same sensitivity applies to the ratios of variances, which are higher than

in the univariate case, but still rather small at around 5%. In fact, the innovation variance

of implied marginal q is greater than that of average Q, which suggests that innovations in

q̂π which are negatively correlated with q counterbalance the effects of short-run movements

of q on Q. In conclusion, on the whole, the VAR-based measure of discounted pure profits

provides only little more empirical substance than the univariate measure to the idea that

valuation could be strongly dependent on the behavior of rents.

4 Abel and Blanchard (1986) revisited

Section 3 concentrated on the relationship between average Q and rents. Yet the results

obtained therein do not necessarily extend in an obvious way to the relationship between

investment and the rent-free measure of q, because observed average Q appears disconnected

from the constructed series of discounted future profits (as was discussed in Section 1 and

footnote 9).

This section therefore attempts to re-assess Abel and Blanchard’s analysis of this rela-

tionship in the light of the ‘noise’ that arises from the presence of pure profits. It also adopts

28



their definition of dividends as gross of investment costs, despite the criticisms raised by

Bond and Cummins (2001). Furthermore, it does not address Hall’s (2001) issue about in-

cluding intangibles in the computational process, and is thus subject to the caveat developed

in subsection 2.3.

Abel and Blanchard’s measure (in levels) of marginal q is

qAB
t = Et

∞∑

i=1

Rt,t+i
Yt+i − wt+iNt+i

Kt+1

= Et

∞∑

i=1

Rt,t+iGt+1,t+i+1(1− st+i)mt+i . (16)

This can be decomposed into the two revenue flows as in subsection 2.2 :

qAB
t = Et

∞∑

i=1

Rt,t+iGt+1,t+i+1

(
1− 1

πt+i

)
mt+i + Et

∞∑

i=1

Rt,t+iGt+1,t+irt+i

= qπ
t + Et

∞∑

i=1

Rt,t+iGt+1,t+irt+i .

Admittedly, the expression the authors are interested in is the second term on the right-hand

side. But their measure of q is polluted by movements in the pure profit share. Using the

optimality conditions (7) and (13), the correct measure should be

qt = Et
1− α

α

∞∑

i=1

Rt,t+iGt+1,t+i+1st+imt+i , (17)

which is identical to (16) only in the case that st = α, or equivalently πt = 1.

Consider the trend deviation version of equation (16):

q̂AB
t = Et

1− ρ

ρ

∞∑

i=1

ρi

(
m̂t+i + Ĝt+1,t+i+1 − α

1− α
ŝt+i + R̂t,t+i

)

=
{

eR1 + e4 +
[
e1 + e5 − eR2 − (1− ρ)

(
eR1 +

α

1− α
e6

)]
AB

}
Zt.
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Compare this expression to equation (17) in deviation form:

q̂t = Et
1− ρ

ρ

∞∑

i=1

ρi
(
m̂t+i + Ĝt+1,t+i + ŝt+i + R̂t,t+i

)

= {eR1 + e4 + [e1 + e5 − eR2 − (1− ρ) (eR1 − e6)]AB}Zt .

Then the correction that takes into account pure profits is

q̂AB
t − q̂t = −e6

1− ρ

1− α
ABZt ,

or equivalently,

q̂π
t = −e6

rR

1− α
ABZt ,

which is the multivariate counterpart to (14).

The results that follow are not comparable to those obtained by Abel and Blanchard

for two reasons. First, their q series is computed over a different information set. Indeed,

as was mentioned previously, their series for the discount factor is a market-based measure

that incorporates the market’s perception of debt and equity returns. This paper uses the

consumption-based valuation measure instead, and hence carries all the criticisms and failings

reported in the debate over modelling the equity premium in general equilibrium settings.

Second, these authors incorporate tax and depreciation allowance effects in their measure,

which have been overlooked completely in this framework. As was mentioned in Section 1,

these effects are most certainly significant. However, this paper does not mean to develop

a full econometric analysis of the relationship between investment and q. Rather, it only

attempts to point out the relative performance of competing constructed measures of q.

