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Abstract

Seasonal adjustment usually relies on statistical models of seasonality
that treat seasonal �uctuations as noise corrupting the `true' data. But sea-
sonality in economic series often stems from economic behavior such as
Christmas-time spending. Such economic seasonality invalidates the sep-
arability assumptions that justify the construction of aggregate economic
indexes. To solve this problem, Diewert (1980, 1983, 1998, 1999) incor-
porates seasonal behavior into aggregation theory. Using duality theory,
I extend these results to a larger class of decision problems. I also relax
Diewert's assumption of homotheticity. I provide support for Diewert's pre-
ferred seasonally-adjusted economic index using weak separability assump-
tions that are shown to be suf�cient.
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1 Introduction

Economic indexes are often treated as given; the complicated aggregation theory
underlying the construction of the index is ignored in empirical research. But ag-
gregation and statistical index number theory has returned the favor and largely
ignored the consensus that seasonal �uctuations, due to by phenomena such as
seasonal patterns in the growing cycle, Christmas shopping, etc., are endemic to
economic time series including economic indexes. Relatively little work has at-
tempted to incorporate seasonal �uctuations into the theory, even though season-
ality can invalidate the separability assumptions that justify the construction of
aggregate economic indexes.
Seasonality has usually been addressed econometrically. Standard econometric

approaches view seasonality as an undesirable characteristic of the data. Conse-
quently, the bulk of the research on seasonality has treated seasonal �uctuations as
noise that is corrupting the underlying signal. Econometric research has focused on
how to smooth or remove seasonal �uctuations. Econometric seasonal-adjustment
techniques�ranging from the inclusion of seasonal dummies in regression anal-
ysis to the complicated procedures, such as the X-12 procedure, implemented by
statistical agencies to produce seasonally adjusted data�rely on statistical mod-
els of seasonality. No matter how statistically sophisticated, these models share a
fundamental weakness in that they have little or no connection to economic theory.
Diewert (1996b, page 39) describes such models as �more or less arbitrary.�
With few exceptions (Ghysels, 1988; Miron & Zeldes, 1988; Miron, 1996; Os-

born, 1988), research on seasonal-adjustment explicitly or implicitly assumes that
seasonality is not the result of economic behavior. Grether and Nerlove (1970)
acknowledge that seasonal phenomena in economic data is generated by customs
and institutions, and should be expected to be more complex than meteorological
phenomena. Nevertheless, the main approaches to econometric seasonal adjust-
ment are based on unobserved component models historically developed to model
astronomical phenomena. In a series of papers Diewert (1980, 1983, 1996b, 1998,
1999) argues that much of the seasonality in economic time series is produced by
the behavior of economic agents, and that such behavior should consequently be
modeled with economics rather than econometrics.
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Diewert focuses on the fact that many economic time series are constructed as
statistical index numbers. The construction of statistical index numbers is justi�ed,
in the economic approach to index number theory, by their connection to speci�c
economic models. Diewert stresses that these models do not account for behavior
that varies across seasons, and, consequently, the economic indexes are not valid in
the presence of seasonality. He examines two different ways that seasonal behavior
of economic agents can be rationalized in a neoclassical framework, and concludes
that only one of these possibilities is consistent with the economic approach to
constructing index numbers.
Seasonal behavior can be rational if the agent is optimizing a time varying ob-

jective function. However, a time varying objective function generally cannot be
tracked by an economic index,1 Alternatively, the agent's objective function is not
separable at the observed seasonal frequency. The implications of this lack of sep-
arability on the functional structure of the agent's decision is more amenable to
analysis than general time variability. Diewert (1980) concludes that research into
seasonal behavior should focus on decision problems that are not time separable at
seasonal frequencies; in his subsequent papers he adapts a standard utility maxi-
mization problem to account for seasonality. His seasonal decision problem can be
used to construct economic indexes from data that contains seasonality; Diewert
(1998, page 457) describes his research as �lling a gap:

�The problem of index number construction when there are sea-
sonal commodities has a long history. However, what has been miss-
ing is an exposition of the assumptions on the consumer's utility func-
tion that are required to justify a particular formula. We systematically
list separability assumptions on intertemporal preferences that can be
used to justify various seasonal index number formulas from the view-
point of the economic approach to index number theory.�

Diewert's approach deseasonalizes statistical index numbers by their construc-
tion. Diewert's models and the resulting indexes have an obvious advantage over

1Time-varying patterns that are only a function of the season as in Osborn (1988) are a special
case of seaonal inseparability which is the second approach Diewert examines.
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econometric models; their connection to economic theory obviates the develop-
ment of econometric criteria for evaluating different adjustment methods. Eco-
nomic theory directly justi�es the index number approach to seasonal adjustment.
In this paper, I further extend the aggregation theory approach to seasonal ad-

justment. While this paper extends Diewert's line of research, the focus is slightly
different. I focus more on de�ning seasonal aggregates, rather on the resulting in-
dex formulae, as de�ning aggregates is logically prior to de�ning the indexes that
track them. In addition, although I am weakening the conditions necessary to ratio-
nalize seasonal aggregates the resulting indexes are the same as in Diewert (1999)
so focusing on the index formulae would be redundant. Using duality theory, I ex-
tend Diewert's results to a larger class of decision problems. I also relax Diewert's
assumption of homotheticity. The most novel result is a justi�cation of Diewert's
moving year index, which is his preferred seasonal index, using only separability
assumptions. The derivation, which follows from a theorem of Gorman (1968), is
not only suf�cient, it is also shown to be necessary.
The remainder of this paper is organized as follows. Section 2 brie�y discusses

econometric seasonal adjustment methods. Section 3 reviews the index number ap-
proach to seasonal adjustment developed by Diewert. Section 4 presents different
types of separability for the expenditure and distance functions. Section 5 provides
the necessary conditions supporting the construction of seasonal indexes. In par-
ticular, Diewert's moving year index is derived from a separability assumption. An
argument for why these particular separability assumptions are reasonable is also
advanced. Although no empirical analysis of the index number approach to sea-
sonality is provided, Section 6 comments on some empirical implications of the
theory. The last section concludes.

