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Abstract

A body of recent work suggests commonly–used VAR models of output, inflation,
and interest rates may be prone to instabilities. In the face of such instabilities, a va-
riety of estimation or forecasting methods might be used to improve the accuracy of
forecasts from a VAR. These methods include using different approaches to lag selec-
tion, different observation windows for estimation, (over-) differencing, intercept cor-
rection, stochastically time–varying parameters, break dating, discounted least squares,
Bayesian shrinkage, and detrending of inflation and interest rates. Although each in-
dividual method could be useful, the uncertainty inherent in any single representation
of instability could mean that combining forecasts from the entire range of VAR esti-
mates will further improve forecast accuracy. Focusing on models of U.S. output, prices,
and interest rates, this paper examines the effectiveness of combination in improving
VAR forecasts made with real–time data. The combinations include simple averages,
medians, trimmed means, and a number of weighted combinations, based on: Bates-
Granger regressions, factor model estimates, regressions involving forecast quartiles,
Bayesian model averaging, and predictive least squares–based weighting. Our goal is to
identify those approaches that, in real time, yield the most accurate forecasts of these
variables. We use forecasts from simple univariate time series models as benchmarks.
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1 Introduction

Small–scale VARs are now widely used in macroeconomics and central bank forecasting.

Examples of VARs used to forecast output, prices, and interest rates include Sims (1980),

Doan, et al. (1984), Litterman (1986), Brayton et al. (1997), Jacobson et al. (2001),

Robertson and Tallman (2001), Del Negro and Schorfheide (2004), and Favero and Mar-

cellino (2005). However, there is an increasing body of evidence suggesting that these VARs

may be prone to instabilities.1 Examples include Webb (1995), Kozicki and Tinsley (2001b,

2002), Cogley and Sargent (2001, 2005), Boivin (2006), and Beyer and Farmer (2006). Al-

though many different structural forces could lead to instabilities in macroeconomic VARs

(e.g., Rogoff (2003) and others have suggested that globalization has altered inflation dy-

namics), much of the aforementioned literature has focused on shifts potentially attributable

to changes in the behavior of monetary policy.

Accordingly, in previous work (Clark and McCracken, 2006a) we considered the perfor-

mance of various methods for improving the forecast accuracy of VARs in the presence of

structural change. For trivariate VARs in a range of measures of output, inflation, and a

short–term interest rate, these methods include: sequentially updating lag orders, using var-

ious observation windows for estimation, working in differences rather than levels, making

intercept corrections (as in Clements and Hendry (1996)), allowing stochastic time varia-

tion in model parameters, allowing discrete breaks in parameters, discounted least squares

estimation, Bayesian shrinkage, and detrending of inflation and interest rates. While some

of these methods performed well at various times, various forecast horizons, and for some

variables, simple averages (across the various methods just described) were consistently

among the best performers.

One interpretation of this result is that it is crucial to have an understanding of the

form of instability when constructing good forecasts. Another, and the one we prefer, is

that in practice it is very difficult to know the form of structural instability, and model

averaging provides an effective method for forecasting in the face of such uncertainty. As

summarized by Timmermann (2006), competing models will differ in their sensitivity to
1Admittedly, while the evidence of instabilities in the relationships incorporated in small macroeconomic

VARs seems to be growing, the evidence is not necessarily conclusive. Rudebusch and Svensson (1999) apply
stability tests to the full set of coefficients of an inflation–output gap model and are unable to reject stability.
Rudebusch (2005) finds that historical shifts in the behavior of monetary policy haven’t been enough to make
reduced form macro VARs unstable. Estrella and Fuhrer (2003) find little evidence of instability in joint
tests of a Phillips curve relating inflation to the output gap and an IS model of output. Similarly, detailed
test results reported in Stock and Watson (2003) show inflation–output gap models to be largely stable.

1



structural breaks. Depending on the size and nature of structural breaks, models that

quickly pick up changes in parameters may or may not be more accurate than models that

do not. For instance, in the case of a small, recent break, a model with constant parameters

may forecast more accurately than a model that allows a break in coefficients, due to the

additional noise introduced by the estimation of post–break coefficients (see, for example,

Clark and McCracken (2005b) and Pesaran and Timmermann (2006)). However, in the case

of a large break well in the past, a model that correctly picks up the associated change in

coefficients will likely forecast more accurately than models with constant or slowly chang-

ing parameters. Accordingly, Timmermann (2006) and Pesaran and Timmermann (2006)

suggest that combinations of forecasts from models with varying degrees of adaptability to

uncertain (especially in real time) structural breaks will be more accurate than forecasts

from individual models.

In this paper we provide empirical evidence on the ability of various forms of forecast

averaging to improve the real–time forecast accuracy of small-scale macroeconomic VARs

in the presence of uncertain forms of model instabilities. Focusing on six distinct trivariate

models incorporating different measures of output and inflation and a common interest rate

measure, we consider a wide range of approaches to averaging forecasts obtained with a va-

riety of the aforementioned primitive methods for managing model instability. The average

forecasts include: equally weighted averages with and without trimming, medians, common

factor-based forecasts, Bates–Granger combinations estimated with ridge regression, MSE–

weighted averages, lowest MSE forecasts (predictive least squares forecasts), Bayesian model

averages, and combinations based on quartile average forecasts (as suggested by Aiolfi and

Timmermann (2006)). For each of these forms of forecast or model averaging we construct

real time forecasts of each variable using real–time data. We compare our results to those

from simple baseline univariate models and selected baseline VAR models.

Our results indicate that while some of the primitive forms of managing structural

instability sometimes provide the largest gains in terms of forecast accuracy — notably

those models with some form of Bayesian shrinkage — model averaging is a more consistent

method for improving forecast accuracy. Not surprisingly, the best type of averaging often

varies with the variable being forecast, but several patterns do emerge. After aggregating

across all models, horizons and variables being forecasted, it is clear that the simplest

forms of model averaging — such as those that use equal weights across all models or those
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that average a univariate model with a particular VAR, such as a VAR(4) using detrended

inflation and interest rates — consistently perform among the best methods. At the other

extreme, forecasts based on OLS–type combination and factor model–based combination

rank among the worst.

The remainder of the paper proceeds as follows. Section 2 describes the real-time data

and samples. Section 3 provides a synopsis of the forms of model averaging used to forecast

in the presence of uncertain forms of structural change. Section 4 presents our results

on forecast accuracy, including root mean square errors of the methods used. Section 5

concludes.

2 Data

We consider the real–time forecast performance of models with three different measures of

output (y), two measures of inflation (π), and a short–term interest rate (i). The output

measures are GDP or GNP (depending on data vintage) growth, an output gap computed

with the method described in Hallman, Porter, and Small (1991), and an output gap esti-

mated with the Hodrick and Prescott (1997) filter. The first output gap measure (hereafter,

the HPS gap), based on a method the Federal Reserve Board once used to estimate po-

tential output for the nonfarm business sector, is entirely one–sided but turns out to be

highly correlated with an output gap based on the Congressional Budget Office’s (CBO’s)

estimate of potential output. The HP filter of course has the advantage of being widely

used and easy to implement. We follow Orphanides and van Norden (2005) in our real time

application of the filter: for forecasting starting in period t, the gap is computed using the

conventional filter and data available through period t− 1. The inflation measures include

the GDP or GNP deflator or price index (depending on data vintage) and CPI price index.

The short–term interest rate is measured with the 3–month Treasury bill rate; using the

federal funds rate yields qualitatively similar results. Note, finally, that growth and inflation

rates are measured as annualized log changes (from t− 1 to t). Output gaps are measured

in percentages (100 times the log of output relative to trend). Interest rates are expressed

in annualized percentage points.

