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Abstract

A body of recent work suggests commonly—used VAR models of output, inflation,
and interest rates may be prone to instabilities. In the face of such instabilities, a va-
riety of estimation or forecasting methods might be used to improve the accuracy of
forecasts from a VAR. These methods include using different approaches to lag selec-
tion, different observation windows for estimation, (over-) differencing, intercept cor-
rection, stochastically time—varying parameters, break dating, discounted least squares,
Bayesian shrinkage, and detrending of inflation and interest rates. Although each in-
dividual method could be useful, the uncertainty inherent in any single representation
of instability could mean that combining forecasts from the entire range of VAR esti-
mates will further improve forecast accuracy. Focusing on models of U.S. output, prices,
and interest rates, this paper examines the effectiveness of combination in improving
VAR forecasts made with real-time data. The combinations include simple averages,
medians, trimmed means, and a number of weighted combinations, based on: Bates-
Granger regressions, factor model estimates, regressions involving forecast quartiles,
Bayesian model averaging, and predictive least squares—based weighting. Our goal is to
identify those approaches that, in real time, yield the most accurate forecasts of these
variables. We use forecasts from simple univariate time series models as benchmarks.
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1 Introduction

Small-scale VARs are now widely used in macroeconomics and central bank forecasting.
Examples of VARs used to forecast output, prices, and interest rates include Sims (1980),
Doan, et al. (1984), Litterman (1986), Brayton et al. (1997), Jacobson et al. (2001),
Robertson and Tallman (2001), Del Negro and Schorfheide (2004), and Favero and Mar-
cellino (2005). However, there is an increasing body of evidence suggesting that these VARs
may be prone to instabilities.! Examples include Webb (1995), Kozicki and Tinsley (2001b,
2002), Cogley and Sargent (2001, 2005), Boivin (2006), and Beyer and Farmer (2006). Al-
though many different structural forces could lead to instabilities in macroeconomic VARs
(e.g., Rogoff (2003) and others have suggested that globalization has altered inflation dy-
namics), much of the aforementioned literature has focused on shifts potentially attributable
to changes in the behavior of monetary policy.

Accordingly, in previous work (Clark and McCracken, 2006a) we considered the perfor-
mance of various methods for improving the forecast accuracy of VARs in the presence of
structural change. For trivariate VARs in a range of measures of output, inflation, and a
short—term interest rate, these methods include: sequentially updating lag orders, using var-
ious observation windows for estimation, working in differences rather than levels, making
intercept corrections (as in Clements and Hendry (1996)), allowing stochastic time varia-
tion in model parameters, allowing discrete breaks in parameters, discounted least squares
estimation, Bayesian shrinkage, and detrending of inflation and interest rates. While some
of these methods performed well at various times, various forecast horizons, and for some
variables, simple averages (across the various methods just described) were consistently
among the best performers.

One interpretation of this result is that it is crucial to have an understanding of the
form of instability when constructing good forecasts. Another, and the one we prefer, is
that in practice it is very difficult to know the form of structural instability, and model
averaging provides an effective method for forecasting in the face of such uncertainty. As

summarized by Timmermann (2006), competing models will differ in their sensitivity to

! Admittedly, while the evidence of instabilities in the relationships incorporated in small macroeconomic
VARs seems to be growing, the evidence is not necessarily conclusive. Rudebusch and Svensson (1999) apply
stability tests to the full set of coefficients of an inflation—output gap model and are unable to reject stability.
Rudebusch (2005) finds that historical shifts in the behavior of monetary policy haven’t been enough to make
reduced form macro VARs unstable. Estrella and Fuhrer (2003) find little evidence of instability in joint
tests of a Phillips curve relating inflation to the output gap and an IS model of output. Similarly, detailed
test results reported in Stock and Watson (2003) show inflation—output gap models to be largely stable.



structural breaks. Depending on the size and nature of structural breaks, models that
quickly pick up changes in parameters may or may not be more accurate than models that
do not. For instance, in the case of a small, recent break, a model with constant parameters
may forecast more accurately than a model that allows a break in coefficients, due to the
additional noise introduced by the estimation of post—break coefficients (see, for example,
Clark and McCracken (2005b) and Pesaran and Timmermann (2006)). However, in the case
of a large break well in the past, a model that correctly picks up the associated change in
coefficients will likely forecast more accurately than models with constant or slowly chang-
ing parameters. Accordingly, Timmermann (2006) and Pesaran and Timmermann (2006)
suggest that combinations of forecasts from models with varying degrees of adaptability to
uncertain (especially in real time) structural breaks will be more accurate than forecasts
from individual models.

In this paper we provide empirical evidence on the ability of various forms of forecast
averaging to improve the real-time forecast accuracy of small-scale macroeconomic VARs
in the presence of uncertain forms of model instabilities. Focusing on six distinct trivariate
models incorporating different measures of output and inflation and a common interest rate
measure, we consider a wide range of approaches to averaging forecasts obtained with a va-
riety of the aforementioned primitive methods for managing model instability. The average
forecasts include: equally weighted averages with and without trimming, medians, common
factor-based forecasts, Bates—Granger combinations estimated with ridge regression, MSE-
weighted averages, lowest MSE forecasts (predictive least squares forecasts), Bayesian model
averages, and combinations based on quartile average forecasts (as suggested by Aiolfi and
Timmermann (2006)). For each of these forms of forecast or model averaging we construct
real time forecasts of each variable using real-time data. We compare our results to those
from simple baseline univariate models and selected baseline VAR models.

Our results indicate that while some of the primitive forms of managing structural
instability sometimes provide the largest gains in terms of forecast accuracy — notably
those models with some form of Bayesian shrinkage — model averaging is a more consistent
method for improving forecast accuracy. Not surprisingly, the best type of averaging often
varies with the variable being forecast, but several patterns do emerge. After aggregating
across all models, horizons and variables being forecasted, it is clear that the simplest

forms of model averaging — such as those that use equal weights across all models or those



that average a univariate model with a particular VAR, such as a VAR(4) using detrended
inflation and interest rates — consistently perform among the best methods. At the other
extreme, forecasts based on OLS—type combination and factor model-based combination
rank among the worst.

The remainder of the paper proceeds as follows. Section 2 describes the real-time data
and samples. Section 3 provides a synopsis of the forms of model averaging used to forecast
in the presence of uncertain forms of structural change. Section 4 presents our results
on forecast accuracy, including root mean square errors of the methods used. Section 5

concludes.

2 Data

We consider the real-time forecast performance of models with three different measures of
output (y), two measures of inflation (7), and a short—term interest rate (7). The output
measures are GDP or GNP (depending on data vintage) growth, an output gap computed
with the method described in Hallman, Porter, and Small (1991), and an output gap esti-
mated with the Hodrick and Prescott (1997) filter. The first output gap measure (hereafter,
the HPS gap), based on a method the Federal Reserve Board once used to estimate po-
tential output for the nonfarm business sector, is entirely one—sided but turns out to be
highly correlated with an output gap based on the Congressional Budget Office’s (CBO’s)
estimate of potential output. The HP filter of course has the advantage of being widely
used and easy to implement. We follow Orphanides and van Norden (2005) in our real time
application of the filter: for forecasting starting in period ¢, the gap is computed using the
conventional filter and data available through period t — 1. The inflation measures include
the GDP or GNP deflator or price index (depending on data vintage) and CPI price index.
The short—term interest rate is measured with the 3—month Treasury bill rate; using the
federal funds rate yields qualitatively similar results. Note, finally, that growth and inflation
rates are measured as annualized log changes (from ¢ — 1 to ¢). Output gaps are measured
in percentages (100 times the log of output relative to trend). Interest rates are expressed
in annualized percentage points.

