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1 Introduction

In this paper we provide empirical evidence on the ability of several different methods to

improve the real–time forecast accuracy of small-scale macroeconomic VARs in the pres-

ence of potential model instabilities. The 18 distinct trivariate VARs that we consider are

each comprised of one of three measures of output, one of three measures of inflation, and

one of two measures of short-term interest rates. For each of these models we construct

real time forecasts of each variable (with particular emphasis on the output and inflation

measures) using real–time data. For each of the 18 variable combinations, we consider

86 different forecasting methods or models, incorporating different choices of lag selec-

tion, observation windows used for estimation, levels or differences, intercept corrections,

stochastically time–varying parameters, break dating, discounted least squares, Bayesian

shrinkage, detrending of inflation and interest rates, and model averaging. We compare

our results to those from simple baseline univariate models as well as forecasts from the

Survey of Professional Forecasters and the Federal Reserve Board’s Greenbook.

We consider this problem to be important for two reasons. The first is simply that

small-scale VARs are widely used in macroeconomics. Examples of VARs used to fore-

cast output, prices, and interest rates are numerous, including Sims (1980), Doan, et al.

(1984), Litterman (1986), Brayton et al. (1997), Jacobson et al. (2001), Robertson and

Tallman (2001), Del Negro and Schorfheide (2004), and Favero and Marcellino (2005).

More recently these VARs have been used to model expectations formation in theoretical

models. Examples are increasingly common and include Evans and Honkapohja (2005)

and Orphanides and Williams (2005).

The second reason is that there is an increasing body of evidence suggesting that these

VARs may be prone to instabilities.1 Examples include Webb (1995), Boivin (1999, 2006),

Kozicki and Tinsley (2001b, 2002), and Cogley and Sargent (2001, 2005). Still more stud-

ies have examined instabilities in smaller models, such as AR models of inflation or Phillips

curve models of inflation. Examples include Stock and Watson (1996, 1999, 2003, 2006),
1Admittedly, while the evidence of instabilities in the relationships incorporated in small macroeconomic

VARs seems to be growing, the evidence is not necessarily conclusive. Rudebusch and Svensson (1999) apply
stability tests to the full set of coefficients of an inflation–output gap model and are unable to reject stability.
Rudebusch (2005) finds that historical shifts in the behavior of monetary policy haven’t been enough to make
reduced form macro VARs unstable. Estrella and Fuhrer (2003) find little evidence of instability in joint tests
of a Phillips curve relating inflation to the output gap and an IS model of output. Similarly, detailed test
results reported in Stock and Watson (2003) show inflation–output gap models to be largely stable.
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Levin and Piger (2003), Roberts (2006), and Clark and McCracken (2006b). Although

many different structural forces could lead to instabilities in macroeconomic VARs (e.g.,

Rogoff (2003) and others have suggested that globalization has altered inflation dynam-

ics), much of the aforementioned literature has focused on shifts potentially attributable to

changes in the behavior of monetary policy.

Given the widespread use of small-scale macro VARs and the evidence of instability,

it seems important to consider whether any statistical methods for managing structural

change might be gainfully used to improve the forecast accuracy of the models. Of course,

while structural changes might occur during the forecast horizon, in this paper we focus on

the potential for breaks occurring in the estimation sample. Our results indicate that some

of the methods do consistently improve forecast accuracy in terms of root mean square

errors (RMSE). Not surprisingly, the best method often varies with the variable being

forecast, but several patterns do emerge. After aggregating across all models, horizons and

variables being forecasted, it is clear that model averaging and Bayesian shrinkage methods

consistently perform among the best methods. At the other extreme, the approaches of

using a fixed rolling window of observations to estimate model parameters and discounted

least squares estimation consistently rank among the worst.

The remainder of the paper proceeds as follows. Section 2 provides a synopsis of

the methods used to forecast in the presence of potential structural changes. Section 3

describes the real-time data used as well as specifics on model estimation and evaluation.

Section 4 presents our results on forecast accuracy, including rankings of the methods used.

Given the large number of models and methods used we provide only a subset of the results

in tables and use the text to provide further information. Section 5 concludes. Additional

tables can be found in a longer working paper version, Clark and McCracken (2006a).

2 Methods Used

This section describes the various methods we use to construct forecasts from trivariate

VARs in the face of potential structural change. Table 1 provides a comprehensive list, with

some detail, and the method acronyms we use in presenting results in section 4. For each

model — defined as being a baseline VAR in one measure of output (y), one measure of

inflation (π), and one short–term interest rate (i) — we apply each of the methods described

below. Output is defined as either a growth rate of GDP (or GNP) or an output gap (we
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defer explanation of the measurement of output and prices to section 3). Unless otherwise

noted, once the specifics of the model have been chosen, the parameters of the VAR are

estimated using OLS.

We begin with the perhaps naı̈ve method of ignoring structural change. That is, we

construct iterated multi-step forecasts from recursively estimated — that is, estimated with

all of the data available up to the time of the forecast construction — VARs with fixed lag

lengths of 2 and 4. While this approach may seem naı̈ve, it may have benefits. As shown

in Clark and McCracken (2005b), depending on the type and magnitude of the structural

change, ignoring evidence of structural change can lead to more accurate forecasts. This

possibility arises from a simple bias-variance trade-off. While a fixed parameter model

is obviously misspecified if breaks have occurred, by using all of the data to estimate the

model one might be able to reduce the variance of the parameter estimates enough to more

than offset the errors associated with ignoring the coefficient shifts.

A second approach constructs forecasts in much the same way but permits updating of

the lag structure as forecasting moves forward. This method, also used in such studies as

Stock and Watson (2003), Giacomini and White (2005), and Orphanides and van Norden

(2005), permits time variation in the number of lags in the model. We do this four separate

ways. The first two consist of using either the AIC or BIC to select the number of model

lags in the entire system. In two additional specifications, we allow the lag orders of each

variable in each equation to differ (as is done in some of the above studies, as well as

Keating (2000)), and use the AIC and BIC to determine the optimal lag combinations.

For each of the above methods, we repeat the process but with at least some of the

variables in differences rather than in levels. One reason for taking this approach is based

upon the observation that inflation and interest rates are sometimes characterized as being

I(1), while each of the output-type variables is generally considered I(0) and hence in the

absence of cointegration the predictive equations are likely to be unbalanced. A second

is that, as noted in Clements and Hendry (1996), forecasting in differences rather than

in levels can provide some protection against mean shifts in the dependent variable. As

such, for each model considered above, we construct forecasts based upon two separate

collections of the variables: one that keeps the output variable in levels but takes the first

difference of the inflation and interest variables (we refer to these models as DVARs) and

a second that takes the first difference of all variables (denoted as DVARs with output

differenced). See Allen and Fildes (2006) for a recent discussion of forecasting in levels
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vs. differences.

We also consider select Bayesian forecasting methods. Specifically, we construct fore-

casts using Bayesian estimates of fixed lag VARs, based on Minnesota–style priors as de-

scribed in Litterman (1986).2 We consider both BVARs in “levels” (in y, π, i) and BVARs

in partial–differences (in y, ∆π, ∆i), referring to the latter as BDVARs.

For our particular applications, we generally use prior means of zero for all coefficients,

with prior variances that are tighter for longer lags than shorter lags and looser for lags of

the dependent variable than for lags of other variables in each equation. However, in setting

prior means, in select cases we use values other than zero: in BVARs, the prior means for

own first lags of π and i are set at 1; in BVARs with an output gap, the prior mean for

the own first lag of y is set at 0.8; and in BVARs with output growth that incorporate an

informative prior variance on the intercept, the prior mean for the intercept of the output

equation is set to the historical average growth rate.3 Using the notation of Robertson and

Tallman (1999), the prior variances are determined by hyperparameters λ1 (general tight-

ness), λ2 (tightness of lags of other variables compared to lags of the dependent variable),

λ3 (tightness of longer lags compared to shorter lags), and λ4 (tightness of intercept). The

prior standard deviation of the coefficient on lag k of variable j in equation j is set to λ1
kλ3

.

The prior standard deviation of the coefficient on lag k of variable m in equation j is λ1λ2
kλ3

σ j
σm

,

where σ j and σm denote the residual standard deviations of univariate autoregressions es-

timated for variables j and m. The prior standard deviation of the intercept in equation j

is set to λ4σ j. In our BVARs and BDVARs, we use generally conventional hyperparameter

settings of λ1 = .2 , λ2 = .5, λ3 = 1, and λ4 = 1000 (making the intercept prior flat).

Another common approach to estimating predictive models in the presence of struc-

tural change consists of using a rolling window of the most recent N (N < t) observations

to estimate the model parameters. The logic behind this approach is that for models ex-

hibiting structural change, older observations are less likely to be relevant for the present

incarnation of the DGP. In particular, using older observations implies a type of model mis-

specification (and perhaps bias in the forecasts) that can be alleviated by simply dropping

those observations. We implement this methodology, recently advocated in Giacomini and
2We estimate the models with the common mixed approach applied on an equation–by–equation basis.

As indicated in Geweke and Whiteman (2006), estimating the system of equations with the same Minnesota
priors would require Monte Carlo simulation.

3In model estimates for vintage t, used for forecasting in period t and beyond, the average is calculated
using data from the beginning of the available sample through period t − 1 — data that would have been
available to the forecaster at that time.
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White (2005), for each of the above methods using a constant window of the past N = 60

quarters of observations to estimate the model parameters. Of course, it is possible that us-

ing a sample window based on break test estimates could yield better model estimates and

forecasts. In practice, however, difficulties in identifying breaks and their timing may rule

out such improvements (see, for example, the results in Clark and McCracken (2005b)).

While the logic behind the rolling windows approach has its appeal, it might be consid-

ered a bit extreme in its dropping of older observations. That is, while older observations

might be less relevant for the present incarnation of the DGP, they may not be completely

irrelevant. A less extreme approach would be to use discounted least squares (DLS) to

estimate the model parameters. This method uses all of the data to estimate the model pa-

rameters but weights the observations by a factor λt− j, 0 < λ < 1, that places full weight on

the most recent observation ( j = t) but gradually shrinks the weights to zero for older ob-

servations ( j < t). While this methodology is less common in economic forecasting than is

the rolling scheme, recent work by Stock and Watson (2004) and Branch and Evans (2006)

suggests it might work well for macroeconomic forecasting. With this in mind we consider

four separate models estimated by DLS. The first two are the baseline VARs in y, π, i and

DVARs in y, ∆π, ∆i with a fixed number of lags. The second two are VARs and DVARs

with the number of model lags estimated using the AIC for the system. Our setting of the

discount factor roughly matches the suggestions of Branch and Evans (2006): .99 for the

output equation and .95 for the inflation and interest rate equations.

Despite the appeal of both the rolling and DLS methods, one drawback they share is

that they reduce the (effective) number of observations used to estimate each of the model

parameters regardless of whether they have exhibited any significant structural change.

There are any number of ways to avoid this problem. One would be to attempt to identify

structural change in every variable in each equation. To do so one could use any number of

approaches, including those proposed in Andrews (1993), Bai and Perron (1998, 2003), and

many others. However, in the context of VARs (for which there are numerous parameters),

these tests can be poorly sized and exhibit low power, particularly in samples of the size

often observed when working with quarterly macroeconomic data. This is precisely the

conclusion reached by Boivin (1999). Instead, in light of the importance of mean shifts

highlighted in such studies as Clements and Hendry (1996), Kozicki and Tinsley (2001a,b),

and Levin and Piger (2003), we focus attention on identifying structural change in the

intercepts of the model.
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To capture potential structural change in the intercepts, we consider several different

methods of what might loosely be called ‘intercept corrections’. The most straightforward

is to use pretesting procedures to identify shifts in the intercepts, introduce dummy vari-

ables to capture those shifts, estimate the augmented model and proceed to forecasting. In

particular, we follow Yao (1988) and Bai and Perron (1998, 2003) in using information

criteria to identify break dates associated with the model intercepts. Specifically, at each

forecast origin we first choose the number of lags in the system using the AIC and then use

an information criterion to select up to two structural breaks in the set of model intercepts.

For computational tractability, we use a simple sequential approach — a partial version of

Bai’s (1997) sequential method — to identifying multiple breaks. We first use the informa-

tion criterion to determine if one break has occurred. If the criterion identifies one break,

we then search for a second break that occurred between the time of the first break and the

end of the sample.4 The model with up to two intercept breaks is then estimated by OLS

and used to forecast. We use two such models, one with breaks identified by the AIC and a

second with breaks identified using the BIC.

While this approach might prove useful for identifying structural change in the interior

of the sample, it is likely to be less well behaved when the structural change occurs at the

very end of the sample.5 Motivated by this observation, Clements and Hendry (1996)

discuss several approaches to ‘correcting’ intercepts for structural change occurring at the

very end of the sample. The approach we implement is directly related to one of theirs.

Specifically, the intercept correction consists of adding the average of the past 4 residuals

to the model (for each equation) at each step across the forecast horizon. Equivalently, the

forecast is constructed by adding a weighted average of the past 4 residuals (with weights

that depend upon the parameters of the VAR and the forecast horizon) to the baseline fore-

cast that ignores any structural change.6 We apply intercept correction to four different

VAR systems. Two of the systems use a fixed lag order, and the other two use a lag order

determined by applying AIC to the system. For each of these two baseline lag orders, we

then construct intercept corrections once for the entire system of three equations and once

making adjustments to only the inflation and interest rate equations.

Our final variant of intercept correction draws on the approach developed by Kozicki
4In the break identification, we impose a minimum segment length of 16 quarters.
5We leave as a topic for future research the possibility that methods designed to identify breaks at the end

of a sample, such as those of Hendry, et al. (2004) and Andrews (2006), could yield better results.
6See equation (40) of Clements and Hendry (1996) for details.
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and Tinsley (2001a,b). In their ‘moving endpoints’ structure, the baseline VAR is modeled

as having time varying intercepts that allow continuous variation in the long run expecta-

tions of the corresponding variables. Our precise method, though, is perhaps more closely

related to Kozicki and Tinsley (2002).7 In the context of a small-scale macro VAR, the

variables in their model are modeled as deviations from latent time varying steady states

(trends). However, whereas they use the Kalman filter to extract estimates of this unknown

trend, for tractability we use simple exponential smoothing methods to get estimates. Cog-

ley (2002) develops a model in which exponential smoothing provides an estimate of a

time–varying inflation target of the central bank, a target that the public doesn’t observe

but does learn about over time. With exponential smoothing, the trend estimate can be

easily constructed in real time and updated over the multi–step forecast horizon to reflect

forecasts of inflation. As indicated in Figure 1, exponential smoothing yields a trend es-

timate quite similar to an estimate of long–run inflation expectations based on 1981-2005

data from the Hoey survey of financial market participants and the Survey of Professional

Forecasters (for a 10–year ahead forecast of CPI inflation) and 1960-1981 estimates of

long–run inflation expectations developed by Kozicki and Tinsley (2001a). We construct

two different sets of forecasts using the exponential smoothing approach.8 Following Koz-

icki and Tinsley (2001b, 2002), in the first we use our exponentially smoothed inflation

series to detrend both inflation and the interest rate measure. In the second we detrend

the inflation and interest rate series separately. In either case we do not detrend the output

variable.

Another approach to managing structural change in model parameters is to integrate the

structural change directly into the VAR.9 Following Doan, et al. (1984) and more recent
7In some supplemental analysis, we have considered models of the error correction form used in, among

others, Brayton, et al. (1997) and Kozicki and Tinsley (2001b). These models relate yt , ∆πt , and ∆it to lags
and error correction terms πt−1−π∗t−1 and it−1−π∗t−1, where π∗ denotes trend inflation (long–run expected
inflation). We estimated the models with fixed lags of 2 and 4 and with Bayesian methods using a fixed lag
of 4 (and flat priors on the error correction coefficients). We also considered Bayesian estimates of our VAR
with inflation detrending. None of these methods proved to consistently beat the forecast accuracy of the best
performing methods we describe below. For the applications covered in Tables 2-5, all of these supplemental
methods delivered average RMSE ratios (corresponding to the averages in Table 7) above 1.000.

8We use a smoothing parameter of .07 for the interest rate and core PCE inflation series and a smoothing
parameter of .05 for the GDP and CPI inflation series. Each trend was initialized using the sample mean of
the first 20 observations available (since 1947) from the present vintage.