2 Econometric Adjustment

This section brie�y discusses econometric adjustment techniques; see Nerlove,
Grether, and Carvalho (1979); Bell and Hillmer (1984); Hylleberg (1992) and
Miron (1996) for more extensive reviews. The discussion focuses on how dif�-
cult it is to establish criteria for determining how to econometrically adjust series
for seasonality. The lack of criteria makes the choice of which method to use sub-
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jective. The situation is similar to the dif�culties in choosing a statistical index
number formula solely on the basis of their axiomatic properties.
The majority of seasonal adjustment techniques are based on decomposing a

series, or multiple series, into unobserved components. Grether and Nerlove (1970,
page 686), in discussing the �desiderata� of seasonal adjustment, note that the un-
observed components methods originated in astronomy, and state,

�It is of course, quite debatable whether the idea of unobserved
components, appropriate as it may be in the analysis of astronomical
observations, is usefully applied to economic data or even to meteo-
rological data. Nonetheless, we believe that this idea lies behind both
present methods of seasonal adjustment and the desire for seasonally
adjusted time series.�

Grether and Nerlove (1970) and Nerlove et al. (1979) show that `optimal'
econometric seasonal adjustment depends on both the model of seasonality and the
model in which the data are to be used. Nerlove et al. (1979, page 171) conclude,
�. . . it is clear that (a) no single method of adjustment will be best for all potential
users of the data and (b) it is essential to provide economic time series data in unad-
justed form.� They additionally conclude that despite the increase in sophistication
of the econometric techniques, �. . . in terms of modeling explicitly what is going
on, there seems to have been remarkably little progress.� This conclusion remains
valid.
The lack of an empirical standard leads Bell and Hillmer (1984) to conclude

that seasonal adjustment methods should be judged on whether the model of sea-
sonality implicit in the method is consistent with the observed seasonality in the
data. This would suggest that different adjustment methods should be applied to
different data series, so there is no unique `optimal' method. Seasonal adjustment
has also been characterized as a signal extraction problem in the frequency domain.
Grether and Nerlove (1970) argue against evaluating adjustment methods using
empirical criteria based on the spectral properties of the adjustment, although they
do not discount its usefulness for characterizing the effects of different methodolo-
gies. The lack of a consensus on how to seasonally adjust has led some authors
to focus on the effects on the statistical properties of the data when the data is
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seasonally adjusted using the wrong statistical model (Wallis, 1974, discusses this
issue).
Several authors, notably Lovell (1963, 1966) and Jorgenson (1964) try to de-

rive a set of axioms that a seasonal adjustment method should satisfy. Jorgenson's
approach is to specify that the adjustment method should satisfy the properties of
the unique minimum invariance, linear, estimator. While this seems reasonable, it
still provides an indeterminate solution, because other statistical models, for exam-
ple a minimum distance estimator or weighted least squares, are just as sensible. In
addition, Lovell (1966) showed that Jorgenson's method does not satisfy Lovell's
orthogonality axiom, so the adjusted series is correlated with the seasonal adjust-
ment component.
The approach in Lovell (1963) is perhaps the most intriguing relative to Diew-

ert's approach, because it is reminiscent of the axiomatic approach to index number
theory developed in Fisher's (1922) seminal work. Just like the axiomatic approach
to index numbers,2 this axiomatic approach to seasonal adjustment is �awed by the
fact that sensible sets of axioms are inconsistent with each other. Lovell is up-front
about the dif�culty. Lovell (1963, page 994) shows in Theorem 2.1 that the only
operators that preserve sums, in the sense that xat C yat D .xt C yt/a , and preserve
products, in the sense that xat yat D .xt yt/a are trivial in that either xat D xt or
xat D 0. These two axioms are intuitive because the �rst one implies that account-
ing identities are unchanged by the adjustment, and the second one implies that
the relationship between prices, quantities, and expenditure are not altered by the
adjustment. Consequently, this result shows that two of the most intuitive axioms
for seasonal adjustment are inconsistent; Lovell (1963, page 994) characterizes this
result as `disturbing' and concludes that �it suggests that two quite simple criteria
rule our the possibility of a generally acceptable `ideal' technique for adjusting
economic time series.�
The solution to the inconsistency of the axiomatic approach to index numbers

is the economic approach. The economic approach allows evaluation of index for-
mulae by appealing to theory. Indexes that have a stronger connection to economic
theory under weaker assumptions are judged to be superior. The usefulness of such

2See Swamy (1965)
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criteria can be seen in how superlative indexes (Diewert, 1976) are now accepted
as the de�nitive approach to constructing index numbers, not only by theorists,
but also by statistical agencies. Diewert's approach to constructing seasonal in-
dex numbers by de�ning seasonal economic aggregates can similarly answer how
indexes should be seasonally adjusted by appealing to economic theory.

3 Review of Diewert's Approach

Diewert (1996b, 1998, 1999) treats the problem of seasonality as part of the eco-
nomic approach to constructing bilateral index numbers and justi�es different sea-
sonal index number formulae on the basis of different separability assumptions.3

The theoretical basis of this work allows it to be used as a standard for seasonal
adjustment. This section reviews Diewert's approach. It focuses on three of his
de�nitions of seasonal indexes: Annual, Year-over-year, and Moving Year. The
notation largely follows Diewert's, but a different separability de�nition will be
used.
For exposition, a number of simplifying assumptions are made. First, the con-

sumption space will be assumed to be of constant dimension in each season. Diew-
ert (1998) divides seasonal commodities into type-1 and type-2. Type-1 commodi-
ties are goods that are not available in every season. These are type of goods are
particularly problematic for index number theory. The assumption that the dimen-
sion of the commodity space does not change in a season means that type-1 goods
are not allowed to be randomly missing. Note that if a good is not consumed, it
does not necessarily mean it was unavailable. It could be that the price of the good
was above its reservation price. This case is observationally equivalent to the �rst,
however, and in aggregate data it seems reasonable to assume that if a good is not
consumed it is unavailable, so the focus is on type-2 goods.
Diewert (1998) also assumes that type-2 seasonal commodities can be further

divided into type-2a and type-2b commodities. Type-2a commodities are com-
modities whose seasonal �uctuations correspond to rational optimizing behavior
over a set of seasons where prices �uctuate but preferences for the commodity re-

3The model can be easily adapted to represent a representative �rm that produces a single output
from multiple inputs. Multiple output �rms introduce further complications (Fare & Primont, 1995).
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main unchanged. Type-2b commodities are those where this does not apply. Type-
2a commodities can be aggregated under normal assumptions. In the following, I
do not differentiate between the type-2 sub-commodities; any group of commodi-
ties is assumed to contain at least one type-2b commodity so that aggregation of
the group requires further assumptions to rationalize the seasonal behavior.
The effect of in�ation is also ignored. Consequently, current period prices are

used rather than spot prices. Thus, the cost indexes are futures price indexes rather
than spot price indexes (Pollak, 1975). As noted by In a low in�ation environment
using the current period prices is not a major concern and it removes a level of
complexity from the exposition.
The simplifying assumptions can be relaxed without much dif�culty following

Diewert (1998, 1999).
Some notation is needed to de�ne the seasonal decision problem:

Notation 1. Let m D 1,. . . ,M denote the season, where M is the number of sea-
sons, typically be 4 or 12. Each season m has Nm commodities for each year
t 2 f0; 1; : : : ; T g. Let ptm D [ptm1 ; :::; p

tm
Nm ] be the vector of positive prices and

q tm D [q tm1 ; :::; q
tm
Nm ] be the vector of commodities consumed in season m of year t.

Annual vectors of prices and consumption are de�ned by pt D [pt1 ; :::; ptM ] and
q t D [q t1 ; :::; q tM ], respectively. Let � denote the complete consumption space
which is equal to RT .N1C���CNM /: Let x � y denote the standard inner product for
vectors.

The (representative) agent is assumed to have a transitive, re�exive, complete,
and continuous preference ordering on �: Preferences are also assumed to be non-
decreasing and convex. Under these assumptions, preferences can be represented
by a real-valued utility function U : �! R that satis�es:

Condition 2. Continuity, positive monotonicity, and quasi-concavity.

