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Abstract

This paper examines welfare-maximizing monetary policy in an estimated micro-founded

general equilibrium model of the U.S. economy where the policymaker faces uncer-

tainty about model parameters. Uncertainty about parameters describing preferences

and technology implies not only uncertainty about the dynamics of the economy. It

also implies uncertainty about the model’s utility-based welfare criterion and about the

economy’s natural rate measures of interest and output. We analyze the characteristics

and performance of alternative monetary policy rules given the estimated uncertainty

regarding parameter estimates. We find that the natural rates of interest and output

are imprecisely estimated. We then show that, relative to the case of known param-

eters, optimal policy under parameter uncertainty responds less to natural-rate terms

and more to other variables, such as price and wage inflation and measures of tightness

or slack that do not depend on natural rates.
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1 Introduction

This paper examines welfare-maximizing monetary policy in an estimated dynamic stochas-

tic general equilibrium model of the U.S. economy where the central bank faces uncertainty

about the values of model parameters. In this framework, parameter uncertainty implies

uncertainty not only about the dynamics of the economy, but also about the central bank

loss function and the natural rates of interest and output. Household welfare is maximized

when output equals its “natural rate,” i.e. the value that would obtain absent nominal

rigidities, at which point the real interest rate equals its corresponding natural rate. These

natural rates change over time in response to shocks and their dynamic behavior depends

on the model parameters describing preferences and technology. Owing to the presence

of sticky prices and wages, the first-best outcome is not attainable and the central bank

faces a trade off between minimizing deviations of output from its natural rate, the “output

gap,” and minimizing fluctuations in price and wage inflation, where the relative weights on

the three objectives depend on the model parameters. Thus, the model parameters jointly

determine the dynamics of the economy, the dynamics of the natural rates, and the weights

in the welfare-maximizing central bank’s objective function.

We analyze the implications of parameter uncertainty on the design of implementable

optimal monetary policies and, in particular, how it affects the usefulness of measures

of the natural rates of output and interest in determining policy decisions. This paper

contributes to the large literature, going back at least to Brainard (1967), that examines

the design and performance of monetary policies when model parameters (including natural

rates) are uncertain. Most of the past research has been conducted with an ad hoc policy

objective and has treated movements in natural rates as exogenous and not directly related

to parameter uncertainty (see, for example, Rudebusch 2001, Orphanides and Williams,

2002, and references therein). In such a setting, natural rate uncertainty is a form of

additive uncertainty and, under certain stringent conditions, has no implications for the

design of optimal monetary policy. In particular, if the data generating process for the

natural rates is known, then both the separation principle and certainty equivalence hold.

In that case, the optimal estimates of the natural rates are inserted into the optimal policy

rule and the parameters of the optimal policy are unaffected by natural rate uncertainty.

More generally, this literature has found that in the context of simple, that is, not optimal,

monetary policy rules, monetary policy should respond less to variables related to natural
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rates like the output gap and the natural rate of interest and more to indirect measures,

such as the rate of inflation and the rate of output growth (see, for example, Orphanides

and Williams, 2002).

In contrast to the assumptions underlying much of the previous research on this topic,

in micro-founded models, parameter uncertainty regarding the “slopes” of macroeconomic

relationships also affects the dynamic responses of natural rates to shocks. Thus, natural

rate uncertainty is intrinsically connected to parameter uncertainty and certainty equiva-

lence does not apply. In recent papers, Giannoni (2002), Levin and Williams (2005), and

Levin, Onatski, Williams and Williams (2005; henceforth LOWW) have explored aspects of

monetary policy under parameter uncertainty in micro-founded models where the central

bank aims to maximize household welfare. However, these papers do not explicitly analyze

the usefulness of natural rates as guides for policy. For example, LOWW analyzes monetary

policy rules that do not respond to natural rates at all.

We use a small estimated micro-founded model as a laboratory to explore how parameter

uncertainty and the associated uncertainty about natural rates affects the design of optimal

monetary policy. We use the estimated covariance of model parameters as a measure of

parameter uncertainty. We analyze the implications of parameter uncertainty on policy

design and outcomes, from the perspective of a Bayesian policymaker who aims to maximizes

expected household welfare. We first show that parameter uncertainty implies a non-trivial

degree of uncertainty about the natural rates of output and interest and that natural rate

misperceptions on the part of the central bank are likely to be persistent. We then show that

under parameter uncertainty, optimal Bayesian policies rely less on estimates of the output

gap, and more on prices and wages than would be optimal if natural rates were known. We

also find that in the presence of parameter uncertainty, policies that respond to the level

of labor hours do as well or better than policies that respond to the gaps between hours or

output and their respective natural rates. Despite the very different analytical framework

used in this paper compared to much of past research, our main qualitative results are

similar to those in the previous literature; that is, natural rates may be unreliable guides

for policy and a more robust strategy is to respond to other, potentially better measured,

variables.

The remainder of the paper is organized as follows. Section 2 describes the micro-

founded model that we use for our analysis. Section 3 describes the model estimation and
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reports the results. Section 4 examines optimal monetary policy assuming model parameters

are known. Section 5 considers optimal policy under parameter uncertainty. Section 6

concludes.

2 The Model

In this section, we describe a small closed-economy dynamic stochastic general equilibrium

(DSGE) model that we use for monetary policy evaluation. In the model, households choose

consumption and set wages for their differentiated types of labor services, and firms pro-

duce using a CES aggregate of households’ labor services as input and set prices for their

differentiated products. The dynamics of nominal and real variables are determined by the

resulting first-order conditions of optimizing agents. We allow for various frictions such

as habit formation and adjustment costs that interfere with instantaneous full adjustment

of quantities and prices in response to shocks. We analyze two sources of aggregate dis-

turbances: shocks to monetary policy and aggregate technology. We begin by presenting

preferences and technology and then describe firms’ and households’ optimization prob-

lems. We log-linearize the equations describing the dynamic behavior of the economy, as

described in Appendix A; throughout the following, we denote the log of variables by lower

case letters.

In order to make the analysis as tractable as possible, we have chosen to specify a rela-

tively simple model of the economy that abstracts from many features present in recently-

developed larger DSGE models, such as investment, partial wage and price indexation, fiscal

policy, and international trade (see, for example, Christiano, Eichenbaum, and Evans (2005),

Smets and Wouters (2003), and Lubik and Schorfheide (2005)). The primary purpose of

the model-based monetary policy evaluation in this paper is to illustrate the connections

between parameter and natural rate uncertainty and monetary policy design. We leave for

future work the development and analysis of a more comprehensive model of the U.S. econ-

omy that is better suited to provide concrete quantitative guidance regarding the effects

and implications of parameter uncertainty.

3



2.1 The production technology

The economy’s final good, Yf,t, is produced according to the Dixit-Stiglitz technology,

Yf,t =

(∫ 1

0
Yf,t(x)

θp−1

θp dx

) θp

θp−1

, (1)

where the variable Yf,t(x) denotes the quantity of the xth differentiated goods used in

production and θp is the constant elasticity of substitution between the differentiated pro-

duction inputs.

Final goods producers obtain their differentiated production inputs used in produc-

tion from the economy’s differentiated intermediate goods producers who supply an output

Ym,t(x). Not all of the differentiated output produced by the intermediate goods producers

is realized as inputs into final goods production; some is absorbed in price formulation,

following the adjustment cost model of Rotemberg (1982). Specifically, the relationship

between Yf,t(j) and Ym,t(j) is given by,

Yf,t(j) = Ym,t(j) −
χp

2

(
Pt(j)

Pt−1(j)
− Πp,∗

)2

Ym,t. (2)

The second term in (2) denotes the cost of setting prices. This is quadratic in the difference

between the actual change in price and steady-state change in price, Πp,∗.

Our choice of quadratic adjustment costs for modeling nominal rigidities contrasts with

that of many other recent studies, which rely instead on staggered price-and wage-setting in

the spirit of Calvo (1983) and Taylor (1980). We prefer the quadratic adjustment cost ap-

proach over staggered price- and wage-setting because the latter imply heterogeneity among

agents. Partly for this reason, models utilizing staggered price and wage setting typically

assume that utility is separable between consumption and leisure, in which case perfect

insurance among households against labor income risk eliminates heterogeneity of their

spending decisions. By contrast, if wages are staggered and household utility is nonsepa-

rable, differences across households in labor supply (which will result due to differences in

wages set) lead to differences across household in the marginal utility of consumption (and

hence consumption), even if perfect insurance is able to equalize wealth across households.