9As noted in Doan, et al. (1984), proper multi-step forecasting with VARs with TVP would involve taking
into account the joint distribution of the residuals in the VAR equations and the coefficient equations. In light
of the difficulty of doing so, we follow conventional practice and treat the coefficients as fixed at their period
t−1 values for forecasting in periods t and beyond.
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work by Brainard and Perry (2000) and Cogley and Sargent (2001, 2005), we model the

structural change in the parameters of a VAR in y, π, i with random walks.10 However, in

light of the potentially adverse effects of parameter estimation noise on forecast accuracy

and the potentially unique importance of time variation in intercepts (see above), we con-

sider two different scopes of parameter change. In the first we allow time variation in all

coefficients — both the model intercepts and slope coefficients. In the second, we allow

for stochastic variation in only the intercepts.11

We estimate each of these TVP specifications using Bayesian methods with a range

of prior variances on the standard deviation of the intercepts and a range of allowed time

variation in the parameters. In some cases we use informative priors on the intercepts (λ4

= .5 or .1); in others we use flat priors (λ4 = 1000). The variance–covariance matrix of

the innovations in the random walk processes followed by the coefficients is set to λ times

the prior variance of the matrix of coefficients, which is governed by the hyperparameters

described above. Drawing on the settings used in such studies as Stock and Watson (1996)

and Cogley and Sargent (2001), we consider λ values ranging from .0001 to .005. Note,

however, that in those instances in which the intercept prior is flat, we follow Doan, et al.

(1984) in setting the variance of the innovation in the intercept at λ times the prior variance

of the coefficient on the own first lag instead of the prior variance of the constant. In the

baseline TVP model, we use λ4 = .1 and λ = .0005.

The final group of methods we consider all consist of some form of model averaging.

While model averaging as a means of managing structural change has its historical prece-

dents — notably Min and Zellner (1993) — the approach has become even more prevalent

in the past several years. Recent examples of studies incorporating model averaging in-

clude Koop and Potter (2003), Stock and Watson (2003), Clements and Hendry (2004),

Maheu and Gordon (2004), and Pesaran, et al. (2006). We consider six distinct, simple

forms of model averaging, in each case using equal weights.12 The first takes an average

of all the VAR forecasts described above and the univariate forecast described below, for a

given triplet of variables. More specifically, for a given combination of measures of output,
10Some other studies, such as Canova (2002), impose stationarity on the coefficient time variation.
11Allowing both the inflation and interest rate equations to have intercepts with TVP implies a non–

stationary real interest rate. While some readers might prefer specifications that impose stationarity in the
real interest rate, our specifications are consistent with evidence in such studies as Laubach and Williams
(2003) and Clark and Kozicki (2005) on non–stationarities in real interest rates.

12In doing so, we leave as a topic for future research whether more sophisticated approaches to averaging,
such as approaches based on historical accuracy, would yield improvements.
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inflation, and an interest rate (for example, for the combination GDP growth, GDP infla-

tion, and the T-bill rate), we construct a total of 75 different forecasts from the alternative

VAR models described above. We then average these forecasts with a univariate forecast.

We include a second average forecast approach motivated by the results of Clark and

McCracken (2005b), who show that the bias-variance trade-off can be managed to produce

a lower MSE by combining forecasts from a recursively estimated VAR and a VAR es-

timated with a rolling sample. In the results we present here, for a given baseline fixed

lag VAR we take an equally weighted average of the model forecast constructed using pa-

rameters estimated recursively (with all of the available data) with those estimated using a

rolling window of the past 60 observations. Two other averages are motivated by the Clark

and McCracken (2005a) finding that combining forecasts from nested models can improve

forecast accuracy. In this paper, we consider an average of the univariate forecast described

below with the fixed lag VAR forecast, and an average of the univariate forecast with the

fixed lag DVAR forecast. Finally, motivated in part by general evidence of the benefits of

averaging, we consider two other averages of the univariate forecasts with some of the other

forecasts that prove to be relatively good. One is a simple average of the univariate forecast

with the forecast of the VAR with inflation detrending. The other is a simple average of the

univariate and fixed lag VAR, DVAR, and baseline BVAR with time varying parameters.

To evaluate the practical value of all these methods, we compare the accuracy of the

above VAR–based forecasts against various benchmarks. In light of common practice in

forecasting research, we use forecasts from univariate time series models as one set of

benchmarks.13 For output, widely modeled as following low-order AR processes, the uni-

variate model is an AR(2). In the case of inflation, we use a benchmark suggested by Stock

and Watson (2006): an MA(1) process for the change in inflation (∆π), estimated with a

rolling window of 40 observations. Stock and Watson find that the IMA(1) generally out-

performs a random walk or AR model forecasts of inflation. For simplicity, in light of

some general similarities in the time series properties of inflation and short–term interest

rates and the IMA(1) rationale for inflation described by Stock and Watson, the univariate

benchmark for the short-term interest rate is also specified as an MA(1) in the first differ-
13Of course, the choice of benchmarks today is influenced by the results of previous studies of forecasting

methods. Although a forecaster today might be expected to know that an IMA(1) is a good univariate model
for inflation, the same may not be said of a forecaster operating in 1970. For example, Nelson (1972) used as
benchmarks AR(1) processes in the change in GNP and the change in the GNP deflator (both in levels rather
than logs). Nelson and Schwert (1977) first proposed an IMA(1) for inflation.
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ence of the series (∆i). As described in section 4, we use the bootstrap methods of White

(2000) and Hansen (2005) to determine the statistical significance of any improvements in

VAR forecast accuracy relative to the univariate benchmark models. In light of our real

time forecasting focus, we also include as benchmarks forecasts of growth, inflation, and

interest rates from the Survey of Professional Forecasters (SPF) and forecasts of growth

and inflation from the Federal Reserve Board’s Greenbook.

3 Data and Model details

As noted above, we consider the real–time forecast performance of VARs with three differ-

ent measures of output, three measures of inflation, and two short–term interest rates. The

output measures are GDP or GNP (depending on data vintage) growth, an output gap com-

puted with the method described in Hallman, et al. (1991), and an output gap estimated

with the Hodrick and Prescott (1997) filter. The first output gap measure (hereafter, the

HPS gap), based on a method the Federal Reserve Board once used to estimate potential

output for the nonfarm business sector, is entirely one–sided but turns out to be very highly

correlated with an output gap based on the Congressional Budget Office’s (CBO’s) esti-

mate of potential output. The HP filter of course has the advantage of being widely used

and easy to implement. We follow Orphanides and van Norden (2005) in our real time

application of the filter: for forecasting starting in period t, the gap is computed using the

conventional filter and data available through period t−1. The inflation measures include

the GDP or GNP deflator or price index (depending on data vintage), CPI, and PCE price

index excluding food and energy (hereafter, core PCE price index).14 The short–term in-

terest rate is measured as either a 3–month Treasury bill rate or the effective federal funds

rate. Note, finally, that growth and inflation rates are measured as annualized log changes

(from t − 1 to t). Output gaps are measured in percentages (100 times the log of output

relative to trend). Interest rates are expressed in annualized percentage points.

The raw quarterly data on output, prices, and interest rates are taken from a range

of sources: the Federal Reserve Bank of Philadelphia’s Real–Time Data Set for Macroe-

conomists (RTDSM), the Board of Governor’s FAME database, the website of the Bureau

of Labor Statistics (BLS), the Federal Reserve Bank of St. Louis’ ALFRED database, and
14As the univariate forecast results suggest, these competing price indices have somewhat different char-

acteristics. Differences appear to persist over long periods of time: there is little evidence of cointegration
among these and related price indexes (see, for example, Lebow, Roberts, and Stockton (1992)).
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various issues of the Survey of Current Business. Real–time data on GDP or GNP and the

GDP or GNP price series are from the RTDSM. For simplicity, hereafter we simply use

the notation “GDP” and “GDP price index” to refer to the output and price series, even

though the measures are based on GNP and a fixed weight deflator for much of the sample.

For the core PCE price index, we compile a real time data set starting with the 1996:Q1

vintage by combining information from the Federal Reserve Bank of St. Louis’ ALFRED

database (which provides vintages from 1999:Q3 through the present) with prior vintage

data obtained from issues of the Survey of Current Business, following the RTDSM dat-

ing conventions.15 Because the BEA only begin publishing the core PCE series with the

1996:Q1 vintage, it is not possible to extend the real time data set further back in history

with just information from the Survey of Current Business.

In the case of the CPI and the interest rates, for which real time revisions are small to

essentially non–existent (see, for example, Kozicki (2004)), we simply abstract from real

time aspects of the data. For the CPI, we follow the advice of Kozicki and Hoffman (2004)

for avoiding choppiness in inflation rates for the 1960s and 1970s due to changes in index

bases, and use a 1967 base year series taken from the BLS website in late 2005.16 For the

T-bill rate, we use a series obtained from FAME.

The full forecast evaluation period runs from 1970:Q1 through 2005; we use real time

data vintages from 1970:Q1 through 2005:Q4. As described in Croushore and Stark (2001),

the vintages of the RTDSM are dated to reflect the information available around the middle

of each quarter. Normally, in a given vintage t, the available NIPA data run through period

t − 1.17 The start dates of the raw data available in each vintage vary over time, ranging

from 1947:Q1 to 1959:Q3, reflecting changes in the samples of the historical data made

available by the BEA. For each forecast origin t in 1970:Q1 through 2005:Q3, we use the

real time data vintage t to estimate output gaps, estimate the forecast models, and then

construct forecasts for periods t and beyond. The starting point of the model estimation

sample is the maximum of 1955:Q1 and the earliest quarter in which all of the data included

in a given model are available, plus the number of lags included in the model (plus one
15In putting together vintages for 1996:Q1 through 1999:Q2, we also relied on a couple of full time series

we had on file from prior research, series that correspond to the vintages for 1996:Q4 and 1999:Q2, obtained
from FAME at the time of the research projects.

16The BLS only provides the 1967 base year CPI on a not seasonally adjusted basis. We seasonally adjusted
the series with the X-11 filter.

17In the case of the 1996:Q1 vintage, with which the BEA published a benchmark revision, the data run
through 1995:Q3 instead of 1995:Q4.
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quarter for DVARs or VARs with inflation detrending).

We present forecast accuracy results for forecast horizons of the current quarter (h =

0Q), the next quarter (h = 1Q), and four quarters ahead (h = 1Y ). In light of the time t−1

information actually incorporated in the VARs used for forecasting at t, the current quarter

(t) forecast is really a 1–quarter ahead forecast, while the next quarter (t + 1) forecast is

really a 2–step ahead forecast. What is referred to as a 1–year ahead forecast is really a

5–step ahead forecast. In keeping with conventional practices and the interests of policy-

makers, the 1–year ahead forecasts for GDP/GNP growth and inflation are four–quarter

rates of change (the percent change from period t + 1 through t + 4). The 1–year ahead

forecasts for output gaps and interest rates are quarterly levels in period t +4.

As the forecast horizon increases beyond a year, forecasts are increasingly determined

by the unconditional means implied by a model. As highlighted by Kozicki and Tinsley

(1998, 2001a,b), these unconditional means — or, in the Kozicki and Tinsley terminology,

endpoints — may vary over time. The accuracy of long horizon forecasts (two or three

years ahead, for example) depend importantly on the accuracy of the model’s endpoints.

As a result, we examine simple measures of the endpoints implied by real time, 1970-2005

estimates of a select subset of the forecasting models described above. For simplicity, we

use 10–year ahead forecasts (forecasts for period t +39 made with vintage t data ending in

period t−1) as proxies for the endpoints.

We obtained benchmark SPF forecasts of growth, inflation, and interest rates from

the website of the Federal Reserve Bank of Philadelphia.18 The available forecasts of

GDP/GNP growth and inflation span our full 1970 to 2005 sample. The SPF forecasts of

CPI inflation and the 3-month Treasury bill rate begin in 1981:Q3. Our benchmark Green-

book forecasts of GDP/GNP growth and inflation and CPI inflation are taken from data

on the Federal Reserve Bank of Philadelphia’s website and data compiled by Peter Tulip

(some of the data are used in Tulip (2005)). We take 1970-99 vintage Greenbook forecasts

of GDP/GNP growth and GDP/GNP inflation from the Philadelphia Fed’s data set.19 Fore-

casts of GDP growth and inflation for 2000 are calculated from Tulip’s data set. Finally,

we take 1979:Q4–2000:Q4 vintage Greenbook forecasts of CPI inflation from Tulip’s data
18The SPF data provide GDP/GNP and the GDP/GNP price index in levels, from which we computed log

growth rates. We derived 1–year ahead forecasts of CPI inflation by compounding the reported quarterly
inflation forecasts.

19We derived 1–year ahead forecasts of growth and inflation by compounding the reported quarterly percent
changes.
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set.20

As discussed in such sources as Romer and Romer (2000), Sims (2002), and Croushore

(2006), evaluating the accuracy of real time forecasts requires a difficult decision on what

to take as the actual data in calculating forecast errors. The GDP data available today

for, say, 1970, represent the best available estimates of output in 1970. However, output

as defined today is quite different from the definition of output in 1970. For example,

today we have available chain weighted GDP; in the 1970s, output was measured with

fixed weight GNP. Forecasters in 1970 could not have foreseen such changes and the

potential impact on measured output. Accordingly, in our baseline results, we use the

first available estimates of GDP/GNP and the GDP/GNP deflator in evaluating forecast

accuracy. In particular, we define the actual value to be the first estimate available in

subsequent vintages. In the case of h–step ahead (for h = 0, 1, and 4) forecasts made

for period t + h with vintage t data ending in period t − 1, the first available estimate is

normally taken from the vintage t + h + 1 data set. In light of our abstraction from real

time revisions in CPI inflation and interest rates, the real time data correspond to the final

vintage data. In Clark and McCracken (2006a) we provide supplementary results using

final vintage (2005:Q4 vintage) data as actuals. Our qualitative results remain broadly

unchanged with the use of final vintage data as actuals.

4 Results

In evaluating the performance of the forecasting methods described above, we follow Stock

and Watson (1996, 2003, 2006), among others, in using squared error to evaluate accuracy

and considering forecast performance over multiple samples. Specifically, we measure

accuracy with root mean square error (RMSE). The forecast samples are generally specified

as 1970-84 and 1985-2005 (the latter sample is shortened to 1985-2000 in comparisons to

Greenbook forecasts, for which publicly available data end in 2000).21 We split the full

sample in this way to ensure our general findings are robust across sample periods, in

light of the evidence in Stock and Watson (2003) and others of instabilities in forecast

performance over time. However, because real time data on core PCE inflation only begin
20Year–ahead CPI forecasts were obtained by compounding the Greenbook’s quarterly percent changes.
21With forecasts dated by the end period of the forecast horizon h = 0,1,4, the VAR forecast samples are,

respectively, 1970:Q1+h to 1984:Q4 and 1985:Q1 to 2005:Q3.
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in 1996, we also present select results for a forecast sample of 1996-2005.22

To be able to provide broad, robust results, in total we consider a very large number of

models and methods — far too many to be able to present all details of the results. Instead

we use the full set of models and methods in providing only a high–level summary of the

results, primarily in the form of rankings described below. In addition, we limit the pre-

sentation of detailed results to those models and variable combinations of perhaps broadest

interest and note in the discussion those instances in which results differ for other specifi-

cations. Specifically, in presenting detailed results, we draw the following limitations. (1)

For the most part, accuracy results are presented for just output and inflation. (2) Output is

measured with either GDP/GNP growth or the HPS gap. (3) The interest rate is measured

with the 3-month Treasury bill rate. We provide results for models using the federal funds

rate — results qualitatively similar to those we report in the paper — in supplemental ta-

bles in Clark and McCracken (2006a). (4) The set of forecast models or methods is limited

to a subset we consider to be of the broadest interest or representative of the others. For

example, while we consider models estimated with a fixed number of either 2 or 4 lags, we

report RMSEs associated only with those that have 4 lags.

We proceed below by first presenting forecast accuracy results based on univariate and

VAR models. We then compare results for some of the better–performing methods to the

accuracy of SPF and Greenbook forecasts. We conclude by examining the real–time, long–

run forecasts generated by a subset of the forecast methods that yield relatively accurate

short–run forecasts.

4.1 Forecast accuracy

Tables 2 through 5 report forecast accuracy (RMSE) results for four combinations of output

(GDP growth and HPS gap) and inflation (GDP price index and CPI) and 27 models. In

each case we use the 3-month Treasury bill as the interest rate. In every case, the first

row of the table provides the RMSE associated with the baseline univariate model, while

the others report ratios of the corresponding RMSE to that for the benchmark univariate

model. Hence numbers less than one denote an improvement over the univariate baseline

while numbers greater than one denote otherwise.

To determine the statistical significance of differences in forecast accuracy, we use a
22Specifically, the forecast sample is 1996:Q1+h to to 2005:Q3 (for forecasts dated by the end of the

forecast horizon).