In fact, the reason for not running the full gamut of econometric tests of the relationship

between I/K and the various measures of q is quite apparent in the next set of figures.

Figures 7 and 8 depict q̂AB and q̂ with the former’s standard-error bands, for two starkly

differing choices of (γ, κ). In both cases—and the pattern is similar for all pairs used in table

1—the standard-error bands suggest quite clearly that one cannot reject the hypothesis that

the two measures of q are the same. Figures 9 and 10 plot both measures of q against the

detrended investment-capital ratio. Clearly, the choice of parameters affects the ability of q to
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Figure 7: q̂AB (solid) and q̂ (dashed) with se-bands. γ = 2, κ = 0, A = Ã
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Figure 8: q̂AB (solid) and q̂ (dashed) with se-bands. γ = 11, κ = 0.15, A = Ã
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Figure 9: q̂AB (solid) and q̂ (dashed) vs I/K (dotted). γ = 2, κ = 0, A = Ã
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Figure 10: q̂AB (solid) and q̂ (dashed) vs I/K (dotted). γ = 11, κ = 0.15, A = Ã
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track investment (note the differences in the two figures for the 1990s). But regardless of this

feature, which is the lot of modelling returns with the consumption-based stochastic discount

factor, it is again quite evident that for the purpose of explaining investment, the two series

are indistinguishable. That is, although movements in rents are significant on their own, they

are minute in relation to the discounted value of total profits. The possible corrections to

the standard-error bands discussed in Appendix 6.3 are probably not large enough to change

these inferences, although this has not been formally tested. In short, the conclusion of this

brief section is that although theoretically incorrect, Abel and Blanchard’s measure of q is

empirically valid enough to warrant econometric analysis of its relation with investment.

5 Discussion and Conclusion

The research reported in this paper can be divided into three parts. First, I discussed the

theoretical possibility of monopoly power interfering in the standard assumption that average

equals marginal q. Second, I computed and analysed the properties of a series for the present

discounted value of pure profits, and examined its relation to observed movements in average

Q. Third, I computed two competing measures of q, which accounted or not for the existence

of these rents, and attempted to assess whether the explanatory power of q for investment

behavior was dependent on this assumption. The major finding is that movements in the

pure profit share are too small to contribute to any degree to both the size in fluctuations of

observed valuation and to the valuation-investment link.

These mixed results can be reassessed along several lines. As was mentioned along the

way, attempting to capture the behavior of the discount factor with a consumption-based

measure is fraught with difficulties. Yet any success in this field should still have little to

say about the present value of monopoly profits, since these rents appear to depend to a first

order on the labor share only.

However, this conclusion about first-order dependence could be refined, as it may simply

be the figment of the crude econometric specification used for the estimation of expected

variables (in equation (15)). The sample paths for rents indicate rather strong sensitivity to

the assumptions that lie behind the information set over which expectations are formed. In

particular, this paper assumed that trends were deterministic. A follow-up paper (Lafourcade,
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2003b) adopts instead a stochastic trend framework to analyse the cyclical movements in

valuation.

Notwithstanding these econometric refinements, the key conclusion of this paper, which is

supported by the results in subsections 2.2 and 3.2, is that the labor share does not exhibit the

volatility and persistence that are theoretically necessary for rents to mimic the fluctuations

of observed average Q. However, as Rotemberg and Woodford (1999) argue, there are several

reasons why the labor share is only a crude proxy for the pure profit rate. A number of

assumptions about production and market structure can be made to correct the labor share

in the direction of higher persistence and volatility. This is also investigated in Lafourcade

(2003b).

34



6 Appendix

6.1 Tables

Data is described in Appendix 6.5. ∗ indicates significance at 5% level.