The following decision problem then represents a basic utility maximization
problem adapted to the seasonal notation:

Problem 3 (Utility Maximization). The (representative) agent solves the following
intertemporal utility maximization problem where the utility function U . / satis-
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�es:

max
x0;x1;:::;xT

fU .x0; x1; :::; xT / j
TX
tD0

� t pt � x t � W g (1)

where x i has the same dimension as q i , pt � x t D
PM
mD1 ptm � x tm , � t is a strictly

positive discount factor, and W is the discounted present value of intertemporal
wealth at t D 0. Assume the vector [q0; : : : ; qT ] solves the intertemporal utility
maximization problem. Then W D

PT
tD0 � t pt � q t .

Remark 4. The assumptions on preferences imply that the superior set, de�ned as
S.u/ � fq j q 2 � ^ U .q/ � ug, is closed and convex. These properties of the
superior set are important for duality, as they imply that preferences can be equiv-
alently represented by a expenditure function. The dual representation is valid,
because a closed convex set can be equivalently represented by the intersection of
the closed half-spaces that contain it (Luenberger, 1969, Theorem 5).

Diewert makes a series of structural assumptions on this general utility maxi-
mization problem to de�ne annual, year-over-year, and Moving Year seasonal ag-
gregates and economic indexes.
In order to de�ne annual economic indexes, Diewert (1998, 1999) assumes that

the utility function in (1) takes the form

U .x0; x1; :::; xT / D F. f .x0/; f .x1/; :::; f .xT // (2)

where f . / is positively linearly homogeneous (PLH) and satis�es Condition 2.
The annual aggregator function f . / treats each good in a different season as a
different good.
From Theorem 5.8 in Blackorby, Primont, and Russell (1978, pages 206�207),

the annual aggregator functions satisfy additive price aggregation, and de�ne an-
nual economic quantity aggregates because of their homogeneity. The dual unit ex-
penditure function is the annual economic price aggregate. Annual Konüs (1939)
true cost-of-living indexes and Malmquist (1953) economic quantity indexes can
be de�ned:

De�nition 5 (Annual economic indexes). Annual economic price and quantity in-
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dexes are de�ned by

K A.t; s/ D
e.pt/
e.ps/

and M A.t; s/ D
f .q t/
f .qs/

:

for 0 � s < t � T , where e. / is the unit expenditure function.4

Remark 6. The assumptions necessary to de�ne the annual economic index are
the weakest that address seasonality. These annual indexes can be tracked using
standard index number theory. The resulting index number is deseasonalized by
construction. The problem is that the index only provides a single measure per
year, which is not frequent enough for many applications.

The deseasonalization of the annual index is a by-product of the time aggre-
gation that takes place. The annual indexes also represents Diewert's (1980) pre-
ferred method for time aggregating economic data, as these assumptions place the
fewest restrictions on intertemporal preferences. This method was implemented
in constructing annual indexes from monthly data in Anderson, Jones, and Ne-
smith (1997a); the annual indexes calculated from seasonally adjusted and non-
seasonally adjusted data are indistinguishable.5

Year-over-year indexes, which were suggested by Mudgett (1955) and Stone
(1956), give a measure for each season, but require further assumptions. Diew-
ert (1999, page 50) assumes that the annual aggregator function, for each t 2
f0; : : : ; T g; takes the form

f .x t1; x t2; :::; x tM/ D h[ f 1.x t1/; f 2.x t2/; :::; f M.x tM/] (3)

where f m. / for m D 1; : : : ;M is a seasonal aggregator function, with dimension
Nm , of the annual aggregator function f . /. Under this assumption f . / is an
annual aggregator function over seasonal aggregator functions, f m. /. Note that
since f . / is PLH, so are the seasonal aggregators. The f m. / are, clearly valid
seasonal aggregates, and are used to de�ne year over year seasonal indexes:

4Homogeneity of the annual aggregator functions implies the existence of annual unit expenditure
functions.

5The data are available from the MSI database on FRED at www.stls.frb.org.
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De�nition 7 (Year-over-year seasonal economic indexes). For every season, de-
noted by m 2 f1; : : : ;Mg, year-over-year seasonal economic price and quantity
indexes are de�ned by

Km.t; s/ D
em.ptm/
em.psm/

and Mm.t; s/ D
f m.q tm/
f m.qsm/

for 0 � s < t � T , where em. / is the dual unit expenditure function for the
season.

Remark 8. The seasonal indexes are still comparing one season to a season in a
previous year.

The separability assumptions imply that the solution achieved by solving the
general problem in (1) will also be the solution to the following multistage decision
problem: in the �rst stage, the consumer chooses the optimal amount of wealth to
allocate to each year to maximize the overall utility function U . /; in the second
stage, for each year, the consumer chooses the optimal amount of the allocated
wealth from the �rst stage to allocate to expenditure in each season to maximize
h. /; and in the third stage, the consumer chooses the optimal quantities of the
different seasonal goods subject to the allocated wealth to maximize f m. /.
The multi-stage decision justi�es de�ning annualized year-over-year indexes,

by �rst constructing year-over-year indexes, suitably normalized in the base pe-
riod, and then constructing an annual index from the seasonal indexes.6 Clearly,
the annual index calculated in stages generally requires stronger assumptions than
the actual annual indexes. Superlative indexes constructed in such a two-stage al-
gorithm will not generally equal a superlative annual index, because superlative
indexes only approximately satisfy consistency in aggregation (Diewert, 1978).
Diewert's (1999) last type of index is the moving year index.7 Diewert makes
6The dual price index can be calculated by factor reversal. The effect of discounting is ignored in

this discussion. In practice the effect of intertemporal discounting could be minimized by chaining
the indices.

7In Section 3 of his paper, Diewert (1999) discusses short-term season-season indexes, which are
de�ned over subsets of non-seasonal commodities. Since seasonal behavior is excluded from these
indexes, they are not covered here.

11



the additional assumption that U . / satis�es

U .x01; :::; x0MI :::I xT 1; :::; xT M/ D  �1f
XT

tD0

XM

mD1
�m [ f m.x tm/]g (4)

where �m are positive parameters that allow cardinal comparison of the trans-
formed seasonal utilities  [ f m.x tm/] and  [ ] is a monotonic function of one
positive variable de�ned by

 .z/ � f�.z/ �

8<:z�; if � 6D 0

ln z; if � D 0.
(5)

This assumption implies that the intertemporal utility function U . / is a constant
elasticity of substitution (CES) aggregator of the seasonal aggregator functions
f m. /. It also implies that the annual aggregator functions are CES in the seasonal
aggregator functions:

h[ f 1.x t1/; f 2.x t2/; :::; f M.x tM/] D  �1f
XM

mD1
�m [ f m.x tm/]g (6)

for t D 0; : : : ; T . A well-known result in index number theory, due to Sato (1976),
is that the Sato-Vartia quantity index is exact for the CES functional form.8

Under the CES assumptions,the change in the annual aggregates can be tracked
through the same two-stage method discussed previously. The difference is that
at the second stage the aggregator functions are assumed to have the restricted
CES form. As Diewert (1996a) notes, the strong assumption that U . / is CES
might be puzzling. Its usefulness is that aggregation to be extended to non-calendar
years; under the CES assumption there exists an annual aggregator function for
any sequential run of the M seasons. Thus, for each season, an annual index can
be calculated from the previous M � 1 seasons (e.g. in July, an index could be
calculated over the monthly data from the previous August through July). These
moving year annual indices are already seasonally adjusted by construction.
The notation will be simpli�ed by the following lag function:
8The Sato-Vartia index was �rst de�ned by Vartia (1976a, 1976b) as the Vartia II index.
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De�nition 9 (Lag Function). The function for time t is de�ned by

L t .x/ D

8<:t if x � 0,

t � 1 if x < 0.