The raw quarterly data on output, prices, and interest rates are taken from the Federal
Reserve Bank of Philadelphia’s Real-Time Data Set for Macroeconomists (RTDSM), the
Board of Governor’s FAME database, and the website of the Bureau of Labor Statistics



(BLS). Real-time data on GDP or GNP and the GDP or GNP price series are from the
RTDSM. For simplicity, hereafter we simply use the notation “GDP” and “GDP price
index” to refer to the output and price series, even though the measures are based on GNP
and a fixed weight deflator for much of the sample. In the case of the CPI and the interest
rates, for which real time revisions are small to essentially non—existent, we simply abstract
from real time aspects of the data. For the CPI, we follow the advice of Kozicki and Hoffman
(2004) for avoiding choppiness in inflation rates for the 1960s and 1970s due to changes in
index bases, and use a 1967 base year series taken from the BLS website in late 2005.2 For
the T-bill rate, we use a series obtained from FAME.

The full forecast evaluation period runs from 1970:Q1 through 2005; as detailed in sec-
tion 3, forecasts from 1965:Q4 through 1969:Q4 are used as initial values in the combination
forecasts that require historical forecasts. Accordingly, we use real time data vintages from
1965:Q4 through 2005:Q4. As described in Croushore and Stark (2001), the vintages of the
RTDSM are dated to reflect the information available around the middle of each quarter.
Normally, in a given vintage ¢, the available NIPA data run through period ¢t —1.3 The start
dates of the raw data available in each vintage vary over time, ranging from 1947:Q1 to
1959:QQ3, reflecting changes in the published samples of the historical data. For each fore-
cast origin ¢ in 1965:Q4 through 2005:Q3, we use the real time data vintage t to estimate
output gaps, estimate the forecast models, and then construct forecasts for periods ¢ and
beyond. The starting point of the model estimation sample is the maximum of (i) 1955:Q1
and (ii) the earliest quarter in which all of the data included in a given model are available,
plus five quarters to allow for four lags and differencing or detrending.

We present forecast accuracy results for forecast horizons of the current quarter (h =
0Q), the next quarter (h = 1Q), four quarters ahead (h = 1Y), and eight quarters ahead
(h = 2Y). In light of the time ¢ — 1 information actually incorporated in the VARs used for
forecasting at ¢, the current quarter (t) forecast is really a 1-quarter ahead forecast, while the
next quarter (¢+1) forecast is really a 2—step ahead forecast. What are referred to as 1-year
ahead and 2—year ahead forecasts are really 5— and 9-step ahead forecasts. In keeping with
common central bank practice, the 1- and 2—year ahead forecasts for GDP/GNP growth

and inflation are four—quarter rates of change (the 1-year ahead forecast is the percent

2The BLS only provides the 1967 base year CPI on a not seasonally adjusted basis. We seasonally
adjusted the series with the X-11 filter.

3In the case of the 1996:Q1 vintage, with which the BEA published a benchmark revision, the data run
through 1995:Q3 instead of 1995:Q4.



change from period t + 1 through ¢ + 4; the 2—year ahead forecast is the percent change
from period ¢ + 5 through t + 8). The 1- and 2—year ahead forecasts for output gaps and
interest rates are quarterly levels in periods t +4 and ¢ + 8, respectively. For computational
simplicity in our extensive real-time analysis, all of the multi—step forecasts are obtained
by iterating the 1-step ahead models.

As discussed in such sources as Romer and Romer (2000), Sims (2002), and Croushore
(2006), evaluating the accuracy of real time forecasts requires a difficult decision on what
to take as the actual data in calculating forecast errors. We follow Romer and Romer
(2000) and use the second available estimates of GDP/GNP and the GDP/GNP deflator
as actuals in evaluating forecast accuracy. In the case of h—step ahead (for h = 0Q, 1Q,
1Y, and 2Y) forecasts made for period ¢ 4+ h with vintage ¢ data ending in period ¢ — 1, the
second available estimate is normally taken from the vintage t + h + 2 data set. In light of
our abstraction from real time revisions in CPI inflation and interest rates, for these series

the real time data correspond to the final vintage data.

3 Forecast methods

The forecasts of interest in this paper are combinations of forecasts from a wide range of
approaches to allowing for structural change in trivariate VARs: sequentially updating lag
orders, using various observation windows for estimation, working in differences rather than
levels, making intercept corrections (as in Clements and Hendry (1996)), allowing stochas-
tic time variation in model parameters, allowing discrete breaks in parameters identified
with break tests, discounted least squares estimation, Bayesian shrinkage, and detrending
of inflation and interest rates. Table 1 lists the set of individual VAR forecast methods
considered in this paper, along with some detail on forecast construction. To be precise, for
each model — defined as being a baseline VAR in one measure of output (y), one measure
of inflation (7), and one short—term interest rate (i) — we apply each of the estimation and
forecasting methods listed in Table 1.

Note that, although we simply refer to all the underlying forecasts as VAR forecasts,
in fact the list of individual models includes a univariate specification for each of output,
inflation, and the interest rate. For output the univariate model is an AR(2). In the case of
inflation, we follow Stock and Watson (2006) and use an MA(1) process for the change in

inflation (Am), estimated with a rolling window of 40 observations. For simplicity, in light



of some general similarities in the time series properties of inflation and short—term interest
rates and the IMA(1) rationale for inflation described by Stock and Watson, the univariate
model for the short-term interest rate is also specified as an MA(1) in the first difference of
the series (Ad).4

Table 2 provides a comprehensive list, with some detail, of the approaches we use to
combining forecasts from these underlying models. The remainder of this section explains

the averaging methods.

3.1 Equally weighted averages

We begin with seven distinct, simple forms of model averaging, in each case using what
could loosely be described as equal weights. The first is an equally weighted average of all
the VAR forecasts in Table 1, for a given triplet of variables. More specifically, for a given
combination of measures of output, inflation, and the interest rate (for example, for the
combination GDP growth, GDP inflation, and the T-bill rate), we average forecasts from
the 50 VARs listed in Table 1. With an eye towards making this model average robust to
individual forecasts that might be considered outliers, we also consider the median forecast
and both 10 and 20 percent trimmed means.

We include a fifth average forecast approach motivated by the results of Clark and Mc-
Cracken (2005b), who show that forecast accuracy can be improved by combining forecasts
from models estimated with recursive (all available data) and rolling samples. For a given
VAR(4), we form an equally weighted average of the model forecasts constructed using
parameters estimated (i) recursively (with all of the available data) and (ii) with a rolling
window of the past 60 observations. Three other averages are motivated by the Clark and
McCracken (2005a) finding that combining forecasts from nested models can improve fore-
cast accuracy. We consider an average of the univariate forecast with the VAR(4) forecast,
an average of the univariate forecast with the DVAR(4) forecast, and an average of the
univariate forecast with a forecast from a VAR(4) in output, detrended inflation, and the
detrended interest rate (Table 1 and section 3.7 provide more information on the VAR with
detrending).

While these pairwise average forecasts may seem ad hoc from a Bayesian model aver-

aging perspective, our aforementioned results, based on frequentist methods, suggest they

4After completing the results and analysis presented below, we went back and compared the IMA(1) for
the interest rate to various AR alternatives. The IMA(1) generally dominated these alternatives.



may be effective, especially in the face of considerable parameter estimation noise associated
with VARs. As an example, suppose that, in truth, output, inflation, and the interest rate
can be modeled as a VAR(4). The frequentist results in our prior work (theory, Monte Carlo
experiments, and empirics in Clark and McCracken (2005a)) imply that, unless the VAR(4)
is estimated with great precision, combining forecasts from the VAR(4) with forecasts from
univariate models will likely improve forecast accuracy. Similar arguments suggest averag-
ing a DVAR(4) (or a VAR(4) in detrended data) with univariate forecasts and averaging a
rolling estimate of the VAR with forecasts based on recursive estimates. In each case, com-
bination improves forecast accuracy by shrinking the larger model forecast with relatively
high sampling error and arguably less bias to a smaller model forecast with less sampling

error but greater bias.