14



non–parametric bootstrap patterned after White’s (2000) to calculate p–values for each

RMSE ratio in Tables 2-5. The individual p–values represent a pairwise comparison of

each VAR or average forecast to the univariate forecast. RMSE ratios that are significantly

less than 1 at a 10 percent confidence level are indicated with a slanted font. To deter-

mine whether a best forecast in each column of the tables is significantly better than the

benchmark once the data snooping or search involved in selecting a best forecast is taken

into account, we apply Hansen’s (2005) (bootstrap) SPAc test to differences in MSEs (for

each model relative to the benchmark). Hansen shows that, if the variance of the forecast

loss differential of interest differs widely across models, his SPAc test will typically have

much greater power than White’s (2000) reality check test. For each column, if the SPAc

test yields a p–value of 10 percent or less, we report the associated RMSE ratio in bold

font. Because the SPAc test is based on t–statistics for equal MSE instead of just differ-

ences in MSE (that is, takes MSE variability into account), the forecast identified as being

significantly best by SPAc may not be the forecast with the lowest RMSE ratio.23

We implement the bootstrap procedures by sampling from the time series of forecast

errors underlying the entries in Tables 2-5. For simplicity, we use the moving block method

of Kunsch (1989) and Liu and Singh (1992) rather than the stationary bootstrap actually

used by White (2000) and Hansen (2005); White notes that the moving block is also asymp-

totically valid. The bootstrap is applied separately for each forecast horizon, using a block

size of 1 for the h = 0Q forecasts, 2 for h = 1Q, and 5 for h = 1Y .24 In addition, in light

of the potential for changes over time in forecast error variances, the bootstrap is applied

separately for each subperiod. Note, however, that the bootstrap sampling preserves the

correlations of forecast errors across forecast methods.

While there are many nuances in the detailed results, some clear patterns emerge. The

RMSEs clearly show the reduced volatility of the economy since the early 1980s, partic-

ularly for output. For each horizon, the benchmark univariate RMSE of GDP growth

forecasts declined by roughly 2/3 across the 1970-84 and 1985-05 samples; the benchmark

RMSE for HPS gap forecasts declined by about 1/2. The reduced volatility is less extreme

for the inflation measures but still evident. For each horizon, the benchmark RMSEs fell

by roughly 1/2 across the two periods, with the exception that at the h = 1Y horizon the
23For multi–step forecasts, we compute the variance entering the t–test using the Newey and West (1987)

estimator with a lag length of 1.5∗h, where h denotes the number of forecast periods.
24For a forecast horizon of τ periods, forecast errors from a properly specified model will follow an MA(τ−

1) process. Accordingly, we use a moving block size of τ for a forecast horizon of τ.
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variability in GDP inflation declined nearly 2/3.

Consistent with the results in Campbell (2006), D’Agostino, et al. (2005), Stock and

Watson (2006), and Tulip (2005), there is also a clear decline in the predictability of both

output and inflation: it has become harder to beat the accuracy of a univariate forecast. For

example, for each forecast horizon, a number of methods or models beat the accuracy of

the univariate forecast of GDP growth during the 1970-84 period (Tables 2 and 4). In fact,

many of these do so at a level that is statistically significant. But over the 1985-2005 period,

only the BVAR(4)-TVP models are more accurate, at only the 1–year ahead horizon. The

reduction in predictability is almost, but not quite, as extreme for the HPS output gap

(Tables 3 and 5). While several models perform significantly better than the benchmark

in the 1970-84 period, only two classes of methods, the BDVARs and the BVAR-TVPs,

significantly outperform the benchmark in the 1985-05 period.

The predictability of inflation has also declined, although less dramatically than for

output. For example, in models with GDP growth and GDP inflation (Table 2), the best

1–year ahead forecasts of inflation improve upon the univariate benchmark RMSE by more

than 10 percent in the 1970-84 period but only 5 percent in 1985-05. The evidence of a

decline in inflation predictability is perhaps most striking for CPI forecasts at the h = 0Q

horizon. In both Tables 4 and 5, most of the models convincingly outperform the univariate

benchmark during the 1970-84 period, with statistically significant maximal gains of 18%.

But in the following period, many fewer methods outperform the benchmark, with gains

typically about 4%.

Reflecting the decline in predictability, many of the methods that perform well over

1970-84 fare much more poorly over 1985-05. The instabilities in performance are clearly

evident in both output and inflation forecasts, but more dramatic for output forecasts. For

example, a VAR with AIC determined lags and intercept breaks (denoted VAR(AIC), in-

tercept breaks) forecasts both GDP growth and the HPS gap well in the 1970-84 period,

with gains as large as 25% for 1–year ahead forecasts of the HPS gap. However, in the

1985-05 period, the VAR with intercept breaks ranks among the worst performers, yielding

1–year ahead output forecasts with RMSEs 60 percent higher than the univariate forecast

RMSEs. In the case of inflation forecasts, a DVAR(4) estimated with Bayesian methods

and a rolling sample of data (denoted BDVAR(4)) beats the benchmark, by as much as

13 percent, at every horizon during the 1970-84 period. But in the 1985-05 period, the

BDVAR(4) is always beaten by the univariate benchmark model, by as much as 21%.
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The change in predictability makes it difficult to identify methods that consistently im-

prove upon the forecast accuracy of univariate benchmarks. As noted above, none of the

methods consistently improve upon the GDP growth benchmark across the subperiods. For

forecasts of the HPS gap, the BVAR(4)-TVP models generally outperform the benchmark

over both periods. However, the 1970-84 gains are not statistically significant. In the

case of inflation forecasts, though, a number of the forecasts significantly outperform the

univariate benchmark in both samples. Of particular note are the forecasts that average the

benchmark univariate projection with a VAR projection — either the VAR(4), DVAR(4),

or VAR(4) with inflation detrending — and the average of the univariate forecast with (to-

gether) the VAR(4), DVAR(4), and TVP BVAR(4) projections. In the 1970-84 period,

these averages nearly always outperform the benchmark, although without necessarily be-

ing the best performer. In the 1985-05 period, the averages continue to outperform the

benchmark and are frequently among the best performers.

In Tables 6 and 7 we take another approach to determining which methods tend to

perform better than the benchmark. Across each variable, model and horizon, we compute

the average rank and RMSE ratio of the methods included in Tables 2-5, as well as the

corresponding sample standard deviations. For example, the figures in Table 6 are obtained

by: (1) ranking, for each of the 48 columns of Tables 2-5, the 27 forecast methods or models

considered; and (2) calculating the average and standard deviation of each method’s (48)

ranks. Table 7 does the same, but using RMSEs instead of RMSE ranks. The averages in

Tables 6 and 7 show that, from a broad perspective, the best forecasts are those obtained

as averages across models. The best forecast, an average of the univariate benchmark with

the VAR(4) with inflation detrending, has an average RMSE ratio of .943 in Tables 2-5,

and an average rank of 5.1. Not surprisingly, orderings based on average RMSE ratios are

closely correlated with orderings based on the average rankings. For instance, the top eight

forecasts based on average rankings are the same as the top eight based on average RMSE

ratios, with slight differences in orderings.

Tables 6 and 7 also show that some VAR methods consistently perform worse — much

worse, in some cases — than the univariate benchmark. The univariate forecasts have the

9th best average RMSE ratio and 11th best average ranking. Thus, on average, roughly 2/3

of the VAR methods fail to beat the univariate benchmark. Moreover, some of the methods

designed to overcome the difficulty of forecasting in the presence of structural change con-

sistently rank among the worst forecasts. Most notably, VAR forecasts based on intercept

17



corrections and DLS estimates are generally among the worst forecasts considered, yield-

ing RMSE ratios that, on average, exceed the univariate benchmark by roughly 15 percent

(we acknowledge, however, that under different implementations, the performance of these

methods could improve — we leave such analysis for future research).25 VARs estimated

with rolling samples of data also perform relatively poorly: in every case, a VAR estimated

with a rolling sample is, on average, less accurate than when estimated (recursively) with

the full sample. In contrast, on average, standard Bayesian estimation of VARs generally

dominates OLS estimation of the corresponding model. For example, the average RMSE

ratio of the BVAR(4) forecast is 1.012, compared to the average VAR(4) RMSE ratio of

1.030.

Tables 8-11 report RMSE results for models including core PCE inflation. As noted

above, reflecting the real time core PCE data availability, the forecast sample is limited

to 1996-05. As in Tables 2-5, we report results for models with two different measures

of output, GDP growth and the HPS output gap, but a single interest rate measure, the

Treasury bill rate. For comparison, we also report 1996-05 results for models using GDP

inflation instead of core PCE inflation. As in the case of the results for 1970-84 and

1985-05, we use White (2000) and Hansen (2005) bootstraps to determine whether any of

the RMSE ratios are significantly less than one, on both a pairwise (given model against

univariate) and best–in–column basis. Individual RMSE ratios that are significantly less

than 1 (10% confidence level) are indicated with a slanted font. Note, though, that once

the search involved in selecting a best forecast is taken into account, the univariate model

is never beaten in the 1996-05 results (that is, none of the data snooping–robust p–values

are less than .10).

Consistent with the 1985-05 results in Tables 2-5, the forecast results for 1996-05 in Ta-

bles 8-11 show that univariate benchmarks are difficult to beat. Of the inflation measures,

the benchmark is harder to beat with core PCE inflation than with GDP inflation. For 1996-

05, only a few forecasts (e.g., rolling VAR(4) or DVAR(4) forecasts for h = 0Q) beat the

univariate benchmark, and none statistically significantly. A few more forecasts are able

to improve (some statistically significantly) on the accuracy of the univariate benchmark

for GDP inflation. Importantly, for models with GDP inflation, those methods that per-
25In our results, intercept corrections don’t seem to work with either GDP growth or output gaps. In the

case of gaps, however, the persistence and measurement error inherent in them may warrant other approaches
to intercept correction.
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formed relatively well over the samples covered in Tables 2-5 — such as the averages of

the benchmarks with the VAR(4) or DVAR(4) models — also perform relatively well over

the 1996-05 sample.

Tables 12 and 13 provide aggregate or summary information on the forecast perfor-

mance of all the methods and nearly all of the data combinations considered. The summary

information covers all of the variable combinations and models included in Tables 2-5, as

well as variable combinations that include the HP measure of the output gap or the federal

funds rate as the interest rate, models based on a fixed lag of two instead of four, and the

full set of forecasting methods described in section 2 and listed in Table 1. Our summary

approach follows the ranking methodology of Tables 6 and 7. That is, in Tables 12 and 13

we present average rankings for every method we consider across every forecast horizon,

various subclasses of models, and the 1970-84 and 1985-05 samples. Note, however, that

we exclude the 1996-05 sample (and, as a result, results from models including core PCE

inflation), in part because of its overlap with the longer 1985-05 period.

While expanding coverage to all possible models and methods generates some addi-

tional nuances in results, the broad findings described above continue to hold. As shown

in Table 12’s first column of ranks, across all combinations of variables the most robust

forecasting methods are those that average the univariate model with one or a few VAR

forecasts. For example, the average of the univariate forecast with a forecast from a VAR(2)

with inflation detrending has the best average ranking, of 12.9 (and the best average RMSE

ratio, not reported, of 0.937). Coming in behind these averaging methods, in the broad

ranking perspective, are the fixed lag BVAR, BDVAR and BVAR-TVP models. Note that

the first column includes interest rate forecast results — which were omitted from previous

tables for brevity. The same classes of models that on average performed best for the out-

put and inflation series continue to perform among the best for interest rate forecasts (and is

another reason why we felt comfortable omitting those results). Somewhat more formally,

the Spearman rank correlation across the results in the first and second columns of Table

12 — the second of which contains the ranks of just the output and inflation forecasts — is

a robust 0.97.

Columns 3 and 4 of Table 12 delineate the average impact of the choice of interest rate

on forecast accuracy for the output and inflation measures. The rankings are extremely

similar. The five best methods for forecasting output and inflation in models with the T-

bill rate are also the five best methods in models with the federal funds rate. Moreover,
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the Spearman rank correlation of the results conditioned on the T-bill rate and the results

conditioned on the federal funds rate is 0.98. We should emphasize that this does not

imply that there weren’t differences in the nominal outcomes across these two interest rate

measures. Rather, in light of our goal to identify those methods that are most robust in

forecasting, the choice between the T-bill and federal funds rates makes little difference.

Columns 1-3 in Table 13 delineate the average impact of the choice of output measure in

forecasts of output and inflation. These rankings are quite similar across output measures,

although not quite as similar as those comparing the impact of the interest rate measures.

In each case the best methods generally continue to be averages of univariate benchmarks

with VAR forecasts and BVARs with TVP. For example, in models with GDP growth,

on average the best forecasts of output and inflation are obtained with an average of the

univariate, VAR(4), DVAR(4), and TVP BVAR(4) forecasts. Perhaps the largest distinction

among the three sets of rankings is that moving from GDP growth to HPS gap to HP gap,

the concentration of best methods shifts from the averaging group to the BVAR-TVP with

tight intercept priors group to the BVAR-TVP with loose intercept priors group. Even so,

the rank correlations among the three columns are very high, between 0.85 and 0.93.

Similarly, columns 4 and 5 of Table 13 provide average rankings of forecasts for output

and inflation that condition on the inflation measure, GDP inflation or CPI inflation. Again,

the top performing methods remain the averages of univariate forecasts with select VAR

forecasts and BVAR TVP forecasts. And, the results are very similar across inflation mea-

sures. In the average rankings, the top seven methods for models including GDP inflation

are the same as the top seven for models including CPI inflation, with slight differences in

orderings. The rank correlation across all methods is 0.94.

The last two columns of Table 12 compare the performance of methods across the 1970-

84 and 1985-05 periods. As in the above detailed comparisons of a subset of results, across

the two subperiods there are some sharp differences in the performance of many of even

the better performing methods.26 Only four methods have an average ranking of less than

20 over the 1970-84 period (in order from smallest to largest): the average of all forecasts,

the average of the univariate and VAR(4) with inflation detrending forecasts, the VAR(2)

with full exponential smoothing detrending, and the average of the univariate, VAR(4),
26In addition, the average RMSE ratios (not reported) associated with each of the top–performing methods

reflect the sharp reduction in predictability in 1985-05 compared to 1970-84. The best average RMSE ratio
for 1970-84 is 0.873, from a VAR(2) with full exponential smoothing. The best average RMSE ratio for
1985-05 is 0.998, for the baseline TVP BVAR(4).
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DVAR(4), and TVP BVAR(4) forecasts. For the 1985-05 sample, a total of 11 methods

have average rankings below 20, but only two of them — the average of the univariate

and VAR(4) with inflation detrending forecasts and the average of the univariate, VAR(4),

DVAR(4), and TVP BVAR(4) forecasts — correspond to the four methods that produce

average rankings of less than 20 in the 1970-84 sample. Some of the models that perform

relatively well in 1970-84 fare much more poorly in the second sample. For example, the

average ranking of the VAR(2) with full exponential smoothing detrending plummets from

17.7 in 1970-84 to 63.9 in 1985-05. Not surprisingly, the rank correlation between these

two columns is relatively low, at just 0.58.

In Clark and McCracken (2006a) we provide still more detailed information on which

methods work the best individually for forecasting each output measure and the GDP and

CPI measures of inflation. Perhaps not surprisingly, this further disaggregation of the

results leads to modestly more heterogeneity in rankings of the best methods. This is par-

ticularly true for output forecast rankings compared to inflation rankings. For example, a

DVAR with AIC–determined lags has an average ranking of 15.4 in forecasts of GDP infla-

tion and an average ranking of 48.5 in forecasts of GDP growth. The Spearman correlations

of output rankings with inflation rankings range from 0.46 (for GDP growth and CPI infla-

tion) to 0.57 (for the HPS gap and CPI inflation). By comparison, the correlations of output

forecast rankings across measures of output average 0.7, while the correlation for GDP and

CPI inflation rankings is 0.86. Despite the greater heterogeneity of these more disaggregate

rankings, there are similarities among the best performers. Among the output variables, on

average, the best forecasts are typically the averages of univariate forecasts with VAR fore-

casts and the BVAR-TVP forecasts. For the two inflation measures, the averaging methods

continue to perform the best, followed by BVAR-TVP and DVAR forecasts.