With this function the Moving year indexes can be written as follows:

De�nition 10 (Moving year annual seasonal economic indexes). For each season
m in year t , moving year annual seasonal economic price and quantity indexes are
de�ned by

K .m; t; s/ D
 f
PM
iD1 � i 

�1[ei .pL t .m�i/i /]g
 f
PM
iD1 � i 

�1[ei .pLs .m�i/i /]g
(7)

and

M.m; t; s/ D
 �1f

PM
iD1 � i [ f

i .qL t .m�i/i /]g
 �1f

PM
iD1 � i [ f

i .qLs .m�i/i /]g
(8)

for 0 � s < t � T , where em. / is the dual unit expenditure function for the
season.

Remark 11. The moving year indexes provide an annual measurement for each
season. Similar indexes could also be constructed for shorter or longer sequential
runs.

As a further sophistication, Diewert (1999) suggests centering the non-calendar
years. The lag function is no longer suf�cient; the following centering function will
be used:

De�nition 12 (Centering function). The function for time t and number of seasons
M is de�ned by

C tM .x/ D

8>>><>>>:
t C 1 if x > M ,

t if 0 � x � M ,

t � 1 if x < 0.

The following de�nition centers the moving year indexes assuming there are
an even number of seasons as is the norm. Effectively, the index is calculated
by taking the M � 1 terms centered around the season m and adding half of the
value of two extra terms: m C M=2 seasons ahead and m � M=2 seasons prior.
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Notationally, this accomplished by averaging two sequences of M terms where the
second sequence is lagged one season relative to the �rst.

De�nition 13 (Centered moving year annual seasonal economic indexes). For each
season m in year t , centered moving year annual seasonal economic price and
quantity indexes are de�ned by

KC.m; t; s/ D

 f 12
PM
iD1 � i 

�1[ei .pC tM .mCM=2�i/i /]
C 1
2
PM
iD1 � i 

�1[ei .pC tM .m�1CM=2�i/i /]g

 f 12
PM
iD1 � i 

�1[ei .pCsM .mCM=2�i/i /]
C 1
2
PM
iD1 � i 

�1[ei .pCsM .m�1CM=2�i/i /]g

(9)

and

MC.m; t; s/ D

 �1f 12
PM
iD1 � i [ f

i .qC tM .mCM=2�i/i /]
C 1
2
PM
iD1 � i [ f

i .qC tM .m�1CM=2�i/i /]g

 �1f 12
PM
iD1 � i [ f

i .qCsM .mCM=2�i/i /]
C 1
2
PM
iD1 � i [ f

i .qCsM .m�1CM=2�i/i /]g

(10)

for 0 � s < t � T , where em. / is the dual unit expenditure function for the
season.

Remark 14. If there are an odd number of seasons, the notation for a centered index
is much simpler.

Remark 15. In practice, Diewert (1999) suggests calculating the annual indices as
superlative indices also, as they can provide a second-order approximation to any
aggregator function including the CES speci�cation. Also, superlative indexes are
usually chained, so that the reference period advances and is always one lag of the
current period.9

The seasonal indexes reviewed in this section are connected to economic theory
by their derivation from the utility maximization problem. The various indexes
were derived by assuming more and more about the structure of the utility function.
The section followed Diewert's in that separability was only implicitly mentioned
as the rationale for the functional structures. This seeming oversight is justi�ed by

9See Anderson, Jones, and Nesmith (1997b) for a discussion of chaining.
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the assumption that the nested utility functions are homothetic. Implicitly, Diewert
is assuming that preferences are homothetically strictly separable at the annual and
seasonal frequencies. Homotheticity, which Swamy (1965) called a `Santa Claus
assumption,' allows the most elegant treatment of aggregation and statistical index
number theory. But, homotheticity is a strong assumption and not necessary.

4 Duality and Separability

Diewert implicitly connected the seasonal structures and indexes de�ned in Section
3 to an agent's preferences through assuming homothetic strict separability. The
seasonal indexes that Diewert derived can be supported under weaker conditions
than he used; weakening Diewert's conditions provides broader theoretical support
for the seasonal indexes and helps inoculate the theoretical approach to seasonality
from criticism that claims the assumptions are unrealistic.
As telegraphed at the end of the previous section, the �rst step to weakening

Diewert's conditions is to weaken the homotheticity assumption. Relaxing ho-
motheticity leads naturally to focusing on the expenditure and distance function
representation of preferences. The bene�t of beginning with the expenditure and
distance function is twofold. First, these two dual representations are always ho-
mogeneous in prices and quantities respectively. This property led Konüs (1939)
to de�ne the true cost of living index through the expenditure function. Similarly,
Malmquist (1953) originally used the distance function to de�ne economic quan-
tity indexes. The weakest conditions that support the various seasonal structures
are naturally speci�ed on the functions that are used in the de�nition of the indexes.
Clearly, this argues for using the expenditure function; the similar argument for the
distance function is obscured by Diewert's assumption of homotheticity. Second,
the duality between the expenditure and distance functions is stronger than between
other representation of preferences. Imposing functional structure on the expendi-
ture function implies that the distance function will have the same property and
vice versa. This is not generally true for other representations of preferences. In
particular, assuming the utility function has a separable structure does not generally
imply that the expenditure function will have the same structure, unless homoth-
eticity is also imposed. These statements are clari�ed in the �rst subsection, which
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presents the expenditure and distance function and discusses their duality.
The second step to weakening Diewert's conditions is to make the separabil-

ity assumptions explicit. This will make clear what Diewert is implicitly assuming
when deriving the different functional structures that account for seasonal decision-
making. The second subsection presents a variety of de�nitions of separability.
Using these de�nitions, the weakest conditions that rationalize the annual and sea-
sonal indexes can be established. These de�nitions also set up the subsequent
section which discusses the moving year indexes.