The raw quarterly data on output, prices, and interest rates are taken from the Federal

Reserve Bank of Philadelphia’s Real–Time Data Set for Macroeconomists (RTDSM), the

Board of Governor’s FAME database, and the website of the Bureau of Labor Statistics
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(BLS). Real–time data on GDP or GNP and the GDP or GNP price series are from the

RTDSM. For simplicity, hereafter we simply use the notation “GDP” and “GDP price

index” to refer to the output and price series, even though the measures are based on GNP

and a fixed weight deflator for much of the sample. In the case of the CPI and the interest

rates, for which real time revisions are small to essentially non–existent, we simply abstract

from real time aspects of the data. For the CPI, we follow the advice of Kozicki and Hoffman

(2004) for avoiding choppiness in inflation rates for the 1960s and 1970s due to changes in

index bases, and use a 1967 base year series taken from the BLS website in late 2005.2 For

the T-bill rate, we use a series obtained from FAME.

The full forecast evaluation period runs from 1970:Q1 through 2005; as detailed in sec-

tion 3, forecasts from 1965:Q4 through 1969:Q4 are used as initial values in the combination

forecasts that require historical forecasts. Accordingly, we use real time data vintages from

1965:Q4 through 2005:Q4. As described in Croushore and Stark (2001), the vintages of the

RTDSM are dated to reflect the information available around the middle of each quarter.

Normally, in a given vintage t, the available NIPA data run through period t−1.3 The start

dates of the raw data available in each vintage vary over time, ranging from 1947:Q1 to

1959:Q3, reflecting changes in the published samples of the historical data. For each fore-

cast origin t in 1965:Q4 through 2005:Q3, we use the real time data vintage t to estimate

output gaps, estimate the forecast models, and then construct forecasts for periods t and

beyond. The starting point of the model estimation sample is the maximum of (i) 1955:Q1

and (ii) the earliest quarter in which all of the data included in a given model are available,

plus five quarters to allow for four lags and differencing or detrending.

We present forecast accuracy results for forecast horizons of the current quarter (h =

0Q), the next quarter (h = 1Q), four quarters ahead (h = 1Y ), and eight quarters ahead

(h = 2Y ). In light of the time t− 1 information actually incorporated in the VARs used for

forecasting at t, the current quarter (t) forecast is really a 1–quarter ahead forecast, while the

next quarter (t+1) forecast is really a 2–step ahead forecast. What are referred to as 1–year

ahead and 2–year ahead forecasts are really 5– and 9–step ahead forecasts. In keeping with

common central bank practice, the 1– and 2–year ahead forecasts for GDP/GNP growth

and inflation are four–quarter rates of change (the 1–year ahead forecast is the percent
2The BLS only provides the 1967 base year CPI on a not seasonally adjusted basis. We seasonally

adjusted the series with the X-11 filter.
3In the case of the 1996:Q1 vintage, with which the BEA published a benchmark revision, the data run

through 1995:Q3 instead of 1995:Q4.
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change from period t + 1 through t + 4; the 2–year ahead forecast is the percent change

from period t + 5 through t + 8). The 1– and 2–year ahead forecasts for output gaps and

interest rates are quarterly levels in periods t+4 and t+8, respectively. For computational

simplicity in our extensive real–time analysis, all of the multi–step forecasts are obtained

by iterating the 1–step ahead models.

As discussed in such sources as Romer and Romer (2000), Sims (2002), and Croushore

(2006), evaluating the accuracy of real time forecasts requires a difficult decision on what

to take as the actual data in calculating forecast errors. We follow Romer and Romer

(2000) and use the second available estimates of GDP/GNP and the GDP/GNP deflator

as actuals in evaluating forecast accuracy. In the case of h–step ahead (for h = 0Q, 1Q,

1Y, and 2Y) forecasts made for period t + h with vintage t data ending in period t− 1, the

second available estimate is normally taken from the vintage t + h + 2 data set. In light of

our abstraction from real time revisions in CPI inflation and interest rates, for these series

the real time data correspond to the final vintage data.

3 Forecast methods

The forecasts of interest in this paper are combinations of forecasts from a wide range of

approaches to allowing for structural change in trivariate VARs: sequentially updating lag

orders, using various observation windows for estimation, working in differences rather than

levels, making intercept corrections (as in Clements and Hendry (1996)), allowing stochas-

tic time variation in model parameters, allowing discrete breaks in parameters identified

with break tests, discounted least squares estimation, Bayesian shrinkage, and detrending

of inflation and interest rates. Table 1 lists the set of individual VAR forecast methods

considered in this paper, along with some detail on forecast construction. To be precise, for

each model — defined as being a baseline VAR in one measure of output (y), one measure

of inflation (π), and one short–term interest rate (i) — we apply each of the estimation and

forecasting methods listed in Table 1.

Note that, although we simply refer to all the underlying forecasts as VAR forecasts,

in fact the list of individual models includes a univariate specification for each of output,

inflation, and the interest rate. For output the univariate model is an AR(2). In the case of

inflation, we follow Stock and Watson (2006) and use an MA(1) process for the change in

inflation (∆π), estimated with a rolling window of 40 observations. For simplicity, in light
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of some general similarities in the time series properties of inflation and short–term interest

rates and the IMA(1) rationale for inflation described by Stock and Watson, the univariate

model for the short-term interest rate is also specified as an MA(1) in the first difference of

the series (∆i).4

Table 2 provides a comprehensive list, with some detail, of the approaches we use to

combining forecasts from these underlying models. The remainder of this section explains

the averaging methods.

3.1 Equally weighted averages

We begin with seven distinct, simple forms of model averaging, in each case using what

could loosely be described as equal weights. The first is an equally weighted average of all

the VAR forecasts in Table 1, for a given triplet of variables. More specifically, for a given

combination of measures of output, inflation, and the interest rate (for example, for the

combination GDP growth, GDP inflation, and the T-bill rate), we average forecasts from

the 50 VARs listed in Table 1. With an eye towards making this model average robust to

individual forecasts that might be considered outliers, we also consider the median forecast

and both 10 and 20 percent trimmed means.

We include a fifth average forecast approach motivated by the results of Clark and Mc-

Cracken (2005b), who show that forecast accuracy can be improved by combining forecasts

from models estimated with recursive (all available data) and rolling samples. For a given

VAR(4), we form an equally weighted average of the model forecasts constructed using

parameters estimated (i) recursively (with all of the available data) and (ii) with a rolling

window of the past 60 observations. Three other averages are motivated by the Clark and

McCracken (2005a) finding that combining forecasts from nested models can improve fore-

cast accuracy. We consider an average of the univariate forecast with the VAR(4) forecast,

an average of the univariate forecast with the DVAR(4) forecast, and an average of the

univariate forecast with a forecast from a VAR(4) in output, detrended inflation, and the

detrended interest rate (Table 1 and section 3.7 provide more information on the VAR with

detrending).

While these pairwise average forecasts may seem ad hoc from a Bayesian model aver-

aging perspective, our aforementioned results, based on frequentist methods, suggest they
4After completing the results and analysis presented below, we went back and compared the IMA(1) for

the interest rate to various AR alternatives. The IMA(1) generally dominated these alternatives.

6



may be effective, especially in the face of considerable parameter estimation noise associated

with VARs. As an example, suppose that, in truth, output, inflation, and the interest rate

can be modeled as a VAR(4). The frequentist results in our prior work (theory, Monte Carlo

experiments, and empirics in Clark and McCracken (2005a)) imply that, unless the VAR(4)

is estimated with great precision, combining forecasts from the VAR(4) with forecasts from

univariate models will likely improve forecast accuracy. Similar arguments suggest averag-

ing a DVAR(4) (or a VAR(4) in detrended data) with univariate forecasts and averaging a

rolling estimate of the VAR with forecasts based on recursive estimates. In each case, com-

bination improves forecast accuracy by shrinking the larger model forecast with relatively

high sampling error and arguably less bias to a smaller model forecast with less sampling

error but greater bias.