The quadratic adjustment cost model allows us to avoid heterogeneity across agents. In

any case, the resulting price and wage inflation equations are very similar to those derived

from Calvo-based setups as in Erceg, Henderson, and Levin (2000).
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The differentiated intermediate goods, Ym,t(j) for j ∈ [0, 1], are produced by combining

each variety of the economy’s differentiated labor inputs that are supplied to market activ-

ities (that is, {Ly,t(z)} for z ∈ [0, 1]). The composite bundle of labor, denoted Ly,t, that

obtains from this aggregation implies, given the current level of technology At, the output

of the differentiated goods, Ym,t. Specifically, production is given by,

Ym,t(j) = AtLy,t(j) where Ly,t(j) =

(∫ 1

0
Ly,t(x, j)

θw−1
θw dx

) θw
θw−1

(3)

and where θw is the constant elasticity of substitution between the differentiated labor

inputs. The log-level of technology, At, is modeled as a random walk

lnAt = lnAt−1 + ǫt, (4)

where ǫt is an i.i.d. innovation. We abstract from trend growth in productivity. Throughout

this paper, we restrict our analysis to permanent shocks to the level of technology.

2.2 Preferences

Households derive utility from their purchases of the consumption good Ct and from their

use of leisure time, equal to what remains of their time endowment L̄ after 0 ≤ Lu,t(i) ≤ L̄

hours of labor are supplied to non-gratifying activities. We assume the household members

live forever and there is no population growth. Its preferences exhibit an endogenous ad-

ditive habit (assumed to equal a fraction η ∈ [0, 1] of its consumption last period) and are

nonseparable between consumption and leisure.1 Specifically, preferences of household i are

given by

E0
1

1 − σ

∞∑

t=0

βt
[
(Ct(i) − ηCt−1(i))(L̄ − Lu,t(i))

ζ
]1−σ

, (5)

where β is the household’s discount factor, and ζ is a measure of the utility of leisure. The

economy’s resource constraint implies that
∫ 1
0 Ct(x)dx ≤ Yf,t, where Yf,t denotes the output

of the economy’s final good.

Non-gratifying activities include supplying Ly,t hours to the labor market and devoting

time to setting wages. Consequently, we define Lu,t(i) as

Lu,t(i) = Ly,t(i) +
χw

2

(
Wt(i)

Wt−1(i)
− Πw,∗

)2

Lu,t. (6)

1Basu and Kimball (2002) argue that nonseparability between consumption and leisure has substantial

empirical support.
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The second term in (6) denotes the cost of setting wages in terms of labor time and is

analogous to the cost of setting prices.

2.3 Firms’ optimization problems

The final goods producing firm, taking as given the prices set by each intermediate-good pro-

ducer for their differentiated output, {Pt(j)}
1
j=0, chooses intermediate inputs, {Yf,t(j)}

1
j=0,

so as to minimize the cost of producing its final output Yf,t, subject its production technol-

ogy, given by equation (1). Specifically, the competitive firm in each sector solves

min
{Yf,t(j)}

1
j=0

∫ 1

0
Pt(x)Yf,t(x)dx s.t. Yf,t ≤

(∫ 1

0
Yf,t(x)

θp−1

θp dx

) θp

θp−1

. (7)

This problem implies a demand function for each of the economy’s intermediate goods given

by Yf,t(j) = (Pt(j)/Pt)
−θp Yf,t, where the variable Pt is the aggregate price level, defined by

Pt = (
∫ 1
0 (Pt(x))1−θpdx)

1
1−θp .

Each intermediate firm chooses the quantities of labor that it employ use for production

and the price that it will set for its output. It is convenient to consider these two decisions

as separate problems. In the first step of the problem firm j, taking as given the wages

{Wt(i)}
1
i=0 set by each household for its variety of labor, chooses {Ly,t(i, j)}

1
i=0 to minimize

the cost of attaining the aggregate labor bundle Ly,t(j) that it will ultimately need for

production. Specifically, the materials firm j solves:

min
{Ly,t(i,j)}1

i=0

∫ 1

0
Wt(x)Ly,t(x, j)dx s.t. Ym,t(j)≤At

(∫ 1

0
Ly,t(x, j)

θw−1
θw dx

) θw
θw−1

(8)

This cost-minimization problem implies that the economy-wide demand for type i labor

is Ly,t(i) =
∫ 1
0 Ly,t(i, x)dx = (Wt(i)/Wt)

−θw (1/At)
∫ 1
0 Ym,t(x)dx where Wt denotes the ag-

gregate wage, defined by Wt = (
∫ 1
0 (Wt(x))1−θwdx)

1
1−θw . The marginal cost function of

producing the intermediate goods is MCt(j) = Wt/At.

In setting its price, Pt(j), the intermediate good producing firm takes into account the

demand schedule for its output that it faces from the final goods sectors and the fact—

as summarized in equation (2)—that by resetting its price it reduces the amount of its

output that it can sell to final goods producers. The intermediate-good producing firm j,

taking as given the marginal cost MCt(j) for producing Ym,t(j), the aggregate price level

Pt, and aggregate final-goods demand Yf,t, chooses its price Pt(j) to maximize the present
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discounted value of its profits subject to the cost of re-setting its price and the demand

curve it faces for its differentiated output. Specifically, the firm solves,

max
{Pt(j)}∞t=0

E0

∞∑

t=0

βtΛc,t

Pt
{(1 + ςθ,p)Pt(j)Yf,t(j) − MCt(j)Ym,t(j)}

subject to

Yf,t(j)=Ym,t(j)−
χp

2

(
Pt(j)

Pt−1(j)
− Πp,∗

)2

Ym,t and Yf,t(j)=

(
Pt(j)

Pt

)−θp

Yf,t, (9)

In (9) the discount factor that is relevant for discounting nominal revenues and costs between

periods t and t + j is Etβ
j Λc,t+j/Pt+j

Λc,t/Pt
, where Λc,t is the household’s marginal utility of

consumption in period t. The parameter ςθ,p is a subsidy that we assume equals (θp−1)−1),

which ensures that in the absence of nominal rigidities the model’s equilibrium outcome is

Pareto optimal.2

2.4 Households’ optimization problem

The household taking as given the expected path of the gross nominal interest rate Rt, the

price level Pt, the aggregate wage rate Wt, its profits income, and its initial bond stock

Bi,0, chooses its consumption Ct(i) and its wage Wt(i) to maximize its utility subject to

its budget constraint, the cost of re-setting its wage, and the demand curve it faces for its

differentiated labor. Specifically, the household solves:

max
{Ct(i),Wt(i)}

∞

t=0

E0
1

1 − σ

∞∑

t=0

βtΞc,t

[
(Ct(i) − ηCt−1(i))(L̄ − Lu,t(i))

ζ
]1−σ

subject to

Et

[
β

Λc,t+1/Pc,t+1

Λc,t/Pc,t
Bt+1(i)

]
=Bt(i) + (1 + ςθ,w)Wt(i)Ly,t(i) + Profitst(i) − PtCt(i),

Ly,t(i) = Lu,t(i) −
χw

2

(
Wt(i)

Wt−1(i)
− Πw,∗

)2

Lu,t, and

Ly,t(i)=

(
Wt(i)

Wt

)−θw∫ 1

0
Ly,t(i, j)dj. (10)

The parameter ςθ,w in the household’s budget constraint is a subsidy (equal to (θw − 1)−1),

which ensures that in the absence of nominal rigidities the model’s equilibrium outcome is

Pareto optimal. The variable Bt(i) in the budget constraint is the state-contingent value,

2We acknowledge that such a subsidy is not in effect in practice, implying that in the real world the steady-

state level of output is inefficient. We leave to future work the study of optimal policy under parameter

uncertainty in an economy characterized by a distorted steady-state allocation.
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in terms of the numeraire, of household i’s asset holdings at the beginning of period t. We

assume that there exists a risk-free one-period bond, which pays one unit of the numeraire

in each state, and denote its yield—that is, the gross nominal interest rate between periods

t and t+1—by Rt ≡
(
Etβ

Λc,t+1/Pt+1

Λc,t/Pt

)−1
. Profits in the budget constraint are those rebated

from firms, which are ultimately owned by households.

2.5 Steady-state and natural rate variables

The non-stochastic steady state is summarized by the steady-state levels of the real interest

rate and hours. The steady-state one-period real interest rate is given by:

R∗ = β−1. (11)

The steady-state level of hours is given by:

L∗ =
L̄

1 + 1−η
1−βη ζ

(12)

Given the assumed non-stationarity of the level of technology, in the following we work

with normalized variables, where we normalize the levels of consumption and output by the

current level of technology. The normalized steady-state levels of consumption and output

therefore equal the steady-state level of hours.

The model has a counterpart in which all nominal rigidities are absent, that is, prices

and wages are fully flexible. In this model the cost minimization problems faced by the

final goods producing firm and the intermediate goods producing firms continue to be given

by equations (7) and (8). The intermediate goods producing firms’ profit maximization

problem is similar to equation (9) but with the price adjustment cost parameter χp set to

zero. Likewise the households’ utility maximization problem is given by equation (10) but

with the wage adjustment cost parameter χw set to zero. We refer to the level of output

and real one-period interest rate in this equilibrium as the natural rate of output, Ỹt, and

interest, R̃t. We also define log deviations of these variables from their steady-state values,

ỹt ≡ log Ỹt− log Y∗ and r̃t ≡ log R̃t− log R∗. These natural rates are functions of our model’s

structural shocks and are derived in Appendix A.