Just as Tables 12 and 13 provide aggregate evidence on the best methods, they also

show what methods consistently perform the worse in the full set of models, methods, and

horizons. Perhaps most simply, not a single method on the second pages of the tables has

an average rank less than 20! Consistent with the subset of results summarized in Tables

6 and 7, the lowest–ranked methods include: DLS estimation of VARs or DVARs, DVARs

with output, in addition to inflation and the interest rate, differenced; and VARs with inter-

cept correction. The consistency of the rankings for these worst–performing methods may

be considered impressive. In addition, the average rankings of forecasts based on rolling

estimation of VARs (and DVARs, BVARs, etc.) are generally considerably lower than the
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average rankings of the corresponding VARs estimated with the full sample of data. For

example, the average ranking of rolling DVAR(2) forecasts is 41.2, compared to the re-

cursively estimated DVAR(2)’s average ranking of 32.8. While those methods generally

falling in the middle ranks (between an average rank of, say, 20 and 50) may not be con-

sidered robust approaches to forecasting with the VARs of interest, in particular instances

some of these methods may perform relatively well. For example, the DVAR with AIC lags

determined for each equation has an average ranking of 39.4, but yields relatively accurate

forecasts of GDP inflation in 1985-05 (Tables 2 and 4).

Table 14 compares the accuracy of some of the better time series forecasting methods

with the accuracy of SPF projections. The variables we report are those for which SPF

forecasts exist: GDP growth, GDP inflation, and CPI inflation (in the case of CPI inflation,

the SPF forecasts don’t begin until 1981, so we only report CPI results for the 1985-05

period). We also report results for forecasts of the T-bill rate from the SPF and the selected

time series models. In particular, Table 14 provides, for the 1970-84 and 1985-05 samples,

RMSEs for forecasts from the SPF and a select set of the better–performing time series

forecasts: the best forecast RMSE for each variable in each period from those methods

included in Table 2 (Table 4 for CPI inflation forecasts), the univariate benchmark forecast,

several of the average forecasts, and the baseline TVP BVAR(4). To be sure, comparing

forecasts from a source such as SPF against the best forecast from Table 2 or 4 gives the

time series models an unrealistic advantage, in that, in real time, a forecaster wouldn’t

know which method is most accurate. However, as the results presented below make clear,

our general findings apply to all of the individual forecasts included in the comparison.

Perhaps not surprisingly, the SPF forecasts generally dominate the time series model

forecasts. For example, in h = 0Q forecasts of GDP growth for 1970-84, the RMSE for

the SPF is 2.571, compared to the best time series RMSE of 3.735 (in which case the best

forecast is the all forecast average reported in Table 2). In h = 0Q forecasts of GDP inflation

for 1970-84, the RMSE for the SPF is 1.364, compared to the best time series RMSE of

1.727 (again, from the all–forecast average in Table 2). At such short horizons, of course,

the SPF has a considerable information advantage over simple time series methods. As

described in Croushore (1993), the SPF forecast is based on a survey taken in the second

month of each quarter. Survey respondents then have considerably more information, on

variables such as interest rates and stock prices, than is reflected in time series forecasts

that don’t include the same information (as reflected in the bottom panel of Table 14, that
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information gives the SPF its biggest advantage in near-term interest rates). However,

the SPF’s advantage over time series methods generally declines as the forecast horizon

rises. For instance, in h = 1Y forecasts of GDP growth for 1970-84, the SPF and best

time series RMSEs are, respectively, 2.891 and 2.775; for forecasts of GDP inflation, the

corresponding RMSEs are 2.192 and 2.141.

Moreover, the SPF’s advantage is much greater in the 1970-84 sample than the 1985-

05 sample. Campbell (2006) notes the same for SPF growth forecasts compared to AR(1)

forecasts of GDP growth, attributing the pattern to declining predictability (other recent

studies documenting reduced predictability include D’Agostino, et al. (2005), Stock and

Watson (2006), and Tulip (2005)). In this later period, the RMSEs of h = 0Q forecasts of

GDP growth from the SPF and best time series approach are 1.384 and 1.609, respectively.

The RMSEs of h = 0Q forecasts of GDP inflation from the SPF and best time series ap-

proach are 0.831 and 0.926, respectively. Reflecting the declining predictability of output

and inflation and the reduced advantage of the SPF at longer horizons, for 1–year ahead

forecasts in the 1985-05 period, the advantage of the SPF over time series methods is quite

small. For instance, in 1–year ahead forecasts of GDP growth, the TVP BVAR(4) using

GDP growth, GDP inflation, and the T-bill rate beats the SPF (RMSE of 1.218 vs. 1.274);

in forecasts of GDP inflation, the TVP BVAR again beats the SPF (RMSE of 0.764 vs.

0.804).

In light of the more limited availability of Greenbook (GB) forecasts (the public sam-

ple ends in 2000), in lieu of comparing VAR forecasts directly to GB forecasts, we simply

compare the GB forecasts to SPF forecasts. As long as the GB and SPF forecasts are

broadly comparable in RMSE accuracy, our findings for VARs compared to SPF will also

apply to VARs compared to GB forecasts. Table 15 reports RMSEs of forecasts of GDP

growth, GDP inflation, and CPI inflation, for samples of 1970-84 and 1985-2000 (we omit

an interest rate comparison because, for much of the sample, GB did not include an un-

conditional interest rate forecast). Consistent with evidence in such studies as Romer and

Romer (2000) and Sims (2002), GB forecasts tend to be more accurate, especially for in-

flation. For instance, the 1970-84 RMSEs of 1–year ahead forecasts of GDP inflation are

2.192 for SPF and 1.653 for GB. However, perhaps reflecting declining predictability, any

advantage of GB over SPF is generally smaller in the second sample than the first. Re-

gardless, the accuracy differences between SPF and GB forecasts are modest enough that

comparing VAR forecasts against GB instead of SPF wouldn’t alter the findings described
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above.

4.2 Long–run forecasts

As noted in section 3, as the forecast horizon increases beyond the one year period consid-

ered above, the so-called endpoints come to play an increasingly important role in deter-

mining the forecast. Kozicki and Tinsley (1998, 2001a,b), among others, have shown that

these endpoints can vary significantly over time. In this section we examine which, if any

of the forecast methods considered above, imply reasonable endpoints. For simplicity, we

use a 10–year ahead forecast (the forecast in period t+39, from a forecast origin of t using

data through t−1) as a proxy for the endpoint estimate. Kozicki and Tinsley (2001b) use

a similar metric (Kozicki and Tinsley compare 10 year–ahead forecasts to survey measures

of long-term inflation expectations).

Of course, an immediate question is, what is reasonable? Trend GDP growth is gener-

ally thought to have evolved slowly over time, (at least) declining in the 1970s and rising in

the 1990s. The available real–time estimates of potential GDP from the CBO, taken from

Kozicki (2004), show some variation in trend growth. CBO estimates of potential output

growth rose from about 2.1 percent in 1991 vintage data to 3.2 percent in 2001 and 2.75

percent in 2004 vintage data.27 At the same time, the implicit inflation goal of monetary

policymakers is thought to have trended up from the 1970s through the mid-1980s, and

then trended down (see Figure 1 and the associated discussion in section 2). The trend in

inflation implies a comparable trend in short-term interest rates. Accuracy in longer-term

forecasting is likely to require forecast endpoints that roughly match up to variation in such

trends in growth and inflation.

For simplicity, in assessing the ability of VAR forecast methods to generate reasonable

endpoints, we compare the estimated endpoint proxies to trends in growth, inflation, and

interest rates estimated in real time with exponential smoothing. As noted above, expo-

nential smoothing applied to inflation yields a trend quite similar to the shifting endpoint

(or implicit target) estimate of Kozicki and Tinsley (2001a,b). Exponential smoothing ap-

plied to GDP growth (with a smoothing parameter of 0.015) yields a trend measure that, in

line with many economists’ beliefs, shows trend growth gradually slowing over the 1970s
27For each each vintage t, we calculate trend growth as the projected percent change in potential GDP in

year t +5. We use a five–year horizon because, for some years, the CBO data on potential output extend only
five, rather than 10, years into the future.

24



and 1980s before rising in the 1990s. Reflecting real time data availability, trends in each

vintage t are estimated using data through period t−1.

In light of space limitations, we present endpoint proxy results for just GDP growth

and GDP inflation, for a limited set of forecasting methods likely to be of the most interest.

The reported forecasts are obtained from models in GDP growth, GDP inflation, and the

T-bill rate. Qualitatively, results are similar across other measures of output, inflation, and

the interest rate. We omit endpoint results for the T-bill rate because they are qualitatively

very similar to those for inflation. The forecast methods or models include the univariate

benchmarks, VAR(4), DVAR(4), VAR(4) with inflation detrending, BVAR(4), BDVAR(4),

rolling BDVAR(4), BVAR(4) with TVP, BVAR(4) with intercept TVP, the average of uni-

variate and VAR(4) forecasts, and the average of the univariate and VAR(4) with infla-

tion detrending. In light of the general value of shrinkage in forecasting and the potential

success of inflation detrending in pinning down reasonable endpoints, we also include an

approach not considered above: a VAR(4) with inflation detrending estimated with BVAR

methods (BVAR(4) with inflation detrending).28 This set of methods is intended to include

those that work relatively well in shorter-term forecasting and particular approaches, such

as differencing and rolling estimation, that are sometimes used in practice to try to capture

non–stationarities such as moving endpoints.

The results provided in Figures 2 (GDP growth) and 3 (GDP inflation) show that some

forecast approaches fare very poorly, yielding endpoint proxies that are far too volatile to

be considered reasonable (note that, in these charts, the scales differ between those meth-

ods that work reasonably well and those that don’t). These exceedingly volatile methods

include the VAR, BVAR, BVAR with TVP, BVAR with intercept TVP, and the average of

the univariate and VAR(4). For example, in the case of the VAR(4), the 10–year ahead fore-

cast of GDP growth plummets to -15.2 percent in (vintage) 1975:Q1 and -12.8 percent in

1981:Q3; the forecast of inflation soars to 34.2 percent in 1981:Q3. In (vintage) 1980:Q2,

the BVAR(4) forecasts of GDP growth and inflation reach the extremes of -9.4 and 25.8

percent, respectively. In the case of the BVAR(4) with TVP, the long–term projections

of growth and inflation are -20.9 percent and 64.5 percent in 1980:Q2. Such extremes in

forecasts of course suggest explosive roots in the autoregressive systems, which are indeed

evident in the system estimates. For example, the VAR(4) system has a largest root of
28We obtain these estimates using the BVAR prior variances described in section 2 and prior means of 0

for all coefficients.
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1.005 in the 1975:Q1 estimates, 1.002 in the 1980:Q2 estimates, and 1.031 in the 1981:Q3

estimates. The BVAR(4) system has a largest root of 1.011 in the 1981:Q3 estimates. As

a result, for a practitioner interested in using these methods for forecasting in real time,

some care in adjusting estimates to avoid explosive roots would be required to improve the

endpoint and long–term forecast accuracy of the methods.

The other forecast methods — univariate, DVAR, VAR with inflation detrending, BVAR

with inflation detrending, BDVAR, rolling BDVAR, and the average of the univariate and

VAR with inflation detrending — produce much less volatile and therefore more reasonable

endpoint estimates. For example, the univariate and BDVAR(4) 10–year ahead forecasts

of GDP growth correspond pretty closely (at least in relative terms) to the exponentially

smoothed trend. Of course, the exponentially smoothed measure may not be the best esti-

mate of trend. However, any better estimate of trend growth is not likely to be significantly

more volatile over time. As a result, even among this relatively better set of forecast meth-

ods, a smooth long–term forecast like that from the univariate model may be preferred to

a modestly more volatile one, like the forecast from the VAR(4) with inflation detrending.

Among inflation forecasts, the endpoint proxies from the univariate and BVAR with infla-

tion detrending models provide the closest match to trend inflation. The endpoint proxy

from the BVAR with inflation detrending includes less high frequency variation than does

the estimate from the univariate model, but is farther from trend inflation in the 1970s.

Two other results are worth noting. First, for both growth and inflation, rolling esti-

mation of the BDVAR implies endpoints that are more volatile than the endpoints implied

by the recursively estimated BDVAR. Second, compared to OLS estimation, Bayesian

estimation of the VAR with inflation detrending helps to dampen volatility in the endpoint

proxies (although not included in the RMSE results above, Bayesian estimation also helped

to modestly improve the forecast accuracy of VARs with inflation detrending).

5 Conclusion

In this paper we provide empirical evidence on the ability of several different methods

to improve the real–time forecast accuracy of small-scale macroeconomic VARs in the

presence of model instability. The 18 distinct trivariate VARs that we consider are each

comprised of one of three measures of output, one of three measures of inflation, and one

of two measures of short-term interest rates. For each of these models we construct real
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time forecasts of each variable (with particular emphasis on the output and inflation mea-

sures). For each of the 18 variable combinations, we consider 86 different forecast models

or methods, incorporating different choices of lag selection, observation windows used for

estimation, levels or differences, intercept corrections, stochastically time–varying parame-

ters, break dating, discounted least squares, Bayesian shrinkage, detrending of inflation and

interest rates, and model averaging. We compare our results to those from simple baseline

univariate models as well as forecasts from the Survey of Professional Forecasters and the

Federal Reserve Board’s Greenbook.

Our results indicate that some of the methods do consistently improve forecast accuracy

in terms of root mean square errors (RMSE). Not surprisingly, the best method often varies

with the variable being forecasted, but several patterns do emerge. After aggregating across

all models, horizons and variables being forecasted, it is clear that model averaging and

Bayesian shrinkage methods consistently perform among the best methods. At the other

extreme, the approaches of using a fixed rolling window of observations to estimate model

parameters and discounted least squares estimation consistently rank among the worst. Of

course, estimation methods that are unsuccessful in forecasting may nonetheless prove

useful for other purposes. Perhaps not surprisingly, out–of–sample forecast accuracy does

not seem to be strongly related to in–sample fit. For models in GDP growth, GDP inflation,

and the T-bill rate, Figure 4 compares real time forecast RMSEs to in–sample fit estimates

(for each forecasting model, in–sample fit is measured as the standard error of estimate,

averaged over the forecasting sample). Except for some outlier observations, in–sample

fit has little relationship (and sometimes a negative relationship) with forecast accuracy, at

least in the VAR models and methods we consider.
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Figure 1:  Alternative estimates of CPI inflation trends

exponential smoothing Kozicki-Tinsley/SPF
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Figure 2: 10-year ahead forecasts of GDP growth

(VAR in GDP growth, GDP inflation, and T-bill rate)

solid lines: forecasts       dotted lines: exponentially smoothed trends
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Figure 3: 10-year ahead forecasts of GDP inflation

(VAR in GDP growth, GDP inflation, and T-bill rate)

solid lines: forecasts       dotted lines: exponentially smoothed trends
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Figure 4.  In-sample fit vs. forecast RMSE

(VAR in GDP growth, GDP inflation, and T-bill rate)
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Notes: 

 

1.  The figures compare forecast RMSEs for the indicated variable and sample to 

corresponding measures of in-sample fit.   

2.  All results are based on models in GDP growth, GDP inflation, and the T-bill rate.  

The forecast methods are listed in Table 1.  The figures exclude results for the intercept 

correction methods of Clements and Hendry (1996), because it is not clear how best to 

measure in-sample fit for the associated forecasts. 

3.  The forecast RMSEs are based on the h = 0Q horizon.  Starting with t = 1970:Q1, the 

in-sample fit of each model used to forecast is estimated as the conventional standard 

error of estimate (with the conventional degrees of freedom adjustment).  For each 

model, the time series of in-sample fit estimates is averaged over the 1970-84 and 1985-

05 forecast samples.  The charts use these average estimates of in-sample fit. 

4.  In the case of forecasts based on rolling sample model estimates, we fit the same 

model to the sample of data preceding the rolling sample (assuming, in effect, a break in 

the model’s coefficients at the time of the rolling sample start).  We then estimate in-

sample fit as the (square root of the) sum of squared residuals over the whole period 

divided by the total sample size less the total number of parameters. 