Dependent
variables

∆yt ct − yt nt yt − kt ∆pt st

Unrestricted VAR – sample period 1952:3-2001:3
Regressors:
∆yt−1 0.704∗ −0.388∗ 0.486∗ 0.073 0.125∗ −0.026
∆yt−2 −0.011 0.019 −0.026 −0.039 −0.026 0.119∗

ct−1 − yt−1 1.069∗ 0.118 0.609∗ 0.895∗ −0.083 −0.169
ct−2 − yt−2 −0.763∗ 0.584∗ −0.538∗ −0.521∗ −0.119∗ 0.053
nt−1 0.517∗ −0.666∗ 1.500∗ 0.496∗ 0.104∗ −0.119
nt−2 −0.471∗ 0.580∗ −0.525∗ −0.430∗ −0.112∗ 0.127
yt−1 − kt−1 −0.035 0.011 0.017 1.272∗ −0.068∗ 0.052
yt−2 − kt−2 0.028 −0.001 −0.018 −0.309∗ 0.065∗ −0.051
∆pt−1 0.244 −0.191 0.159 −0.199 0.576∗ 0.202
∆pt−2 −0.338 0.268 −0.113 −0.569 0.172∗ −0.079
st−1 −0.249∗ 0.267∗ −0.127 −0.306∗ 0.073∗ 1.021∗

st−2 0.079 −0.159 0.037 0.119 −0.006 −0.014
Constant −0.053∗ 0.039 −0.034∗ −0.055 0.024∗ −0.000
R2 0.35 0.86 0.96 0.98 0.82 0.86

Restricted VAR – sample period 1952:3-2001:3
Regressors:
∆yt−1 0.679∗ −0.381∗ 0.499∗ 0.073 0.075 0.012
∆yt−2 −0.012 0.023 −0.028 −0.039 −0.021 0.116∗

ct−1 − yt−1 1.076∗ 0.119 0.603∗ 0.895∗ 0.102∗ −0.184
ct−2 − yt−2 −0.776∗ 0.587∗ −0.531∗ −0.521∗ −0.145∗ 0.073
nt−1 0.513∗ −0.656∗ 1.497∗ 0.496∗ 0.111∗ −0.126
nt−2 −0.474∗ 0.580∗ −0.523∗ −0.430∗ −0.118∗ 0.132
yt−1 − kt−1 0.000 0.000 0.000 1.272∗ 0.000 0.000
yt−2 − kt−2 0.000 0.000 0.000 −0.309∗ 0.000 0.000
∆pt−1 0.263 −0.214 0.158 −0.199 0.585∗ 0.196
∆pt−2 −0.281 0.212 −0.120 −0.569 0.220∗ −0.111
st−1 −0.250∗ 0.269∗ −0.126 −0.305∗ 0.072∗ 1.021∗

st−2 0.083 −0.163 0.037 0.119 −0.002 −0.017
Constant −0.052∗ 0.038 −0.034∗ −0.055 0.024∗ −0.000
R2 0.35 0.86 0.96 0.98 0.82 0.87

Table 3: Vector Autoregression results

Unrestricted Â 0.143 0.215 0.253 0.264 0.368 0.754 0.876 0.892 0.975

Restricted Ã 0.222 0.251 0.255 0.327 0.345 0.752 0.861 0.923 0.944

Table 4: Amplitude of eigenvalues of A
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6.2 Quadratic approximation of Q̂

The expression for the VAR-based Q̂ series was defined in sub-section 3.3:

(1− α)ρ
rR

Q̂t = −e6

[
T1t + T2t (eR1 + e4)

′ − T3t (eR1)
′ + T ′4t (e1 + e5 − eR2)

′] .

• T1 captures the vector autoregressive form of the discounted sum of future profits rates

derived in subsection 2.2, and can be written as:

T1t ≡
∞∑

i=1

ρiEtZt+i =
∞∑

i=1

ρiAiZt = ρABZt ,

where B ≡ (1− ρA)−1 is the matrix of long-run multipliers.