2.6 Monetary authority

In the model with nominal rigidities we assume that the central bank uses the short-term

interest rate as its instrument, as discussed in section 4.
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2.7 Equilibrium

Our complete model consists of the first-order conditions (derived in Appendix A) describing

firms’ optimal choice of prices and households’ optimal choices of consumption and wages,

the production technology (3), the monetary policy rule, the market clearing conditions

Yt(j) =
∫ 1
0 Cj,t(i)di ∀j and Lt(i) =

∫ 1
0 Li,t(j)dj ∀i, and the law of motion for aggregate

technology (4). We now turn to the parametrization of our model.

3 Estimation

In order to analyze optimal Bayesian monetary policy under parameter uncertainty, we need

a posterior distribution of the model parameters. One approach to obtaining a posterior

distribution, consistent with the Bayesian approach to decision-making assumed for the

policymaker, is to estimate the model using Bayesian methods, as is done in LOWW. This

approach necessitates making specific assumptions regarding the prior joint distribution of

the model parameters. Because we want to avoid having the choice of the prior distribution

overly influence our results, we instead follow a limited-information approach to estimating

the posterior distribution of the model parameters.3 In particular, we estimate several of the

structural parameters of our model using a minimum distance estimator based on impulse

responses to monetary policy and technology shocks.

Specifically, we estimate a VAR on quarterly U.S. data using empirical counterparts to

the theoretical variables in our model, and identify two of the model’s structural shocks

using identifying assumptions that are motivated by our theoretical model. We then choose

model parameters to match as closely as possible the impulse responses to these two shocks

implied by the model to those implied by an structural VAR.4 In this section we first

3For various reasons, our approach may over- or under-estimate the degree of parameter uncertainty that

a policymaker faces. The extent to which the posterior distribution is generically “narrower” or “wider”

than we estimate will primarily affect the quantitative aspect of out results, not the qualitative nature.

4Applications of this estimation strategy are found in Rotemberg and Woodford (1997), Amato and

Laubach (2003), and Christiano, et al (2005). This estimation methodology remains the subject of con-

siderable controversy. In particular, it has been criticized for the use of a ad hoc selection criteria for the

moments that are used in the estimation. In addition, Canova and Sala (2006) highlight the problem of

weak identification of some model parameters using this method, a problem that is also present with other

estimation strategies.
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describe the VAR and the identification of the two shocks, and then discuss our parameter

estimates.

3.1 VAR specification and identification

The specification of our VAR is determined by the model developed in the previous section

and our identification strategy for the structural shocks. Concerning the latter, we follow

Gaĺı (1999) and assume that the technology shock is the only shock that has a permanent

effect on the level of output per hour. The monetary shock is identified by a standard re-

striction on contemporaneous responses. Our model and identifying assumptions combined

suggest the inclusion of five variables in the VAR: the first difference of log output per hour,

price inflation (the first difference of the log of the GDP deflator), the log labor share, the

first difference of log hours per person, and the nominal funds rate. Output per hour, the

labor share, and hours are the Bureau of Labor Statistics’ (BLS) measures for the nonfarm

business sector, where the labor share is computed as output per hour times the deflator

for nonfarm business output divided by compensation per hour.5 Population is the civilian

population age 16 and over. Letting Yt denote the vector of variables in the VAR, we view

the data in the VAR as corresponding, up to constants, to the model variables

Yt = [∆(yt − lt), πt, yt − lt − wt, ∆lt, rt]
′ (13)

where lower case letters denote logs of the model variables.6 We estimate the VAR over the

sample 1966q2 to 2006q2, including four lags of each variable. Details of the implementation

of the identification scheme are provided in Appendix B.

The dashed lines in the panels of Figure 1 show the impulse responses to a permanent one

percent increase in the level of technology. The dashed-dotted lines present one-standard

deviation bands around the impulse responses, computed by bootstrap methods.7 Upon

impact, output immediately rises about half-way to its new steady-state level, whereas hours

5By contrast, Altig et al. (2002) and Gaĺı, López-Salido, and Vallés (2003) compute labor productivity

by dividing real GDP by total hours in the nonfarm business sector, which could be problematic because of

the trending share of nonfarm business output in GDP.

6Note that we include log hours per capita in first differences in the VAR in order to avoid contamination

of our estimation results from the apparent nonstationarity in log hours per capita. See Francis and Ramey

(2005) and Altig et al. (2002) for further discussion of this contentious issue.

7To prevent the standard error bands from diverging over time, we discard draws for which the implied

reduced-form VAR was estimated to be unstable, such as draws for which the largest eigenvalue of the
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worked decline by about 1/4 percent. Over the following eight quarters, output completes

its adjustment while hours worked return to their original level. Interestingly, the response

of inflation to a technology shock suggests only a limited role for price stickiness, with

inflation declining upon impact by almost a percentage point. Wage rigidity, by contrast,

seems to be more important, as the initial response of the real wage is driven by the initial

price response, not nominal wage adjustment. The real wage completes its adjustment over

the following two quarters. The estimated response of monetary policy is to accommodate

the increase in output by keeping the real funds rate on balance unchanged.

Figure 2 shows the impulse responses of the variables to a one percentage point positive

funds rate shock. The estimated responses of output, the real wage, and inflation to a funds

rate shock are consistent with many studies on the effects of monetary policy. Output falls

within three quarters by about 3/4 percent in response to one percentage point increase

in the funds rate that takes eight quarters to die out. Hours decline closely in line with

output, and the real wage falls. The response of inflation exhibits a price puzzle that lasts

for two quarters; thereafter, inflation declines for six quarters, to about 0.3 percent below

its original level. The responses to a funds rate shock are more precisely estimated than

the responses to the technology shock.

3.2 Model parameter estimates

With the VAR impulse responses to a funds rate shock and a technology shock in hand, we

proceed to estimate the structural and monetary policy parameters of our model. First, we

calibrate four model parameters that have little effect on the dynamic responses to shocks.

We set the discount factor, β = 0.9924, which corresponds to discounting the future at a 3

percent annual rate. We normalize the time endowment to unity. We set the steady-state

rates of price and wage inflation to zero. Finally, we set both aggregation parameters θw

and θp to 6, following LOWW (2005).

The remaining parameters are estimated by minimizing the squared deviations of the

responses of the five variables [yt, πt, wt, lt, rt] implied by our model from their VAR

counterparts. The IRFs of these five variables in quarters 0 through 8 following a technology

shock in quarter 0, and in quarters 1 through 8 following a funds rate shock (the response

coefficient matrix in the reduced form, written in companion form, exceeds .99. In total, about 14 percent

of all draws are being rejected.

11



in the impact quarter being constrained by the identifying assumption) provide a total of

85 moments to match. These moments are weighted inversely proportional to the standard

error around the VAR responses, as in Christiano et al. (2005). This has the effect of placing

more weight on matching the impulse responses to the monetary shock, which, as noted

before, are estimated with greater precision than the impulse responses to the technology

shock.

For purposes of model estimation, we assume that monetary policy is set according to

a simply policy rule in which the interest rate depends on the lagged interest rate and the

current inflation rate only

rt = φrrt−1 + (1 − φr)φππp,t + ǫr,t,

where ǫr,t is an i.i.d. monetary policy shock.8 Note that we have suppressed the constant

that incorporates the steady-state levels of the interest and inflation rate.

In addition, because the parameters θw and χw appear only as a ratio in the linearized

version of the model (see Appendix A), they are not separately identified; the same is

the case for the parameters θp and χp. We therefore estimate the ratios κw = (θw − 1)(1 +

ςθ,w)/(χwΠ2
w,∗) = θw/(χwΠ2

w,∗) and κp = (θp−1)(1+ςθ,p)/(χpΠ
2
p,∗) = θp/(χpΠ

2
p,∗). Note that

κw and κp are equal to the coefficients on the driving process in the wage and price Phillips

curves, respectively. In the end, we estimated seven free parameters: {σ, ζ, η, κw, κp, φr, φπ}.

The estimated parameters and associated standard errors are shown in the first two

columns of Table 1. The correlation coefficients of the structural parameter estimates are

shown in the final five columns of the table. The covariance matrix of the estimates is

computed using the Jacobian matrix from the numerical optimization routine and the em-

pirical estimate of the covariance matrix of the impulse responses from the bootstrap. The

estimates of the structural parameters are all statistically significant, with the preference

parameters, especially σ and ζ, relatively imprecisely estimated, while those associated with

wage and price adjustment costs are estimated with a great deal of precision.