Table 1: Forecasting methods
method details
VAR(4) VAR in y, π, i with fixed lag order of 4
VAR(2) same as above with fixed lag order of 2
VAR(AIC) VAR with system lag determined by AIC
VAR(BIC) VAR with system lag determined by BIC
VAR(AIC, by eq.&var.) VAR in y, π, i allowing different, AIC-det. lags for

each var. in each eq.
VAR(BIC, by eq.&var.) same as above, with BIC-determined lags
DVAR(4) VAR in y, ∆π, ∆i with fixed lag order of 4
DVAR(2) same as above with fixed lag order of 2
DVAR(AIC) VAR in y, ∆π, ∆i with system lag set by AIC
DVAR(BIC) VAR in y, ∆π, ∆i with system lag set by BIC
DVAR(AIC, by eq.&var.) VAR in y, ∆π, ∆i allowing different, AIC-det. lags

for each var. in each eq.
DVAR(BIC, by eq.&var.) same as above, with BIC-determined lags
DVAR(4), output diff. VAR in ∆y, ∆π, ∆i with fixed lag order of 4
DVAR(2), output diff. same as above with fixed lag order of 2
DVAR(AIC), output diff. VAR in ∆y, ∆π, ∆i with system lag set by AIC
DVAR(BIC), output diff. VAR in ∆y, ∆π, ∆i with system lag set by BIC
BVAR(4) VAR(4) in y, π, i est. with Minnesota priors,

using λ1 = .2, λ2 = .5, λ3 = 1, λ4 = 1000
BVAR(2) same as above with fixed lag order of 2
BDVAR(4) VAR(4) in y, ∆π, ∆i est. with Minnesota priors,

using λ1 = .2, λ2 = .5, λ3 = 1, λ4 = 1000
BDVAR(2) same as above with fixed lag order of 2
VAR(4), rolling VAR in y, π, i with fixed lag order of 4, est.

with a rolling window of 60 observations
VAR(2), rolling same as above with fixed lag order of 2
VAR(AIC), rolling same as above with AIC–determined lag
VAR(BIC), rolling same as above with BIC–determined lag
VAR(AIC, by eq.&var.), rolling VAR in y, π, i allowing different, AIC-det. lags for

each var. in each eq., est. with a rolling sample
of 60 obs.

VAR(BIC, by eq.&var.), rolling same as above with BIC-determined lags
DVAR(4), rolling VAR in y, ∆π, ∆i with fixed lag order of 4, est.

with a rolling sample of 60 observations
DVAR(2), rolling same as above with fixed lag order of 2
DVAR(AIC), rolling same as above with AIC–determined lag
DVAR(BIC), rolling same as above with BIC–determined lag
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Table 1, continued: Forecasting methods
method details
DVAR(AIC, by eq.&var.), rolling VAR in y, ∆π, ∆i allowing different, AIC-det. lags for

each var. in each eq., est. with a rolling sample
of 60 obs.

DVAR(BIC, by eq.&var.), rolling same as above with BIC-determined lags
DVAR(4), output diff., rolling VAR in ∆y, ∆π, ∆i with fixed lag order of 4,

est. with a rolling sample of 60 observations
DVAR(2), output diff., rolling same as above with fixed lag order of 2
DVAR(AIC), output diff., rolling same as above with AIC–determined lag
DVAR(BIC), output diff., rolling same as above with BIC–determined lag
BVAR(4), rolling BVAR(4) in y, π, i with λ1 = .2, λ2 = .5, λ3 = 1,

λ4 = 1000, est. with a rolling sample of 60 obs.
BVAR(2), rolling same as above with fixed lag order of 2
BDVAR(4), rolling BVAR(4) in y, ∆π, ∆i with λ1 = .2, λ2 = .5, λ3 = 1,

λ4 = 1000, est. with a rolling sample of 60 obs.
BDVAR(2), rolling same as above with fixed lag order of 2
DLS, VAR(4) VAR(4) in y, π, i, est. with discounted least squares

(DLS), using dis. rates of .99 for y eq.
.95 for π and i eq.

DLS, VAR(2) same as above with fixed lag of 2
DLS, VAR(AIC) same as above with lag order det. from AIC applied to

OLS estimates of system
DLS, DVAR(4) VAR(4) in y, ∆π, ∆i, est. with DLS,

using dis. rates of .99 for y eq., .95 for ∆π and ∆i eq.
DLS, DVAR(2) same as above with fixed lag of 2
DLS, DVAR(AIC) same as above with lag order set by AIC applied to

OLS estimates of system
VAR(AIC), AIC intercept breaks VAR in y, π, i with AIC-det. lags, allowing up to two

breaks in the set of intercepts, with the number and
dates that minimize the AIC

VAR(AIC), BIC intercept breaks same as above, using the BIC to determine the breaks
VAR(4), intercept correction VAR(4) forecasts adjusted by the average of the

last 4 residuals (Clements and Hendry (1996), eq. 40)
VAR(2), intercept correction same as above with fixed lag order of 2
VAR(AIC), intercept correction VAR(AIC lag) forecasts adjusted by the average

of the last 4 residuals (Clements
and Hendry (1996), eq. 40)

VAR(4), partial int. corr. VAR(4) forecasts of π and i adjusted by the average
of the last 4 residuals (y residuals treated as 0)

VAR(2), partial int. corr. same as above with fixed lag order of 2
VAR(AIC), partial int. corr. VAR(AIC lag) forecasts of π and i adjusted by the

average of the last 4 residuals
(y residuals treated as 0)
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Table 1, continued: Forecasting methods
method details
VAR(4), inflation detrending VAR(4) in y, π−π∗−1, and i−π∗−1, where

π∗ = π∗−1 +α(π−π∗−1), α = .05 for GDP and
CPI inflation, .07 for core PCE inflation

VAR(2), inflation detrending same as above with fixed lag of 2
VAR(AIC), inflation detrending same as above with AIC–det. lag for the y,

π−π∗−1, and i−π∗−1 system
VAR(BIC), inflation detrending same as above with BIC–det. lag for the y,

π−π∗−1, and i−π∗−1 system
VAR(4), full ES detrending VAR(4) in y, π−π∗−1, and i− i∗−1, where

π∗ = π∗−1 +α(π−π∗−1) (α = .05 or .07,
depending on π measure),
i∗ = i∗−1 + .07(i− i∗−1)

VAR(2), full ES detrending same as above with fixed lag of 2
VAR(AIC), full ES detrending same as above with AIC–det. lag for the y,

π−π∗−1, and i− i∗−1 system
VAR(BIC), full ES detrending same as above with BIC–det. lag for the y,

π−π∗−1, and i− i∗−1 system
TVP BVAR(4) TVP BVAR(4) in y, π, i with λ1 = .2, λ2 = .5,

λ3 = 1, λ4 = .1, λ = .0005
TVP BVAR(2) same as above with fixed lag of 2
TVP BVAR(4), λ4 = .5,λ = .0025 TVP BVAR(4) in y, π, i with λ1 = .2, λ2 = .5,

λ3 = 1, λ4 = .5, λ = .0025
TVP BVAR(2), λ4 = .5,λ = .0025 same as above with fixed lag of 2
TVP BVAR(4), λ4 = 1000,λ = .005 TVP BVAR(4) in y, π, i with λ1 = .2, λ2 = .5,

λ3 = 1, λ4 = 1000, λ = .005
TVP BVAR(2), λ4 = 1000,λ = .005 same as above with fixed lag of 2
TVP BVAR(4), λ4 = 1000,λ = .0001 TVP BVAR(4) in y, π, i with λ1 = .2, λ2 = .5,

λ3 = 1, λ4 = 1000, λ = .0001
TVP BVAR(2), λ4 = 1000,λ = .0001 same as above with fixed lag of 2
Intercept TVP BVAR(4) BVAR(4) in y, π, i, TVP in only intercepts,

λ1 = .2, λ2 = .5, λ3 = 1, λ4 = .1,
λ = .0005

Intercept TVP BVAR(2) same as above with fixed lag of 2
Intercept TVP BVAR(4), λ4 = .5,λ = .0025 BVAR(4) in y, π, i, TVP in only intercepts,

λ1 = .2, λ2 = .5, λ3 = 1, λ4 = .5,
λ = .0025

Intercept TVP BVAR(2), λ4 = .5,λ = .0025 same as above with fixed lag of 2
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Table 1, continued: Forecasting methods
method details
average of all forecasts simple average of all of the above forecasts
avg. of VAR(4), rolling VAR(4) average of forecasts from recursive and rolling

estimates of VAR(4) in y, π, and i
avg. of VAR(2), rolling VAR(2) same as above using VARs with fixed lag of 2
avg. of univariate, VAR(4) average of forecasts from univariate model and

VAR(4) in y, π, and i
avg. of univariate, VAR(2) same as above using VAR with fixed lag of 2
avg. of univariate, DVAR(4) average of forecasts from univariate model and

VAR(4) in ∆y, ∆π, and i
avg. of univariate, DVAR(2) same as above using VAR with fixed lag of 2
avg. of univ., IDTR VAR(4) average of forecasts from univariate model

and VAR(4) with inflation detrending
avg. of univ., IDTR VAR(2) same as above using VAR with fixed lag of 2
avg. of univ., VAR(4), DVAR(4), simple average of univariate, VAR(4), DVAR(4),

TVP BVAR(4) and TVP BVAR(4) (λ4 = .1,λ = .0005)
forecasts

avg. of univ., VAR(2), DVAR(2), same as above using VARs with fixed lag of 2
TVP BVAR(2)

univariate AR(2) for y, rolling MA(1) for ∆π,
rolling MA(1) for ∆i

Notes:
1. The variables y, π, and i refer to, respectively, output (GDP growth, the HPS gap, or the HP
gap), inflation (GDP inflation, CPI inflation, or core PCE inflation), and the interest rate (T-bill or
federal funds).
2. Unless otherwise noted, all models are estimated recursively, using all data (starting in 1955 or
later) available up to the forecasting date.
3. The rolling estimates of the univariate models for ∆π and ∆i use 40 observations.
4. The AIC and BIC lag orders range from 0 (the minimum allowed) to 4 (the maximum allowed).
5. Section 2 details the hyperparameterization (and λ notation above) used in BVAR estimation.
In BVAR estimation, prior means for all coefficients are generally set at 0, with the following
exceptions: (a) prior means for own first lags of π and i are set at 1 in models with levels of
inflation and interest rates; (b) prior means for own first lags of y are set at 0.8 in models with an
output gap; and (c) prior means for the intercept of GDP growth equations are set to the historical
average of growth in BVAR estimates that impose informative priors (λ4 = .1 or .5) on the constant
term.
6. The time variation in the coefficients of the TVP BVARs takes a random walk form. In time–
varying BVARs with flat priors on the intercepts (λ4 = 1000), the variation of the innovation in the
intercept is set at λ times the prior variance of the coefficient on the own first lag instead of the
prior variance of the constant.
7. The exponential smoothing used in the models with detrending is initialized with the average
value of inflation over the first five years of each sample.
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Table 2: Real-time RMSE results for GDP growth and GDP inflation
(RMSEs in first row, RMSE ratios in all others)

GDP growth forecasts
1970-84 1985-2005

forecast method h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
univariate 4.183 4.761 3.652 1.609 1.668 1.293
VAR(4) 1.022 .912 .936 1.184 1.200 1.110
VAR(4), intercept correction 1.038 .944 1.047 1.177 1.209 1.325
VAR(AIC) 1.024 .921 .969 1.169 1.188 1.105
DVAR(4) 1.039 .932 .760 1.260 1.298 1.152
DVAR(AIC) .974 .847 .798 1.208 1.240 1.108
VAR(AIC, by eq.&var.) .948 .902 .989 1.113 1.122 .998
DVAR(AIC, by eq.&var.) 1.019 .943 .783 1.204 1.260 1.155
BVAR(4) .919 .875 .949 1.077 1.090 1.005
BDVAR(4) .988 .956 .956 1.045 1.045 1.013
VAR(4), inflation detrending .956 .837 .797 1.247 1.283 1.162
VAR(AIC), intercept breaks .994 .894 .891 1.378 1.478 1.562
VAR(4), rolling 1.175 1.062 1.091 1.222 1.306 1.385
DVAR(4), rolling 1.077 1.003 .773 1.115 1.221 1.143
VAR(AIC, by eq.&var.), rolling 1.014 .943 1.019 1.296 1.301 1.321
BVAR(4), rolling .945 .880 1.004 1.196 1.220 1.193
BDVAR(4), rolling 1.008 .993 1.003 1.024 1.040 1.066
TVP BVAR(4) .927 .896 .955 1.025 1.024 .941
Intercept TVP BVAR(4) .922 .891 .940 1.019 1.013 .914
DLS, VAR(4) 1.081 1.005 1.068 1.154 1.183 1.143
DLS, DVAR(4) 1.078 1.028 .949 1.167 1.208 1.159
average of all forecasts .893 .815 .816 1.078 1.093 1.015
avg. of VAR(4), rolling VAR(4) 1.070 .957 .953 1.158 1.212 1.210
avg. of univariate, VAR(4) .958 .901 .900 1.057 1.056 .988
avg. of univariate, DVAR(4) .945 .882 .796 1.086 1.096 1.027
avg. of univ., IDTR VAR(4) .931 .871 .849 1.060 1.061 .952
avg. of univ., VAR(4), .922 .850 .804 1.078 1.084 .995

DVAR(4), TVP BVAR(4)
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Table 2, continued: RMSE results for GDP growth and GDP inflation
(RMSEs in first row, RMSE ratios in all others)

GDP inflation forecasts
1970-84 1985-2005

forecast method h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
univariate 1.825 2.153 2.389 .951 1.016 .760
VAR(4) 1.022 1.033 1.061 1.001 .948 .959
VAR(4), intercept correction 1.020 1.054 1.142 1.133 1.134 1.439
VAR(AIC) 1.037 1.066 1.057 1.024 .977 .982
DVAR(4) 1.007 .946 .896 .989 .946 1.006
DVAR(AIC) .964 .955 .912 .994 .950 .985
VAR(AIC, by eq.&var.) 1.028 1.085 1.120 1.014 .965 .992
DVAR(AIC, by eq.&var.) 1.027 1.033 .998 1.003 .965 1.031
BVAR(4) .971 1.047 1.093 1.023 1.039 1.161
BDVAR(4) .969 .985 .936 1.030 1.034 1.069
VAR(4), inflation detrending 1.024 1.013 1.006 1.011 .979 1.081
VAR(AIC), intercept breaks 1.032 1.013 .996 1.085 1.098 1.438
VAR(4), rolling 1.016 1.083 1.080 1.156 1.128 1.407
DVAR(4), rolling 1.026 1.000 .900 1.066 .990 1.151
VAR(AIC, by eq.&var.), rolling 1.016 1.165 1.212 1.159 1.152 1.504
BVAR(4), rolling .950 1.022 1.050 1.090 1.174 1.482
BDVAR(4), rolling .965 .991 .939 1.075 1.101 1.191
TVP BVAR(4) .975 1.053 1.108 .992 .977 1.006
Intercept TVP BVAR(4) .975 1.047 1.081 1.007 1.004 1.079
DLS, VAR(4) 1.129 1.334 1.290 1.173 1.132 1.243
DLS, DVAR(4) 1.300 1.251 1.070 1.170 1.109 1.161
average of all forecasts .946 .989 .970 1.025 1.015 1.057
avg. of VAR(4), rolling VAR(4) 1.009 1.052 1.063 1.055 1.014 1.131
avg. of univariate, VAR(4) .967 .985 .996 .980 .958 .942
avg. of univariate, DVAR(4) .967 .952 .931 .974 .954 .967
avg. of univ., IDTR VAR(4) .971 .979 .974 .985 .969 .980
avg. of univ., VAR(4), .959 .978 .980 .977 .951 .953

DVAR(4), TVP BVAR(4)

Notes:
1. The variables in each multivariate model are GDP growth, GDP inflation, and the T-bill rate.
2. The entries in the first row are RMSEs, for variables defined in annualized percentage points.
All other entries are RMSE ratios, for the indicated specification relative to the corresponding
univariate specification.
3. Individual RMSE ratios that are significantly below 1 according to bootstrap p–values are
indicated by a slanted font. In each column, if a forecast is significantly better (in MSE) than the
benchmark according to data snooping–robust p–values (bootstrapped as in Hansen (2005)), the
associated RMSE ratio appears in a bold font.
4. The forecast errors are calculated using the first–available (real–time) estimates of output and
inflation as the actual data on output and inflation.
5. In each quarter t from 1970:Q1 through 2005:Q4, vintage t data are used to form forecasts for
periods t (h = 0Q), t +1 (h = 1Q), and t +4 (h = 1Y ). The forecasts of GDP growth and inflation
for the h = 1Y horizon correspond to annual percent changes: average growth and average inflation
from t +1 through t +4.
6. See Table 1 for detail on each forecast method.
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Table 3: Real-time RMSE results for the HPS output gap and GDP inflation
(RMSEs in first row, RMSE ratios in all others)