3.2 Combinations based on Bates—Granger /ridge regression

We also consider a large number of average forecasts based on historical forecast perfor-
mance — one such approach being forecast combination based on Bates and Granger (1969)
regression. For these methods, we need an initial sample of forecasts preceding the sample
to be used in our formal forecast evaluation. With the formal forecast evaluation sample
beginning with 1970:Q1, we use an initial sample of forecasts from 1965:Q4 (the starting
point of the RTDSM) through 1969:Q4. Therefore, in the case of current quarter forecasts
constructed in 1970:Q1, we have an initial sample of 17 forecasts to use in estimating com-
bination regressions, forming MSE weights, etc. Note also that these performance-based
combinations are based on real time forecast accuracy. That is, in period ¢, in deciding how
best to combine forecasts based on historical performance, we use the historical real time
forecasts compared to real time data in determining the combinations.

To obtain combinations based on the Bates—Granger approach, for each of output, in-
flation, and the interest rate we use the actual data that would have been available to a
forecaster in real time to estimate a generalized ridge regression of the actual data on the 50
VAR forecasts, shrinking the coefficients toward equal weights. Our implementation follows
that of Stock and Watson (1999): letting Z, 1, denote the vector of 50 forecasts of variable
zi+p, made in period ¢ and peaual denote a 50 x 1 vector filled with 1 /50, the combination

coefficient vector estimate is

B = (cIso + Z Zt+h|tZ£+h|t)71(c/Bequal + Z 2ty h)t?t+h) (1)
t t



where ¢ = k x trace(5071 Y, Zt+h|tZ£+h‘t). We consider three different forecasts, based on
different values of the shrinkage coefficient k: .001, .25, and 1. A smaller (larger) value of k
implies less (more) shrinkage. Following Stock and Watson (1999), we use a value .001 to
approximate the OLS combination of Bates and Granger (1969). For each value of k, we
consider forecasts based on both a recursive estimate of the combination regression (using
all available forecasts) and a 10—year rolling sample estimate (using just the most recent 10

years of forecasts, or all available if less than 10 years are available).

3.3 Common factor combinations

Stock and Watson (1999, 2004) develop another approach to combining information from
individual model forecasts: estimating a common factor from the forecasts, regressing actual
data on the common factor, and then using the fitted regression to forecast into the future.
Therefore, using the real time forecasts available through the forecast origin ¢, we estimate
(by principal components) one common factor from the set of 50 VAR forecasts for each
of output, inflation, and the interest rate (estimating one factor for output, another for
inflation, etc.). We then regress the actual data available in real time as of ¢ on a constant
and the factor. The factor—based forecast is then obtained from the estimated regression,
using the factor observation for period ¢t. As in the case of the ridge regressions, we compute
factor-combination forecasts on both a recursive (using all available forecasts) and 10-year
rolling (using just the most recent 10 years of forecasts, or all available if less than 10 years

are available) basis.

3.4 MSE-weighted and PLS forecasts

We also consider several average forecasts based on inverse MSE weights. At each forecast
origin t, historical MSEs of the 50 VAR forecasts of each of output, inflation, and the interest
rate are calculated with the available forecasts and actual data, and each forecast ¢ of the
given variable is given a weight of M SE;” ! /> i MSE; ! In addition, following Stock and
Watson (2004), we consider a forecast based on a discounted mean square forecast error (in
which, from a forecast origin of ¢, the squared error in the earlier period s is discounted by
a factor '), We use a discount rate of § = .95.

We also consider a forecast based on the model(s) with lowest historical MSE — i.e.,
based on predictive least squares (PLS). At each forecast origin ¢, we identify the model

forecast with the lowest historical MSE, and then use that single model to forecast into the



future.
We compute alternative MSE—weighted and PLS forecasts with several different sam-
ples of historical forecasts: all available forecasts (recursive), a 10 year rolling window of

forecasts, and a 5 year rolling window of forecasts.

3.5 Quartile forecasts

Ajolfi and Timmermann (2006) develop alternative approaches to forecast combination that
take into account persistence in forecast performance — the possibility that some models
may be consistently good while others may be consistently bad. Their simplest forecast
is an equally weighted average of the forecasts in the top quartile of forecast accuracy
(that is, the forecasts with historical MSEs in the lowest quartile of MSEs). More sophisti-
cated forecasts involve measuring performance persistence as forecasting moves forward in
time, sorting the forecasts into clusters based on past performance, and estimating combi-
nation regressions with a number of clusters determined by the degree of persistence. For
tractability in our extensive real-time forecast evaluation, we consider simple versions of the
Aiolfi-Timmermann methods, based on just the first and second quartiles. Specifically, we
consider a simple average of the forecasts in the top quartile of historical forecast accuracy.
We also consider a forecast based on an OLS-estimated combination regression including
a constant, the average of the first quartile forecasts, and the average of the second quar-
tile forecasts. We compute these quartile-based forecasts with several different samples of
historical forecasts: all available forecasts (recursive), a 10 year rolling window of forecasts,

and a 5 year rolling window of forecasts.

3.6 Bayesian model averages

Following Wright (2003) and Koop and Potter (2004), among others, we also consider
forecasts obtained by Bayesian model averaging (BMA). At each forecast origin ¢, for each
equation of the 50 models listed in Table 1, we calculate a posterior probability using the

conventional formula

Prob(data|M;) x Prob(M;)

Prob(M;|dat 2
rob(M;|data) 5. Prob(data|M;) x Prob(M;) 2)
Prob(M;) = prior probability on model i = 1/50
Prob(data|M;) = marginal likelihood for model i.



We consider several different measures of the marginal likelihood, each of which yields a
different BMA forecast. The three measures are the AIC, BIC, and Phillips’ (1996) PIC.
The BIC is well known to be proportional to the marginal likelihood of models estimated by
OLS or, equivalently, diffuse priors. BMA applications such as Koop, Potter, and Strachan
(2005) and Garratt, Koop, and Vahey (2006) have also used BIC to estimate the marginal
likelihood and in turn average models. The AIC can be viewed as another measure of the
marginal likelihood for models estimated by OLS. Phillips (1996) develops another criterion,
PIC, as a measure of marginal likelihood appropriate for comparing VARs in levels, VARs
in differences, and VARs estimated with informative priors (BVARs). Specifically, at each
forecast origin t, for each of the model estimates listed in Table 1, we compute the AIC,
BIC, and PIC for each equation of the model.® For each criterion, we then form a BMA
forecast using —.57 times the information criterion value as the marginal likelihood of each
equation.

In our application, calculating the information criteria requires some decisions on how
to deal with some of the important differences in estimation approaches (e.g., rolling versus
recursive estimation) for the 50 underlying model forecasts. In the case of models estimated
with a rolling sample of data, we calculate the AIC, BIC, and PIC based on a model that
allows a discrete break in all the model coefficients at the point of the beginning of the
rolling sample. For models estimated by discounted least squares (DLS), we calculate the
information criteria using residuals defined as actual data less fitted values based on the
DLS coefficient estimates.

In the case of the AIC and BIC applied to BVAR models, for simplicity we abstract
from the prior and calculate the criteria based on the residual sums of squares and simple
parameter count (PIC is calculated for VARs and BVARSs, to take account of priors, as
described in Phillips (1996)).” As Phillips (1996) notes, the prior is asymptotically irrelevant
in the sense that, as the sample grows, sample information dominates the prior. For

marginal likelihood measures other than PIC, taking (proper Bayesian) account of the

SNote that our BMA forecasts are numerically equivalent (with equal prior weights on each model) to
those that would be obtained under the information criteria—weighting approach developed in Kapetanios,
Labhard, and Price (2005). These authors, however, suggest a frequentist, rather than Bayesian, interpre-
tation of the information criterion—weighted forecast.

