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1 Introduction

This paper concentrates on signal extraction in continuous-time. The goal is to

set the stage for the development of coherent discrete filters in various applications.

Thus, we start by setting up a fundamental signal extraction problem and by investi-

gating the properties of the optimal continuous-lag filters. This part of the frequency

and time domain analysis is done independently of sampling type and interval and

so may be seen as fundamental to the dynamics of the problem.

A key result of the paper is a proof of the signal extraction formula for nonsta-

tionary models; this is crucial for many applications in economics. In discrete-time,

methods for nonstationary series rely on theoretical foundations, as set out in Bell

(1984). In continuous-time, Whittle (1983) sketches an argument for stationary

models; a satisfactory proof of the signal extraction formula in this case is provided

by Kailath, Sayed, and Hassibi (2000). Whittle (1983) also provides results for the

nonstationary case, but omits proof, and in particular, fails to consider the initial

value assumptions that are central to the problem.

In this paper, we extend the proof to the case of a nonstationary signal, that

is, integrated of order d, where d > 0 is an integer. We also treat the case of a

white noise irregular, which is frequently used in standard models in continuous-time

econometrics. Since continuous-time white noise is essentially the first derivative of

Brownian motion (which is nowhere differential), this requires a careful mathemat-

ical treatment to ensure that the signal extraction problem is well-defined.

A second result is the development of a class of continuous-lag Butterworth fil-

ters for economic data. In particular, we introduce low-pass and band-pass filters

in continuous-time that are analogous to the filters derived by Harvey and Trimbur

(2003) for the corresponding discrete-time models, and their properties are illus-

trated through plots of the continuous-time gain functions. One special case of

interest is the derivation of a continuous-lag filter from the smooth trend model;

this gives a continuous-time extension of the popular Hodrick-Prescott (HP) filter

(Hodrick and Prescott, 1997). At the root of the model-based band-pass is a class

of higher order cycles in continuous-time. This class generalizes the stochastic dif-

ferential equation (SDE) model for a stochastic cycle developed in Harvey (1989)
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and Harvey and Stock (1993).

The study of business cycles has remained of interest to researchers and policy-

makers for some time. Some of the early work in continuous-time econometrics was

geared toward this application; Kalecki (1935) and James and Belz (1936) used a

model in the form of a differential-difference equation (DDE) to describe business

cycle movements. The DDE form gives an alternative to the SDE form that is of

some theoretical interest; see Chambers and McGarry (2002). Its usefulness for

methodology seems, however, limited since the DDE admits no convenient repre-

sentation in either the time or frequency domain. The SDE form, in contrast, has

an intuitive structure. In introducing the class of higher order models, we derive

analytical expressions for the spectral density; this gives a clear summary of the

cyclical properties of the model.

Our formulation remains general so that, for instance, it includes the Continuous-

Time Autoregressive Integrated Moving Average (CARIMA) processes of Brockwell

and Marquardt (2005). These follow the SDE form and so can be handled analyti-

cally. Throughout the paper, examples are given to help explain the methodology.

In focussing on continuous-time foundations in this paper, we also note the clear

practical motivations for this strategy. A continuous-time approach gives flexibility

in a number of directions: in the treatment of stock and flow variables in economics,

in working with missing data and with irregularly spaced data, and in handling a

general frequency of observation. This last point is immediately practical; even when

considering just a single economic variable, with different sampling frequencies (for

instance, quarterly and annual), to preserve consistency in discrete trend estimates

requires a unified basis for filter design. See Bergstrom (1988, 1990) for further

discussions of the advantages of continuous-time analysis.

The practical application of the continuous-time strategy is sketched at the end

of this paper, and is set out in greater detail in a companion paper (McElroy and

Trimbur, 2007); therein we examine how the optimal continuous-lag filter may be

discretized to yield expressions for the discrete-time weights appropriate for data

sampled under various conditions. The method is illustrated with a number of ex-

amples, including the continuous-time HP filter. In recent work, Ravn and Uhlig

(2002), Maravall and del Rio (2001), and Harvey and Trimbur (2007) have investi-
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gated how to adapt the HP filter to monthly and annual series, given that the filter

was originally designed for quarterly US GDP. We show how the continuous-time

analogue of the HP filter is discretized to yield a set of consistent discrete filters,

thereby solving the problem of adapting the filter.

Most previous methods rely on the discretization of the underlying continuous-

time model, so that the analysis is done in discrete-time. Our approach instead

uses the continuous-time formulation of filtering more directly. Thus, the method

centers on the use of the underlying continuous-lag filters, on their properties, and

on the transformations needed for discrete datasets.

The theoretical results derived here set the foundation for broader applications.

For instance, a new class of low-pass and band-pass filters are presented in Section 4

of this paper. Further, in considering the signal extraction problem in continuous-

time, we derive filters to measure velocity and acceleration of a time series, which

could be useful for the analysis of turning points.

The rest of the paper is organized as follows. Section 2 reviews continuous-time

filtering, based on material from Priestley (1981), Hannan (1970), and Koopmans

(1974). Section 3 sets out the signal extraction framework. In section 4, examples are

given for economic series; an extension of the standard HP filter is derived from the

smooth trend model, and a general class of band-pass filters is presented. Extensions

to methodology are then described, specifically, the conversion of continuous-lag fil-

ters to estimate growth rates and other characteristics of an underlying component.

Section 5 discusses the application of the method to real series, and Section 6 con-

cludes. Proofs are given in the Appendix.