As discussed before, one feature of both sets of impulse responses is that real output and

hours adjust gradually in response to the shocks. In the case of a permanent technology

8Preliminary estimation results indicated a slightly negative, but near zero, response of monetary policy

to the output gap, perhaps because the theoretical notion of the output gap in our model bears little

resemblance to measures of the output gap used by policymakers. In the results reported in the paper, we

constrained the response to the output gap to zero.
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Table 1: Parameter Estimates

Model Point Standard Correlation with

Parameter Estimate Error σ η ζ κw κp

σ 5.365 2.372 1.000 -0.996 -0.995 -0.960 -0.495

η 0.389 0.094 1.000 0.990 0.947 0.491

ζ 1.186 0.386 1.00 0.971 0.478

κw 0.004 0.001 1.000 0.436

κp 0.041 0.001 1.000

φr 0.809 0.001

φπ 1.004 0.027

shock, Rotemberg and Woodford (1996) demonstrated that DSGE models without intrinsic

inertia will not display such hump-shaped patterns; instead, these variables jump on impact

and adjust monotonically to their new steady-state values. We therefore find a significant

role for habit persistence. Our estimate of the habit parameter η is somewhat smaller than

those estimated by Fuhrer (2000), Smets and Wouters (2003) and Christiano et al (2005),

but slightly larger than that estimated by LOWW (2005). The estimate of σ is higher than

typical estimates based on macroeconomic data, but this estimate is very imprecise.

As noted before, the VAR responses of real wages and inflation differ substantially

depending on the source of the shock: rapid responses to technology shocks, and sluggish

ones to funds rate shocks. This is a feature that our price and wage specification cannot

deliver. Our estimates of κw and κp imply that wages are very slow to adjust, but prices

adjust relatively rapidly to fundamentals. The evidence for relatively flexible prices comes

from the IRFs to the technology shock; indeed, the IRFs to monetary policy shocks alone

suggest very gradual price adjustment, consistent with the findings of Christiano et al

(2005). Despite the greater weight placed on matching the more tightly estimated responses

of inflation and real wage to the funds rate shock, our model does better at matching the

responses to a technology shock, as shown by the solid lines in figures 1 and 2. Our estimates

of the parameters of the monetary policy rule, φr and φπ, are broadly consistent with the

findings of many other studies that estimate monetary policy reaction functions, such as

that of Clarida, Gaĺı, and Gertler (2000).
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4 Welfare and Optimal Monetary Policy

In this section we compute the optimal policy response to a technology shock assuming all

model parameters are known. We assume that the central bank objective is to maximize

the unconditional expectation of the welfare of the representative household. We further

assume that the central bank has the ability to commit to future policy actions; that is,

we examine optimal policy under commitment, as opposed to discretion. We consider only

policies that yield a unique rational expectations equilibrium.

By focusing only on technology shocks, we are arguably examining only a relatively

small source of aggregate fluctuations in output and wage and price inflation and hence

welfare losses. For example, LOWW (2005), using a medium-scale DSGE model, find

that other shocks, especially those to price and wage markups, have much larger effects

on welfare than technology shocks. In order to conduct welfare-based monetary policy

analysis incorporating other sources of fluctuations, we would need to take a stand on the

precise source and nature (i.e., distortionary vs. fundamental) of the other shocks to the

economy, as discussed in LOWW (2005). This issue remains controversial and would take

us afield of the primary purpose of the paper, and we therefore leave it to further research.

Nonetheless, we recognize that by abstracting from other shocks, our quantitative results

regarding welfare costs under alternative policies likely dramatically understate those that

would obtain if we included a full specification of all shocks that impact the economy.

4.1 Approximating Household Welfare

As is now standard in the literature, we approximate household utility with a second-order

Taylor expansion around the deterministic steady state. We denote steady-state values

with an asterisk subscript. As shown in Appendix D, the second-order approximation of

the period utility function depends on the squared output gap (the log difference between

output and its natural rate, that is xt = yt −yn
t ), the squared quasi-difference of the output

gap, the cross-product of the output gap and its quasi-difference, and the squared price and

wage inflation rates. As shown in the appendix, in the linearized model, the natural rate of

output, yn
t , is a function of leads and lags of the technology shock.

After numerous manipulations, the second-order approximation to period utility can be
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written as

1

1 − σ

[
(Ct − ηCt−1)

(
L̄ − Lu,t

)ζ]1−σ
= −L + T.I.P., where L ≡ Lx + Lp + Lw

and where T.I.P refers to terms that are independent of monetary policy, which we ignore

in our welfare calculations. The terms Lx, Lp, and Lw defined as

Lx =
[
(C∗−ηC∗)

(
L̄−Lu,∗

)ζ]1−σ
[
1

2
·
1−ζ(1−σ)

ζ
·

(
1−βη

1−η

)2

x2
t +

1

2
·

σ

(1−η)2
· (xt−ηxt−1)

2

+(1−σ) ·
1−βη

(1−η)2
xt (xt−ηxt−1)

]
,

Lp =
[
(C∗−ηC∗)

(
L̄−Lu,∗

)ζ]1−σ
[
1

2
·
1 − βη

1 − η
·
θpΠp,∗

κp
· π2

p,t

]
, and

Lw =
[
(C∗−ηC∗)

(
L̄−Lu,∗

)ζ]1−σ
[
1

2
·
1 − βη

1 − η
·
θwΠw,∗

κw
· π2

w,t

]
.

The three terms in Lx correspond to the period welfare costs associated with output devi-

ating from its natural rate. Owing to the presence of habit formation, both the level of the

output gap and its quasi-difference affect welfare. Note that all three preference parameters

enter in the coefficients of the welfare loss for these terms. The terms in Lp and Lw corre-

sponds to the welfare loss associated with adjustment costs in changing prices and wages.

The coefficients in these terms depend primarily on the parameters associated with nomi-

nal rigidities. Importantly, the welfare costs of sticky prices and wages are inversely related

to the price and wage sensitivity parameters, κp and κw, respectively. The more flexible

are prices, the smaller are the welfare costs associated with a given magnitude of inflation

fluctuations, and similarly for wages.9 In the following, we report the period welfare loss

abstracting from the terms of independent of policy, L, as well as the three components of

the loss, Lx, Lp, and Lw described above.

Table 2 reports the implied relative weights on the terms related to the output gap, wage

inflation, and price inflation.10 The first row reports the sum of the weights on the three

9For sticky prices the relationship between the coefficient on the driving process in the price Phillips

curve, κp, and the coefficient on price inflation variability in the loss function is identical for the alternative

assumption of Calvo pricing. For sticky wages, however, the relationship is not invariant; in particular, under

Calvo-style wage setting, an additional term, equal to
(
1 + θw

(
1−ζ(1−σ)

ζ

) (
1−βη

1−η

))
multiplies the coefficient

on wage inflation variability in the loss function.

10Clearly, the relative weights shown in Table 2 are sensitive to our nominal rigidity assumptions. As

discussed in the preceding footnote, the assumption of Calvo contracts would scale up significantly the
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Table 2: Relative Weights in Central Bank Loss

Weight Point Mean Standard Correlation with

in Loss Estimate Value Deviation ωx ωw ωp

ωx 0.14 0.38 0.49 1.000 0.996 0.996

ωp 1.00 2.31 2.86 1.000 0.989

ωw 10.56 29.09 38.11 1.000

terms in the loss associated with the output gap and its quasi-difference.11 For this table,

we have normalized the values of the weights by the weight on price inflation evaluated at

the parameter point estimates. The first column reports the weights based on the parameter

point estimates. The second column reports the mean values of the weights based on the

estimated distribution of the parameter values, approximated using 1000 draws from the

normal distribution with the estimated covariance for the parameter estimates, where we

truncate the parameter values at the lower ends of their distributions as follows: σ at 0.5, ζ

at 0.1, and η at 0. The third column reports the corresponding standard deviations of the

weights. The final three columns report the cross-correlation of the weights.

Based on the point estimates, the variance in wage inflation gets a weight of over 10

times that of price inflation in the welfare loss owing to the estimated value of κw being one

tenth as large as that for κp. The weights on the variances of the output gap and the quasi-

difference of the output gap are somewhat smaller than that of inflation, but are somewhat

higher than typically seen in the literature owing to our relatively high estimate of σ. The

mean values of the weights exhibit the same pattern, but are between two and three times

larger than those based on the point estimates, reflecting the fact that the weights depend

in part on the inverse of some parameter values.

The relative weights are highly positively correlated, reflecting the fact that the struc-

tural parameter estimates are highly correlated with one another and that each component

relative weight on wage inflation, while, as documented by Dixon and Kara (2006), the assumption of Taylor

contracts would make the relative weight on the output gap about three times larger (relative to the weights

on price and wage inflation) than under Calvo contacts.

11Based on the point estimates, the weights on the squared level of the output gap and the squared quasi-

difference of the output gap are about equal, while that on the cross-product is smaller and has the opposite

sign.
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of the welfare loss depends on the steady-state level of utility. As seen in Table 1, the

estimates of σ and ζ are highly negatively correlated, which is not surprising given that

these two parameters enter multiplicatively in the utility of leisure. More interestingly, the

estimate of σ is negatively correlated with the estimated values of κp and κw, implying

that a large weight on output gap terms is associated with large weights on price and wage

inflation terms and vice versa.