5Tn calculating PIC for the univariate IMA models for inflation and interest rates, we simply approximate
the MA fits with AR(1) models estimated for A7 and Ai (estimating separate models for the rolling sample
and the earlier sample), and calculate PIC values using these AR(1) approximations.

"For BVARs with TVP, at each point in time ¢ we calculate the model residuals as a function of the
period t coefficients and use these residuals to compute the residual sums of squares.

10



finite—sample role of the Bayesian prior in combining forecasts from models estimated with
different priors would require Monte Carlo integration, which is intractable in our large—

scale, real-time forecast evaluation.®

3.7 Benchmark forecasts

To evaluate the practical value of all the averaging methods described above, we compare
the accuracy of the above combination or average forecasts against various benchmarks. In
light of common practice in forecasting research, we use forecasts from the univariate time
series models as one set of benchmarks.”

We also include for comparison forecasts from selected VAR methods that are either of
general interest in light of common usage or performed relatively well in our prior work: a
VAR(4); DVAR(4) (a VAR with inflation and the interest rate differenced); BVAR(4) with
conventional Minnesota priors; BVAR(4) with stochastically time-varying (random walk)
parameters; and a BVAR(4) in output, detrended inflation, and the interest rate less the
inflation trend. The BVAR(4) with inflation detrending draws on the work of Kozicki and
Tinsley (2001a,b, 2002) on models with learning about an unobserved time—varying inflation
target of the central bank. For tractability in real time forecasting, we follow Cogley (2002)
in estimating the inflation target or trend with exponential smoothing.'® Table 1 provides

additional detail on all of these model specifications.

4 Results

In evaluating the performance of the forecasting methods described above, we follow Stock
and Watson (1996, 2003, 2005), among others, in using squared error to evaluate accuracy
and considering forecast performance over multiple samples. Specifically, we measure accu-

racy with root mean square error (RMSE). In light of the evidence in Stock and Watson

8As Koop and Potter (2004) note, BMA allows for two types of shrinkage: (1) through priors on pa-
rameters imposed in parameter estimation and (2) through the model priors in the calculation of the BMA
weights. Accordingly, in practice, there is some interchangeability between the two types of shrinkage.
Asymptotically, the first form becomes irrelevant asymptotically. Our simple approach with AIC and BIC
corresponds to focusing entirely on the second form of shrinkage.

90f course, the choice of benchmarks today is influenced by the results of previous studies of forecasting
methods. Although a forecaster today might be expected to know that an IMA(1) is a good univariate
model for inflation, the same may not be said of a forecaster operating in 1970. For example, Nelson (1972)
used as benchmarks AR(1) processes in the change in GNP and the change in the GNP deflator (both in
levels rather than logs). Nelson and Schwert (1977) first proposed an IMA(1) for inflation.

19As noted in Clark and McCracken (2006a), the resulting trend estimate is quite similar to measures of
long—run inflation expectations.
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(2003) and others of instabilities in forecast performance over time, we examine accuracy
over forecast samples of 1970-84 and 1985-2005, to ensure our general results are robust
across sample periods.!!

To be able to provide broad, robust results, in total we consider a large number of models
and methods — too many to be able to present all details of the results. In the interest
of brevity, we present more detailed results on forecasts of GDP growth and inflation than
forecasts of the output gap measures or interest rates. We also focus on a few forecast
horizons — those for h = 0Q, h = 1Q), and h = 1Y — but do present results for the h = 2Y
horizon.

Tables 3 and 4 report forecast accuracy (RMSE) results for GDP growth and either
GDP price index-based or CPI-based inflation using 38 forecast methods. In each case
we use the 3-month T-bill as the interest rate, and present results for horizons h = 00Q),
h =1Q, and h = 1Y. Table 5 reports the same but for the h = 2Y horizon. In Table
6 we report forecast accuracy results for the T-bill rate at all horizons, from models using
GDP growth and GDP inflation. In every case, the first row of the table provides the
RMSE associated with the baseline univariate model, while the others report ratios of the
corresponding RMSE to that for the benchmark univariate model. Hence numbers less
than one denote an improvement over the univariate baseline while numbers greater than
one denote otherwise.

In Table 7 we take another approach to broadly determining which methods tend to
perform better than the benchmark. Across each variable, model and forecast horizon,
we compute the average rank of the methods included in Tables 3-6. We present average
rankings for every method we consider across each variable, forecast horizon, and the 1970-
84 and 1985-05 samples (spanning all columns of Tables 3-6 plus unreported results for
forecasts from models using an output gap as well as forecasts of the T-bill rate from
models using our various measures of output and inflation).

To determine the statistical significance of differences in forecast accuracy, we use a non—
parametric bootstrap patterned after White’s (2000) to calculate p—values for each RMSE
ratio in Tables 3-6. The individual p—values represent a pairwise comparison of each VAR
or average forecast to the univariate forecast. RMSE ratios that are significantly less than 1

at a 10 percent confidence interval are indicated with a slanted font. To determine whether

11\With forecasts dated by the end period of the forecast horizon h = 0, 1,4, the VAR forecast samples
are, respectively, 1970:Q1+h to 1984:Q4 and 1985:Q1 to 2005:Q3-h.
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a best forecast in each column of the tables is significantly better than the benchmark once
the data snooping or search involved in selecting a best forecast is taken into account, we
apply Hansen’s (2005) (bootstrap) SPA test to differences in MSEs (for each model relative
to the benchmark). Hansen shows that, if the variance of the forecast loss differential of
interest differs widely across models, his SPA test will typically have much greater power
than White’s (2000) reality check test. For each column, if the SPA test yields a p-value of
10 percent or less, we report the associated RMSE ratio in bold font. Because the SPA test
is based on t—statistics for equal MSE instead of just differences in MSE (that is, takes MSE
variability into account), the forecast identified as being significantly best by SPA may not
be the forecast with the lowest RMSE ratio.!?

We implement the bootstrap procedures by sampling from the time series of forecast
errors underlying the entries in Tables 3-6. For simplicity, we use the moving block method
of Kunsch (1989) and Liu and Singh (1992) rather than the stationary bootstrap actually
used by White (2000) and Hansen (2005); the moving block is also asymptotically valid.
The bootstrap is applied separately for each forecast horizon, using a block size of 1 for the
h = 0Q forecasts, 2 for h = 1Q, 5 for h = 1Y, and 9 for h = 2Y.'3 In addition, in light
of the potential for changes over time in forecast error variances, the bootstrap is applied
separately for each subperiod. Note, however, that the bootstrap sampling preserves the

correlations of forecast errors across forecast methods.

4.1 Declining volatility

While there are many nuances in the detailed results, some clear patterns emerge. The
univariate RMSEs clearly show the reduced volatility of the economy since the early 1980s,
particularly for output. For each horizon, the benchmark univariate RMSEs of GDP growth
declined by roughly two-thirds across the 1970-84 and 1985-05 samples (Tables 3-5). The
reduced volatility continues to be evident for the inflation measures (Tables 3-5). At the
shorter horizons, h = 0Q) and h = 1Q), the benchmark RMSEs fell by roughly half, but at the
longer h = 1Y and h = 2Y horizons the variability declines nearly two-thirds. The reverse
is true for the interest rate forecasts (Table 6). At the shorter horizons the benchmark

RMSE:s fell by roughly two-thirds but at the longer horizons the variability declines by less

12For multi-step forecasts, we compute the variance entering the t-test using the Newey and West (1987)
estimator with a lag length of 1.5 % h, where h denotes the number of forecast periods.

13For a forecast horizon of 7 periods, forecast errors from a properly specified model will follow an MA(7—1)
process. Accordingly, we use a moving block size of 7 for a forecast horizon of 7.
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than half.