• T2 is the element that helps capture the autocovariance between future profit rates

and the current information set. Using the fact that the innovation vector εt+i is by

definition uncorrelated to Zt for i > 0 yields

T2t ≡
∞∑

i=1

ρiEtZt+iZ
′
t =

∞∑

i=1

ρi


AiZtZ

′
t +

i−1∑

j=0

AjEtεt+i−jZ
′
t




=
∞∑

i=1

ρiAiZtZ
′
t = ρABZtZ

′
t .

• T3 involves the off-diagonal elements of the discounted sum of expected covariance

matrices:

T3 ≡
∞∑

i=1

ρiEtZt+iZ
′
t+i

=
∞∑

i=1

ρi


AiZtZ

′
tA
′i +

i−1∑

j=0

AjEt

(
εt+i−jε

′
t+i−j

)
A′j




=
∞∑

i=1

ρi


AiZtZ

′
tA
′i +

i−1∑

j=0

AjΩA′j


 .
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To eliminate the infinite forward sum, notice that

ρAT3tA
′ =

∞∑

i=1

ρi+1


Ai+1ZtZ

′
tA
′i+1 +

i−1∑

j=0

Aj+1ΩA′j+1




=
∞∑

i=2

ρi


AiZtZ

′
tA
′i +

i−1∑

j=0

AjΩA′j − Ω




=
∞∑

i=1

ρi


AiZtZ

′
tA
′i +

i−1∑

j=0

AjΩA′j − Ω


− ρAZtZ

′
tA
′

= T3t − ρAZtZ
′
tA
′ − ρ

1− ρ
Ω .

This is a discrete Lyapunov equation that can be solved for T3t. It is analogous to the

expression derived in Sargent and Ljungqvist (2000) for the autocovariogram of time-

series processes, except that autocovariances are conditional on information at time

t.

• Finally, T4 captures the intermediate autocovariances in the infinite sum:

T4t =
∞∑

i=1

ρi
i∑

j=1

EtZt+iZ
′
t+j =

∞∑

i=1

ρi
i−1∑

k=0

EtA
kZt+i−kZ

′
t+i−k .

Notice that:

(I − ρA)T4t = T4t −
∞∑

i=1

ρi+1
i−1∑

k=0

EtA
k+1Zt+i−kZ

′
t+i−k

= T4t −
∞∑

i=2

ρi

(
i−1∑

k=0

EtA
kZt+i−kZ

′
t+i−k − EtZt+iZ

′
t+i

)

=
∞∑

i=1

ρiEtZt+iZ
′
t+i

= T3t .

Thus T4t = BT3t.

The three extra terms T2, T3 and T4 come as quadratic corrections to the linear measure

of q.
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6.3 Standard error bands — univariate case

This appendix deals with two issues concerning the delta method that underpins the con-

struction of the standard-error bands in subsection 3.2: least-squares small-sample bias and

second-order approximation. To this effect, consider the general case of a standard AR(1)

process,

xt = φxt−1 + εt ,

and a process that depends on it in expected present value form:

yt = Et

∞∑

i=1

ρixt+i =
ρφ

1− ρφ
xt ≡ f (φ) xt .

Since φ needs to be estimated, the observed process for y is ŷt = f(φ̂)xt. Parameter uncer-

tainty means that one can calculate the variance of the expression above conditional on the

knowledge of x. The standard procedure is to use the first-order delta method, so that

E
[
(ŷt − yt)2

∣∣xt

]
= f ′ (φ)2 E[(φ̂− φ)2]x2

t .

For practical purposes, the variance of φ̂ is typically used in lieu of the mean square error

of φ̂ on the right-hand side of this expression. The two are not the same because of the

small-sample bias that affects the least-squares estimation of φ. Moreover, the first-order

approximation of f is poor for values of φ and ρ close to one. The following derivations help

quantify the effect of adopting these two simplifications.