4.1 The Dual Expenditure and Distance Functions

The strong connection between the expenditure and distance function stems from
the fact that they are both conic representation of preferences. The expenditure
function, which is the negative of the support function, and the distance function
are equivalent mathematical representations of a convex set. For a utility level, both
functions are positive linearly homogeneous convex functions.10 Gorman (1970,
page 105) refers to the pair as `perfect' duals as they always share the same prop-
erties. Section 2.3.3 in Blackorby et al. (1978, pages 26�33) provides some further
intuition for the strong connection between the expenditure and distance function
by showing that the functions switch roles with regard to the indirect utility func-
tion; the distance function can be viewed as an indirect expenditure function and
the expenditure function can be viewed as an indirect distance function. The two
functions can be de�ned in terms of the utility problem in (1) as follows:

Problem 16 (Expenditure Minimization Problem). Let R.U / denote the range of
U . / with the in�mum excluded and�C the positive orthant of�. The expenditure
function, e : �C� R.U /! RC, that is dual to the utility function in (1) is de�ned
as

e
�
p0; : : : ; pT ; u

�
D min
x0;:::;x t

(
TX
tD0

MX
mD1

� t ptm � x tm jU .x0; : : : ; x t/ � u

)
(11)

Problem 17 (Distance Minimization Problem). The distance function, d : �C �
10In the theory of convex functions, such functions are called gauge functions (Eggleston, 1958).
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R.U /! R is de�ned by

d.q0; : : : ; qT ; u/ D min
�

�
� 2 RC

��U �q0=�; : : : ; qT =�� � u 	 (12)

Although the distance function has been used in economics since at least De-
breu (1954), it is less familiar. For a given u, the distance function measures the
amount that q 2 � must be scaled up or down such that q is in the boundary of the
superior set: i.e. q=� 2 @S .u/. For more discussion, see Deaton and Muellbauer
(1980).
Given the prior assumptions made on preferences in de�ning the utility func-

tion, the expenditure function will have the following properties: continuity in
.p; u/; non-decreasing, and concave in p; and increasing in u; where p 2 �C

and u 2 R.U /. The expenditure function has an additional property that is ex-
tremely useful in aggregation and statistical index number theory, positive linear
homogeneity (PLH) in p; which means that

8� > 0;8.p; u/ 2 �C � R.U / e.� p; u/ D �e.5; u/:

The PLH of the expenditure function holds without any such similar property hold-
ing for U . /. The properties of the expenditure function are referred to as:

Condition 18. Joint continuity in .p; u/, strict positive monotonicity in u, and
positive monotonicity, positive linear homogeneity, and concavity in p.

As per our discussion, the distance function has the same properties except that
it is strictly negatively monotonic in u and q takes the role of p:

Condition 19. Joint continuity in .q; u/, strict negative monotonicity in u, and
positive monotonicity, positive linear homogeneity, and concavity in q.

The duality of the expenditure and distance functions can be made clearer us-
ing the fact that away from points of global satiation, U .q/ � u if and only if
d.q; u/ � 1. Consequently, the expenditure function can be de�ned as

e .p; u/ D min
q
fp�q j q 2 � ^ d .q; u/ � 1g
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Similarly, the distance function can be de�ned as

d .q; u/ D min
p
fp�q j p 2 � ^ e .p; u/ � 1g :

The two functions have identical functional form except that the roles of prices and
quantities are reversed. The relationship to the utility function is clari�ed by noting
that if preferences are homothetic then

e .p; u/ D e .p; 1/ u and d .q; u/ D d .q; 1/ u:

The homotheticity of U . / implies that the unit distance function d .q; 1/ is the
PLH cardinalization of U . / and is itself a utility function.
As noted, the key properties of the expenditure and distance functions is their

PLH and their functional equivalence. This �rst implies that separability assump-
tions can be applied to support the construction of seasonal indexes without assum-
ing homotheticity. Without homotheticity, separability assumptions do not neces-
sarily commute from one representation of preferences to another. The second
property enables this to be avoided.

4.2 Separability

The basic de�nition of separability used here is originally due to Bliss (1975). This
de�nition is more general than the familiar de�nition developed independently by
Sono (1961) and Leontief (1947a, 1947b) as it does not require differentiability. In
addition, strict separability (Stigum, 1967) is used; strict separability is equivalent
to Gorman's (1968) de�nition of separability. Finally, complete (strict) separabil-
ity is de�ned. Homothetic versions of the various forms of separability are also
discussed. The de�nitions will be presented for the expenditure function. Equiv-
alent de�nitions exist for the distance function with quantities replacing prices.
Similar de�nitions also exist for the utility function, but let me reiterate that im-
posing separability on the utility function does not generally imply anything about
the expenditure function and vice versa.
The de�nition of separability depends on the existence of a collection of subsets

being nested. Let B D fB1; B2; : : :g be a collection of subsets of some set. The
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collection is nested if 8Bi ; Bj 2 B either Bi � Bj or Bi � Bj . Some further
notation is required:

Notation 20. Let I D f1; 2; : : : ;T .N1 C � � � C NM/g denote the set of integers that
identify variables over which preferences are de�ned. De�ne a n-partition of the
set I to be a division of I into n subsets such that:

I [n] D
�
I .1/; I .2/; : : : ; I .r/; : : : ; I .n/

	
D

n[
jD1
I . j/; (13)

where 8 j; k I . j/ \ I .k/ D ;; and 8 j I . j/ 6D ;. Corresponding to I [n], � can be
expressed as the Cartesian product of n subspaces:

� D
n
�
jD1
�. j/

where for every j , the cardinality of �. j/ is given by I . j/.11 The goods vec-
tor can then be written as q D

�
q.1/; q.2/; : : : ; q.n/

�
and the price vector p D�

p.1/; p.2/; : : : ; p.n/
�
where the n categories denote general sectors, which are

years or seasons in this paper; if qi is in the k th sector then qi is a component
of q.k/ 2 �.k/ and pi is a component of p.k/ 2 �.k/C .

For simplicity, only the case where a sector is separable from its complement in
� is presented. The generality lost by making this assumption is not a problem for
the seasonal structures. The assumption means that the partition used in de�nitions
of separability assumes n D 2 rather than the fully general case where n D 3: The
general case can be found in Blackorby et al. (1978). The following function will
be used:

De�nition 21. De�ne  r : �C � R.U / ! }.�.r/C /; where } denotes the power
set, to be a mapping whose image is

 r .p. j/; p.r/; Nu/ D
n
Op.r/ 2 �.r/C j e.p. j/; Op.r/; Nu/ � e.p. j/; p.r/; Nu/

o
: (14)

11The goods are trivially assumed to be conveniently ordered so that � is equal to the Cartesian
product.
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This function de�nes a collection of subsets

0r . Nu/ D
n

�
p. j/; p.r/; Nu

�
j p. j/ 2 �. j/C ^ p.r/ 2 �.r/C

o
(15)

for a �xed scalar Nu 2 R.U /.

Properties of the sets de�ned in (15) are used to de�ne separability, strict sep-
arability, and complete (strict) separability:

De�nition 22 (Separability). The set of variables indexed by I .r/ is separable in
e. / from its complement in I [n] if 0r . Nu/ is nested for every Nu 2 R.U /;

De�nition 23 (Strict separability). The set of variables indexed by I .r/ is strictly
separable in e. / from its complement in I [n] if

 r
�
p. j/; p.r/; u

�
D  r

�
Qp. j/; p.r/; u

�
for all .p. j/; p.r/; u/ 2 �. j/C ��.r/C � R.U /; and

De�nition 24 (Complete (strict) separability). The expenditure function is com-
pletely (strictly) separable in the partition I [m] � I [n] if every proper subset of I [m]

is (strictly) separable from its complement in I [m].

Remark 25. Separability is implied by either strict separability or complete separa-
bility, but the converse is not generally true. Similarly, strict separability is implied
by complete strict separability but not the converse.