4.2 Declining predictability

Consistent with the results in Campbell (2005), D’Agostino, et al. (2005), Stock and Watson
(2006), and Tulip (2005), there are some clear signs of a decline in the predictability of both
output and inflation: it has become harder to beat the accuracy of a univariate forecast.
For example, at forecast horizons of A = 1Y or less, most methods or models beat the
accuracy of the univariate forecast of GDP growth during the 1970-84 period (Tables 3 and
4). In fact, many do so at a level that is statistically significant; at each horizon Hansen’s
(2005) SPA test identifies a statistically significant best performer. But over the 1985-2005
period, for h = 0Q and h = 1Q forecasts only the BVAR(4)-TVP models are more accurate
at short horizons, and that improvement fails to be statistically significant. At the h = 1Y
horizon a handful of the methods continue to outperform the benchmark univariate, but
very few are statistically significant. Interestingly, at the longest h = 2Y horizon (Table
5), it appears that it has become modestly easier to predict GDP growth, though again,
few are statistically significant.

The predictability of inflation has also declined, although less dramatically than for
output. For example, in models with GDP growth and GDP inflation (Table 3), the best
1-year ahead forecasts of inflation improve upon the univariate benchmark RMSE by more
than 10 percent in the 1970-84 period but only about 5 percent in 1985-05. The evidence of
a decline in inflation predictability is perhaps most striking for CPI forecasts at the h = 0Q)
horizon. In Table 4, most of the models convincingly outperform the univariate benchmark
during the 1970-84 period, with statistically significant maximal gains of roughly 20 percent.
But in the following period, fewer methods outperform the benchmark, with gains typically
about 4 percent.

Predictability of the T-bill rate has not so much declined as it has shifted to a longer
horizon. In Table 6 we see that at the h = 0Q) horizon far fewer methods outperform the
univariate benchmark as we move from the 1970-84 period to the 1985-05 period. However,
the decline in relative predictability starts to weaken as the forecast horizon increases. At
the h = 1Q) horizon some methods continue to beat the benchmark, although with maximal

gains of only about 5 percent. But at the h = 1Y and A = 2Y horizons, not only do a

11Some the change in CPI predictability at the & = 0Q horizon could be due to the 1983 change in the
CPI’s treatment of housing. Prior to 1983, changes in mortgage interest costs were included in the CPI.
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larger number of methods improve upon the benchmark, they do so with maximal gains

that are substantial and statistically significant, at about 12 percent.

4.3 Averaging methods that typically outperform the benchmark

The sharp decline of predictability makes it difficult to identify models or averaging methods
that consistently beat the accuracy of the univariate benchmarks. The considerable sam-
pling error inherent in small sample forecast comparisons further compounds the difficulty
of finding a method that always or nearly always beats the univariate benchmark. Suppose,
for example, that there exists a model or average forecast that, in population, is somewhat
more accurate (by 10 percent, say) than the univariate benchmark. For forecast samples
of roughly 15 years, there is a good chance that, in a given sample, the univariate forecast
will actually be more accurate (see, e.g., Clark and McCracken’s (2006b) results for Phillips
curve forecasts of inflation). The sampling uncertainty grows with the forecast horizon. As
a result, we probably shouldn’t expect to be able to identify a particular forecast model or
method that beats the univariate benchmark for every variable, horizon, and sample period.
Instead, we might judge a model or method a success if it beats the univariate benchmark
most of the time (with some consistency across the 1970-84 and 1985-05 samples) and, when
it fails to do so, is not dramatically worse than the univariate benchmark.

With these considerations in mind, the best forecast would appear to come from the
pairwise averaging class: the single best forecast is an average of the univariate forecast
with the forecast from a VAR(4) with inflation detrending (a VAR(4) in y, 7 — n*,, and
i —m* , motivated by the work of Kozicki and Tinsley (2001a,b, 2002)). More so than any
other forecast, the forecast based on an average of the univariate and inflation detrended
VAR(4) projections beats the univariate benchmark a very high percentage of the time and,
when it fails to do so, is generally comparable to the univariate forecast. For example, in
the case of forecasts of GDP growth and GDP inflation from models in these variables and
the T-bill rate (Table 3), this pairwise average’s RMSE ratio is less than 1 for all samples
and horizons, with the exception of h = 0Q) and h = 1Q) forecasts of GDP growth for 1985-
05, in which cases the RMSE ratio is only slightly above 1. For 1-year ahead forecasts of
GDP growth, the RMSE of this average forecast is about 15 percent below the univariate
benchmark for 1970-84 and 9 percent below for 1985-05; the corresponding figures for GDP
inflation are each roughly 3 percent.

While not quite as good as the average of the univariate and inflation detrended VAR
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forecasts, some other averages also seem to perform well, beating the accuracy of the univari-
ate benchmark with sufficient consistency as to be considered superior. In particular, two
of the other pairwise forecasts — the VAR(4) with univariate and DVAR(4) with univariate
averages — are often, although not always, more accurate than the univariate benchmarks.
For instance, in forecasts of GDP growth and CPI inflation (Table 4), these pairwise aver-
ages’ RMSE ratios are less than 1 in 8 of 12 columns, and only slightly to modestly above
1 in the exceptions. The VAR(4)-univariate average tends to have a more consistent ad-
vantage in 1985-05 forecasts. In addition, among the inflation forecasts, the three pairwise
combinations (univariate with inflation detrended VAR(4), VAR(4) and DVAR(4)) are the
most consistent out-performers of the univariate benchmark across both the 1970-84 and
1985-05 subsamples.

The rankings in Table 7 confirm that, from a broad perspective, the best forecasts are
simple averages. In these rankings, the single best forecast is the average of the forecasts
from the univariate and inflation detrended VAR(4). Across all variables, horizons, and
samples, this forecast has an average ranking of 6.4; the next—best forecast, the average of
the univariate and VAR(4) forecasts, has an average ranking of 12.0. While the univariate-
inflation detrended VAR(4) average is, in relative terms, especially good for forecasting
the T-bill rate (see column 5), this forecast retains its top rank even when interest rate
forecasts are dropped from the calculations (column 2). This average forecast also performs
relatively well for forecasting both output (column 3 shows it ranks a close second to the
BVAR(4) with inflation detrending) and inflation (column 4 shows it ranks first). As to
sample stability, the univariate—inflation detrended VAR(4) average is best in each of the
1970-84 and 1985-05 samples (columns 6-7).

4.4 Averaging methods that sometimes outperform the benchmark

Among other forecasts, it is difficult to identify any methods that might be seen as con-
sistently equaling or materially beating the univariate benchmark. Take, for instance, the
simple equally weighted average of all forecasts, applied to a model in GDP growth, GDP
inflation, and the T-bill rate (Table 3). This averaging approach is consistent in beating
the univariate benchmark in the 1970-84 sample, but in most cases fails to beat the bench-
mark in the 1985-05 sample. Similarly, in the case of T-bill forecasts from the same model
(Table 6, left half), the all-model average loses out to the univariate benchmark for two of

the six combinations of horizon and sample, while the generally best—performing method
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of averaging the univariate and inflation detrended VAR(4) forecasts beats the univariate
benchmark in all cases.

A number of the other averaging methods perform quite comparably to the simple aver-
age — and thus, by extension, fail to consistently equal or beat (materially) the univariate
benchmark. Among the broad average forecasts, from the results in Tables 3-6 there seems
to be no advantage of a median or trimmed mean forecast over the simple average. The ac-
curacy of these forecasts tends to be quite similar. For example, in the case of 1-year ahead
forecasts of GDP growth and GDP inflation for 1985-05, the 20 percent trimmed mean
forecast’s RMSE ratios are .972 (growth) and 1.023 (inflation), compared to the simple
average’s ratios of, respectively, .962 and 1.036 (Table 3).

Similarly, MSE—weighted forecasts are comparable to simple average forecasts, in terms
of RMSE accuracy.'® To use the same example of 1-year ahead forecasts of GDP growth
and GDP inflation for 1985-05, the recursively MSE—weighted forecast’s RMSE ratios are
.957 (growth) and 1.028 (inflation), compared to the simple average’s ratios of, respectively,
962 and 1.036 (Table 3). In 1l-year ahead forecasts of CPI inflation (Table 4), the RMSE
ratio of the recursively MSE-weighted forecast is .951 for 1970-84 and 1.055 for 1985-05,
compared to the simple average forecast’s RMSE ratios of .950 and 1.066, respectively.