4.2 Optimal Monetary Policy with No Uncertainty

To compute the optimal certainty equivalent policy for a given set of parameter values, we

maximize the quadratic approximation of welfare subject to the constraints implied by the

linearized model. Throughout, in computing the welfare loss we assume a discount rate

arbitrarily close to zero, so that we are maximizing the unconditional measure of welfare.

We compute the fully optimal policy using Lagrangian methods as described in Finan and

Tetlow (1999). We assume that the technology shock is the only stochastic element in the

model and calibrate the standard deviation of its innovations to equal 0.64 percentage point.

This value is slightly larger than the corresponding estimate in LOWW (2005).

The results under the fully optimal policy are shown in the first column of Table 3. The

middle portion of the table shows the welfare loss and the breakdown into its component

parts (the components add to the total welfare loss, subject to rounding).12 Note that we

do not normalize the welfare loss in this table or in those that follow. The lower part of

the table reports the resulting unconditional standard deviations of output gap, price and

wage inflation rates, and the nominal interest rate. The remaining entries in the table are

discussed below.

Under the fully optimal monetary policy, output gap and wage inflation variability are

reduced to nearly zero, while some price inflation variability remains. In terms of the

annualized rate, the standard deviation of price inflation is 0.8 percentage points, about 10

times greater than that of wage inflation. Note that this policy induces considerable interest

rate variability in response to a single source of shocks, with the standard deviation of the

nominal interest rate 3.6 percentage points on an annualized basis.13 Under the optimal

12The welfare losses are in absolute terms. If measured in permanent consumption equivalent units, these

losses are very small, reflecting the fact that we are only considering one source of shocks to the economy.

13In the presence of other shocks, the optimal policy likely produces interest rate variability so great that
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Table 3: Performance of Alternative Monetary Policies without Uncertainty

Optimal Policy Rule

Policy Coefficients

rn 1.00 1.00

x 1000.00

l 1.93

πp 0.10 0.00 94.94 0.00

πw 2.50 1000.00

Welfare Losses

L 1.758 1.760 1.758 1.760 1.760

Lx 0.002 0.000 0.001 0.003 0.001

Lp 1.618 1.608 1.622 1.612 1.605

Lw 0.138 0.152 0.135 0.145 0.154

Standard deviations

x .02 .00 .02 .02 .01

πp .19 .19 .19 .19 .19

πw .02 .02 .02 .02 .02

r .87 .88 .88 .80 .82

policy, variability in price inflation accounts for most of the welfare loss.

4.3 Implementable Monetary Policy Rules

The fully optimal monetary policy can be implemented in a number of equivalent ways if

all model parameters are known with certainty. In the presence of parameter uncertainty,

we need to restrict ourselves to representations of monetary policy that are constrained by

the information set that the policymaker possesses. For this purpose, we choose to study

monetary policies in terms of feedback or “instrument” rules where the short-term interest

rate is determined by a small number of observable variables and the coefficients of the

policy rule are chosen to minimize the welfare loss. We consider four different specifications

of monetary policy, each of which yields welfare very close to the fully optimal policy when

all parameters are known.

the zero lower bound on nominal interest rate surely becomes a relevant concern. We leave the analysis

incorporating this constraint to future work.
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The general specification is given by a Taylor-type monetary policy rule where the

nominal interest rate is determined by the central bank estimate of the natural rate of

interest, rn
t , the central bank estimate of the output gap, xt, the level of hours, lt, and the

rates of price and wage inflation:

rt = πp,t + φrnrn
t + φx xt + φl lt + φp πp,t + φw πw,t. (14)

Note that we have included the price inflation rate as the first term of the equation, implying

that the policy yields a unique rational expectations equilibrium as long as one of the other

coefficients (on price inflation, wage inflation, the output gap, or the level of hours) is

strictly positive. The response to hours is assumed to be to the level of hours, not the hours

“gap.” With known parameters, the central bank estimates of the natural rates equal their

respective true values.

We start by considering a textbook Taylor rule with a unit response to the natural rate

of interest and a free coefficients on the rates of price inflation and the output gap. We

optimized the coefficients of this rule to maximize unconditional welfare of the represen-

tative household using a numerical hill-climber routine, as described in Levin, Wieland,

and Williams (1999). Throughout the following, we restrict policy rule coefficients to be

non-negative and to not exceed an upper bound of 1000.14 The results for the optimized

Taylor rule are given in the second column in the table. The optimized Taylor rule has

a small coefficient on the price inflation rate and the maximal allowable coefficient on the

output gap. This rule strives to keep the output gap at zero. The resulting outcome yields

a welfare loss nearly identical to the fully optimal policy, with very slightly too much wage

inflation variability.

We next consider a variant of the Taylor rule where policy responds to the rate of

wage inflation instead of the output gap. This rule features a zero optimal response to

price inflation and a moderate response to wage inflation. The resulting outcomes and

corresponding welfare are virtually identical to those under the fully optimal policy.

Finally, we consider two alternative specifications of the monetary policy rule that do not

14In the two cases where this upper bound is a binding constraint, the loss surface is nearly flat in the

vicinity of the reported parameter values. In the case of the Taylor Rule, increasing the upper bound to

10,000 has no effect on the loss (at three decimal places); in the case of the rule that only responds to wage

and price inflation, relaxing the constraint lowers the loss from 1.760 to 1.758, the same as that under the

fully optimal policy (at three decimal places).
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depend on estimates of the natural rates of output or interest. Interestingly, in both cases,

the optimized versions of these rules nearly match the outcomes under the fully optimal

policy. First, we consider a rule that does not respond to the natural rate of interest

(except for its long-run mean) or any measure of economic activity, but instead responds

only to price and wage inflation. The optimized parameterization of this rule features huge

responses to price and wage inflation with the response to wage inflation about 10 times

larger than that to price inflation. Second, we consider a rule that responds to price inflation

and the log-level of hours. For this rule, the optimized response to price inflation is zero

and that to hours is about 2.

5 Monetary Policy under Parameter Uncertainty

In this section, we analyze the performance and robustness of various monetary policies

under parameter uncertainty. We assume that the central bank knows the true model

and that the model is estimated using a consistent estimator and that the central bank

is certain that the model and the estimation methodology are correct.15 The only form

of uncertainty facing the policymaker is uncertainty regarding model parameters owing to

sample variation. We abstract from learning and assume that the policymaker’s uncertainty

does not change over time. We assume that private agents know everything, including the

central bank’s parameter estimates. For a given policy rule, expected welfare is computed

by numerically integrating over the distribution of the five estimated structural parameters

as measured by the estimated covariance matrix. Note that in these calculations, we fully

take into account the effects of parameter values on the parameters of the loss function as

in Levin and Williams (2005).

5.1 Natural Rate Uncertainty

Before proceeding with the analysis of policy rules, we first provide some summary measures

of the degree of uncertainty regarding the natural rates of hours, output, and interest

15The assumption that the policymaker is certain about the correctness of the estimation methodology

likely reduces the degree of parameter uncertainty relative to what policymakers face in reality. For example,

in the model used in this paper, some parameter point estimates can vary significantly, depending on sample

and specifics of the estimation method. We leave the study of this broader form of estimation uncertainty

to future work.
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owing to parameter uncertainty. In this model, the responses of the natural rates to a

technology shock depend on three parameters describing household preferences: σ, η, and

ζ. Throughout the following, we assume that the distribution of model parameters is jointly

normal distributed with mean zero and covariance given by the estimated covariance matrix.

In the following, we approximate this distribution with a large number of draws from the

estimated covariance matrix, truncated as described in section 3.

In general, parameter uncertainty implies uncertainty both about the steady-state values

of natural rates as well as their movements over time. In the stylized model that we study

here, however, the steady-state natural rate of interest depends only on the household’s

discount rate, which is assumed to be known by the policymaker. Therefore, uncertainty

about the natural rate of interest is limited to its deviations from steady-state. The steady-

state level of hours depends on estimated structural parameters and the value of the time

endowment. Our estimation methodology does not use information on levels of variables,

so we do not have an empirical measure of uncertainty regarding the time endowment. For

simplicity, we assume that the policymaker, by observing a long time series on hours, is

able to estimate the mean level of hours precisely. We assume that policymaker has no

independent knowledge of the time endowment, so perfect knowledge of the mean level

of hours has no implications for uncertainty about other preference parameters. We note

that under less restrictive assumptions, there exist tight links between estimated structural

parameters and steady-state values, which affect both model estimation and the analysis of

parameter uncertainty.16

Parameter uncertainty implies considerable uncertainty regarding the responses of nat-

ural rates to technology shocks. The thin solid line in the upper panel of Figure 3 plots the

impulse response of the log of the natural rate of hours to a one percentage point positive

permanent technology shock based on the point estimates of the model parameters. (Note

that the log of the natural rate of hours equals the log of the natural rate of output minus

the log of TFP.) The thick solid line shows the median response calculated from impulse

responses corresponding to 10,000 draws from the estimated parameter distribution. The

dashed and dashed-dotted lines show the boundaries of the 70 and 90 percent confidence

bands of the impulse responses, respectively. The lower panel of the figure shows the cor-

16Indeed, Laubach and Williams (2003) find evidence of considerable uncertainty regarding low-frequency

components of natural rates of interest and output, suggesting that the assumption that the steady-state

levels are known with certainty is untenable in practice.
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responding outcomes for the natural rate of interest measured at an annualized rate. Note

that the model implies that there is no uncertainty about the long-run effects of technology

shocks on the natural rates of hours and interest, both of which eventually return to their

respective steady state values.