3.2 Combinations based on Bates–Granger/ridge regression

We also consider a large number of average forecasts based on historical forecast perfor-

mance — one such approach being forecast combination based on Bates and Granger (1969)

regression. For these methods, we need an initial sample of forecasts preceding the sample

to be used in our formal forecast evaluation. With the formal forecast evaluation sample

beginning with 1970:Q1, we use an initial sample of forecasts from 1965:Q4 (the starting

point of the RTDSM) through 1969:Q4. Therefore, in the case of current quarter forecasts

constructed in 1970:Q1, we have an initial sample of 17 forecasts to use in estimating com-

bination regressions, forming MSE weights, etc. Note also that these performance-based

combinations are based on real time forecast accuracy. That is, in period t, in deciding how

best to combine forecasts based on historical performance, we use the historical real time

forecasts compared to real time data in determining the combinations.

To obtain combinations based on the Bates–Granger approach, for each of output, in-

flation, and the interest rate we use the actual data that would have been available to a

forecaster in real time to estimate a generalized ridge regression of the actual data on the 50

VAR forecasts, shrinking the coefficients toward equal weights. Our implementation follows

that of Stock and Watson (1999): letting Zt+h|t denote the vector of 50 forecasts of variable

zt+h made in period t and βequal denote a 50 × 1 vector filled with 1/50, the combination

coefficient vector estimate is

β̂ = (cI50 +
∑

t

Zt+h|tZ
′
t+h|t)

−1(cβequal +
∑

t

Zt+h|tzt+h), (1)
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where c = k × trace(50−1 ∑
t Zt+h|tZ

′
t+h|t). We consider three different forecasts, based on

different values of the shrinkage coefficient k: .001, .25, and 1. A smaller (larger) value of k

implies less (more) shrinkage. Following Stock and Watson (1999), we use a value .001 to

approximate the OLS combination of Bates and Granger (1969). For each value of k, we

consider forecasts based on both a recursive estimate of the combination regression (using

all available forecasts) and a 10–year rolling sample estimate (using just the most recent 10

years of forecasts, or all available if less than 10 years are available).

3.3 Common factor combinations

Stock and Watson (1999, 2004) develop another approach to combining information from

individual model forecasts: estimating a common factor from the forecasts, regressing actual

data on the common factor, and then using the fitted regression to forecast into the future.

Therefore, using the real time forecasts available through the forecast origin t, we estimate

(by principal components) one common factor from the set of 50 VAR forecasts for each

of output, inflation, and the interest rate (estimating one factor for output, another for

inflation, etc.). We then regress the actual data available in real time as of t on a constant

and the factor. The factor–based forecast is then obtained from the estimated regression,

using the factor observation for period t. As in the case of the ridge regressions, we compute

factor–combination forecasts on both a recursive (using all available forecasts) and 10–year

rolling (using just the most recent 10 years of forecasts, or all available if less than 10 years

are available) basis.

3.4 MSE–weighted and PLS forecasts

We also consider several average forecasts based on inverse MSE weights. At each forecast

origin t, historical MSEs of the 50 VAR forecasts of each of output, inflation, and the interest

rate are calculated with the available forecasts and actual data, and each forecast i of the

given variable is given a weight of MSE−1
i /

∑
i MSE−1

i . In addition, following Stock and

Watson (2004), we consider a forecast based on a discounted mean square forecast error (in

which, from a forecast origin of t, the squared error in the earlier period s is discounted by

a factor δt−s). We use a discount rate of δ = .95.

We also consider a forecast based on the model(s) with lowest historical MSE — i.e.,

based on predictive least squares (PLS). At each forecast origin t, we identify the model

forecast with the lowest historical MSE, and then use that single model to forecast into the
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future.

We compute alternative MSE–weighted and PLS forecasts with several different sam-

ples of historical forecasts: all available forecasts (recursive), a 10 year rolling window of

forecasts, and a 5 year rolling window of forecasts.

3.5 Quartile forecasts

Aiolfi and Timmermann (2006) develop alternative approaches to forecast combination that

take into account persistence in forecast performance — the possibility that some models

may be consistently good while others may be consistently bad. Their simplest forecast

is an equally weighted average of the forecasts in the top quartile of forecast accuracy

(that is, the forecasts with historical MSEs in the lowest quartile of MSEs). More sophisti-

cated forecasts involve measuring performance persistence as forecasting moves forward in

time, sorting the forecasts into clusters based on past performance, and estimating combi-

nation regressions with a number of clusters determined by the degree of persistence. For

tractability in our extensive real–time forecast evaluation, we consider simple versions of the

Aiolfi–Timmermann methods, based on just the first and second quartiles. Specifically, we

consider a simple average of the forecasts in the top quartile of historical forecast accuracy.

We also consider a forecast based on an OLS–estimated combination regression including

a constant, the average of the first quartile forecasts, and the average of the second quar-

tile forecasts. We compute these quartile–based forecasts with several different samples of

historical forecasts: all available forecasts (recursive), a 10 year rolling window of forecasts,

and a 5 year rolling window of forecasts.

3.6 Bayesian model averages

Following Wright (2003) and Koop and Potter (2004), among others, we also consider

forecasts obtained by Bayesian model averaging (BMA). At each forecast origin t, for each

equation of the 50 models listed in Table 1, we calculate a posterior probability using the

conventional formula

Prob(Mi|data) =
Prob(data|Mi)× Prob(Mi)∑
i Prob(data|Mi)× Prob(Mi)

(2)

Prob(Mi) ≡ prior probability on model i = 1/50

Prob(data|Mi) ≡ marginal likelihood for model i.
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We consider several different measures of the marginal likelihood, each of which yields a

different BMA forecast. The three measures are the AIC, BIC, and Phillips’ (1996) PIC.5

The BIC is well known to be proportional to the marginal likelihood of models estimated by

OLS or, equivalently, diffuse priors. BMA applications such as Koop, Potter, and Strachan

(2005) and Garratt, Koop, and Vahey (2006) have also used BIC to estimate the marginal

likelihood and in turn average models. The AIC can be viewed as another measure of the

marginal likelihood for models estimated by OLS. Phillips (1996) develops another criterion,

PIC, as a measure of marginal likelihood appropriate for comparing VARs in levels, VARs

in differences, and VARs estimated with informative priors (BVARs). Specifically, at each

forecast origin t, for each of the model estimates listed in Table 1, we compute the AIC,

BIC, and PIC for each equation of the model.6 For each criterion, we then form a BMA

forecast using −.5T times the information criterion value as the marginal likelihood of each

equation.

In our application, calculating the information criteria requires some decisions on how

to deal with some of the important differences in estimation approaches (e.g., rolling versus

recursive estimation) for the 50 underlying model forecasts. In the case of models estimated

with a rolling sample of data, we calculate the AIC, BIC, and PIC based on a model that

allows a discrete break in all the model coefficients at the point of the beginning of the

rolling sample. For models estimated by discounted least squares (DLS), we calculate the

information criteria using residuals defined as actual data less fitted values based on the

DLS coefficient estimates.

In the case of the AIC and BIC applied to BVAR models, for simplicity we abstract

from the prior and calculate the criteria based on the residual sums of squares and simple

parameter count (PIC is calculated for VARs and BVARs, to take account of priors, as

described in Phillips (1996)).7 As Phillips (1996) notes, the prior is asymptotically irrelevant

in the sense that, as the sample grows, sample information dominates the prior. For

marginal likelihood measures other than PIC, taking (proper Bayesian) account of the
5Note that our BMA forecasts are numerically equivalent (with equal prior weights on each model) to

those that would be obtained under the information criteria–weighting approach developed in Kapetanios,
Labhard, and Price (2005). These authors, however, suggest a frequentist, rather than Bayesian, interpre-
tation of the information criterion–weighted forecast.

6In calculating PIC for the univariate IMA models for inflation and interest rates, we simply approximate
the MA fits with AR(1) models estimated for ∆π and ∆i (estimating separate models for the rolling sample
and the earlier sample), and calculate PIC values using these AR(1) approximations.