Consider the distribution of the least-squares estimator

φ̂ ∼ N

(
φ̄,

1− φ2

T

)
,

where φ̄ = φ+θ, and θ is the bias. The distribution is asymptotically normal if innovations ε

are normally distributed. It is well-known that to a first order, θ ' −2φ
T (see Hendry (1995),

for example). The second-order approximation for the measure of dispersion of ŷ due to
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parameter uncertainty involves the term

EX ≡ E
[
f(φ̂)− f (φ)

]2

= f ′ (φ)2 E[(φ̂− φ)2] + f ′ (φ) f ′′ (φ) E[(φ̂− φ)3] +
f ′′ (φ)

4
E[(φ̂− φ)4].

Using the decomposition (φ̂− φ) = (φ̂− φ̄) + (φ̄− φ), one obtains:

E[(φ̂− φ)2] = Ez2 + θ2

E[(φ̂− φ)3] = Ez3 + θ3 + 3θEz2

E[(φ̂− φ)4] = Ez4 + θ4 + 4θEz3 + 6θ2Ez2 ,

where Ezi = E[(φ̂− φ̄)i] is the ith centered moment. Since φ̂ is normal, the third and fourth

moments are zero, so the following terms are left:

E[(φ̂− φ)2] = Ez2 + θ2 ∼ O
(
T−1

)
+ O

(
T−1

)

E[(φ̂− φ)3] = 3θEz2 + θ3 ∼ O
(
T−2

)
+ O

(
T−3

)

E[(φ̂− φ)4] = 6θ2Ez2 + θ4 ∼ O
(
T−3

)
+ O

(
T−4

)
.

Considering those only up to the second order:

EX = f ′ (φ)2
(
Ez2 + θ2

)
+ f ′ (φ) f ′′ (φ) 3θEz2

= f ′ (φ)2 Ez2

[
1 +

θ2

Ez2
+ 3

f ′′ (φ)
f ′ (φ)

θ

]
.

Thus,

E
[
(ŷt − yt)2

∣∣ xt

]
= f ′ (φ)2 Ez2

[
1 +

θ2

Ez2
+ 3

f ′′ (φ)
f ′ (φ)

θ

]
x2

t .

Notice that the first-order approximation of f (φ) is sufficient only in the absence of

bias. The second term in the brackets is a measure of the discrepancy in the construction

of standard error bands for ŷ that arises from replacing the MSE of φ̂ by its variance. The

third term is a measure of the second-order term of the Taylor-expansion, which is negative

because of the downward small-sample bias in estimating φ. Replacing the derivatives of f
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and the value of the variance and bias of φ̂ yields

E
[
(ŷt − yt)2

∣∣ xt

]
= f ′ (φ)2 Ez2

[
1 +

4
T

(
φ2

1− φ2
− 3

ρφ

1− ρφ

)]
x2

t .

This expression can be evaluated at φ = φ̂. For ρ > φ, the correction is quite clearly

negative. The error in using Ez2 and the first order approximation of the delta method

instead of the MSE and the second order can be substantial. The values used in subsection

3.2 are ρ = 0.988, φ̂ = 0.927 and T = 200. This implies that the correct RMSE bands are

smaller than standard-error bands implicitly computed by Abel and Blanchard by a factor

of 0.72, at least 25% tighter.

These derivations were conducted in the case of a univariate process. Clearly, this can be

extended to the multivariate case, which is the appropriate one in Abel and Blanchard, but

this is left for future work.

6.4 Standard error bands — VAR case

The following results are inspired by Abel and Blanchard (1986) once more, but extend their

result to account for common parameter restrictions across equations.

Suppose a constructed time-series ŷt can be written as

ŷt = δνÂB̂Zt = f(vec(Â))Zt ,

where δ is a scalar, ν is a 1 × n` vector of known constants, B ≡ (1− ρA)−1, vec(Â) is

the n2` × 1 column vector of the stacked estimated rows of the companion matrix A, and

n and ` are the number of variables and lags in the n equations of the VAR, respectively.