Natural rate misperceptions owing to parameter uncertainty are sizable and persistent.

We measure natural rate misperceptions as the difference between the level of the natu-

ral rate implied by the model’s true parameter values and the level implied by the point

estimates of the model parameters.17 To compute unconditional moments in our model,

we calibrate the standard deviation of innovations to technology to equal 0.64 percentage

point, equal to the sample average of the identified shocks from our VAR. The resulting

unconditional standard deviation of the difference between the true natural rate of output

and the central bank’s estimate (based on the model with the parameter point estimates)

is 0.32 percentage point. The first-order autocorrelation of this difference is 0.86. The

unconditional standard deviation of the difference between the natural rate of interest and

the central bank’s estimate is 3.15 percentage points (measured at an annual rate), with a

first-order autocorrelation of this difference equal to 0.50.

5.2 Optimal Monetary Policy under Parameter Uncertainty

In order to provide a benchmark for policies under uncertainty, we first compute the optimal

outcome if the policymaker knew all the parameter values and followed the fully optimal

policy in each case. We average the outcomes and losses over 1000 draws of the parameters

and report the results in the first column of Table 4. Of course, given that the parameters

are uncertain, this outcome is not obtainable in practice, but provides a benchmark against

which we can measure the costs associated with parameter uncertainty. As can be seen from

comparing the first columns of Tables 3 and 4, the mean welfare loss under the first-best

optimal policy is considerably larger than that computed at the parameter point estimates.

This reflects the fact that the mean weights in the welfare loss are higher than the weights

evaluated at the point estimates. Indeed, under the first-best optimal policy, the variability

of the objective variables is about the same as for the case of the parameter point estimates.

17In principle, the central bank could use other methods to estimate the natural rates that take into

account parameter uncertainty, but basing the central bank estimates on those implied by the parameter

point estimates seems a reasonable benchmark for our analysis.
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Table 4: Performance of Alternative Monetary Policies with Parameter Uncertainty

Optimal Policy Rule

Policy Coefficients

r̃n 1.00 1.00 0.83

x̃ 0.83 1.80

l 3.69 2.99

πp 0.00 75.78 82.58 0.00 14.40

πw 1000.00 1000.00 210.00

Welfare Losses

L 4.056 4.112 4.082 4.094 4.089 4.065

Lx 0.003 0.050 0.028 0.036 0.026 0.012

Lp 3.775 3.734 3.783 3.760 3.748 3.786

Lw 0.278 0.328 0.272 0.298 0.315 0.267

Standard deviations

x .02 .08 .07 .07 .08 .04

πp .19 .19 .19 .19 .19 .19

πw .02 .02 .01 .02 .02 .02

r .88 .87 .82 .76 1.08 .99

We now examine the characteristics and performance of the implementable monetary

policy rules introduced in the previous section, but now we reoptimize the coefficients to

minimize the expected welfare loss under parameter uncertainty. In implementing these

rules, we assume that the central bank’s estimates of the natural rates of output and interest

are computed using the point estimates of the model parameters, but that the actual model

parameters and therefore natural rates differ from the values assumed by the policymaker.

The central bank is assumed to observe the technology shocks without error since these do

not depend on model parameters.

Relative to the case of no parameter uncertainty, the optimized standard Taylor rule

under parameter uncertainty responds far less aggressively to the estimate of the output

gap. Recall that in the case of known parameters the optimized response to the output gap

is 1000 (the imposed upper bound). In contrast, under parameter uncertainty, the optimal

response coefficient is less than unity. This reduction in the response to the output gap is

a consequence of the mismeasurement of the natural rate of output. Indeed, if the central
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bank faced parameter uncertainty but somehow knew the true values of the natural rates,

the optimized Taylor rule would have the same huge response to the output gap that obtains

absent parameter uncertainty and the mean welfare loss would be nearly the same as the

benchmark first-best outcome.18 Thus, if natural rates were known, parameter uncertainty

would be of little consequence for monetary policy or the mean welfare loss. But, in the

presence of natural rate uncertainty, a large response to the output gap generates corre-

spondingly large policy errors. In order to minimize this source of undesired fluctuations,

the optimized rule responds much more modestly to the perceived output gap. As a result,

this policy does not stabilize the output gap as well as the first-best policy.

The alternative policy that responds to the natural rate of interest and the rates of

wage and price inflation yields a loss nearly identical to the first-best. As in the case of no

parameter uncertainty, this policy rule responds extremely aggressively to the wage inflation

rate and less so to the price inflation rate. The ratio of the response to wages to prices

is slightly larger under parameter uncertainty than with no uncertainty. Interestingly, this

policy does a better job on average of stabilizing the output gap than the optimized Taylor

rule that responds directly to he output gap.

Optimized policy rules that respond to wage and price inflation and the natural rate

of interest are very effective at minimizing the welfare loss under parameter uncertainty.

Evidently, responding to aggressively to the wage inflation rate substitutes for responding

to the output gap in this model, at least when evaluated using responses to technology

shocks. Eliminating the response to the natural rate of interest causes a small deterioration

in performance, as seen by the third alternative policy rule.

The fourth alternative optimized policy rule, that responds to only the level of hours

(with the optimized response to price inflation of zero), performs nearly as well as any of

the other rules, including those that respond to estimates of the natural rates. Given the

emphasis on these natural rate concepts in the literature, this result that natural rates are

nearly superfluous for optimal policy under parameter uncertainty may appear somewhat

surprising. But, in an environment where natural rates are uncertain, their usefulness as

indicators for monetary policy is reduced. Indeed, “imperfect” indicators such as the level

18For this experiment, we computed the optimal coefficients of the Taylor rule under parameter uncertainty,

but assumed that the central bank’s estimate of natural rates are always exactly correct. The optimized

coefficient on inflation is zero and that on the output gap is 1,000 (the imposed upper bound). The resulting

mean welfare loss under these assumptions is 4.060.
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of hours can perform as well or better than natural rate-based indicators like the output

gap.

Finally, we examine optimized monetary policy rules that combined features of the

simple policy rules considered above by responding to all five variables: the natural rate

of interest, the output gap, the level of hours, and the rates of price and wage inflation.

The results are reported in the final column of Table 4. The optimized version of this rule

yields a welfare loss only slightly larger than the artificial first-best benchmark. The policy

features a very aggressive response to wage inflation and a moderate response to the level

of hours and relatively muted responses to the natural rate of interest and the output gap.

The optimal policy taking account of parameter uncertainty yields a larger response of

the interest rate to a technology shock than the optimal policy under known parameters

(the certainty equivalent policy). Figure 4 shows the impulse responses to a one percentage

point positive technology shock under the optimal policy assuming known parameters (the

solid lines) and the optimal “Bayesian” policy that takes account of parameter uncertainty

by minimizing the mean welfare loss. In both cases, the impulse responses are computed

using the parameter point estimates. Under the optimal Bayesian policy, the lower initial

interest rate causes the output gap to rise above zero, which then gap swings back below

zero where it remains for several years. Compared to the certainty-equivalent policy, the

Bayesian policy generates greater variability in the output gap, but smaller variability in

the wage inflation rate. The variability of the rate of price inflation is nearly identical under

the two policies.

6 Conclusions

Three crucial factors determine the design of optimal monetary policy: the dynamics of

the economy, the natural rates of output and interest, and the weights in the central bank

objective function. Traditional analysis of monetary policy under uncertainty has treated

these three factors as being independent and studied them separately. But, modern micro-

founded models imply that the structural parameters describing preferences and technology

jointly determine all three factors and that parameter uncertainty affects all three factors

together. This paper has shown in an estimated micro-founded macroeconomic model that

uncertainty about the natural rates of interest and output owing to parameter uncertainty
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has significant implication for the design of optimal monetary policy in the face of param-

eter uncertainty. In particular, we find that parameter uncertainty implies that monetary

policy should be re-oriented away from directly responding to measures of the output gap,

which are based on natural-rate estimates that are likely measured with error, and toward

responding to variables that are not contaminated by such mismeasurement.

This paper has taken a first step at analyzing the implications of uncertainty about

natural rates for monetary policy aimed at maximizing household welfare. In order to make

the analysis as tractable as possible, we have used a small-scale stylized model and limited

our analysis to parameter and natural rate uncertainty that results from sampling variation.