7For BVARs with TVP, at each point in time t we calculate the model residuals as a function of the
period t coefficients and use these residuals to compute the residual sums of squares.
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finite–sample role of the Bayesian prior in combining forecasts from models estimated with

different priors would require Monte Carlo integration, which is intractable in our large–

scale, real–time forecast evaluation.8

3.7 Benchmark forecasts

To evaluate the practical value of all the averaging methods described above, we compare

the accuracy of the above combination or average forecasts against various benchmarks. In

light of common practice in forecasting research, we use forecasts from the univariate time

series models as one set of benchmarks.9

We also include for comparison forecasts from selected VAR methods that are either of

general interest in light of common usage or performed relatively well in our prior work: a

VAR(4); DVAR(4) (a VAR with inflation and the interest rate differenced); BVAR(4) with

conventional Minnesota priors; BVAR(4) with stochastically time–varying (random walk)

parameters; and a BVAR(4) in output, detrended inflation, and the interest rate less the

inflation trend. The BVAR(4) with inflation detrending draws on the work of Kozicki and

Tinsley (2001a,b, 2002) on models with learning about an unobserved time–varying inflation

target of the central bank. For tractability in real time forecasting, we follow Cogley (2002)

in estimating the inflation target or trend with exponential smoothing.10 Table 1 provides

additional detail on all of these model specifications.

4 Results

In evaluating the performance of the forecasting methods described above, we follow Stock

and Watson (1996, 2003, 2005), among others, in using squared error to evaluate accuracy

and considering forecast performance over multiple samples. Specifically, we measure accu-

racy with root mean square error (RMSE). In light of the evidence in Stock and Watson
8As Koop and Potter (2004) note, BMA allows for two types of shrinkage: (1) through priors on pa-

rameters imposed in parameter estimation and (2) through the model priors in the calculation of the BMA
weights. Accordingly, in practice, there is some interchangeability between the two types of shrinkage.
Asymptotically, the first form becomes irrelevant asymptotically. Our simple approach with AIC and BIC
corresponds to focusing entirely on the second form of shrinkage.

9Of course, the choice of benchmarks today is influenced by the results of previous studies of forecasting
methods. Although a forecaster today might be expected to know that an IMA(1) is a good univariate
model for inflation, the same may not be said of a forecaster operating in 1970. For example, Nelson (1972)
used as benchmarks AR(1) processes in the change in GNP and the change in the GNP deflator (both in
levels rather than logs). Nelson and Schwert (1977) first proposed an IMA(1) for inflation.

10As noted in Clark and McCracken (2006a), the resulting trend estimate is quite similar to measures of
long–run inflation expectations.
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(2003) and others of instabilities in forecast performance over time, we examine accuracy

over forecast samples of 1970-84 and 1985-2005, to ensure our general results are robust

across sample periods.11

To be able to provide broad, robust results, in total we consider a large number of models

and methods — too many to be able to present all details of the results. In the interest

of brevity, we present more detailed results on forecasts of GDP growth and inflation than

forecasts of the output gap measures or interest rates. We also focus on a few forecast

horizons — those for h = 0Q, h = 1Q, and h = 1Y — but do present results for the h = 2Y

horizon.

Tables 3 and 4 report forecast accuracy (RMSE) results for GDP growth and either

GDP price index-based or CPI-based inflation using 38 forecast methods. In each case

we use the 3-month T–bill as the interest rate, and present results for horizons h = 0Q,

h = 1Q, and h = 1Y . Table 5 reports the same but for the h = 2Y horizon. In Table

6 we report forecast accuracy results for the T-bill rate at all horizons, from models using

GDP growth and GDP inflation. In every case, the first row of the table provides the

RMSE associated with the baseline univariate model, while the others report ratios of the

corresponding RMSE to that for the benchmark univariate model. Hence numbers less

than one denote an improvement over the univariate baseline while numbers greater than

one denote otherwise.

In Table 7 we take another approach to broadly determining which methods tend to

perform better than the benchmark. Across each variable, model and forecast horizon,

we compute the average rank of the methods included in Tables 3-6. We present average

rankings for every method we consider across each variable, forecast horizon, and the 1970-

84 and 1985-05 samples (spanning all columns of Tables 3-6 plus unreported results for

forecasts from models using an output gap as well as forecasts of the T-bill rate from

models using our various measures of output and inflation).

To determine the statistical significance of differences in forecast accuracy, we use a non–

parametric bootstrap patterned after White’s (2000) to calculate p–values for each RMSE

ratio in Tables 3-6. The individual p–values represent a pairwise comparison of each VAR

or average forecast to the univariate forecast. RMSE ratios that are significantly less than 1

at a 10 percent confidence interval are indicated with a slanted font. To determine whether
11With forecasts dated by the end period of the forecast horizon h = 0, 1, 4, the VAR forecast samples

are, respectively, 1970:Q1+h to 1984:Q4 and 1985:Q1 to 2005:Q3-h.
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a best forecast in each column of the tables is significantly better than the benchmark once

the data snooping or search involved in selecting a best forecast is taken into account, we

apply Hansen’s (2005) (bootstrap) SPA test to differences in MSEs (for each model relative

to the benchmark). Hansen shows that, if the variance of the forecast loss differential of

interest differs widely across models, his SPA test will typically have much greater power

than White’s (2000) reality check test. For each column, if the SPA test yields a p–value of

10 percent or less, we report the associated RMSE ratio in bold font. Because the SPA test

is based on t–statistics for equal MSE instead of just differences in MSE (that is, takes MSE

variability into account), the forecast identified as being significantly best by SPA may not

be the forecast with the lowest RMSE ratio.12

We implement the bootstrap procedures by sampling from the time series of forecast

errors underlying the entries in Tables 3-6. For simplicity, we use the moving block method

of Kunsch (1989) and Liu and Singh (1992) rather than the stationary bootstrap actually

used by White (2000) and Hansen (2005); the moving block is also asymptotically valid.

The bootstrap is applied separately for each forecast horizon, using a block size of 1 for the

h = 0Q forecasts, 2 for h = 1Q, 5 for h = 1Y , and 9 for h = 2Y .13 In addition, in light

of the potential for changes over time in forecast error variances, the bootstrap is applied

separately for each subperiod. Note, however, that the bootstrap sampling preserves the

correlations of forecast errors across forecast methods.

4.1 Declining volatility

While there are many nuances in the detailed results, some clear patterns emerge. The

univariate RMSEs clearly show the reduced volatility of the economy since the early 1980s,

particularly for output. For each horizon, the benchmark univariate RMSEs of GDP growth

declined by roughly two-thirds across the 1970-84 and 1985-05 samples (Tables 3-5). The

reduced volatility continues to be evident for the inflation measures (Tables 3-5). At the

shorter horizons, h = 0Q and h = 1Q, the benchmark RMSEs fell by roughly half, but at the

longer h = 1Y and h = 2Y horizons the variability declines nearly two-thirds. The reverse

is true for the interest rate forecasts (Table 6). At the shorter horizons the benchmark

RMSEs fell by roughly two-thirds but at the longer horizons the variability declines by less
12For multi–step forecasts, we compute the variance entering the t–test using the Newey and West (1987)

estimator with a lag length of 1.5 ∗ h, where h denotes the number of forecast periods.
13For a forecast horizon of τ periods, forecast errors from a properly specified model will follow an MA(τ−1)

process. Accordingly, we use a moving block size of τ for a forecast horizon of τ .
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than half.

4.2 Declining predictability

Consistent with the results in Campbell (2005), D’Agostino, et al. (2005), Stock and Watson

(2006), and Tulip (2005), there are some clear signs of a decline in the predictability of both

output and inflation: it has become harder to beat the accuracy of a univariate forecast.