Using the best—quartile forecast yields mixed results: the best quartile forecasts are
sometimes more accurate and other times less accurate than the simple average and uni-
variate forecasts. For example, in Table 4’s results for 1-year ahead forecasts of GDP
growth, the best quartile forecast based on a 10 year rolling sample has a RMSE ratio of
.780 for 1970-84 and 1.017 for 1985-05, compared to the simple average forecast’s RMSE
ratios of, respectively, .839 and .997. Similarly, for Table 4’s CPI inflation forecasts, the 10
year rolling best quartile approach yields a forecast that is more accurate than the simple
average for 1970-84 and less accurate for 1985-05. Where the best quartile forecast seems
to have a consistent advantage over a simple average is in output forecasts for 1970-84.

The rankings in Table 7 confirm the broad similarity of the above methods — the
simple average, MSE—weighted averages, and best quartile forecasts. For example, the
simple average forecast has an overall average ranking of 14.5, compared to rankings of 12.0
for the recursive MSE—weighted forecast and 12.6 for the recursive best quartile forecast. By

comparison, the best forecast, the univariate-inflation detrended VAR(4) average, has an

5 However, in the case of forecasts of the HP output gap, the MSE-weighted averages are consistently
slightly better than the simple averages.
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overall ranking of 6.4. In a very broad sense, most of the aforementioned average forecasts
are better than the univariate benchmarks in that they all have higher rankings than the
univariate’s average ranking of 17.3 (column 1). Note, however, that most of their advantage
comes in the 1970-84 sample; in the later sample, the univariate forecast generally ranks
higher. For instance, for 1970-84 output and inflation forecasts, the all-model average has
an average accuracy rank of 13.4, compared to the univariate ranking of 21.8 (column 6).
But for 1985-05 forecasts, the all-model average has an average accuracy rank of 16.6,

compared to the univariate ranking of 13.9 (column 7).

4.5 Averaging methods that rarely outperform the benchmark

Many of the other averaging or combination methods are clearly dominated by univariate
benchmarks (and, in turn, other average forecasts). OLS combinations or ridge combina-
tions that approximate OLS often fare especially poorly. The OLS—approximating ridge
regression combination (the one with k£ = .001) consistently yields poor forecasts. For ex-
ample, in the case of 1985-05 1—year ahead forecasts of CPI inflation from models with GDP
growth (Table 4), the RMSE ratio of the recursively estimated ridge regression with shrink-
age parameter of .001 is 1.458. In other instances, the RMSE of the OLS-approximating
ridge combination is about twice as large as that of the univariate benchmark. Similarly,
the forecasts based on OLS combination regression using the first and second quartile aver-
age forecasts — especially those using rolling samples — are generally dominated by other
average forecasts. In the same example, the RMSE ratios of the forecasts based on rolling
OLS combinations of the top two quartile forecasts are 1.125 (10 year rolling) and 1.110 (5
year rolling), respectively, compared to the all-average forecast’s RMSE ratio of 1.066.
While using more shrinkage improves the accuracy of forecast combinations estimated
with generalized ridge regression, even the combinations based on ridge regression with
non—trivial shrinkage are generally less accurate than the univariate benchmarks and simple
average forecasts. For example, in 1985-05 forecasts of GDP growth from models using the
GDP inflation measure (Table 3), the RMSE ratios of the £ = 1 recursive ridge regression
forecast are all above those of the simple average forecast. While the ridge forecasts are
more commonly beaten by the simple average, there are, to be sure, a number of instances
(as in the same example, but with a forecast sample of 1970-84) in which ridge forecasts
are more accurate. On balance, though, the ridge combinations seem to be inferior to

alternatives such as the simple average forecast.
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Forecasts based on using factor model methods to obtain a combination are also generally
less accurate than alternatives such as the univariate and simple average forecasts. For
example, in the case of 1-year ahead forecasts of GDP growth and GDP inflation for 1985-
05, the recursively estimated factor combination forecast’s RMSE ratios are 1.021 (growth)
and 1.536 (inflation), compared to the simple average’s ratios of, respectively, .962 and 1.036
(Table 3). The same is true for the PLS forecasts: although PLS forecasts are sometimes
more accurate than the simple average, they are often worse. In the same example, the
recursive PLS forecast’s RMSE ratios are 1.108 and 1.011, respectively.

The BMA forecasts are also generally, although not universally, dominated by the simple
average. For example, in Table 6’s forecasts of the T-bill rate, the RMSE ratios of the BMA:
BIC forecast are consistently above the ratios of the simple average forecast. However, in
Table 3’s results for GDP growth and GDP inflation, the accuracy of the BMA: BIC forecast
is generally comparable to that of the simple average forecast. Among the alternative BMA
forecasts, there are times when those using AIC or PIC to measure the marginal likelihood
are more accurate than those using BIC. But more typically, the BMA: BIC forecast is
more accurate than the BMA: AIC and BMA: PIC forecasts — the pattern is especially
clear in 1985-05 forecasts.

The rankings in Table 7 provide a clear and convenient listing of the forecast methods
that are generally dominated by the univariate benchmark and alternatives such as the
best—performing pairwise average forecast and the all-model simple average. As previously
mentioned, generalized ridge forecasts with little shrinkage (k = .001, so as to approximate
OLS-based combination) typically perform among the worst forecasts for all horizons, vari-
ables and periods, with average ranks consistently in the low- to mid-30s. OLS combinations
of quartile forecasts also fare quite poorly when based on rolling samples, with ranks gener-
ally in the mid 20s to low 30s. The factor-based combination forecasts are also consistently
ranked in the bottom tier, with average rankings generally in the mid-20s. While not neces-
sarily in the bottom tier, the BMA forecasts are generally dominated by the simple average
forecast. The overall rankings of the BMA: BIC, BMA: PIC, and BMA: AIC forecasts are
22.0, 25.4, and 29.0, respectively, compared with the simple average forecast’s ranking of
14.5 (first column). The average ranks of the PLS forecasts are consistently around 20 (or
much worse in the 5 year rolling case). The ridge-based combination forecasts with the

highest degree of shrinkage (k = 1) fare much better than the OLS—approximating ridge
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combinations, but consistently rank below the simple average forecast. For example, as
shown in the first column, the 10—year rolling ridge regression with £ = 1 has an average

ranking of 16.9.

4.6 Single VAR methods

Among the single VAR forecasts included for comparison, the BVAR(4) with inflation de-
trending is generally best. While shrinkage in the form of averaging forecasts from an
inflation detrended VAR(4) with univariate forecasts is better than estimating the inflation
detrended VAR(4) by Bayesian methods, the latter at least performs comparably to the
simple average forecast. For example, as shown in Table 3, forecasts of GDP growth from
the BVAR(4) with inflation detrending are often at least as accurate as the simple average
forecasts (as, for example, with 1-year ahead forecasts for 1985-05). However, forecasts of
GDP inflation from the same model are generally less accurate than the simple average
(see, for example, the 1-year ahead forecasts for 1985-05). These examples reflect a pattern
evident throughout Tables 3-4: while inflation detrending might be expected to most im-
prove inflation forecasts, it instead most improves output forecasts. Although the accuracy
of the other individual VAR models is more variable, overall these models are more clearly
dominated by the univariate benchmark and others such as the simple average forecast. For
example, in the case of the BVAR(4) using GDP growth and GDP inflation (and the T-bill
rate), the simple average forecasts are generally more accurate than the BVAR(4) forecasts
of growth over 1970-84, inflation over 1970-84, and inflation over 1985-05 (Table 3).