Remark 26. Multiple separable sectors are not precluded; de�ning multiple sepa-
rable sectors simply requires repeated application of the appropriate de�nition.

Remark 27. The de�nition of complete (strict) separability is sensible only if there
are at least three separable sectors in I [m]. Consequently, the de�nition of (strict)
separability is implicitly being applied at least three times to de�ne at least three
(strictly) separable sectors in I [m] prior to considering their proper subsets.

De�ning homothetic (strict) separability for the expenditure function is more
complicated as the function is already PLH in p. Note that both separability and
strict separability de�ne a preference ordering on �.r/C for every Nu 2 R.u/; Op.r/ is
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preferred to p.r/ on �.r/C conditionally on Nu if e.p. j/; p.r/; Nu/ � e.p. j/; Op.r/; Nu/ for
every p. j/ 2 �. j/C . If a consumer is indifferent between Op.r/ and p.r/ for this condi-
tional preference ordering, they are always indifferent between � Opr and �pr for ev-
ery � > 0. To see this, suppose it is not true. Then there exists Op.r/, p.r/, and � > 0
such that the consumer conditionally strictly prefers either � Op.r/ or �p.r/ although
they are indifferent between Op.r/ and p.r/. Without loss of generality, suppose
� Op.r/ is strictly preferred to � Op.r/. This implies that that there exists a Qp. j/, such
that e. Qp. j/; �p.r/; Nu/ > e. Qp. j/; � Op.r/; Nu/. Multiply both sides by 1=�. Homogene-
ity of the expenditure function implies that e. 1

�
Qp. j/; p.r/; Nu/ > e. 1

�
Qp. j/; Op.r/; Nu/.

This violates the assumption that the consumer is indifferent between Op.r/ and p.r/.
Consequently, indifference between Op.r/ and p.r/ implies that the consumer is in-
different between � Op.r/ and �p.r/ for every � > 0 for all . Op.r/; p.r// 2 �.r/C ��.r/C
and the conditional preference ordering on �.r/C is always homothetic for a partic-
ular Nu 2 R.U /.
There is however a sensible de�nition of homothetic (strict) separability for

the expenditure function. Generally, the conditional preference ordering on the
r th sector depends on u. If it does not depend on u, the sector is de�ned to be
homothetically (strictly) separable. The de�nition will need the following:

Notation 28. De�ne 0 I D I .0/ [ I D f0; 1; 2; :::; T .N1 C � � � C NM/g. Let

0 I [n] D
n[
jD0
I . j/

represent an extended partition.

The following de�nition uses this extended partition:

De�nition 29 (Homothetic (strict) separability). The r th sector is homothetically
(strictly) separable if it is (strictly) separable from its complement in 0 I [n].

This condition implies that the conditional preference ordering is not dependent
on u: The rationale for calling this condition homothetic (strict) separability is that
it implies, and is implied by, homothetic (strict) separability of the utility function.
As noted previously, homothetic separability is an exception to the statement that,
in general, (strict) separability of one of the representations of preferences has no
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implications for separability of the other dual representations. It should be apparent
that Diewert is implicitly assuming homothetic separability, so that he can use the
dual unit expenditure function.

5 Seasonal Decision-making

With the separability apparatus developed in the previous section, the seasonal
indexes developed in Section 3 can be revisited.
First, note that a current year annual aggregate can be de�ned if the expenditure

function is separable.

Theorem 30. Let e. / satisfy Condition 18. Then e. / is separable in I [m] � I [n]

if and only if there exist m C 1:

er : �.r/C �R.U /! RC r D 1; : : : ;m;

and
Oe : .

m
�
rD1
R.er /��. j/C �R.U /! RC

each satisfying the following regularity conditions in prices only, i) continuity, ii)
positive monotonicity, iii) positive linear homogeneity, and iv) concavity,12 such
that

e.p; u/ D Oe.e1.p.1/; u/; : : : ; er .p.r/; u/; : : : ; em.p.m/; u/; p.c/; u/: (16)

Furthermore if e. / is strictly separable in I [m] � I [n], Oe. / is continuous and
there exists an appropriate normalization of the expenditure function such that

er .p.r/; u/ D e. Np1; : : : ; Np.r�1/; p.r/; Np.rC1/; : : : ; Np.m/; Np.c/; u/

where p. j/ 2 �. j/C ; j D 1; : : : ; r � 1; r C 1; : : : ;m; c are arbitrary reference
vectors. Moreover, the following apply:

1. Oe. � ; u/ is increasing;
12 Oe. / satis�es these properties if it has these properties in .e1.p.1/; u/; : : : ; em.p.m/; u//.
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2. each er . / satisfy Condition 18;

3. Oe. � ; u/ and each er . � ; u/ inherit (partial) differentiability in prices;13 and

4. each er .p.r/; � / inherits (strict) convexity and positive linear homogeneity in
u.

Proof. Follows from Theorems 3.4 and Corollaries 3.5.2 and 4.1.4 in BPR (pages
70, 80, 112).

By the strong duality of the expenditure and distance functions, the equivalent
theorem holds for the distance function. The following corollary is immediate:

Corollary 31. The expenditure and distance functions are separable at annual
frequencies if and only if

e
�
p0; : : : ; pT ; u

�
D Oe

�
e0.p0; u/; e1.p1; u/; : : : ; eT .pT ; u/; u

�
and

d
�
q0; : : : ; qT ; u

�
D Od

�
d0.q0; u/; d1.q1; u/; : : : ; dT .qT ; u/; u

�
:

An annual separability assumption on either the expenditure or distance func-
tion is suf�cient to de�ne annual economic indexes, albeit ones that depend on u.
This is signi�cantly weaker than assuming homothetic strict separability. Unfor-
tunately, separability is not quite enough, because the annual economic indexes
cannot be guaranteed to satisfy weak factor reversal under only separability even
though strong factor reversal holds. Consequently, separability of the expenditure
function is suf�cient to de�ne economic aggregates, but strict separability is nec-
essary (and suf�cient) to de�ne annual economic indexes. Not surprisingly, since
the difference between separability and strict separability disappears under homo-
theticity, if homothetic separability is assumed weak factor reversal holds�in fact
homotheticity makes weak and strong factor reversal equivalent. Strict separability
is still a much weaker assumption than homothetic separability.
13If the parent function is directionally differentiable in p, then the sectoral functions are partially

differentiable in p.r/.
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Similar assumptions rationalizes year-over-year aggregates. De�ne a parti-
tion I [M;t] D fI .1;t/; I .2;t/; : : : ; I .M;t/g where for every t , I .m;t/ indexes ptm for
m 2 f1; : : : ;Mg. Furthermore, de�ne the partition fI [M;0];Cg where C indexes the
complement of I [M;0].