For example, at forecast horizons of h = 1Y or less, most methods or models beat the

accuracy of the univariate forecast of GDP growth during the 1970-84 period (Tables 3 and

4). In fact, many do so at a level that is statistically significant; at each horizon Hansen’s

(2005) SPA test identifies a statistically significant best performer. But over the 1985-2005

period, for h = 0Q and h = 1Q forecasts only the BVAR(4)-TVP models are more accurate

at short horizons, and that improvement fails to be statistically significant. At the h = 1Y

horizon a handful of the methods continue to outperform the benchmark univariate, but

very few are statistically significant. Interestingly, at the longest h = 2Y horizon (Table

5), it appears that it has become modestly easier to predict GDP growth, though again,

few are statistically significant.

The predictability of inflation has also declined, although less dramatically than for

output. For example, in models with GDP growth and GDP inflation (Table 3), the best

1–year ahead forecasts of inflation improve upon the univariate benchmark RMSE by more

than 10 percent in the 1970-84 period but only about 5 percent in 1985-05. The evidence of

a decline in inflation predictability is perhaps most striking for CPI forecasts at the h = 0Q

horizon. In Table 4, most of the models convincingly outperform the univariate benchmark

during the 1970-84 period, with statistically significant maximal gains of roughly 20 percent.

But in the following period, fewer methods outperform the benchmark, with gains typically

about 4 percent.14

Predictability of the T-bill rate has not so much declined as it has shifted to a longer

horizon. In Table 6 we see that at the h = 0Q horizon far fewer methods outperform the

univariate benchmark as we move from the 1970-84 period to the 1985-05 period. However,

the decline in relative predictability starts to weaken as the forecast horizon increases. At

the h = 1Q horizon some methods continue to beat the benchmark, although with maximal

gains of only about 5 percent. But at the h = 1Y and h = 2Y horizons, not only do a
14Some the change in CPI predictability at the h = 0Q horizon could be due to the 1983 change in the

CPI’s treatment of housing. Prior to 1983, changes in mortgage interest costs were included in the CPI.
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larger number of methods improve upon the benchmark, they do so with maximal gains

that are substantial and statistically significant, at about 12 percent.

4.3 Averaging methods that typically outperform the benchmark

The sharp decline of predictability makes it difficult to identify models or averaging methods

that consistently beat the accuracy of the univariate benchmarks. The considerable sam-

pling error inherent in small sample forecast comparisons further compounds the difficulty

of finding a method that always or nearly always beats the univariate benchmark. Suppose,

for example, that there exists a model or average forecast that, in population, is somewhat

more accurate (by 10 percent, say) than the univariate benchmark. For forecast samples

of roughly 15 years, there is a good chance that, in a given sample, the univariate forecast

will actually be more accurate (see, e.g., Clark and McCracken’s (2006b) results for Phillips

curve forecasts of inflation). The sampling uncertainty grows with the forecast horizon. As

a result, we probably shouldn’t expect to be able to identify a particular forecast model or

method that beats the univariate benchmark for every variable, horizon, and sample period.

Instead, we might judge a model or method a success if it beats the univariate benchmark

most of the time (with some consistency across the 1970-84 and 1985-05 samples) and, when

it fails to do so, is not dramatically worse than the univariate benchmark.

With these considerations in mind, the best forecast would appear to come from the

pairwise averaging class: the single best forecast is an average of the univariate forecast

with the forecast from a VAR(4) with inflation detrending (a VAR(4) in y, π − π∗
−1, and

i− π∗
−1, motivated by the work of Kozicki and Tinsley (2001a,b, 2002)). More so than any

other forecast, the forecast based on an average of the univariate and inflation detrended

VAR(4) projections beats the univariate benchmark a very high percentage of the time and,

when it fails to do so, is generally comparable to the univariate forecast. For example, in

the case of forecasts of GDP growth and GDP inflation from models in these variables and

the T-bill rate (Table 3), this pairwise average’s RMSE ratio is less than 1 for all samples

and horizons, with the exception of h = 0Q and h = 1Q forecasts of GDP growth for 1985-

05, in which cases the RMSE ratio is only slightly above 1. For 1–year ahead forecasts of

GDP growth, the RMSE of this average forecast is about 15 percent below the univariate

benchmark for 1970-84 and 9 percent below for 1985-05; the corresponding figures for GDP

inflation are each roughly 3 percent.

While not quite as good as the average of the univariate and inflation detrended VAR
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forecasts, some other averages also seem to perform well, beating the accuracy of the univari-

ate benchmark with sufficient consistency as to be considered superior. In particular, two

of the other pairwise forecasts — the VAR(4) with univariate and DVAR(4) with univariate

averages — are often, although not always, more accurate than the univariate benchmarks.

For instance, in forecasts of GDP growth and CPI inflation (Table 4), these pairwise aver-

ages’ RMSE ratios are less than 1 in 8 of 12 columns, and only slightly to modestly above

1 in the exceptions. The VAR(4)–univariate average tends to have a more consistent ad-

vantage in 1985-05 forecasts. In addition, among the inflation forecasts, the three pairwise

combinations (univariate with inflation detrended VAR(4), VAR(4) and DVAR(4)) are the

most consistent out-performers of the univariate benchmark across both the 1970-84 and

1985-05 subsamples.

The rankings in Table 7 confirm that, from a broad perspective, the best forecasts are

simple averages. In these rankings, the single best forecast is the average of the forecasts

from the univariate and inflation detrended VAR(4). Across all variables, horizons, and

samples, this forecast has an average ranking of 6.4; the next–best forecast, the average of

the univariate and VAR(4) forecasts, has an average ranking of 12.0. While the univariate–

inflation detrended VAR(4) average is, in relative terms, especially good for forecasting

the T-bill rate (see column 5), this forecast retains its top rank even when interest rate

forecasts are dropped from the calculations (column 2). This average forecast also performs

relatively well for forecasting both output (column 3 shows it ranks a close second to the

BVAR(4) with inflation detrending) and inflation (column 4 shows it ranks first). As to

sample stability, the univariate–inflation detrended VAR(4) average is best in each of the

1970-84 and 1985-05 samples (columns 6-7).

4.4 Averaging methods that sometimes outperform the benchmark

Among other forecasts, it is difficult to identify any methods that might be seen as con-

sistently equaling or materially beating the univariate benchmark. Take, for instance, the

simple equally weighted average of all forecasts, applied to a model in GDP growth, GDP

inflation, and the T-bill rate (Table 3). This averaging approach is consistent in beating

the univariate benchmark in the 1970-84 sample, but in most cases fails to beat the bench-

mark in the 1985-05 sample. Similarly, in the case of T-bill forecasts from the same model

(Table 6, left half), the all–model average loses out to the univariate benchmark for two of

the six combinations of horizon and sample, while the generally best–performing method
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of averaging the univariate and inflation detrended VAR(4) forecasts beats the univariate

benchmark in all cases.

A number of the other averaging methods perform quite comparably to the simple aver-

age — and thus, by extension, fail to consistently equal or beat (materially) the univariate

benchmark. Among the broad average forecasts, from the results in Tables 3-6 there seems

to be no advantage of a median or trimmed mean forecast over the simple average. The ac-

curacy of these forecasts tends to be quite similar. For example, in the case of 1-year ahead

forecasts of GDP growth and GDP inflation for 1985-05, the 20 percent trimmed mean

forecast’s RMSE ratios are .972 (growth) and 1.023 (inflation), compared to the simple

average’s ratios of, respectively, .962 and 1.036 (Table 3).

Similarly, MSE–weighted forecasts are comparable to simple average forecasts, in terms

of RMSE accuracy.15 To use the same example of 1-year ahead forecasts of GDP growth

and GDP inflation for 1985-05, the recursively MSE–weighted forecast’s RMSE ratios are

.957 (growth) and 1.028 (inflation), compared to the simple average’s ratios of, respectively,

.962 and 1.036 (Table 3). In 1-year ahead forecasts of CPI inflation (Table 4), the RMSE

ratio of the recursively MSE–weighted forecast is .951 for 1970-84 and 1.055 for 1985-05,

compared to the simple average forecast’s RMSE ratios of .950 and 1.066, respectively.