HPS output gap forecasts
1970-84 1985-2005

forecast method h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
univariate 1.039 1.988 3.891 .702 1.028 2.044
VAR(4) 1.051 .960 .944 1.110 1.159 1.204
VAR(4), intercept correction 1.079 1.010 1.110 1.066 1.048 1.060
VAR(AIC) 1.016 .966 .991 1.108 1.155 1.207
DVAR(4) 1.068 .942 .743 1.102 1.127 1.084
DVAR(AIC) 1.039 .947 .866 1.099 1.105 1.059
VAR(AIC, by eq.&var.) .985 .946 .995 1.077 1.133 1.176
DVAR(AIC, by eq.&var.) 1.088 1.005 .880 1.071 1.110 1.085
BVAR(4) 1.012 .931 .922 1.077 1.151 1.176
BDVAR(4) 1.064 1.002 .994 1.002 .997 .991
VAR(4), inflation detrending 1.030 .920 .892 1.060 1.077 1.012
VAR(AIC), intercept breaks 1.008 .929 .754 1.189 1.320 1.267
VAR(4), rolling 1.190 1.110 1.032 1.116 1.237 1.305
DVAR(4), rolling 1.103 .993 .802 1.029 1.074 1.008
VAR(AIC, by eq.&var.), rolling 1.170 1.129 1.064 1.099 1.181 1.211
BVAR(4), rolling 1.060 .968 .986 1.087 1.172 1.186
BDVAR(4), rolling 1.093 1.047 1.059 .993 1.005 .995
TVP BVAR(4) 1.020 .957 .947 .982 .970 .921
Intercept TVP BVAR(4) 1.015 .944 .923 .977 .957 .908
DLS, VAR(4) 1.100 1.041 .935 1.053 1.067 1.108
DLS, DVAR(4) 1.106 1.020 .919 1.061 1.066 1.056
average of all forecasts .948 .872 .824 1.025 1.036 1.000
avg. of VAR(4), rolling VAR(4) 1.091 1.005 .931 1.089 1.162 1.218
avg. of univariate, VAR(4) .974 .912 .876 1.034 1.041 1.028
avg. of univariate, DVAR(4) .973 .904 .804 1.038 1.045 1.024
avg. of univ., IDTR VAR(4) .954 .878 .841 1.011 1.003 .950
avg. of univ., VAR(4), .966 .888 .809 1.028 1.027 .992

DVAR(4), TVP BVAR(4)
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Table 3, continued: RMSE results for the HPS output gap and GDP inflation
(RMSEs in first row, RMSE ratios in all others)

GDP inflation forecasts
1970-84 1985-2005

forecast method h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
univariate 1.825 2.153 2.389 .951 1.016 .760
VAR(4) 1.020 1.037 1.075 .973 .923 .933
VAR(4), intercept correction 1.017 1.043 1.116 1.109 1.108 1.436
VAR(AIC) 1.020 1.046 1.050 .992 .968 .975
DVAR(4) 1.003 .942 .904 .990 .960 1.132
DVAR(AIC) .941 .931 .879 .992 .967 1.130
VAR(AIC, by eq.&var.) 1.054 1.112 1.130 .989 .934 1.007
DVAR(AIC, by eq.&var.) 1.008 .993 .906 .992 .972 1.202
BVAR(4) .967 1.026 1.048 .993 .986 1.042
BDVAR(4) .960 .954 .879 1.031 1.047 1.209
VAR(4), inflation detrending .982 .978 .942 .970 .910 .897
VAR(AIC), intercept breaks .975 .973 .930 1.022 1.014 1.101
VAR(4), rolling 1.024 1.108 1.139 1.136 1.134 1.437
DVAR(4), rolling 1.013 1.017 .942 1.059 .971 1.123
VAR(AIC, by eq.&var.), rolling 1.017 1.166 1.167 1.145 1.152 1.579
BVAR(4), rolling .958 1.010 1.022 1.088 1.190 1.525
BDVAR(4), rolling .966 .978 .917 1.076 1.107 1.261
TVP BVAR(4) .959 1.010 1.043 .996 1.001 1.169
Intercept TVP BVAR(4) .958 1.004 1.018 .998 1.000 1.153
DLS, VAR(4) 1.139 1.311 1.322 1.208 1.176 1.368
DLS, DVAR(4) 1.350 1.257 1.236 1.166 1.100 1.251
average of all forecasts .935 .957 .907 1.005 .991 1.035
avg. of VAR(4), rolling VAR(4) 1.014 1.065 1.098 1.023 .986 1.081
avg. of univariate, VAR(4) .968 .982 .990 .967 .944 .930
avg. of univariate, DVAR(4) .963 .947 .926 .966 .946 .982
avg. of univ., IDTR VAR(4) .954 .957 .924 .963 .934 .894
avg. of univ., VAR(4), .951 .960 .954 .966 .942 .983

DVAR(4), TVP BVAR(4)

Notes:
1. The variables in each multivariate model are the HPS output gap, GDP inflation, and the T-bill
rate.
2. See the notes to Table 2.
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Table 4: Real-time RMSE results for GDP growth and CPI inflation
(RMSEs in first row, RMSE ratios in all others)

GDP growth forecasts
1970-84 1985-2005

forecast method h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
univariate 4.183 4.761 3.652 1.609 1.668 1.293
VAR(4) 1.039 .945 .926 1.155 1.172 1.103
VAR(4), intercept correction 1.054 .952 1.004 1.156 1.197 1.367
VAR(AIC) .981 .948 1.031 1.142 1.157 1.084
DVAR(4) 1.093 .959 .767 1.236 1.264 1.159
DVAR(AIC) 1.058 .983 .947 1.236 1.264 1.159
VAR(AIC, by eq.&var.) .937 .873 .926 1.113 1.121 .974
DVAR(AIC, by eq.&var.) 1.043 .944 .773 1.200 1.254 1.151
BVAR(4) .919 .871 .917 1.061 1.071 .982
BDVAR(4) .987 .958 .958 1.035 1.041 1.014
VAR(4), inflation detrending .977 .863 .793 1.324 1.380 1.341
VAR(AIC), intercept breaks .935 .925 .963 1.413 1.504 1.498
VAR(4), rolling 1.135 1.061 1.049 1.363 1.348 1.333
DVAR(4), rolling 1.114 1.019 .813 1.179 1.190 1.178
VAR(AIC, by eq.&var.), rolling 1.011 .976 1.078 1.343 1.297 1.311
BVAR(4), rolling .935 .872 .971 1.224 1.236 1.211
BDVAR(4), rolling 1.009 .991 1.004 1.036 1.045 1.066
TVP BVAR(4) .925 .893 .929 1.009 1.015 .952
Intercept TVP BVAR(4) .921 .888 .916 1.007 1.007 .919
DLS, VAR(4) 1.071 1.077 1.017 1.170 1.170 1.129
DLS, DVAR(4) 1.104 1.041 .909 1.191 1.182 1.186
average of all forecasts .904 .843 .826 1.090 1.100 1.037
avg. of VAR(4), rolling VAR(4) 1.067 .982 .952 1.210 1.225 1.192
avg. of univariate, VAR(4) .969 .914 .879 1.044 1.042 .985
avg. of univariate, DVAR(4) .976 .909 .807 1.075 1.080 1.031
avg. of univ., IDTR VAR(4) .937 .873 .807 1.083 1.091 1.019
avg. of univ., VAR(4), .944 .872 .800 1.063 1.070 1.003

DVAR(4), TVP BVAR(4)
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Table 4, continued: RMSE results for GDP growth and CPI inflation
(RMSEs in first row, RMSE ratios in all others)

CPI inflation forecasts
1970-84 1985-2005

forecast method h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
univariate 2.117 2.733 2.970 1.347 1.475 1.247
VAR(4) .866 .957 1.016 .975 1.028 1.078
VAR(4), intercept correction .885 1.046 1.152 1.188 1.393 1.963
VAR(AIC) .895 1.001 1.045 .975 1.022 1.064
DVAR(4) .847 .888 .854 .952 1.006 1.095
DVAR(AIC) .868 .917 .889 .952 1.006 1.095
VAR(AIC, by eq.&var.) .907 .993 1.045 .970 1.022 1.095
DVAR(AIC, by eq.&var.) .851 .894 .869 .952 .982 1.066
BVAR(4) .926 1.037 1.120 .986 .985 .999
BDVAR(4) .848 .912 .933 .977 1.009 1.065
VAR(4), inflation detrending .824 .889 .822 .985 1.054 1.191
VAR(AIC), intercept breaks .895 1.024 1.063 1.025 1.081 1.208
VAR(4), rolling .880 1.020 1.094 1.127 1.242 1.430
DVAR(4), rolling .847 .939 .916 1.025 1.093 1.255
VAR(AIC, by eq.&var.), rolling .950 1.099 1.181 1.113 1.173 1.383
BVAR(4), rolling .928 1.026 1.066 1.028 1.056 1.170
BDVAR(4), rolling .869 .933 .955 1.005 1.042 1.114
TVP BVAR(4) .914 1.014 1.090 .979 .970 .936
Intercept TVP BVAR(4) .914 1.001 1.043 .986 .981 .979
DLS, VAR(4) 1.007 1.357 1.603 1.262 1.264 1.407
DLS, DVAR(4) 1.031 1.153 1.082 1.194 1.216 1.451
average of all forecasts .831 .931 .962 .989 1.025 1.099
avg. of VAR(4), rolling VAR(4) .863 .983 1.047 1.011 1.075 1.138
avg. of univariate, VAR(4) .868 .920 .935 .959 .989 .997
avg. of univariate, DVAR(4) .862 .898 .894 .944 .980 1.013
avg. of univ., IDTR VAR(4) .857 .895 .863 .962 .993 1.021
avg. of univ., VAR(4), .851 .915 .933 .950 .978 .990

DVAR(4), TVP BVAR(4)

Notes:
1. The variables in each multivariate model are GDP growth, CPI inflation, and the T-bill rate.
2. See the notes to Table 2.
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Table 5: Real-time RMSE results for the HPS output gap and CPI inflation
(RMSEs in first row, RMSE ratios in all others)

HPS output gap forecasts
1970-84 1985-2005

forecast method h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
univariate 1.039 1.988 3.891 .702 1.028 2.044
VAR(4) 1.066 .980 .943 1.097 1.142 1.162
VAR(4), intercept correction 1.096 1.030 1.092 1.054 1.038 1.063
VAR(AIC) .991 .979 1.017 1.086 1.135 1.155
DVAR(4) 1.146 1.014 .790 1.088 1.123 1.091
DVAR(AIC) 1.036 .992 .998 1.077 1.097 1.043
VAR(AIC, by eq.&var.) 1.011 1.007 1.003 1.074 1.124 1.136
DVAR(AIC, by eq.&var.) 1.064 .945 .760 1.069 1.109 1.085
BVAR(4) 1.022 .941 .906 1.060 1.123 1.127
BDVAR(4) 1.065 1.005 .997 .995 .996 .992
VAR(4), inflation detrending 1.037 .916 .839 1.070 1.111 1.089
VAR(AIC), intercept breaks .990 .961 .778 1.132 1.233 1.186
VAR(4), rolling 1.206 1.170 1.163 1.143 1.228 1.274
DVAR(4), rolling 1.163 1.062 .909 1.076 1.098 1.056
VAR(AIC, by eq.&var.), rolling 1.170 1.097 1.133 1.119 1.190 1.190
BVAR(4), rolling 1.068 .983 .998 1.093 1.173 1.189
BDVAR(4), rolling 1.093 1.049 1.063 .999 1.008 .995
TVP BVAR(4) 1.031 .971 .953 .972 .961 .916
Intercept TVP BVAR(4) 1.025 .957 .926 .972 .959 .913
DLS, VAR(4) 1.089 1.085 .973 1.055 1.059 1.084
DLS, DVAR(4) 1.156 1.094 .961 1.076 1.084 1.055
average of all forecasts .967 .909 .864 1.026 1.036 1.003
avg. of VAR(4), rolling VAR(4) 1.108 1.051 1.022 1.100 1.157 1.190
avg. of univariate, VAR(4) .992 .937 .892 1.029 1.035 1.015
avg. of univariate, DVAR(4) 1.012 .944 .828 1.032 1.043 1.028
avg. of univ., IDTR VAR(4) .964 .885 .817 1.012 1.013 .985
avg. of univ., VAR(4), .998 .927 .838 1.020 1.021 .988

DVAR(4), TVP BVAR(4)
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Table 5, continued: RMSE results for the HPS output gap and CPI inflation
(RMSEs in first row, RMSE ratios in all others)

CPI inflation forecasts
1970-84 1985-2005

forecast method h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
univariate 2.117 2.733 2.970 1.347 1.475 1.247
VAR(4) .906 1.012 1.108 .967 1.012 1.016
VAR(4), intercept correction .910 1.077 1.187 1.180 1.372 1.856
VAR(AIC) .874 .937 1.027 .960 .987 .960
DVAR(4) .902 .959 .946 .964 1.005 1.055
DVAR(AIC) .821 .896 .934 .974 1.007 1.063
VAR(AIC, by eq.&var.) .943 1.002 1.087 .962 1.021 1.052
DVAR(AIC, by eq.&var.) .880 .921 .938 .955 1.006 1.075
BVAR(4) .925 1.021 1.089 .981 .976 .949
BDVAR(4) .847 .901 .928 .983 1.030 1.123
VAR(4), inflation detrending .860 .932 .900 .944 .964 .865
VAR(AIC), intercept breaks .889 .943 .963 1.021 1.101 1.176
VAR(4), rolling .912 1.105 1.250 1.141 1.237 1.331
DVAR(4), rolling .912 1.046 1.072 1.018 1.052 1.116
VAR(AIC, by eq.&var.), rolling .946 1.064 1.135 1.067 1.113 1.200
BVAR(4), rolling .940 1.029 1.062 1.019 1.041 1.127
BDVAR(4), rolling .883 .946 .992 1.007 1.050 1.143
TVP BVAR(4) .916 1.010 1.102 .996 1.019 1.069
Intercept TVP BVAR(4) .915 .998 1.060 .997 1.016 1.058
DLS, VAR(4) 1.062 1.375 1.623 1.287 1.331 1.523
DLS, DVAR(4) 1.132 1.216 1.258 1.178 1.202 1.399
average of all forecasts .834 .920 .939 .984 1.011 1.038
avg. of VAR(4), rolling VAR(4) .897 1.052 1.167 1.017 1.065 1.050
avg. of univariate, VAR(4) .882 .945 .968 .957 .985 .981
avg. of univariate, DVAR(4) .886 .932 .931 .944 .972 .976
avg. of univ., IDTR VAR(4) .861 .894 .828 .941 .950 .877
avg. of univ., VAR(4), .873 .948 .981 .951 .977 .972

DVAR(4), TVP BVAR(4)

Notes:
1. The variables in each multivariate model are the HPS output gap, CPI inflation, and the T-bill
rate.
2. See the notes to Table 2.
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Table 6: Average forecast accuracy rankings,
across applications and methods in Tables 2-5

(sorted low to high)
method average st. dev.
avg. of univ., IDTR VAR(4) 5.1 2.8
avg. of univ., VAR(4), DVAR(4), TVP BVAR(4) 5.7 2.6
avg. of univariate and DVAR(4) 6.8 3.1
avg. of univariate and VAR(4) 7.7 2.9
average of all forecasts 8.0 4.9
Intercept TVP BVAR(4) 9.8 6.4
BDVAR(4) 10.7 6.4
TVP BVAR(4) 10.8 6.9
VAR(4), inflation detrending 10.8 7.5
DVAR(AIC) 11.2 6.6
univariate 12.1 6.7
DVAR(4) 12.2 7.9
DVAR(AIC, by eq.&var.) 12.5 6.2
BVAR(4) 12.6 6.3
BDVAR(4), rolling 14.2 7.1
VAR(AIC, by eq.&var.) 14.4 6.2
VAR(4) 14.8 5.6
VAR(AIC) 15.0 5.8
DVAR(4), rolling 15.9 6.3
VAR(AIC), AIC intercept breaks 17.3 7.9
BVAR(4), rolling 18.5 5.9
avg. of VAR(4) and rolling VAR(4) 19.1 3.7
VAR(4), intercept correction 21.0 4.6
DLS, DVAR(4) 21.4 5.2
DLS, VAR(4) 22.3 5.4
VAR(AIC, by eq.&var.), rolling 23.9 2.6
VAR(4), rolling 24.4 2.8

Notes:
1. The figures in the table are obtained by: (1) ranking, for each of the 48 columns of Tables
2-5, the 27 forecast methods or models considered; and (2) calculating the average and standard
deviation of each method’s (48) ranks.
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Table 7: Average RMSEs, across applications
and methods in Tables 2-5