As a result, the analysis has likely understated the true degree of uncertainty that central

banks face regarding the economy and natural rates. The analysis can be extended to include

additional features of the economic landscape and associated uncertainty, including a richer

description of the macroeconomy, a wider set of sources of aggregate fluctuations, and

uncertainty regarding the structure of the economy. One potentially important direction

for future research is the incorporation of imperfect information on the part of private

agents as well. As shown by Orphanides and Williams (2006), the combination of imperfect

knowledge by both the central bank and the public can amplify the effects of uncertainty.
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Figure 1: VAR and Model Responses to a Technology Shock
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Notes: The dashed lines show the impulse responses implied by the VAR following an

identified technology shock that raises output per hour permanently by 1 percent. The solid

lines show the impulse responses implied by the model to a permanent shock to technology

that has the same long-run effect on productivity as the technology shock in the VAR. The

dashed-dotted lines are one standard error confidence intervals around the VAR responses.
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Figure 2: VAR and Model Responses to a Funds Rate Shock
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Notes: The dashed lines show the impulse responses implied by the VAR following a one

percent funds rate shock. The solid lines show the impulse responses implied by the model

to the same shock under the assumption that the contemporaneous response of all variables

other than the funds rate is zero. The dashed-dotted lines are one standard error confidence

intervals around the VAR responses.
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Figure 3: Natural Rate Uncertainty
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Notes: The thin solid lines show the model impulse responses of the natural rates to a one

percentage point positive shock to technology based on the parameter point estimates. The

thick solid lines show the median responses computed from the distribution of the parameter

estimates. The dashed and dashed-dotted lines indicate the corresponding 70 percent and

90 percent confidence intervals, respectively.
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Figure 4: Optimal Monetary Policy Response to a Technology Shock
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Notes: The solid lines show the model impulse responses to a one percentage point positive

shock to technology, where the model parameters equal the point estimates and monetary

policy follows the certainty equivalent optimal policy. The dashed lines show the corre-

sponding responses when monetary policy follows the optimal Bayesian policy that takes

account of parameter uncertainty.
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A The Linearized Model

The first sub-section of this appendix reports the model’s non-linear equations while the

second sub-section reports the model’s log-linear equations. We limit ourselves throughout

in reporting just the equations from the symmetric model. The third sub-section reports

the model’s natural rate of output.

A.1 First-order conditions

The first-order conditions from the intermediate goods producing firms’ cost-minimization

problem (equation 8), the labor demand curve and marginal cost function, are:

Ly,t =
Ym,t

At
(15)

MCt

Pt
=

Wt

Pt
·

1

At
(16)

The first-order condition from the intermediate goods producing firms profit-maximization

problem (equation 9), the aggregate supply curver, is:

θp ·
MCt

Pt
· Yf,t = (θp−1) (1+ςθ,p)Yf,t+χp (Πp,t−Πp,∗) Πp,t ·

MCt

Pt
· Ym,t

− βEt

[
Λc,t+1

Λc,t
· χp (Πp,t+1−Πp,∗) Πp,t+1 ·

MCt+1

Pt+1
· Ym,t+1

]
(17)

The first-order conditions from the household’s utility-maximization problem (equation 10),

the Euler equation and the labor supply curve, are:

Λc,t

Pt
= βRtEt

[
Λc,t+1

Pt+1

]
(18)

θw ·
Λl,t

Λc,t
· Ly,t = (θw−1) (1+ςθ,w)

Wt

Pt
· Ly,t+χw (Πw,t−Πw,∗) Πw,t ·

Λl,t

Λc,t
· Lu,t

− βEt

[
Λc,t+1

Λc,t
· χw (Πw,t+1−Πw,∗)Πw,t+1 ·

Λl,t+1

Λc,t+1
· Lu,t+1

]
(19)

where

Λc,t = (Ct−ηCt−1)
−σ(L̄−Lt

)ζ(1−σ)
−Etβη

[
(Ct+1−ηCt)

−σ(L̄−Lt+1
)ζ(1−σ)

]
(20)

Λl,t = ζ (Ct−ηCt−1)
(1−σ) (L̄−Lt

)ζ(1−σ)−1
. (21)

The model has three market clearing conditions: the labor market clearing condition, the

intermediate-goods market clearing condition, and the final-goods market clearing condi-
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tion. In the symmetric equilibrium these are given by:

Lu,t = Ly,t +
χw

2
(Πw,t − Πw,t−1)

2 Lu,t, (22)

Yf,t = Ym,t −
χp

2
(Πp,t − Πp,t−1)

2 Ym,t, (23)

Ct = Yf,t (24)

A.2 Log-linearized first-order conditions

The first-order conditions implied by the intermediate goods producing firm’s cost mini-

mization problem, given by equations (15) and (16), log-linearize to

ly,t = ym,t − at (25)

mct = wt − at (26)

The first-order conditions implied by the intermediate goods producing firm’s profit maxi-

mization problem, given by equation (17), log-linearizes to

πp,t = βEtπp,t+1 +
(θp − 1)(1 + ςθ,p)

Π2
p,∗χp

· mct

= βEtπp,t+1 + κp · mct (27)

The first-order conditions implied by the household’s utility maximization problem, given

by equations (18) and (19), log-linearize to:

λc,t = rt − Etπp,t+1 + Etλc,t+1 (28)

πw,t = βEtπw,t+1 +
(θw − 1)(1 + ςθ,w)

Π2
w,∗χw

· (λl,t − λc,t − wt)

= βEtπw,t+1 + κw · (λl,t − λc,t − wt) (29)

where

λc,t =
1

1−ηβ

(
−σ

1−η
(ct−ηct−1)−ζ(1−σ)

Lu,∗

L̄−Lu,∗
· lu,t

)

−
ηβ

1−ηβ

(
−σ

1−η
(Etct+1−ηct)−ζ(1−σ)

Lu,∗

L̄−Lu,∗
· Etlu,t+1

)
(30)

λl,t =
1 − σ

1 − η
(ct − ηct−1) + (1 − ζ (1 − σ))

Lu,∗

L̄ − Lu,∗
· lu,t. (31)

The market clearing conditions, equations (22), (23), and (24), log-linearize to:

lu,t = ly,t = lt (32)
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yf,t = ym,t = yt (33)

ct = yf,t (34)

Three more equations remain in our model: (i) the process for the shocks At, defined in

equation (4), which log-linearizes to:

at = at−1 + ǫt, (35)

(ii) the monetary policy process, which was already given in log-linearized form in sec-

tion 3.2, and (iii) an identity between price and wage inflation and real wages:

Wt

Pt
·

Pt−1

Wt−1
=

Wt

Wt−1
·
Pt−1

Pt
=

Πw,t

Πp,t

which log-linearized to:

wt − wt−1 = πw,t − πp,t

Before concluding this section we note the following about the steady-state solution to

the model. We know from equations (16), (17), (19), (20), and (21) that in the steady state:

1 =
MC∗

P∗
=

W∗

P∗
=

Λl,∗

Λc,∗
=

1 − η

1 − ηβ
·

ζLu,∗

L̄ − Lu,∗

Since L∗ = Lu,∗ = Ly,∗ we can re-write this as:

ζL∗

L̄ − L∗
=

1 − ηβ

1 − η
. (36)

This means that we can re-write equations (30) and (31) as:

λc,t =
1

1−ηβ

(
−σ

1−η
(ct−ηct−1)−(1−σ)

1 − ηβ

1 − η
· lu,t

)

+
ηβ

1−ηβ

(
−σ

1−η
(Etct+1−ηct)−(1−σ)

1 − ηβ

1 − η
· Etlu,t+1

)

λl,t =
1 − σ

1 − η
(ct − ηct−1) +

1 − ζ (1 − σ)

ζ
·
1 − ηβ

1 − η
· lu,t.