Using the best–quartile forecast yields mixed results: the best quartile forecasts are

sometimes more accurate and other times less accurate than the simple average and uni-

variate forecasts. For example, in Table 4’s results for 1-year ahead forecasts of GDP

growth, the best quartile forecast based on a 10 year rolling sample has a RMSE ratio of

.780 for 1970-84 and 1.017 for 1985-05, compared to the simple average forecast’s RMSE

ratios of, respectively, .839 and .997. Similarly, for Table 4’s CPI inflation forecasts, the 10

year rolling best quartile approach yields a forecast that is more accurate than the simple

average for 1970-84 and less accurate for 1985-05. Where the best quartile forecast seems

to have a consistent advantage over a simple average is in output forecasts for 1970-84.

The rankings in Table 7 confirm the broad similarity of the above methods — the

simple average, MSE–weighted averages, and best quartile forecasts. For example, the

simple average forecast has an overall average ranking of 14.5, compared to rankings of 12.0

for the recursive MSE–weighted forecast and 12.6 for the recursive best quartile forecast. By

comparison, the best forecast, the univariate–inflation detrended VAR(4) average, has an
15However, in the case of forecasts of the HP output gap, the MSE–weighted averages are consistently

slightly better than the simple averages.
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overall ranking of 6.4. In a very broad sense, most of the aforementioned average forecasts

are better than the univariate benchmarks in that they all have higher rankings than the

univariate’s average ranking of 17.3 (column 1). Note, however, that most of their advantage

comes in the 1970-84 sample; in the later sample, the univariate forecast generally ranks

higher. For instance, for 1970-84 output and inflation forecasts, the all–model average has

an average accuracy rank of 13.4, compared to the univariate ranking of 21.8 (column 6).

But for 1985-05 forecasts, the all–model average has an average accuracy rank of 16.6,

compared to the univariate ranking of 13.9 (column 7).

4.5 Averaging methods that rarely outperform the benchmark

Many of the other averaging or combination methods are clearly dominated by univariate

benchmarks (and, in turn, other average forecasts). OLS combinations or ridge combina-

tions that approximate OLS often fare especially poorly. The OLS–approximating ridge

regression combination (the one with k = .001) consistently yields poor forecasts. For ex-

ample, in the case of 1985-05 1–year ahead forecasts of CPI inflation from models with GDP

growth (Table 4), the RMSE ratio of the recursively estimated ridge regression with shrink-

age parameter of .001 is 1.458. In other instances, the RMSE of the OLS–approximating

ridge combination is about twice as large as that of the univariate benchmark. Similarly,

the forecasts based on OLS combination regression using the first and second quartile aver-

age forecasts — especially those using rolling samples — are generally dominated by other

average forecasts. In the same example, the RMSE ratios of the forecasts based on rolling

OLS combinations of the top two quartile forecasts are 1.125 (10 year rolling) and 1.110 (5

year rolling), respectively, compared to the all–average forecast’s RMSE ratio of 1.066.

While using more shrinkage improves the accuracy of forecast combinations estimated

with generalized ridge regression, even the combinations based on ridge regression with

non–trivial shrinkage are generally less accurate than the univariate benchmarks and simple

average forecasts. For example, in 1985-05 forecasts of GDP growth from models using the

GDP inflation measure (Table 3), the RMSE ratios of the k = 1 recursive ridge regression

forecast are all above those of the simple average forecast. While the ridge forecasts are

more commonly beaten by the simple average, there are, to be sure, a number of instances

(as in the same example, but with a forecast sample of 1970-84) in which ridge forecasts

are more accurate. On balance, though, the ridge combinations seem to be inferior to

alternatives such as the simple average forecast.
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Forecasts based on using factor model methods to obtain a combination are also generally

less accurate than alternatives such as the univariate and simple average forecasts. For

example, in the case of 1-year ahead forecasts of GDP growth and GDP inflation for 1985-

05, the recursively estimated factor combination forecast’s RMSE ratios are 1.021 (growth)

and 1.536 (inflation), compared to the simple average’s ratios of, respectively, .962 and 1.036

(Table 3). The same is true for the PLS forecasts: although PLS forecasts are sometimes

more accurate than the simple average, they are often worse. In the same example, the

recursive PLS forecast’s RMSE ratios are 1.108 and 1.011, respectively.

The BMA forecasts are also generally, although not universally, dominated by the simple

average. For example, in Table 6’s forecasts of the T-bill rate, the RMSE ratios of the BMA:

BIC forecast are consistently above the ratios of the simple average forecast. However, in

Table 3’s results for GDP growth and GDP inflation, the accuracy of the BMA: BIC forecast

is generally comparable to that of the simple average forecast. Among the alternative BMA

forecasts, there are times when those using AIC or PIC to measure the marginal likelihood

are more accurate than those using BIC. But more typically, the BMA: BIC forecast is

more accurate than the BMA: AIC and BMA: PIC forecasts — the pattern is especially

clear in 1985-05 forecasts.

The rankings in Table 7 provide a clear and convenient listing of the forecast methods

that are generally dominated by the univariate benchmark and alternatives such as the

best–performing pairwise average forecast and the all–model simple average. As previously

mentioned, generalized ridge forecasts with little shrinkage (k = .001, so as to approximate

OLS–based combination) typically perform among the worst forecasts for all horizons, vari-

ables and periods, with average ranks consistently in the low- to mid-30s. OLS combinations

of quartile forecasts also fare quite poorly when based on rolling samples, with ranks gener-

ally in the mid 20s to low 30s. The factor–based combination forecasts are also consistently

ranked in the bottom tier, with average rankings generally in the mid-20s. While not neces-

sarily in the bottom tier, the BMA forecasts are generally dominated by the simple average

forecast. The overall rankings of the BMA: BIC, BMA: PIC, and BMA: AIC forecasts are

22.0, 25.4, and 29.0, respectively, compared with the simple average forecast’s ranking of

14.5 (first column). The average ranks of the PLS forecasts are consistently around 20 (or

much worse in the 5 year rolling case). The ridge–based combination forecasts with the

highest degree of shrinkage (k = 1) fare much better than the OLS–approximating ridge
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combinations, but consistently rank below the simple average forecast. For example, as

shown in the first column, the 10–year rolling ridge regression with k = 1 has an average

ranking of 16.9.

4.6 Single VAR methods

Among the single VAR forecasts included for comparison, the BVAR(4) with inflation de-

trending is generally best. While shrinkage in the form of averaging forecasts from an

inflation detrended VAR(4) with univariate forecasts is better than estimating the inflation

detrended VAR(4) by Bayesian methods, the latter at least performs comparably to the

simple average forecast. For example, as shown in Table 3, forecasts of GDP growth from

the BVAR(4) with inflation detrending are often at least as accurate as the simple average

forecasts (as, for example, with 1-year ahead forecasts for 1985-05). However, forecasts of

GDP inflation from the same model are generally less accurate than the simple average

(see, for example, the 1-year ahead forecasts for 1985-05). These examples reflect a pattern

evident throughout Tables 3-4: while inflation detrending might be expected to most im-

prove inflation forecasts, it instead most improves output forecasts. Although the accuracy

of the other individual VAR models is more variable, overall these models are more clearly

dominated by the univariate benchmark and others such as the simple average forecast. For

example, in the case of the BVAR(4) using GDP growth and GDP inflation (and the T-bill

rate), the simple average forecasts are generally more accurate than the BVAR(4) forecasts

of growth over 1970-84, inflation over 1970-84, and inflation over 1985-05 (Table 3).

Consistent with these examples, in general, forecasts from single models are dominated

by average forecasts. The pattern is clearly evident in the average rankings of Table 7.