(sorted low to high)
method average st. dev.
avg. of univ., IDTR VAR(4) .943 .070
avg. of univ., VAR(4), DVAR(4), TVP BVAR(4) .955 .068
avg. of univariate and DVAR(4) .960 .072
average of all forecasts .967 .082
avg. of univariate and VAR(4) .968 .050
Intercept TVP BVAR(4) .981 .056
TVP BVAR(4) .987 .058
BDVAR(4) .995 .064
univariate 1.000 .000
VAR(4), inflation detrending 1.001 .143
DVAR(AIC) 1.004 .109
DVAR(4) 1.009 .130
DVAR(AIC, by eq.&var.) 1.011 .117
BVAR(4) 1.012 .076
BDVAR(4), rolling 1.025 .072
VAR(AIC, by eq.&var.) 1.025 .074
VAR(4) 1.030 .087
VAR(AIC) 1.031 .078
DVAR(4), rolling 1.036 .107
avg. of VAR(4) and rolling VAR(4) 1.068 .088
BVAR(4), rolling 1.081 .132
VAR(AIC), AIC intercept breaks 1.088 .196
DLS, DVAR(4) 1.141 .113
VAR(4), intercept correction 1.149 .204
VAR(AIC, by eq.&var.), rolling 1.157 .132
VAR(4), rolling 1.173 .128
DLS, VAR(4) 1.184 .156

Notes:
1. The figures in the table are simple averages and standard deviations, across the 48 columns of
Tables 2-5, of each forecast method’s RMSE ratios. Note that the RMSE ratio of the univariate
forecast is always 1.
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Table 8: Real-time 1996-2005 RMSE results for GDP growth and GDP inflation
(RMSEs in first row, RMSE ratios in all others)

GDP growth forecasts GDP inflation forecasts
forecast method h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
univariate 1.624 1.691 1.283 .762 .841 .717
VAR(4) 1.228 1.223 1.104 .964 .965 .973
VAR(4), intercept correction 1.249 1.260 1.295 1.105 1.156 1.476
VAR(AIC) 1.228 1.223 1.104 .964 .965 .973
DVAR(4) 1.254 1.231 1.065 1.013 1.032 1.084
DVAR(AIC) 1.245 1.230 1.065 1.011 1.028 1.085
VAR(AIC, by eq.&var.) 1.176 1.193 1.052 .970 .976 .970
DVAR(AIC, by eq.&var.) 1.184 1.193 1.049 1.015 1.023 1.077
BVAR(4) 1.102 1.132 1.065 1.015 1.038 1.110
BDVAR(4) 1.053 1.032 .981 1.017 1.040 1.097
VAR(4), inflation detrending 1.222 1.228 1.057 .974 .968 .953
VAR(AIC), intercept breaks 1.263 1.314 1.204 .977 .980 .995
VAR(4), rolling 1.000 1.044 1.051 1.117 1.115 1.184
DVAR(4), rolling 1.058 1.099 1.176 1.069 1.022 1.047
VAR(AIC, by eq.&var.), rolling 1.125 1.131 1.039 1.105 1.081 1.201
BVAR(4), rolling 1.033 1.052 .986 1.042 1.094 1.255
BDVAR(4), rolling 1.036 1.037 1.080 1.030 1.064 1.156
TVP BVAR(4) 1.065 1.083 1.012 .998 1.001 1.016
Intercept TVP BVAR(4) 1.058 1.072 .987 1.008 1.019 1.051
DLS, VAR(4) 1.178 1.183 1.091 1.200 1.129 1.173
DLS, DVAR(4) 1.180 1.179 1.089 1.215 1.176 1.160
average of all forecasts 1.082 1.084 .991 1.000 1.004 1.046
avg. of VAR(4), rolling VAR(4) 1.073 1.101 1.049 1.018 1.021 1.058
avg. of univariate, VAR(4) 1.084 1.069 .975 .949 .949 .933
avg. of univariate, DVAR(4) 1.100 1.080 .989 .967 .975 .979
avg. of univ., IDTR VAR(4) 1.070 1.057 .925 .952 .951 .923
avg. of univ., VAR(4), 1.108 1.098 .991 .963 .968 .970

DVAR(4), TVP BVAR(4)

Notes:
1. The variables in each multivariate model are GDP growth, GDP inflation, and the T-bill rate.
2. See the notes to Table 2.
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Table 9: Real-time 1996-2005 RMSE results for GDP growth and
core PCE inflation

(RMSEs in first row, RMSE ratios in all others)
GDP growth forecasts core PCE forecasts

forecast method h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
univariate 1.624 1.691 1.283 .646 .602 .460
VAR(4) 1.223 1.174 1.077 1.233 1.339 1.630
VAR(4), intercept correction 1.238 1.237 1.180 1.316 1.599 2.301
VAR(AIC) 1.223 1.174 1.077 1.233 1.339 1.630
DVAR(4) 1.171 1.134 .976 1.200 1.297 1.322
DVAR(AIC) 1.171 1.134 .976 1.200 1.297 1.322
VAR(AIC, by eq.&var.) 1.251 1.239 1.151 1.253 1.455 1.949
DVAR(AIC, by eq.&var.) 1.204 1.173 1.019 1.186 1.252 1.264
BVAR(4) 1.175 1.165 1.130 1.224 1.376 1.819
BDVAR(4) 1.049 1.007 .958 1.167 1.234 1.243
VAR(4), inflation detrending 1.231 1.195 1.061 1.212 1.284 1.394
VAR(AIC), intercept breaks 1.425 1.536 1.604 1.222 1.384 1.578
VAR(4), rolling 1.014 1.034 1.076 .981 1.166 1.580
DVAR(4), rolling .982 1.002 1.137 .938 1.077 1.060
VAR(AIC, by eq.&var.), rolling 1.157 1.115 1.174 1.024 1.261 1.670
BVAR(4), rolling 1.067 1.071 1.053 1.176 1.314 1.764
BDVAR(4), rolling 1.024 1.034 1.079 1.105 1.159 1.162
TVP BVAR(4) 1.090 1.081 1.028 1.161 1.257 1.459
Intercept TVP BVAR(4) 1.089 1.073 1.001 1.198 1.319 1.624
DLS, VAR(4) 1.168 1.146 1.051 1.122 1.458 1.551
DLS, DVAR(4) 1.150 1.108 1.072 1.123 1.505 1.387
average of all forecasts 1.093 1.068 .988 1.117 1.199 1.326
avg. of VAR(4), rolling VAR(4) 1.081 1.072 1.052 1.052 1.172 1.489
avg. of univariate, VAR(4) 1.074 1.042 .947 1.089 1.137 1.260
avg. of univariate, DVAR(4) 1.064 1.038 .955 1.076 1.120 1.108
avg. of univ., IDTR VAR(4) 1.069 1.038 .921 1.081 1.117 1.156
avg. of univ., VAR(4), 1.091 1.061 .960 1.123 1.187 1.275

DVAR(4), TVP BVAR(4)

Notes:
1. The variables in each multivariate model are GDP growth, core PCE inflation, and the T-bill
rate.
2. See the notes to Table 2.
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Table 10: Real-time 1996-2005 RMSE results for the HPS output gap and
GDP inflation

(RMSEs in first row, RMSE ratios in all others)
HPS gap forecasts GDP inflation forecasts

forecast method h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
univariate .714 1.036 2.075 .762 .841 .717
VAR(4) 1.121 1.131 1.155 .981 .990 1.073
VAR(4), intercept correction 1.091 1.052 1.114 1.098 1.163 1.527
VAR(AIC) 1.118 1.130 1.158 .976 .985 1.067
DVAR(4) 1.119 1.086 1.084 1.029 1.056 1.226
DVAR(AIC) 1.130 1.088 1.089 1.025 1.062 1.246
VAR(AIC, by eq.&var.) 1.075 1.117 1.137 .980 .995 1.085
DVAR(AIC, by eq.&var.) 1.077 1.075 1.098 1.003 1.053 1.287
BVAR(4) 1.057 1.116 1.147 1.013 1.040 1.166
BDVAR(4) 1.007 .985 .983 1.031 1.075 1.274
VAR(4), inflation detrending 1.088 1.097 1.073 .976 .959 1.005
VAR(AIC), intercept breaks 1.066 1.041 .959 1.047 1.073 1.217
VAR(4), rolling 1.040 1.147 1.234 1.116 1.179 1.335
DVAR(4), rolling 1.010 1.024 1.060 1.081 1.046 1.161
VAR(AIC, by eq.&var.), rolling 1.037 1.071 1.160 1.116 1.171 1.322
BVAR(4), rolling 1.043 1.128 1.246 1.052 1.124 1.324
BDVAR(4), rolling .991 1.000 1.063 1.043 1.091 1.259
TVP BVAR(4) .994 1.004 .997 1.032 1.078 1.276
Intercept TVP BVAR(4) .989 .991 .971 1.030 1.071 1.266
DLS, VAR(4) 1.062 1.047 1.060 1.270 1.309 1.483
DLS, DVAR(4) 1.067 1.022 1.050 1.282 1.245 1.402
average of all forecasts 1.028 1.029 1.049 1.004 1.022 1.123
avg. of VAR(4), rolling VAR(4) 1.052 1.091 1.134 1.025 1.059 1.178
avg. of univariate, VAR(4) 1.047 1.038 1.026 .956 .961 .982
avg. of univariate, DVAR(4) 1.051 1.032 1.031 .971 .979 1.028
avg. of univ., IDTR VAR(4) 1.033 1.028 1.003 .948 .937 .926
avg. of univ., VAR(4), 1.044 1.030 1.019 .978 .995 1.082

DVAR(4), TVP BVAR(4)

Notes:
1. The variables in each multivariate model are the HPS output gap, GDP inflation, and the T-bill
rate.
2. See the notes to Table 2.

55



Table 11: Real-time 1996-2005 RMSE results for the HPS output gap and
core PCE inflation

(RMSEs in first row, RMSE ratios in all others)
HPS gap forecasts core PCE forecasts

forecast method h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
univariate .714 1.036 2.075 .646 .602 .460
VAR(4) 1.053 1.078 1.165 1.162 1.216 1.384
VAR(4), intercept correction 1.020 1.006 1.088 1.267 1.472 2.071
VAR(AIC) 1.071 1.110 1.190 1.129 1.200 1.429
DVAR(4) 1.033 1.021 1.041 1.161 1.289 1.409
DVAR(AIC) 1.050 1.025 1.027 1.153 1.242 1.362
VAR(AIC, by eq.&var.) 1.083 1.128 1.206 1.198 1.315 1.703
DVAR(AIC, by eq.&var.) 1.071 1.055 1.078 1.147 1.230 1.232
BVAR(4) 1.071 1.145 1.219 1.172 1.275 1.553
BDVAR(4) .985 .974 .987 1.153 1.248 1.358
VAR(4), inflation detrending 1.061 1.084 1.102 1.117 1.161 1.093
VAR(AIC), intercept breaks 1.055 1.112 1.161 1.252 1.423 1.905
VAR(4), rolling .999 1.104 1.312 1.006 1.155 1.622
DVAR(4), rolling .938 .954 1.023 .925 1.081 1.087
VAR(AIC, by eq.&var.), rolling 1.075 1.138 1.312 1.018 1.165 1.529
BVAR(4), rolling 1.054 1.138 1.307 1.196 1.355 1.894
BDVAR(4), rolling .975 .996 1.061 1.110 1.175 1.210
TVP BVAR(4) .985 .997 1.009 1.151 1.260 1.515
Intercept TVP BVAR(4) .981 .986 .989 1.160 1.265 1.499
DLS, VAR(4) .997 1.005 1.046 1.165 1.504 1.689
DLS, DVAR(4) .994 .987 1.040 1.115 1.572 1.505
average of all forecasts 1.007 1.019 1.070 1.093 1.174 1.290
avg. of VAR(4), rolling VAR(4) .999 1.048 1.187 1.044 1.141 1.452
avg. of univariate, VAR(4) 1.010 1.011 1.028 1.057 1.074 1.114
avg. of univariate, DVAR(4) 1.008 .999 1.012 1.048 1.086 1.032
avg. of univ., IDTR VAR(4) 1.014 1.015 1.015 1.032 1.042 .937
avg. of univ., VAR(4), 1.003 .998 1.011 1.089 1.139 1.182

DVAR(4), TVP BVAR(4)

Notes:
1. The variables in each multivariate model are the HPS output gap, core PCE inflation, and the
T-bill rate.
2. See the notes to Table 2.
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Table 12: Average rankings of all methods in 1970-84 and 1985-2005 forecasts,
across all models and data

all y, p all y, p all y, p all y, p
all all using using 70-84 85-05

y, p Tbill FFR
avg. of univ., IDTR VAR(2) 12.9 16.7 15.5 18.0 21.1 12.4
avg. of univ., IDTR VAR(4) 13.2 13.4 12.7 14.1 15.1 11.6
avg. of univ., VAR(2), DVAR(2), TVP BVAR(2) 15.7 19.0 18.8 19.1 22.2 15.7
avg. of univ., VAR(4), DVAR(4), TVP BVAR(4) 17.6 16.2 16.6 15.7 17.9 14.4
avg. of univariate, VAR(2) 18.8 23.7 22.3 25.1 31.3 16.0
average of all forecasts 19.7 18.8 19.1 18.5 11.5 26.1
avg. of univariate, VAR(4) 20.3 20.6 20.9 20.3 26.2 15.0
avg. of univariate, DVAR(4) 21.3 19.9 19.8 20.1 21.3 18.6
avg. of univariate, DVAR(2) 22.9 24.1 23.9 24.2 27.1 21.0
Intercept TVP BVAR(4) 25.1 28.1 27.4 28.9 38.4 17.9
VAR(2), inflation detrending 25.2 29.0 27.0 31.0 21.8 36.1
Intercept TVP BVAR(4), λ4 = .5,λ = .0025 26.4 27.4 27.4 27.3 27.1 27.7
BDVAR(4) 27.0 28.7 27.2 30.1 30.8 26.5
TVP BVAR(4), λ4 = .5,λ = .0025 28.2 23.8 23.5 24.0 30.4 17.1
TVP BVAR(4), λ4 = 1000,λ = .005 29.1 23.4 22.9 23.9 30.0 16.8
TVP BVAR(4), λ4 = 1000,λ = .0001 29.4 31.2 31.0 31.3 36.2 26.1
TVP BVAR(4) 29.7 29.3 28.7 29.9 42.8 15.8
BVAR(4) 30.1 32.9 33.0 32.8 37.3 28.4
Intercept TVP BVAR(2), λ4 = .5,λ = .0025 30.6 36.4 35.3 37.5 35.1 37.7
Intercept TVP BVAR(2) 31.1 38.5 36.9 40.1 50.3 26.7
TVP BVAR(2), λ4 = .5,λ = .0025 31.8 31.6 31.0 32.2 36.4 26.9
BDVAR(2) 32.0 34.4 33.2 35.6 36.9 31.9
TVP BVAR(2), λ4 = 1000,λ = .005 32.2 30.2 29.2 31.1 36.3 24.0
VAR(4), inflation detrending 32.6 31.6 31.2 32.0 25.8 37.4
DVAR(2) 32.8 31.3 31.1 31.5 25.0 37.6
avg. of VAR(2), rolling VAR(2) 33.3 40.0 38.9 41.0 38.3 41.6
TVP BVAR(2), λ4 = 1000,λ = .0001 33.3 40.0 38.9 41.0 45.7 34.2
univariate 33.6 36.5 34.0 38.9 52.2 20.8
BVAR(2) 34.2 41.6 40.5 42.8 46.9 36.3
TVP BVAR(2) 34.7 38.6 37.1 40.2 53.5 23.7
DVAR(AIC) 34.8 33.1 32.5 33.7 29.1 37.1
VAR(AIC), inflation detrending 34.9 32.8 32.9 32.7 25.7 39.9
VAR(BIC), inflation detrending 35.0 40.0 38.7 41.2 36.3 43.6
BDVAR(4), rolling 35.2 38.4 36.9 39.9 40.3 36.5
VAR(2) 35.5 41.0 37.7 44.3 48.7 33.3
DVAR(BIC, by eq.&var.) 37.6 33.5 33.6 33.4 36.6 30.4
VAR(AIC, by eq.&var.) 38.8 37.2 38.6 35.8 44.8 29.6
DVAR(BIC) 38.9 37.2 37.6 36.8 34.7 39.7
DVAR(AIC, by eq.&var.) 39.4 34.4 35.3 33.5 33.1 35.7
DVAR(4) 39.4 35.2 35.9 34.6 31.0 39.5
BDVAR(2), rolling 39.6 44.3 42.9 45.7 45.5 43.1
VAR(4) 40.8 41.0 41.9 40.1 45.6 36.4
DVAR(2), output diff. 41.0 42.8 44.2 41.3 39.9 45.6
DVAR(2), rolling 41.2 39.2 39.8 38.7 32.9 45.6
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Table 12, continued: Average rankings across all results
all y, p all y, p all y, p all y, p