Since lu,t = ly,t = ym,t − at = yt − at and ct = yf,t = yt

λc,t =
1

1−ηβ

(
−σ

1−η
(yt−ηyt−1)−(1−σ)

1 − ηβ

1 − η
(yt − at)

)

+
ηβ

1−ηβ

(
−σ

1−η
(Etyt+1−ηyt)−(1−σ)

1 − ηβ

1 − η
(Etyt+1 − Etat+1)

)
(37)

λl,t =
1 − σ

1 − η
(yt − ηyt−1) +

1 − ζ (1 − σ)

ζ
·
1 − ηβ

1 − η
(yt − at). (38)

Equations (37) and (38) will be used in deriving the natural rate.
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A.3 Natural rates in the log-linear model

The natural rate of output, i.e. the level of output in the equilibrium with perfectly flexible

prices and wages, is determined by the condition that the marginal rate of substitution

between consumption and leisure be (up to constants) equal to the marginal product of

labor at all dates t. In log terms, yn
t is determined implicitly by the equation

mrst = mplt (39)

where mrst = λl,t − λc,t and, from the production function (3), mplt = at. Substituting

from (37) and (38) for λc,t and λl,t yields the following expression for yn
t :

[δ1 − δ2(L + βL−1)]yn
t = [δ3 − δ4L

−1]at (40)

where L denotes the lag operator, L−1xt ≡ Etxt+1, and

δ1 =
2(1 − σ)

1 − η
+

1 − ζ(1 − σ)

ζ

1 − βη

1 − η
+

σ(1 + βη2)

(1 − βη)(1 − η)

δ2 = η

[
1 − σ

1 − η
+

σ

(1 − βη)(1 − η)

]

δ3 = 1 +
1 − ζ(1 − σ)

ζ

1 − βη

1 − η
+

1 − σ

1 − η
, and

δ4 =
βη(1 − σ)

1 − η

The natural rate of interest, denoted rn
t , is the real rate rt − Etπt+1 prevailing in the

equilibrium with perfectly flexible prices and wages. Letting λn
c,t denote the expression (37)

with yn
t substituted for yt, the Euler equation (28) in this equilibrium can be expressed as

rn
t = λn

c,t − Etλ
n
c,t+1 (41)

But, in this equilibrium, λn
c,t = λn

l,t − at. Substituting for λn
c,t we obtain

rn
t = [δ6 + δ7 − δ6L − δ7L

−1]yn
t + δ8[L

−1 − 1]at

= δ6∆yn
t − δ7Et∆yn

t+1 + δ8Et∆at+1 (42)

with

δ6 =
η(1 − σ)

1 − η

δ7 =
1 − σ

1 − η
+

1 − ζ(1 − σ)

ζ

1 − βη

1 − η

δ8 = 1 +
1 − ζ(1 − σ)

ζ

1 − βη

1 − η
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B VAR Identification and Structural Shocks

As discussed in section 3, we are interested in matching the VAR’s impulse responses to two

of the structural shocks of our model, a permanent shock to the level of technology, and a

transitory shock to the funds rate. To identify these shocks, we use one long-run and one

short-run identifying restriction. The short-run identifying restriction is the usual one, that

the last variable in the VAR (the funds rate) is Wold-causal for the preceding variables.

The structural form of the VAR is given by

A0Yt = constant + A(L)Yt−1 + εt, (43)

where Yt is defined in (13). The short-run assumption implies that the last column of the

contemporaneous multiplier matrix A0 has all zeros above the main diagonal. The fifth

element of εt is identified as the funds rate shock ǫr,t in the policy rule. The long-run

identifying restriction is the one proposed by Gaĺı (1999) and further explored in Francis

and Ramey (2005) and Altig et al. (2002), that permanent shocks to technology are the

only shocks to have a permanent effect on labor productivity. Using this assumption, we

identify the first element of εt as the technology shock ǫt in (4). This implies that the first

row of the matrix of long-run (cumulative) effects of εt on Yt, (I − A(1))−1A−1
0 , consists of

zeros except for the first element.

In order to estimate the VAR in structural form, we need a further set of assumptions

to just-identify the elements of A0. We follow Altig et al. (2002) by assuming that the

submatrix consisting of columns 2-4 and rows 2-4 of A0 is lower triangular. This assumption

is without loss of generality as we do not attach any structural interpretation to elements

2 through 4 of εt. With these assumptions, we estimate the first equation of the structural

VAR imposing the long-run restrictions in the manner of Shapiro and Watson (1988) by

including contemporaneous and lagged variables of elements 2 through 4 of Yt in first-

differenced form. To control for simultaneity, we estimate the equation by 2SLS, using a

constant and Yt−1, . . . , Yt−4 as first-stage regressors for elements 2 through 4 of Yt. We then

sequentially estimate equations 2 through 4 by IV, using the residuals from the previous

regressions as instruments for contemporaneous variables. Equation 5 can be estimated by

OLS by virtue of our short-run identifying assumption.

We modify this identification strategy in one respect. Because, in contrast to Altig et al.,

our VAR includes hours per capita in first differences, we would like to assure that the long-
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run response of hours to a technology shock is zero, consistent with the observation that

hours worked have remained broadly unchanged despite the secular trend in real wages.

When this second long-run restriction is not imposed, the IRF of ∆l usually does not

integrate to zero. We therefore reorder our vector of endogenous variables to include ∆l

as the second variable, and apply the Shapiro-Watson method to the first two equations.

This leaves the interpretation of the first element of εt unchanged, but the second element

is now the only shock that permanently affects hours per capita. Contrary to the findings

reported by Francis and Ramey (2005), Laubach and Williams (2006) find that imposing

this second long-run restriction can have a substantial effect on the response of hours to a

technology shock.

C Deriving the Welfare Criterion

To derive the welfare criterion we first take a second-order approximation to the within-

period utility function

1

1 − σ
·
(Ct − ηCt−1)

1−σ (L̄ − Lu,t
)ζ(1−σ)

(C∗ − ηC∗)
1−σ (L̄ − Lu,∗

)ζ(1−σ)

= T.I.P.

+
1

1 − η

(
ct +

1

2
· c2

t

)
+

−η

1 − η

(
ct−1 +

1

2
· c2

t−1

)
−

ζLu,∗

L̄ − Lu,∗

(
lu,t +

1

2
· l2u,t

)

+
1

2
(−σ)

1

1 − η
·

1

1 − η

(
ct +

1

2
· c2

t

)(
ct +

1

2
· c2

t

)

+
1

2
(−σ)

−η

1 − η
·

−η

1 − η

(
ct−1 +

1

2
· c2

t−1

)(
ct−1 +

1

2
· c2

t−1

)

−
1

2
·
1 − ζ(1 − σ)

ζ
·

ζLu,∗

L̄ − Lu,∗
·

ζLu,∗

L̄ − Lu,∗

(
lu,t +

1

2
· l2u,t

)(
lu,t +

1

2
· l2u,t

)

+ (−σ)
1

1 − η
·

−η

1 − η

(
ct +

1

2
· c2

t

)(
ct−1 +

1

2
· c2

t−1

)

− (1 − σ)
1

1 − η
·

ζLu,∗

L̄ − Lu,∗

(
ct +

1

2
· c2

t

)(
lu,t +

1

2
· l2u,t

)

− (1 − σ)
−η

1 − η
·

ζLu,∗

L̄ − Lu,∗

(
ct−1 +

1

2
· c2

t−1

)(
lu,t +

1

2
· l2u,t

)
(44)

We also make use of the quadratic approximations to the labor demand curve (equation 15)

and the market clearing conditions (equations 23, 22, and 24) which are given by:

(
ly,t +

1

2
· l2y,t

)
=

(
ym,t +

1

2
· y2

m,t

)
−

(
at +

1

2
· a2

t

)
− ym,tat
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(
ly,t +

1

2
· l2y,t

)
=

(
lu,t +

1

2
· l2u,t

)
−

1

2
· χw · Π2

w,∗π
2
w,t

(
yf,t +

1

2
· y2

f,t

)
=

(
ym,t +

1

2
· y2

m,t

)
−

1

2
· χp · Π

2
p,∗π

2
p,t

(
ct +

1

2
· c2

t

)
=

(
yf,t +

1

2
· y2

f,t

)

Substituting the above equations into the equation (44) and making a number of substitu-

tions yields:

1

1 − σ
·
(Ct − ηCt−1)

1−σ (L̄ − Lu,t
)ζ(1−σ)

(C∗ − ηC∗)
1−σ (L̄ − Lu,∗

)ζ(1−σ)

= T.I.P.

−
1

2
· σ

(
1

1 − η

)2 (
(yt − yn

t ) − η
(
yt−1 − yn

t−1

))2

−
1

2
·
1 − ζ(1 − σ)

ζ
·

(
1 − βη

1 − η

)2

(yt − yn
t )2

− (1 − σ) ·
1 − βη

1 − η
·

1

1 − η
· (yt − yn

t )
(
(yt − yn

t ) − η
(
yt−1 − yn

t−1

))

−
1

2
·
1 − βη

1 − η

{
χpΠ

2
p,∗π

2
p,t + χwΠ2

w,∗π
2
w,t

}
.

Letting xt ≡ yt − yn
t , and taking account our expressions for κp and κw this can also be

written as:

1

1 − σ
·
(Ct − ηCt−1)

1−σ (L̄ − Lu,t
)ζ(1−σ)

(C∗ − ηC∗)
1−σ (L̄ − Lu,∗

)ζ(1−σ)

= T.I.P.

−
1

2
· σ

(
1

1 − η

)2

(xt − η xt−1)
2

−
1

2
·
1 − ζ(1 − σ)

ζ
·

(
1 − βη

1 − η

)2

x2
t

− (1 − σ) ·
1 − βη

1 − η
·

1

1 − η
· xt (xt − η xt−1)

−
1

2
·
1 − βη

1 − η

{
θp

κp
π2

p,t +
θw

κw
π2

w,t

}
,

which is the equation given in section 4 of the paper.
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