Consistent with these examples, in general, forecasts from single models are dominated
by average forecasts. The pattern is clearly evident in the average rankings of Table 7.
Across all variables, horizons, and samples, the best-ranked single model is the BVAR(4)
with inflation detrending, which is out—ranked by 4 different average forecasts. The other
single models rank well below the BVAR(4) with inflation detrending.

While averages are broadly more accurate than single model forecasts, it is less clear
that they are consistently more accurate across sample periods. To check consistency, we
calculated the correlation of the ranks of all 32 average forecasts and all 50 single model
forecasts across the 1970-84 and 1985-05 periods, based on the inflation and output results
covered in columns 6-7 of Table 7 (using rankings including T-bill rate forecasts yields
essentially the same correlations). The correlation of single model forecast rankings is 53

percent; the correlation of the average forecast rankings is 92 percent. The implication is
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that not only is the typical average forecast more accurate than the typical single model

forecast, it is also consistently so across the two periods.

4.7 Interpretation

Why might simple averages in general and the pairwise average of univariate and inflation—
detrended VAR(4) forecasts be more accurate than any single model? As noted in the
introduction, in practice it is very difficult to know the form of structural instability, and
competing models will differ in their sensitivity to structural change. In such an environ-
ment, averages across models are likely to be superior to any single forecast. In line with
prior research on combining a range of forecasts that incorporate information from different
variables (such as Stock and Watson (1999, 2004) and Smith and Wallis (2005)), simple
equally weighted averages are typically at least as good as averages based on weights tied to
historical forecast accuracy. The limitations of weighted averages relative to simple averages
are commonly attributed to difficulties in estimating potentially optimal weights in finite
samples, especially when the cross—section dimension is large relative to the time dimension.

As to the particular success of forecasts using inflation detrending, one interpretation
is that removing a smooth inflation trend — a trend that matches up well with long—term
inflation expectations — from both inflation and the interest rate does a reasonable job of
capturing non—stationarities in inflation and interest rates. Kozicki and Tinsley (2001a,b,
2002) have developed such VARs from models with learning about an unobserved, time—
varying inflation target of the central bank.

However, such a single representation is surely not the true model, and noise in estimat-
ing the many parameters of the model likely have an adverse effect on forecast accuracy.
Therefore, a better forecast can be obtained by applying some form of shrinkage. One ap-
proach, which primarily addresses parameter estimation noise, is to use Bayesian shrinkage
in estimating the VAR with inflation detrending. Another approach is to combine forecasts
from the inflation detrended VAR with forecasts from an alternative model — in our case,
the univariate benchmark (note that the IMA(1) benchmarks for inflation and the T-bill
rate imply random walk trends).!® Koop and Potter (2004) note that such model averaging

can be viewed as a form of shrinkage for addressing both parameter estimation noise and

16 As discussed in Stock and Watson (2006), suppose inflation is equal to the sum of a trend component
and a cycle component. Moreover, suppose the trend is a random walk and the cycle is just white noise. The
change in inflation is then equal to the sum of the trend innovation and the change in the cycle component,
which is an MA(1) process.
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model uncertainty. The superiority of this average forecast can be interpreted as highlight-
ing the value of inflation detrending, shrinkage of parameter noise, and shrinkage to deal

with model uncertainty.!”

5 Conclusion

In this paper we provide empirical evidence on the ability of several forms of forecast aver-
aging to improve the real-time forecast accuracy of small-scale macroeconomic VARs in the
presence of uncertain forms of model instability. Focusing on six distinct trivariate models
incorporating different measures of output and inflation (but a common interest rate mea-
sure), we consider a wide range of approaches to averaging forecasts obtained with a variety
of primitive methods for managing model instability. These primitive methods include se-
quentially updating lag orders, using various observation windows for estimation, working
in differences rather than levels, making intercept corrections (as in Clements and Hendry
(1996)), allowing stochastic time variation in model parameters, allowing discrete breaks
in parameters identified with break tests, discounted least squares estimation, Bayesian
shrinkage, and detrending of inflation and interest rates. The forecast averages include:
equally weighted averages with and without trimming, medians, common factor-based fac-
tors, combinations estimated with ridge regression, MSE—weighted averages, lowest MSE
forecasts (predictive least squares forecasts), Bayesian model averages, and combinations
based on quartile average forecasts.

Our results indicate that some forms of model averaging do consistently improve forecast
accuracy in terms of root mean square errors. Not surprisingly, the best method often varies
with the variable being forecasted, but several patterns do emerge. After aggregating
across all models, horizons and variables being forecasted, it is clear that the simplest
forms of model averaging — such as those that use equal weights across all models or
those that average a univariate model with a particular VAR, such as a VAR(4) with
inflation detrending — consistently perform among the best methods. At the other extreme,
forecasts based on OLS—type combination and factor model-based combination rank among

the worst.

'"The results of Clark and McCracken (2005b) can be used to make a frequentist case for averaging the
inflation detrended VAR with the univariate benchmark, based entirely on parameter estimation error.
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Table 1: VAR forecasting methods

method details

VAR(4) VAR in y, m, ¢ with fixed lag of 4

VAR(2) same as above with fixed lag of 2

VAR(AIC) VAR with system lag determined at each t by AIC
VAR(BIC) VAR with system lag determined at each t by BIC

VAR(AIC, by eq.&var.)
VAR(BIC, by eq.&var.)
DVAR(4)
DVAR(2)
DVAR(AIC)
DVAR(BIC)
DVAR(AIC, by eq.&var.)
DVAR(BIC, by eq.&var.)
BVAR(4)
BDVAR(4)
VAR(4), rolling
VAR(2), rolling
(AIC), rolling
VAR(BIC), rolling
(

VAR(AIC, by eq.&var.), rolling
VAR(BIC, by eq.&var.), rolling

DVAR(4), rolling
DVAR(2), rolling
DVAR(AIC), rolling
DVAR(BIC), rolling

DVAR(AIC, by eq.&var.), rolling
DVAR(BIC, by eq.&var.), rolling

BVAR(4), rolling
BDVAR(4), rolling
DLS, VAR(4)
DLS, VAR(2)
DLS, VAR(AIC)
DLS, DVAR(4)
DLS, DVAR(2)
DLS, DVAR(AIC)

VAR(AIC), AIC intercept breaks
VAR(AIC), BIC intercept breaks
VAR(4), intercept correction
VAR(AIC), intercept correction
VAR(4), inflation detrending
VAR(2), inflation detrending
VAR(AIC), inflation detrending
VAR(BIC), inflation detrending
BVAR(4), inflation detrending

BVAR(4) with TVP
BVAR(4) with TVP, A4
BVAR(4) with TVP, A4
BVAR(4) with TVP, \y =
BVAR(4) with intercept
BVAR(4) with intercept
univariate

5,4 = .0025
1000, A = .005
1000, A = .0001

TVP
TVP, Ay = .5, A = .0025

VAR in y, m, i allowing different, AIC-chosen lags for each variable in each equation
same as above, with BIC-determined lags

VAR in y, Aw, A7 with fixed lag of 4

same as above with fixed lag of 2

VAR in y, Am, Ai with system lag determined at each t by AIC

VAR in y, Ax, At with system lag determined at each ¢t by BIC

VAR in y, Ax, At allowing different, AIC-chosen lags for each variable in each equation
same as above, with BIC-determined lags

VAR(4) in y, 7, i, est. with Minnesota priors, using A1 = .2, A2 = .5, A3 = 1, A4 = 1000
VAR(4) in y, Am, Ag, est. with Minnesota priors, using A1 = .2, A2 = .5, A3 = 1, Ay = 1000
VAR in y, m, ¢ with fixed lag of 4, estimated with a rolling sample

same as above with fixed lag of 2

same as above with AIC—determined lag

same as above with BIC—-determined lag

same as above with AIC-determined lags for each var. in each eq.

same as above with BIC-determined lags for each var. in each eq.