all all using using 70-84 85-05
y, p Tbill FFR

VAR(AIC) 41.3 40.0 40.8 39.3 45.1 35.0
VAR(2), full ES detrending 41.3 40.8 41.4 40.2 17.7 63.9
VAR(BIC, by eq.&var.) 43.8 44.8 43.7 45.9 55.7 33.8
DVAR(AIC), output diff. 44.2 45.1 45.6 44.6 43.4 46.9
DVAR(4), output diff. 45.9 45.1 45.5 44.6 43.5 46.6
VAR(BIC), full ES detrending 46.1 46.4 46.9 45.9 29.0 63.8
VAR(BIC) 46.2 52.2 50.1 54.3 61.5 42.9
DVAR(AIC), rolling 46.5 40.2 39.1 41.3 37.2 43.2
VAR(AIC), full ES detrending 47.6 42.3 45.2 39.4 24.6 60.1
VAR(4), full ES detrending 48.8 45.6 49.6 41.7 27.9 63.4
BVAR(4), rolling 49.3 51.9 52.8 51.0 41.5 62.4
BVAR(2), rolling 49.6 54.8 54.9 54.7 43.5 66.1
DVAR(BIC), rolling 49.6 49.1 50.0 48.2 45.0 53.2
DVAR(BIC), output diff. 49.9 52.2 54.6 49.9 55.2 49.3
DVAR(AIC, by eq.&var.), rolling 50.3 41.1 44.2 38.1 39.6 42.7
DVAR(2), output diff., rolling 51.3 54.4 56.9 51.9 51.5 57.3
DVAR(BIC, by eq.&var.), rolling 51.8 46.9 48.7 45.0 48.3 45.5
VAR(AIC), BIC intercept breaks 52.7 47.5 47.7 47.3 30.7 64.4
avg. of VAR(4), rolling VAR(4) 53.6 52.0 52.7 51.3 53.8 50.1
VAR(AIC), AIC intercept breaks 55.4 49.0 47.7 50.3 32.9 65.1
DVAR(4), rolling 55.9 47.9 47.3 48.6 44.7 51.2
DLS, VAR(2) 56.1 56.8 54.8 58.7 65.2 48.3
VAR(2), intercept correction 56.9 60.0 59.5 60.6 61.2 58.8
DVAR(BIC), output diff., rolling 57.8 64.9 66.9 63.0 63.8 66.1
DVAR(AIC), output diff., rolling 59.0 57.3 57.7 56.8 55.2 59.3
DLS, DVAR(2) 59.4 55.7 56.7 54.8 57.2 54.3
VAR(2), rolling 62.5 65.3 65.3 65.3 56.4 74.2
DVAR(4), output diff., rolling 63.5 60.5 59.4 61.6 56.3 64.7
DLS, DVAR(AIC) 63.9 59.3 59.3 59.3 63.7 54.9
VAR(AIC), intercept correction 64.0 63.6 62.7 64.5 61.1 66.2
VAR(4), intercept correction 64.9 64.4 64.3 64.5 63.8 65.1
DLS, VAR(AIC) 65.5 63.4 64.0 62.7 73.2 53.6
VAR(BIC), rolling 65.7 69.9 71.8 68.0 66.0 73.8
DLS, DVAR(4) 68.7 63.6 64.5 62.6 67.9 59.3
VAR(BIC, by eq.&var.), rolling 68.8 69.3 69.7 68.9 65.5 73.1
VAR(AIC, by eq.&var.), rolling 69.2 69.2 71.4 67.1 64.7 73.8
VAR(AIC), rolling 69.7 69.7 70.2 69.2 66.5 72.8
DLS, VAR(4) 69.8 66.7 68.5 64.9 75.8 57.5
VAR(2), partial int. corr. 72.1 67.4 67.1 67.7 72.2 62.6
VAR(4), rolling 72.4 71.8 71.8 71.9 68.1 75.5
VAR(AIC), partial int. corr. 76.4 72.9 72.8 73.0 74.8 71.0
VAR(4), partial int. corr. 76.5 73.1 73.9 72.2 74.9 71.3
# of ranking observations 216 144 72 72 72 72
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Notes:
1. The table reports average rankings of the full set of forecast methods or models listed in Table
1. The average rankings in the first column of figures are calculated, for each forecast method,
across a total of 216 (= 3× 2× 2× 3× 2× 3) forecasts of output (3: GDP growth, HPS gap, HP
gap), inflation (2: GDP inflation, CPI inflation), and interest rates (2: T-bill rate, federal funds
rate) at horizons (3) of h = 0Q, h = 1Q, and h = 1Y and sample periods (2) of 1970-84 and 1985-
05. The average rankings in remaining columns are based on forecasts with models that include
particular variables or forecasts of a particular variable, etc. For example, the average rankings in
the second column are based on 144 forecasts of just output and inflation, with forecasts of interest
rates omitted from the average ranking calculation.
2. See the notes to Table 2.
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Table 13: Average rankings in 1970-84 and 1985-2005 forecasts,
conditioned on output and inflation measures

using using using using using
∆ ln HPS HP GDP CPI

GDP gap gap π π
avg. of univ., IDTR VAR(2) 21.1 12.7 16.3 16.7 16.7
avg. of univ., IDTR VAR(4) 16.8 8.9 14.4 13.0 13.8
avg. of univ., VAR(2), DVAR(2), TVP BVAR(2) 16.9 19.0 20.9 18.8 19.2
avg. of univ., VAR(4), DVAR(4), TVP BVAR(4) 13.3 15.6 19.6 14.1 18.2
avg. of univariate, VAR(2) 23.6 24.6 22.9 24.1 23.2
average of all forecasts 19.9 17.7 18.8 16.0 21.6
avg. of univariate, VAR(4) 18.5 20.6 22.7 19.7 21.5
avg. of univariate, DVAR(4) 17.9 18.4 23.6 18.0 21.9
avg. of univariate, DVAR(2) 23.4 22.6 26.2 23.7 24.5
Intercept TVP BVAR(4) 24.7 30.3 29.4 27.1 29.1
VAR(2), inflation detrending 37.4 20.2 29.3 33.5 24.5
Intercept TVP BVAR(4), λ4 = .5,λ = .0025 30.1 29.6 22.5 27.1 27.6
BDVAR(4) 28.2 32.3 25.6 29.8 27.6
TVP BVAR(4), λ4 = .5,λ = .0025 28.2 22.8 20.3 22.0 25.5
TVP BVAR(4), λ4 = 1000,λ = .005 28.3 20.7 21.3 21.2 25.7
TVP BVAR(4), λ4 = 1000,λ = .0001 30.5 39.1 23.9 31.5 30.8
TVP BVAR(4) 25.4 34.1 28.5 27.8 30.8
BVAR(4) 31.5 41.7 25.4 33.3 32.4
Intercept TVP BVAR(2), λ4 = .5,λ = .0025 35.2 40.6 33.4 36.7 36.1
Intercept TVP BVAR(2) 32.9 41.7 40.9 38.3 38.7
TVP BVAR(2), λ4 = .5,λ = .0025 31.5 33.7 29.7 29.8 33.4
BDVAR(2) 29.2 40.8 33.2 34.7 34.1
TVP BVAR(2), λ4 = 1000,λ = .005 30.6 30.1 29.8 27.0 33.4
VAR(4), inflation detrending 36.0 25.8 33.1 31.9 31.3
DVAR(2) 28.8 31.9 33.1 33.0 29.6
avg. of VAR(2), rolling VAR(2) 36.2 46.6 37.1 43.8 36.1
TVP BVAR(2), λ4 = 1000,λ = .0001 36.0 49.5 34.4 41.5 38.4
univariate 35.8 37.0 36.6 34.3 38.6
BVAR(2) 36.9 52.0 36.0 43.2 40.0
TVP BVAR(2) 32.2 43.9 39.8 37.9 39.4
DVAR(AIC) 31.9 32.4 34.9 30.6 35.5
VAR(AIC), inflation detrending 40.5 25.7 32.3 36.6 29.1
VAR(BIC), inflation detrending 47.7 33.5 38.7 43.9 36.0
BDVAR(4), rolling 38.2 42.9 34.1 38.6 38.2
VAR(2) 37.2 47.2 38.5 47.3 34.7
DVAR(BIC, by eq.&var.) 40.8 37.0 22.8 34.8 32.2
VAR(AIC, by eq.&var.) 31.6 44.2 35.9 39.0 35.5
DVAR(BIC) 41.0 34.9 35.7 38.6 35.8
DVAR(AIC, by eq.&var.) 35.9 35.1 32.2 37.4 31.4
DVAR(4) 34.1 35.3 36.3 33.4 37.1
BDVAR(2), rolling 40.3 51.7 41.0 43.7 45.0
VAR(4) 37.5 45.4 40.0 40.0 41.9
DVAR(2), output diff. 43.6 37.2 47.4 44.5 41.0
DVAR(2), rolling 39.2 40.4 38.1 40.0 38.5
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Table 13, continued: average rankings,
conditioned on output and inflation measures

using using using using using
∆ ln HPS HP GDP CPI

GDP gap gap π π
VAR(AIC) 40.1 44.1 36.0 45.4 34.7
VAR(2), full ES detrending 43.2 32.6 46.6 41.6 40.0
VAR(BIC, by eq.&var.) 45.5 53.2 35.7 47.1 42.5
DVAR(AIC), output diff. 47.9 38.4 49.1 38.5 51.7
DVAR(4), output diff. 56.4 35.9 42.9 42.5 47.7
VAR(BIC), full ES detrending 47.7 42.3 49.2 44.5 48.2
VAR(BIC) 47.1 63.8 45.7 57.3 47.0
DVAR(AIC), rolling 41.2 38.4 41.2 33.9 46.6
VAR(AIC), full ES detrending 42.0 35.8 49.2 43.3 41.4
VAR(4), full ES detrending 41.4 42.0 53.5 44.5 46.8
BVAR(4), rolling 48.8 57.0 49.9 50.8 53.0
BVAR(2), rolling 47.5 60.1 56.7 53.5 56.1
DVAR(BIC), rolling 50.4 49.8 47.0 49.7 48.4
DVAR(BIC), output diff. 50.3 47.7 58.7 55.1 49.4
DVAR(AIC, by eq.&var.), rolling 42.9 39.8 40.7 42.0 40.2
DVAR(2), output diff., rolling 55.1 47.2 60.9 54.3 54.4
DVAR(BIC, by eq.&var.), rolling 50.0 49.2 41.5 49.2 44.5
VAR(AIC), BIC intercept breaks 51.8 44.4 46.4 53.1 41.9
avg. of VAR(4), rolling VAR(4) 50.4 57.2 48.3 49.6 54.3
VAR(AIC), AIC intercept breaks 56.2 45.7 45.1 51.5 46.5
DVAR(4), rolling 45.3 46.9 51.7 45.9 50.0
DLS, VAR(2) 56.5 57.5 56.3 56.5 57.0
VAR(2), intercept correction 59.1 51.0 70.0 59.0 61.0
DVAR(BIC), output diff., rolling 64.9 62.2 67.8 65.5 64.4
DVAR(AIC), output diff., rolling 61.5 47.8 62.5 48.8 65.7
DLS, DVAR(2) 55.4 57.7 54.1 54.4 57.0
VAR(2), rolling 61.6 67.7 66.6 65.3 65.3
DVAR(4), output diff., rolling 67.6 49.7 64.2 58.5 62.5
DLS, DVAR(AIC) 62.3 60.3 55.3 56.2 62.4
VAR(AIC), intercept correction 63.6 59.0 68.3 64.7 62.5
VAR(4), intercept correction 64.3 60.0 68.9 62.9 65.9
DLS, VAR(AIC) 66.8 62.5 60.9 62.6 64.2
VAR(BIC), rolling 64.4 72.8 72.6 72.0 67.8
DLS, DVAR(4) 64.8 62.9 63.0 61.7 65.4
VAR(BIC, by eq.&var.), rolling 64.3 74.8 68.8 69.8 68.8
VAR(AIC, by eq.&var.), rolling 66.6 72.6 68.5 71.0 67.5
VAR(AIC), rolling 70.5 72.9 65.5 69.0 70.3
DLS, VAR(4) 68.8 64.5 66.8 65.5 67.8
VAR(2), partial int. corr. 66.8 57.8 77.5 68.0 66.8
VAR(4), rolling 70.7 75.0 69.7 70.5 73.1
VAR(AIC), partial int. corr. 70.7 67.4 80.5 74.2 71.6
VAR(4), partial int. corr. 72.1 66.1 81.2 73.7 72.5
# of ranking observations 48 48 48 72 72
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Notes:
1. The results in this table are based on just forecasts of output and inflation (excluding forecast
results for interest rates).
2. See the notes to Tables 2 and 12.
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Table 14: Accuracy of select VAR forecasts compared to SPF forecasts
(RMSEs in all cases)

GDP growth forecasts
1970-84 1985-2005

h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
SPF 2.571 3.699 2.891 1.384 1.635 1.274
best forecast from Table 2 3.735 3.878 2.775 1.609 1.668 1.182
univariate forecast 4.183 4.761 3.652 1.609 1.668 1.293
TVP BVAR(4) 3.876 4.267 3.487 1.650 1.708 1.218
avg. of all Table 2 forecasts 3.735 3.878 2.978 1.734 1.824 1.312
avg. of univ., DVAR(4) 3.953 4.199 2.906 1.747 1.828 1.328
avg. of univ., IDTR VAR(4) 3.893 4.145 3.101 1.705 1.770 1.232

GDP inflation forecasts
1970-84 1985-2005

h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
SPF 1.364 1.917 2.192 .831 .922 .804
best forecast from Table 2 1.727 2.036 2.141 .926 .961 .716
univariate forecast 1.825 2.153 2.389 .951 1.016 .760
TVP BVAR(4) 1.779 2.267 2.646 .944 .993 .764
avg. of all Table 2 forecasts 1.727 2.129 2.318 .974 1.032 .803
avg. of univ., DVAR(4) 1.764 2.051 2.224 .926 .970 .735
avg. of univ., IDTR VAR(4) 1.772 2.108 2.328 .937 .985 .744

CPI inflation forecasts
1970-84 1985-2005

h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
SPF .823 1.278 .969
best forecast from Table 4 1.744 2.427 2.441 1.272 1.431 1.167
univariate forecast 2.117 2.733 2.970 1.347 1.475 1.247
TVP BVAR(4) 1.935 2.772 3.238 1.319 1.431 1.167
avg. of all Table 4 forecasts 1.758 2.544 2.856 1.333 1.511 1.370
avg. of univ., DVAR(4) 1.825 2.456 2.656 1.272 1.446 1.262
avg. of univ., IDTR VAR(4) 1.815 2.447 2.564 1.296 1.465 1.273

T-bill rate forecasts
1970-84 1985-2005

h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
SPF .310 1.436 2.589 .104 .460 1.543
best forecast from Table 2 1.173 1.879 2.669 .371 .742 1.418
univariate forecast 1.305 2.098 2.821 .379 .777 1.633
TVP BVAR(4) 1.239 1.959 2.981 .407 .781 1.529
avg. of all Table 2 forecasts 1.182 1.920 2.834 .386 .764 1.555
avg. of univ., DVAR(4) 1.215 1.908 2.725 .389 .805 1.680
avg. of univ., IDTR VAR(4) 1.206 1.910 2.719 .371 .742 1.473

Notes:
1. The forecast errors are calculated using the first–available (real–time) estimates of output and
inflation as the actual data on output and inflation.
2. RMSEs for SPF forecasts of CPI inflation are not reported for the 1970-84 sample because the
SPF data don’t begin until 1981.
3. See the notes to Table 2.
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Table 15: Accuracy of SPF forecasts compared to Greenbook forecasts,
in real time data

(RMSEs in all cases)
GDP growth forecasts

1970-84 1985-2000
h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y

SPF 2.571 3.699 2.891 1.334 1.543 1.352
Greenbook 2.434 3.783 2.832 1.309 1.650 1.485

GDP inflation forecasts
1970-84 1985-2000

h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
SPF 1.364 1.917 2.192 .849 .932 .834
Greenbook 1.330 1.626 1.653 .691 .852 .670

CPI inflation forecasts
1970-84 1985-2000

h = 0Q h = 1Q h = 1Y h = 0Q h = 1Q h = 1Y
SPF .700 1.206 .984
Greenbook .603 1.160 .949

Notes:
1. The forecast errors are calculated using the first–available (real–time) estimates of output and
inflation as the actual data on output and inflation.
2. RMSEs for forecasts of CPI inflation are not reported for the 1970-84 sample because the SPF
and Greenbook data don’t begin until circa 1980.
3. See the notes to Table 2.
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