Differentiating f with respect to any argument x yields

df(vec(Â))
dx

= δνB̂
dÂ

dx
B̂ .

Notice that dÂ/dâij = e′iej , where the ei vector is the selection vector described in sub-section

3.3, the ith row of the identity matrix In`. Define df(vec(Â))

dvec(Â)
as the n2` × n` matrix of the
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derivatives with respect to each element of vec(Â):

df(vec(Â))
dvec(Â)

′
=

[
df(vec(Â))

dâ1,1
, . . . ,

df(vec(Â))
dâ1,n`

,
df(vec(Â))

dâ2,1
, . . . ,

df(vec(Â))
dân,n`

]
.

It can be written in more compact form:

df(vec(Â))
dvec(Â)

= δ([In
... 0n×n(`−1)]B̂

′ν ′)⊗ B̂ .

The purpose of this computation is that the delta method provides a linear approximation

of the variance of non-linear functions of parameters:

var ( ŷt|Zt) = Z ′t
df(vec(Â))
dvec(Â)

′
var(vec(Â))

df(vec(Â))
dvec(Â)

Zt .

Recalling that var(vec(Â)) = Ω ⊗ (Z ′Z)−1, replacing terms and solving out the Kronecker

products yields

var ( ŷt|Zt) = δ2νB̂ΣB̂′ν ′ × Z ′tB̂
′(Z ′Z)−1B̂Zt ,

where Σ =


 Ω 0

0 0


 .

Now, suppose that the process for y is constructed with the prior knowledge that a

variable, say the jth one, does not Granger-cause the others. That is, its parameters are

equal to zero at all lags. Under this maintained hypothesis, since VAR estimation amounts

to least square estimation of each individual equation, the rows of the restricted matrix Ã

are the following transformation of the rows of the unrestricted matrix Â:

Ãi· = Âi·
(
In` − C ′) .

If the restriction is imposed on row i, the correction matrix is

C =
(
Z ′Z

)−1
R′

[
R

(
Z ′Z

)−1
R′

]−1
R ,

where the restriction vector R =
∑`

k=1 e′j×kej×k satisfies RA′i· = 0n`×1. Otherwise, R = C = 0.
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Then

vec(Ã) =




vec(Ã1·)
...

vec(Ãn·)


 =




vec(Â1· (In − C ′))
...

vec(Ân· (In − C ′))




=




In − C 0
. . .

0 In − C


 vec(Â) = Mvec(Â) .

This implies that

var(vec(Ã)) = Mvar(vec(Â))M ′ .

Therefore, by analogy with the derivation above, if the y series is constructed under the

maintained hypothesis, one obtains:

var ( ŷt|Zt, R) = Z ′t
df(vec(Ã))
dvec(Ã)

′
Mvar(vec(Â))M ′df(vec(Ã))

dvec(Ã)
Zt .

Since the restrictions are the same across equations for which they hold, M can be written

as

M = In2` − (D ⊗ C) ,

where D is the n× n identity matrix with zeros on the diagonal where restricted estimation

is not required. One can therefore write

M
df(vec(Ã))
dvec(Ã)

= (In2` − (D ⊗ C)) (δ([I
... 0]B̃′ν ′)⊗ B̃)

= δ([I
... 0]B̃′ν ′)⊗ B̃ − δ([D

... 0]B̃′ν ′)⊗ C ′B̃ ,

where now, B̃ = (I − ρÃ)−1. This implies that

var(ŷt|Zt, R) = Z ′t[δ([I
... 0]B̃′ν ′)⊗ B̃ − δ([Dn

... 0]B̃′ν ′)⊗ C ′B̃]′

(Ω⊗ (Z ′Z)−1)[δ([I
... 0]B̃′ν ′)⊗ B̃ − δ([Dn

... 0]B̃′ν ′)⊗ C ′B̃]Zt

Tediously solving out the Kronecker products while using the fact that Ω is symmetric, that
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C and D are idempotent, and that