Across all variables, horizons, and samples, the best–ranked single model is the BVAR(4)

with inflation detrending, which is out–ranked by 4 different average forecasts. The other

single models rank well below the BVAR(4) with inflation detrending.

While averages are broadly more accurate than single model forecasts, it is less clear

that they are consistently more accurate across sample periods. To check consistency, we

calculated the correlation of the ranks of all 32 average forecasts and all 50 single model

forecasts across the 1970-84 and 1985-05 periods, based on the inflation and output results

covered in columns 6-7 of Table 7 (using rankings including T-bill rate forecasts yields

essentially the same correlations). The correlation of single model forecast rankings is 53

percent; the correlation of the average forecast rankings is 92 percent. The implication is
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that not only is the typical average forecast more accurate than the typical single model

forecast, it is also consistently so across the two periods.

4.7 Interpretation

Why might simple averages in general and the pairwise average of univariate and inflation–

detrended VAR(4) forecasts be more accurate than any single model? As noted in the

introduction, in practice it is very difficult to know the form of structural instability, and

competing models will differ in their sensitivity to structural change. In such an environ-

ment, averages across models are likely to be superior to any single forecast. In line with

prior research on combining a range of forecasts that incorporate information from different

variables (such as Stock and Watson (1999, 2004) and Smith and Wallis (2005)), simple

equally weighted averages are typically at least as good as averages based on weights tied to

historical forecast accuracy. The limitations of weighted averages relative to simple averages

are commonly attributed to difficulties in estimating potentially optimal weights in finite

samples, especially when the cross–section dimension is large relative to the time dimension.

As to the particular success of forecasts using inflation detrending, one interpretation

is that removing a smooth inflation trend — a trend that matches up well with long–term

inflation expectations — from both inflation and the interest rate does a reasonable job of

capturing non–stationarities in inflation and interest rates. Kozicki and Tinsley (2001a,b,

2002) have developed such VARs from models with learning about an unobserved, time–

varying inflation target of the central bank.

However, such a single representation is surely not the true model, and noise in estimat-

ing the many parameters of the model likely have an adverse effect on forecast accuracy.

Therefore, a better forecast can be obtained by applying some form of shrinkage. One ap-

proach, which primarily addresses parameter estimation noise, is to use Bayesian shrinkage

in estimating the VAR with inflation detrending. Another approach is to combine forecasts

from the inflation detrended VAR with forecasts from an alternative model — in our case,

the univariate benchmark (note that the IMA(1) benchmarks for inflation and the T-bill

rate imply random walk trends).16 Koop and Potter (2004) note that such model averaging

can be viewed as a form of shrinkage for addressing both parameter estimation noise and
16As discussed in Stock and Watson (2006), suppose inflation is equal to the sum of a trend component

and a cycle component. Moreover, suppose the trend is a random walk and the cycle is just white noise. The
change in inflation is then equal to the sum of the trend innovation and the change in the cycle component,
which is an MA(1) process.

21



model uncertainty. The superiority of this average forecast can be interpreted as highlight-

ing the value of inflation detrending, shrinkage of parameter noise, and shrinkage to deal

with model uncertainty.17

5 Conclusion

In this paper we provide empirical evidence on the ability of several forms of forecast aver-

aging to improve the real–time forecast accuracy of small-scale macroeconomic VARs in the

presence of uncertain forms of model instability. Focusing on six distinct trivariate models

incorporating different measures of output and inflation (but a common interest rate mea-

sure), we consider a wide range of approaches to averaging forecasts obtained with a variety

of primitive methods for managing model instability. These primitive methods include se-

quentially updating lag orders, using various observation windows for estimation, working

in differences rather than levels, making intercept corrections (as in Clements and Hendry

(1996)), allowing stochastic time variation in model parameters, allowing discrete breaks

in parameters identified with break tests, discounted least squares estimation, Bayesian

shrinkage, and detrending of inflation and interest rates. The forecast averages include:

equally weighted averages with and without trimming, medians, common factor-based fac-

tors, combinations estimated with ridge regression, MSE–weighted averages, lowest MSE

forecasts (predictive least squares forecasts), Bayesian model averages, and combinations

based on quartile average forecasts.

Our results indicate that some forms of model averaging do consistently improve forecast

accuracy in terms of root mean square errors. Not surprisingly, the best method often varies

with the variable being forecasted, but several patterns do emerge. After aggregating

across all models, horizons and variables being forecasted, it is clear that the simplest

forms of model averaging — such as those that use equal weights across all models or

those that average a univariate model with a particular VAR, such as a VAR(4) with

inflation detrending — consistently perform among the best methods. At the other extreme,

forecasts based on OLS–type combination and factor model–based combination rank among

the worst.

17The results of Clark and McCracken (2005b) can be used to make a frequentist case for averaging the
inflation detrended VAR with the univariate benchmark, based entirely on parameter estimation error.
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Table 1: VAR forecasting methods

method details
VAR(4) VAR in y, π, i with fixed lag of 4
VAR(2) same as above with fixed lag of 2
VAR(AIC) VAR with system lag determined at each t by AIC
VAR(BIC) VAR with system lag determined at each t by BIC
VAR(AIC, by eq.&var.) VAR in y, π, i allowing different, AIC-chosen lags for each variable in each equation
VAR(BIC, by eq.&var.) same as above, with BIC-determined lags
DVAR(4) VAR in y, ∆π, ∆i with fixed lag of 4
DVAR(2) same as above with fixed lag of 2
DVAR(AIC) VAR in y, ∆π, ∆i with system lag determined at each t by AIC
DVAR(BIC) VAR in y, ∆π, ∆i with system lag determined at each t by BIC
DVAR(AIC, by eq.&var.) VAR in y, ∆π, ∆i allowing different, AIC-chosen lags for each variable in each equation
DVAR(BIC, by eq.&var.) same as above, with BIC-determined lags
BVAR(4) VAR(4) in y, π, i, est. with Minnesota priors, using λ1 = .2, λ2 = .5, λ3 = 1, λ4 = 1000
BDVAR(4) VAR(4) in y, ∆π, ∆i, est. with Minnesota priors, using λ1 = .2, λ2 = .5, λ3 = 1, λ4 = 1000
VAR(4), rolling VAR in y, π, i with fixed lag of 4, estimated with a rolling sample
VAR(2), rolling same as above with fixed lag of 2
VAR(AIC), rolling same as above with AIC–determined lag
VAR(BIC), rolling same as above with BIC–determined lag
VAR(AIC, by eq.&var.), rolling same as above with AIC-determined lags for each var. in each eq.
VAR(BIC, by eq.&var.), rolling same as above with BIC-determined lags for each var. in each eq.
DVAR(4), rolling VAR in y, ∆π, ∆i with fixed lag of 4, estimated with a rolling sample
DVAR(2), rolling same as above with fixed lag of 2
DVAR(AIC), rolling same as above with AIC–determined lag
DVAR(BIC), rolling same as above with BIC–determined lag
DVAR(AIC, by eq.&var.), rolling same as above with AIC-determined lags for each var. in each eq.
DVAR(BIC, by eq.&var.), rolling same as above with BIC-determined lags for each var. in each eq.
BVAR(4), rolling BVAR(4) in y, π, i with λ1 = .2, λ2 = .5, λ3 = 1, λ4 = 1000, est. with a rolling sample
BDVAR(4), rolling BVAR(4) in y, ∆π, ∆i with λ1 = .2, λ2 = .5, λ3 = 1, λ4 = 1000, est. with a rolling sample
DLS, VAR(4) VAR(4) in y, π, i, est. by DLS, using dis. rates of .01 for y eq. and .05 for π and i eq.
DLS, VAR(2) same as above with fixed lag of 2
DLS, VAR(AIC) same as above with lag determined from AIC applied to OLS estimates of system
DLS, DVAR(4) VAR(4) in y, ∆π, ∆i, est. by DLS using dis. rates of .01 for y eq. and .05 for ∆π and ∆i eq.
DLS, DVAR(2) same as above with fixed lag of 2
DLS, DVAR(AIC) same as above with lag determined from AIC applied to OLS estimates of system
VAR(AIC), AIC intercept breaks VAR(AIC lags) in y, π, i, with intercept breaks (up to 2) chosen to minimize the AIC
VAR(AIC), BIC intercept breaks same as above, using the BIC to determine the number of intercept breaks
VAR(4), intercept correction VAR(4) forecasts adjusted by the average value of the last four OLS residuals
VAR(AIC), intercept correction VAR(AIC lag) forecasts adjusted by the average value of the last four OLS residuals
VAR(4), inflation detrending VAR(4) in y, π − π∗−1, and i− π∗−1, where π∗ = π∗−1 + .05(π − π∗−1)
VAR(2), inflation detrending same as above with fixed lag of 2
VAR(AIC), inflation detrending same as above with AIC–determined lag for the system in y, π − π∗−1, and i− π∗−1
VAR(BIC), inflation detrending same as above with BIC–determined lag for the system in y, π − π∗−1, and i− π∗−1
BVAR(4), inflation detrending BVAR(4) in y, π − π∗−1, and i− π∗−1, using λ1 = .2, λ2 = .5, λ3 = 1, λ4 = 1000
BVAR(4) with TVP TVP BVAR(4) in y, π, i with λ1 = .2, λ2 = .5, λ3 = 1, λ4 = .1, λ = .0005
BVAR(4) with TVP, λ4 = .5, λ = .0025 TVP BVAR(4) in y, π, i with λ1 = .2, λ2 = .5, λ3 = 1, λ4 = .5, λ = .0025
BVAR(4) with TVP, λ4 = 1000, λ = .005 TVP BVAR(4) in y, π, i with λ1 = .2, λ2 = .5, λ3 = 1, λ4 = 1000, λ = .005
BVAR(4) with TVP, λ4 = 1000, λ = .0001 TVP BVAR(4) in y, π, i with λ1 = .2, λ2 = .5, λ3 = 1, λ4 = 1000, λ = .0001
BVAR(4) with intercept TVP BVAR(4) in y, π, i, TVP in intercepts, λ1 = .2, λ2 = .5, λ3 = 1, λ4 = .1, λ = .0005
BVAR(4) with intercept TVP, λ4 = .5, λ = .0025 BVAR(4) in y, π, i, TVP in intercepts, λ1 = .2, λ2 = .5, λ3 = 1, λ4 = .5, λ = .0025
univariate AR(2) for y, rolling MA(1) for ∆π, rolling MA(1) for ∆i