Corollary 32. The expenditure and distance functions are separable at seasonal
frequencies if and only if the expenditure function is separable in I [M;0] from its
complement so that

e
�
p0; : : : ; pT ; u

�
D

Oe
�
e01.p01; u/; : : : ; e0M.p0M ; u/; : : : ; eT 1.pT 1; u/; : : : ; eT M.pT M ; u/; u

�
and the distance function is separable in I [M;0] from its complement so that

d
�
q0; : : : ; qT ; u

�
D

Od
�
d01.q01; u/; : : : ; d0M.q0M ; u/; : : : ; dT 1.qT 1; u/; : : : ; dT M.qT M ; u/; u

�
:

The discussion about annual aggregates and indexes is appropriate here as well.
Consequently, year over year seasonal indexes can be rationalized by only the im-
position of strict separability. Note that there is another generalization here. The
seasonal indexes are not nested inside an annual index, so the assumptions on pref-
erences are relaxed somewhat. Of course, the same result could be applied to
De�nition 7. In this case, the seasonal pattern of the decision problem does not im-
ply that it is not separable at frequencies higher than a year. It simply implies that
preferences are not stationary.14 This type of time variation can be handled by the
index approach, at least to some extent. At least some of the time-varying utility
functions that have been used to model seasonal behavior �t into this framework:
for example, Osborn (1988).
The results so far demonstrate that homotheticity is not necessary to rationalize

constructing seasonal index numbers. As discussed previously, separability in the
utility and expenditure functions are not generally related to each other. Conse-
14It might be sensible to refer to these kind of preferences as cyclostationary. See Gardner and

Franks (1975) for a de�nition of cyclostationarity for random variables.
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quently, the developments in this section extend the class of preferences that can
be used to justify seasonal aggregates and indexes. The most interesting extension
addresses the Moving Year Seasonal Indexes, however.
In order to derive the Moving Year Index, Diewert was assumed that the utility

function had a constant elasticity form. Diewert's modus operandi was to �system-
atically list separability assumptions on intertemporal preferences� to rationalize
the index numbers. The CES assumption does not seem to follow from any separa-
bility condition, so the assumption seems out of place. This apparent problem can
be recti�ed. Either one of the following conditions is suf�cient:

Condition 33. e. / is differentiable such that 8i; @e.p; u/=@pi > 0 for all p 2
�C, and that each sectoral function er . / can be chosen to be differentiable; or

Condition 34. For all prices, Op.r/ 2  r
�
p. j/; p.r/; Nu

�
implies

e�
�
p. j/; Op.r/; Nu

�
< e�

�
p. j/; p.r/; Nu

�
;

for all p. j/ 2 �. j/ and for each Nu 2 R.U / where e�. / denotes the extension of the
expenditure function to the boundary by continuity from above.15

The following theorem gives a representation for complete strict separability:

Theorem 35 (Complete Strict Separability Representation). Let the expenditure
function, e. / be completely strictly separable in I [n].16 If e. / satis�es Con-
dition 18 and either Condition 33 or Condition 34 then there exists a function
0 : R.U /! RC and n functions,

er : �.r/C �R.U /! RC

all satisfying regularity conditions 1-4 from Theorem 30, such that either

e.p; u/ D 0.u/

 
nX
rD1
er .p.r/; u/�.u/

!1=�.u/
0 6D �.u/ 6 1

15This condition rules out thick indifference curves for the conditional preordering on �.r/.
16Notice that the complement of the union of the separable sectors is of zero dimension.
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or

e.p; u/ D 0.u/

 
nY
rD1
er .p.r/; u/�

r .u/

!
�r .u/ > 0 8r

where
Pm
rD1 �

r .u/ D 1.

To prove this theorem, the following lemma is needed:

Lemma 36. Assume that e. / is continuous and that the commodities indexed by
I .r/ are separable from their complement. Then letting e�. /; Oe�. /; and er�. /
denote the extensions of e. /, Oe. /, and er . / in (16), respectively, to � �R.U /,
�. j/ �R.er�/�R.U /, �.r/ �R.U / by continuity from above, 8p 2 �,

e�.p; u/ D Oe�.p. j/er�.p.r/; u/; u/: (17)

Moreover, er�. / satis�es conditions 1-4 from Theorem 30.

Proof. Suppose that (17) is false under the assumptions for p0 2 @.�/. For a given
arbitrary u, let fpsg be a sequence in fp 2 �C j e.p; u/ � e.50; u/ converging to
p0. Then

lim
s!1

e.5s; u/ D lim
s!1

Oe..5c/s; er ..5r /s; u/; u/

D Oe. lim
s!1

.5c/s; er . lims!1.5
r /s; u/; u/

D Oe�..5c/0; er�..5r /0; u/; u/

6D e�.50; u/

which contradicts the continuity of e�. / from above. Since u was arbitrary, this
establishes (17). The properties of er�. / follow from the properties of er . / by a
similar argument.

Complete Strict Separability Representation. Under Condition 33 the result fol-
lows from Theorem 4.9 of BPR (pages 143-147). To prove the theorem under Con-
dition 34, note that complete strict separability of e. / in I [n] implies, by Corollary
4.8.4 in BPR (page 142) that e. / can be written as:

e.p; u/ D e�.
nX
rD1
er�.p.r/; u/; u/; (18)
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where e�. / is increasing and each er �. / is homothetic. By Theorem 30,

e.5; u/ D Oe.e1.p.1/; u/; : : : ; en.p.n/; u/; u/

By repeated application of Lemma 36, this representation can be extended to the
boundary of �C. The condition implies that the representation extended to the
boundary can be taken to be strictly separable rather than just separable. Conse-
quently, 8r the sectoral utility function can be chosen as

er .p.r/; u/ D e.p.r/; 0c; u/

where 0c is the zero element of the complement of �.r/.17 From the properties of
the expenditure function, this equation implies that er . / is PLH in p.r/. Substitut-
ing from (18) into this equation produces

er .p.r/; u/ D e�.
nX
sD1
s 6Dr

er�.0s; u/C er�.p.r/; u/; u/ r D 1; : : : ;m: (19)

Let
nP
sD1
s 6Dr

er�.0s; u/ D ar .u/ for r D 1; : : : ; n. Then (19) can be written as

er .p.r/; u/ D e�.er�.p.r/; u/C ar .u/; u/ (20)

Since er . � ; u/ is PLH, this implies that, 8� > 0 and 8r D 1; : : : ; n,

e�.er�.�p.r/; u/C ar .u/; u/ D �e�.er�.p.r/; u/C ar .u/; u/: (21)

Homotheticity of each er�. � ; u/ implies that

�r . Per .p.r/; u// D er�.p.r/; u/ r D 1; : : : ; n; (22)

where each �r . / is increasing and each Per . / is PLH. Substituting this equation
17This is a slight abuse of notation as e. / and er . / are now refering to the extension to the

boundary; this abuse will be continued throughout this proof, as it simpli�es notation.
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into (21) yields, for each r ,

e�.�r .� Per .p.r/; u/C ar .u//; u/ D �e�.�r . Per .p.r/; u//C ar .u/; u/: (23)

Letting ��1 D Per .p.r/; u/, for each r ,

e�.�r .1C ar .u//; u/ D
1

Per .p.r/; u/
e�.�r . Per .p.r/; u//C ar .u/; u/: (24)

Rearranging terms, this implies, for each r ,

e�.�r . Per .p.r/; u//C ar .u/; u/ D Per .p.r/; u/e�.�r .1C ar .u//; u/: (25)