C
(
Z ′Z

)−1
C ′ = C

(
Z ′Z

)−1 =
(
Z ′Z

)−1
C ′ ≡ Γ

yields:

var(ŷt|Zt, R) = δ2νB̃ΣB̃′ν ′ × Z ′tB̃
′(Z ′Z)−1B̃Zt

− δ2Z ′t(νB̃[I
... 0]′Ω[D

... 0]B̃′ν ′ ⊗ B̃′ΓB̃)Zt

= δ2νB̃ΣB̃′ν ′ × Z ′tB̃
′(Z ′Z)−1B̃Zt

− δ2(νB̃Σ̃B̃′ν ′)× Z ′tB̃
′ΓB̃Zt

where Σ̃ =


 DΩ 0

0 0


 . If the restriction is valid to the point where Â ' Ã and B̂ ' B̃, then

this expression is the system equivalent of the standard result that unrestricted estimated

parameter variances differ from the restricted ones by a positive semi-definite matrix, implying

that precision is improved by extraneous information embodied in the restrictions.

6.5 Data description

Labor share: Rotemberg and Woodford (1999) use a measure of the labor share that is

different to the unit labor cost series produced by the Bureau of Labor Statistics. Their

reasoning is that the concept of income that matters for firms is net revenue, equiva-

lent to gross product conventionally defined minus indirect business taxes. This paper

follows their lead, by computing the (log of the) corporate labor share as the ratio

of corporate employee compensation, w + n (in logs), to this concept of net income,

p+y, both of which are available from table T1.16 of the National Income and Product

Accounts. This (log-)share is linearly detrended over the sample period under consid-

eration, but this procedure has a limited impact on the results of the paper, since the

trend is virtually flat.

average Q: The time-series for average Q is the quarterly ratio of market value V to tangible

assets pKK of the non-financial corporate sector, obtainable from the Flow of Funds

of the Federal Reserve. Notice that it is a ratio of nominal variables. Robertson and
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Wright (2002a) correct this measure by accounting for net worth. However, to be

consistent with the data for the capital-output ratio described below, this paper retains

tangible assets for the denominator of q. Since both this series and Robertson and

Wright’s are correlated at 99.3%, this choice does not affect the results much (this has

been checked by running the full programme of this paper on both measures).

Output, consumption and hours: The data used for the estimation of the vector autoregres-

sive process is (practically) the same as the one Rotemberg and Woodford (1996) use

in their study of forecastable movements in Real Business Cycle models. The output

series is real private output. The average propensity to consume is then computed using

real consumption of non-durables and services. Price inflation is constructed with the

implicit price deflator. The three series are obtained from the National Income and

Product Accounts. The c−y series exhibits a puzzling downward trend in the post-war

period, and is therefore detrended to make it suitable for VAR estimation. Further-

more, detrended hours n are computed using data from the Bureau of Labor Statistics,

and represent seasonally adjusted aggregate weekly hours of all production workers,

aggregated per quarter. Because this series is available only from 1964 onwards, prior

data is constructed from the BLS series of quarterly percent changes in total hours

worked in the non-farm business.

Notice that the output data used for the construction of the first two elements of

the information set is not the same as the one used in the construction of the labor

share. Although the two series, private and corporate output, are correlated at 90% in

difference form over the sample, the results in this paper are sensitive to the choice of

denominator for the labor share and the capital-output ratio. The use of the corporate

output series is more intuitive for the construction of the labor share, but less so for

that of the average propensity to consume and the discount factor.

Output-capital ratio: The numerator is the same as the denominator of the labor share, while

the denominator is the same as the denominator of average Q. The ratio is detrended

over the period of interest.

Investment-capital ratio: the denominator is the same as the denominator of average Q,
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while the numerator is non-residential private fixed investment, available from NIPA

Table 5.4. This ratio is also detrended over the period of interest.
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