Notes:
1. The variables y, π, and i refer to, respectively, output (GDP growth, the HPS gap, or the HP gap), inflation (GDP or
CPI inflation), and the 3-month T-bill rate.
2. Unless otherwise noted, all models are estimated recursively, using all data (starting in 1955 or later) available up to the
forecasting date. The rolling estimates of the univariate models for ∆π and ∆i use 40 observations. The rolling estimates of
the VAR models use 60 observatinos.
3. The AIC and BIC lag orders range from 0 (the minimum allowed) to 4 (the maximum allowed).
4. The intercept correction approach takes the form of equation (40) in Clements and Hendry (1996).
5. In BVAR estimates, prior variances take the “Minnesota” style described in Litterman (1986). The prior variances
are determined by hyperparameters λ1 (general tightness), λ2 (tightness of lags of other variables compared to lags of the
dependent variable), λ3 (tightness of longer lags compared to shorter lags), and λ4 (tightness of intercept). The prior standard

deviation of the coefficient on lag k of variable j in equation j is set to
λ1

kλ3
. The prior standard deviation of the coefficient

on lag k of variable m in equation j is
λ1λ2
kλ3

σj
σm

, where σj and σm denote the residual standard deviations of univariate

autoregressions estimated for variables j and m. The prior standard deviation of the intercept in equation j is set to λ4σj . In
fixed parameter BVARs, we use generally conventional hyperparameter settings of λ1 = .2 , λ2 = .5, λ3 = 1, and λ4 = 1000.
The prior means for all coefficients are generally set at 0, with the following exceptions: (a) prior means for own first lags of
π and i are set at 1 (in models with levels of inflation and interest rates); (b) prior means for own first lags of y are set at
0.8 in models with an output gap; and (c) prior means for the intercept of GDP growth equations are set to the historical
average of growth in BVAR estimates that impose informative priors (λ4 = .1 or .5) on the constant term.
6. The time variation in the coefficients of the TVP BVARs takes a random walk form. The variance matrix of the coefficient
innovations is set to λ times the Minnesota prior variance matrix. In time–varying BVARs with flat priors on the intercepts
(λ4 = 1000), the variation of the innovation in the intercept is set at λ times the prior variance of the coefficient on the own
first lag instead of the prior variance of the constant.
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Table 2: Forecast averaging methods

method details
avg. of VAR(4), univariate average of forecasts from univariate model and VAR(4) in y, π, and i
avg. of infl. detr. VAR(4), univariate average of forecasts from univariate model and VAR(4) in y, π − π∗−1, and i− π∗−1
avg. of DVAR(4), univariate average of forecasts from univariate model and VAR(4) in ∆y, ∆π, and i
avg. of VAR(4), rolling VAR(4) average of forecasts from recursive and rolling estimates of VAR(4) in y, π, and i
average of all forecasts simple average of forecasts from models listed in Table 1
median median of model forecasts
trimmed mean, 10% average of model forecasts, excluding 3 highest and 3 lowest
trimmed mean, 20% average of model forecasts, excluding 5 highest and 5 lowest
ridge: recursive, .001 combination of model forecasts, est. with ridge regression (1), k = .001
ridge: recursive, .25 same as above, using k = .25
ridge: recursive, 1. same as above, using k = 1
ridge: 10y rolling, .001 same as above, using k = .001 and a rolling window of 40 forecasts
ridge: 10y rolling, .25 same as above, using k = .25 and a rolling window of 40 forecasts
ridge: 10y rolling, 1. same as above, using k = 1 and a rolling window of 40 forecasts
factor, recursive forecast from regression on common factor in model forecasts
factor, 10y rolling same as above, using rolling window of 40 forecasts
MSE weighting, recursive inverse MSE–weighted average of model forecasts
MSE weighting, 10y rolling same as above, using a rolling window of 40 forecasts
MSE weighting, 5y rolling same as above, using a rolling window of 20 forecasts
MSE weighting, discounted inverse discounted MSE–weighted average of model forecasts, with discount rate of .95
PLS, recursive forecast from model with lowest historical MSE
PLS, 10y rolling same as above, using a rolling window of 40 forecasts
PLS, 5y rolling same as above, using a rolling window of 20 forecasts
best quartile, recursive simple average of model forecasts in the top quartile of historical (MSE) accuracy
best quartile, 10y rolling same as above, using a rolling window of 40 forecasts
best quartile, 5y rolling same as above, using a rolling window of 20 forecasts
OLS comb. of quartiles, recursive forecast from (OLS) regression on the avg. forecasts from the 1st and 2nd quartiles
OLS comb. of quartiles, 10y rolling same as above, using a rolling window of 40 forecasts
OLS comb. of quartiles, 5y rolling same as above, using a rolling window of 20 forecasts
BMA: AIC BMA of model forecasts, using AIC as measure of marginal likelihood
BMA: BIC BMA of model forecasts, using BIC as measure of marginal likelihood
BMA: PIC BMA of model forecasts, using Phillips’ (1996) PIC as measure of marginal likelihood

Notes:
1. All averages are based on the 50 forecast models listed in Table 1, for a given combination of measures of output,
inflation, and the short-term interest rate.
2. See the notes to Table 1.
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