Call the right-hand side of (25) Qe.5r ; u/. Inverting (25) for �xed u, yields

�r . Per .p.r/; u// D e�
�1
. Qer .p.r/; u/; u/� ar .u/ (26)

Using (22), substitute (26) into (18) to get

e.p; u/ D e�.
nX
rD1
e�

�1
. Qer .p.r/; u/; u/C A.u/; u/; (27)

where A.u/ D �
nP
rD1
ar .u/. The fact that e. / and each Qe. / are PLH in user costs

implies that

�e�.
nX
rD1
e�

�1
. Qer .p.r/; u/; u/C A.u/; u/ D

e�.
nX
rD1
e�

�1
. Qer .�p.r/; u/; u/C A.u/; u/

for each u. Since u was arbitrary, this argument holds for every u 2 R.U /, which
implies that Pe. / is a quasi-linear PLH function of the arguments

. Per .51; u/; : : : ; Per .51; u//: (28)

This completes the proof by a theorem of Eichhorn (1974, page 24).
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The immediate corollary provides a basis for the moving year seasonal indexes
using complete strict separability:

Corollary 37. De�ne the partition

I [M;T ] D fI [1;0]; : : : ; I [M;0]; : : : ; I [m;t]; : : : ; I [1;T ]; : : : ; I [M;T ]g:

Assume, in addition to satisfying Condition 18, the expenditure function satis�es
either: Then it has a CES functional form in the seasonal aggregates if it is com-
pletely strictly separable in I [M;T ].

These suf�cient conditions may not be necessary. Nevertheless, they would
seem to be the weakest separability conditions suf�cient to rationalize the moving
year indexes that can be expected to hold.
This result gives some insight into the discussion in Section 3. It is not surpris-

ing that an index can be de�ned for non-calendar years if its is completely separable
in seasons. Remember that complete separability means that any subset of the par-
tition is also completely strictly separable. Thus, complete strict separability allows
us to de�ne aggregates over arbitrary partitions of the seasons. Non-calendar years
are just one of the possibilities. For example, econometric seasonal adjustment is
often done using �lters that contain more than just 12 leads or lags.
The CES or alternatively the complete strict separability assumption may seem

overly strong, but there is a sensible argument for this condition. The calendar year
is not necessarily intrinsically special. For example, the �scal year may be more
important economically. In the discussion at the start of Section 2, the consumer
was normally assumed to re-optimize or re-plan at the beginning of the period. I
adapted this to re-optimizing at the beginning of each year in order to �nesse how
strong the separability conditions needed to be. However, there is nothing intrinsic
to seasonality to suggest that the consumer can not still be allowed to re-plan every
period rather than sticking with his plan for an entire year.
The presumption that seasonality in the data implies that decision problem is

not separable at periods shorter than a year still seems reasonable. So the model
is that the consumer solves a problem in say the �rst month of the year, where
his or her preferences are separable over the year but not for any shorter time-
period. Then in the next period, the consumer resolves a problem, where his or
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her preferences are separable over the year but not for any shorter time-period.
This is called `rolling plan optimization.' But, these are not the same years. The
�rst year runs from January through December and the second run from February
through January. If this is viewed as being embedded in a larger, possibly in�nite
horizon problem, then this implies the existence of overlapping separable sectors.
If each sector is strictly separable and January in either the �rst or second years is
strictly essential, then Gorman's (1968) overlapping theorem implies that January
commodities in year 0, February through December commodities, and January
year commodities in year 1 are all strictly separable. In fact, the theorem states
that they are completely strictly separable. If this thought experiment is iterated,
it implies that each month's commodities are completely strictly separable. To
the extent that it seems sensible that consumer's plan over an annual horizon and
re-plan throughout the year the CES assumption seems plausible.

6 Empirical Implications

This paper contains no empirical analysis, but there are some interesting implica-
tions of the index number approach to seasonality. First, Diewert (1999) brings
up some practical reasons to favor the index number method. First, the method is
perhaps less arcane than current econometric practices, and could be applied more
easily. Second, the data indexes could be produced in a timely manner. Third, the
data would be subject to fewer historical revisions, perhaps only those associated
with switching to the centered version from a preliminary non-centered index after
six months. These are cogent arguments for using index number method. How-
ever, most statistical agencies will require substantial empirical analysis before
they would consider switching methods, so a few suggestions for future research
seem warranted.
A natural way to analyze seasonal adjustment is in the frequency domain. Ex-

amining the index formula advanced he should make it apparent that these formula
remove all power at frequencies higher than annual. Consequently, it might be
interesting to view the index numbers as acting like a low pass �lter. This is in
contrast to some seasonal adjustment methods, which are more like a notch �lter:
see Nerlove (1964). One well-known problem in �nite �ltering theory is that the
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optimal low pass �lter is not realizable. An interesting question is whether seasonal
indexes approximate the ideal �lter by effectively pooling data. This is almost a
stochastic index number viewpoint. Given the perspective that the index number
formula effectively clips all higher order power, the indexes should be relatively
smooth. Consequently, the moving year indexes, which average these seasonal in-
dexes should be expected to be exceptionally smooth. The moving year indexes
should be expected to be isolating largely the long-run trend.
In addition, the econometric adjustment literature often takes linearity as a de-

sirable property for seasonal adjustment, despite the fact that the X-12 procedure,
its predecessors and related methods are not, generally, linear. A fair amount of
work has been undertaken trying to demonstrate that these procedures are approx-
imately linear. The index number method suggests that the linearity criterion is
misguided. Clearly, the index number adjustment is non-linear. In fact, looking at
Lovell's axioms, it preserves products by de�nition, so it cannot preserve sums in
general. An interesting question is whether or not a linear method can approximate
the index number methods. If not, an open question would be whether there are
non-linear econometric methods that can approximate the index number approach.
Finally, the fact that the index number approach satis�es the product preserv-

ing axiom suggests that economic indexes, if not adjusted using the index number
methods, should be adjusted by techniques that are also product preserving rather
than sum preserving. Furthermore, many economic time series are not indexes, so
the index number approach is not applicable. Consequently, the development of
econometric techniques that approximate the output of index number methods as
closely as possible would be useful to maintain consistency.

7 Conclusion

This paper has further developed the rational behind the index number approach.
The class of preferences that can rationalize the seasonal indexes advocated by
Diewert (1998, 1999) were extended. In particular, suf�cient conditions for the
moving year index based on a separability assumption were pdeveloped. Addition-
ally, a heuristic argument was proposed based on Gorman's (1968) overlapping
theorem that supports this separability assumption if an agent reoptimizes over a
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new time horizon each period.
Judging among econometric seasonal adjustment methods is confounded by the

lack of obvious criteria; different optimality criteria lead to alternative techniques.
The index number approach to seasonality solves this indeterminacy problem. By
referring to the economic theory as a arbiter, it provides a criterion for judging
among different techniques. It does not obviate the need, or probably the desire to
have econometric techniques for seasonal adjustment, series that are not economic
indexes can not be adjusted this way. However, because it provides as standard,
it could also be used to judge among econometric methods in situations, where it
itself is not directly applicable. In order for the index number approach to serve as
an arbiter, empirical characterizations of its properties are required.
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