VAR in y, Aw, Ai with fixed lag of 4, estimated with a rolling sample

same as above with fixed lag of 2

same as above with AIC-determined lag

same as above with BIC-determined lag

same as above with AIC-determined lags for each var. in each eq.

same as above with BIC-determined lags for each var. in each eq.

BVAR(4) in y, 7, ¢ with Ay = .2, Ay = .5, A3 = 1, Ay = 1000, est. with a rolling sample
BVAR(4) in y, A7, Ai with Ay = .2, A2 = .5, A3 = 1, A4 = 1000, est. with a rolling sample
VAR(4) in y, 7, i, est. by DLS, using dis. rates of .01 for y eq. and .05 for w and ¢ eq.
same as above with fixed lag of 2

same as above with lag determined from AIC applied to OLS estimates of system
VAR(4) in y, Am, A, est. by DLS using dis. rates of .01 for y eq. and .05 for A7 and Az eq.
same as above with fixed lag of 2

same as above with lag determined from AIC applied to OLS estimates of system
VAR(AIC lags) in y, m, 4, with intercept breaks (up to 2) chosen to minimize the AIC
same as above, using the BIC to determine the number of intercept breaks

VAR(4) forecasts adjusted by the average value of the last four OLS residuals
VAR(AIC lag) forecasts adjusted by the average value of the last four OLS residuals
VAR(4) iny, # —«*, and ¢ — w* |, where 7" = «*; + .05(m — 7" ;)

same as above with fixed lag of 2

same as above with AIC-determined lag for the system in y, # — 7%, and ¢ — 7",
same as above with BIC—determined lag for the system in y, # — 7", and ¢ — 7",
BVAR(4) iny, # — 7%, and i — w*, using A1 = .2, A2 = .5, Az = 1, Ay = 1000

TVP BVAR(4) in y, m, i with Ay = .2, Ao = .5, A3 = 1, Ay = .1, A = .0005

TVP BVAR(4) in y, 7, ¢ with Ay = .2, Ao = .5, A3 =1, Ay = .5, A =.0025

TVP BVAR(4) in y, 7, ¢ with Ay = .2, Ao = .5, A3 = 1, A4 = 1000, A = .005

TVP BVAR(4) in y, 7, ¢ with A1 = .2, Ao = .5, A3 = 1, A4 = 1000, A = .0001

BVAR(4) in y, 7, ¢, TVP in intercepts, A1 = .2, Ao = .5, A3 = 1, Ay = .1, A = .0005
BVAR(4) in y, 7, 4, TVP in intercepts, A\1 = .2, Ao = .5, A3 = 1, Ay = .5, A = .0025
AR(2) for y, rolling MA(1) for Am, rolling MA(1) for A

737}

Notes:

1. The variables y, w, and i refer to, respectively, output (GDP growth, the HPS gap, or the

HP gap), inflation (GDP or

CPI inflation), and the 3-month T-bill rate.

2. Unless otherwise noted, all models are estimated recursively, using all data (starting in 1955 or later) available up to the
forecasting date. The rolling estimates of the univariate models for A7 and A use 40 observations. The rolling estimates of
the VAR models use 60 observatinos.
3. The AIC and BIC lag orders range from 0 (the minimum allowed) to 4 (the maximum allowed).

4. The intercept correction approach takes the form of equation (40) in Clements and Hendry (1996).

5. In BVAR estimates, prior variances take the “Minnesota” style described in Litterman (1986). The prior variances
are determined by hyperparameters A; (general tightness), A2 (tightness of lags of other variables compared to lags of the
dependent variable), A3 (tightness of longer lags compared to shorter lags), and A4 (tightness of intercept). The prior standard
LS

deviation of the coefficient on lag k of variable j in equation j is set to 5

The prior standard deviation of the coefficient
A2 75
kA3 om
autoregressions estimated for variables j and m. The prior standard deviation of the intercept in equation j is set to Ago;. In
fixed parameter BVARs, we use generally conventional hyperparameter settings of A\y = .2, Ao = .5, A3 = 1, and A4 = 1000.
The prior means for all coefficients are generally set at 0, with the following exceptions: (a) prior means for own first lags of
7 and ¢ are set at 1 (in models with levels of inflation and interest rates); (b) prior means for own first lags of y are set at
0.8 in models with an output gap; and (c) prior means for the intercept of GDP growth equations are set to the historical
average of growth in BVAR estimates that impose informative priors (A4 = .1 or .5) on the constant term.

6. The time variation in the coefficients of the TVP BVARs takes a random walk form. The variance matrix of the coefficient
innovations is set to A times the Minnesota prior variance matrix. In time—varying BVARs with flat priors on the intercepts
(A4 = 1000), the variation of the innovation in the intercept is set at A times the prior variance of the coefficient on the own
first lag instead of the prior variance of the constant.

on lag k of variable m in equation j is

, where o; and o,, denote the residual standard deviations of univariate
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Table 2: Forecast averaging methods

method

details

avg. of VAR(4), univariate

avg. of infl. detr. VAR(4), univariate
avg. of DVAR(4), univariate

avg. of VAR(4), rolling VAR(4)
average of all forecasts

median

trimmed mean, 10%

trimmed mean, 20%

ridge: recursive, .001

ridge: recursive, .25

ridge: recursive, 1.

ridge: 10y rolling, .001

ridge: 10y rolling, .25

ridge: 10y rolling, 1.

factor, recursive

factor, 10y rolling

MSE weighting, recursive

MSE weighting, 10y rolling

MSE weighting, 5y rolling

MSE weighting, discounted

PLS, recursive

PLS, 10y rolling

PLS, 5y rolling

best quartile, recursive

best quartile, 10y rolling

best quartile, 5y rolling

OLS comb. of quartiles, recursive
OLS comb. of quartiles, 10y rolling
OLS comb. of quartiles, 5y rolling
BMA: AIC

average of forecasts from univariate model and VAR(4) in y, 7, and ¢

average of forecasts from univariate model and VAR(4) in y, 7 — 7*,, and ¢ — 7*;
average of forecasts from univariate model and VAR(4) in Ay, A, and ¢

average of forecasts from recursive and rolling estimates of VAR(4) in y, 7, and &
simple average of forecasts from models listed in Table 1

median of model forecasts

average of model forecasts, excluding 3 highest and 3 lowest

average of model forecasts, excluding 5 highest and 5 lowest

combination of model forecasts, est. with ridge regression (1), k = .001

same as above, using k = .25

same as above, using k = 1

same as above, using k = .001 and a rolling window of 40 forecasts

same as above, using k = .25 and a rolling window of 40 forecasts

same as above, using k = 1 and a rolling window of 40 forecasts

forecast from regression on common factor in model forecasts

same as above, using rolling window of 40 forecasts

inverse MSE—weighted average of model forecasts

same as above, using a rolling window of 40 forecasts

same as above, using a rolling window of 20 forecasts

inverse discounted MSE—weighted average of model forecasts, with discount rate of .95
forecast from model with lowest historical MSE

same as above, using a rolling window of 40 forecasts

same as above, using a rolling window of 20 forecasts

simple average of model forecasts in the top quartile of historical (MSE) accuracy
same as above, using a rolling window of 40 forecasts

same as above, using a rolling window of 20 forecasts

forecast from (OLS) regression on the avg. forecasts from the 1st and 2nd quartiles
same as above, using a rolling window of 40 forecasts

same as above, using a rolling window of 20 forecasts

BMA of model forecasts, using AIC as measure of marginal likelihood

BMA: BIC BMA of model forecasts, using BIC as measure of marginal likelihood
BMA: PIC BMA of model forecasts, using Phillips’ (1996) PIC as measure of marginal likelihood
Notes:

1. All averages are based on the 50 forecast models listed in Table 1, for a given combination of measures of output,
inflation, and the short-term interest rate.

2. See the notes to Table 1.
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