2 Continuous-Time Processes and Filters

This section sets out the theoretical framework for the analysis of continuous-time

signal processing and filtering. Much of the treatment follows Hannan (1970); also

see Priestley (1981) and Koopmans (1974). Let y(t) for t ∈ R, the set of real
numbers, denote a real-valued time series that is measurable and square-integrable

at each time. The process is weakly stationary by definition if it has constant mean
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— set to zero for simplicity — and autocovariance function Ry given by

Ry(h) = E[y(t)y(t+ h)] h ∈ R. (1)

Note that the autocovariances are defined for the continuous range of lags h. Thus

if y(t) is a Gaussian process, Ry completely describes the dynamics of the stochas-

tic process. A convenient model for stationary continuous-time processes that is

analogous to moving averages in discrete time series is given by

y(t) = (ψ ∗ �)(t) =
Z ∞

−∞
ψ(x)�(t− x) dx (2)

where ψ(·) is square integrable on R, and �(t) is continuous-time white noise (WN).

In this case, Ry(h) = (ψ ∗ ψ−)(h), where ψ−(x) = ψ(−x). If y(t) is Gaussian,
then �(t) = dW (t)/dt, the derivative of a standard Wiener process. Though W (t)

is nowhere differentiable, �(t) can be defined using the theory of Generalized Ran-

dom Processes, as in Hannan (1970, p. 23). It is convenient to work with models

expressed in terms of the disturbance �(t), because this makes it easy to see the

connection with discrete models based on white noise disturbances.

As an example, Brockwell’s (2001) Continuous-time Autoregressive Moving Av-

erage (CARMA) models can be written as

a(D)y(t) = b(D)�(t)

where a(z) is a polynomial of order p, and b(z) is a polynomial of order q < p, and

D is the derivative operator. The condition for stationarity is analogous to the one

for a discrete AR polynomial: the roots of the equation a(z) = 0 must all have

strictly negative real part. It can be shown (Brockwell and Marquardt, 2005) that

y(t) following such a stationary CARMA model can be re-expressed in the form

(2), for an appropriate ψ.

Next, we define the continuous-time lag operator L via the equation

Lxy(t) = y(t− x) (3)

for any x ∈ R and for all times t ∈ R. We denote the identity element L0 by 1,
just as in discrete time. Then a Continuous-Lag Filter is an operator Ψ(L) with
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associated weighting kernel ψ (an integrable function) such that

Ψ(L) =

Z ∞

−∞
ψ(x)Lx dx (4)

The effect of the filter on a process y(t) is

Ψ(L)y(t) =

Z ∞

−∞
ψ(x) y(t− x) dx = (ψ ∗ y)(t) (5)

The requirement of integrability for the function ψ(x) is a mild condition that is

sufficient for many problems. However, when the input process is nonintegrable over

t, an integrable ψ(x) may become inadmissible as a kernel, i.e., it may fail to give

a well-defined process as output. In such a case, we may need to assume that ψ is

differentiable to a specified order, with integrable or square integrable derivatives.

This development parallels the discussion in Priestley (1981), where the filter is

written as

L[ψ](D) =
Z ∞

−∞
ψ(x)e−Dx dx,

with L[ψ] denoting the Laplace transform of ψ. As will be discussed below, we can

make the identification D = − logL, which effectively maps Priestley’s formulation
into (4).

2.1 Continuous-lag filters in the Frequency Domain

In analogy with the discrete-time case, the frequency response function is obtained

by replacing L by the argument e−iλ:

Ψ(e−iλ) =
Z ∞

−∞
ψ(x) e−iλx dx, λ ∈ R (6)

Denoting the continuous-time Fourier Transform by F [·], equation (6) can be written
as Ψ(e−iλ) = F [ψ](λ).

Example 1 Consider a Gaussian kernel ψ(x) = 1√
2π
e−

x2

2 . In this example, the

inclusion of the normalizing constant means that the function integrates to one;

since applying the filter tends to preserve the level of the process, it could be used
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as a simple trend estimator. The frequency response has the same form as the

weighting kernel and is given by F [ψ](λ) = e−
λ2

2 .

The power spectrum of a continuous time process y(t) is the Fourier Transform

of its autocovariance function Ry:

fy(λ) = F [Ry](λ), λ ∈ R (7)

The gain function of a filterΨ(L) is the magnitude of the frequency response, namely

G(λ) = |F [ψ](λ)|, λ ∈ R (8)

As in discrete time series signal processing, passing an input (stationary) process

through the filter Ψ(L) results in an output process with spectrum multiplied by the

squared gain; so the gain function gives information about how contributions to the

variance at various frequencies are attenuated or accentuated by the filter. Note that

in contrast to the discrete case where the domain is restricted to the interval [−π, π],
the functions in (7) and (8) are defined over the entire real line. Given a candidate

gain function g(λ), taking the inverse Fourier Transform in continuous-time yields

the associated weighting kernel:

F−1[g](x) = 1

2π

Z ∞

−∞
g(λ)eiλx dx, x ∈ R (9)

This expression is well-defined for any integrable g(λ). Integrability is a mild con-

dition satisfied by nearly all filters of practical interest.

Example 2 Weighting kernels that decay exponentially on either side of the ob-

servation point have often been applied in smoothing trends; this pattern arises

frequently in discrete model-based frameworks, e.g., Harvey and Trimbur (2003).

Similarly, in the continuous time setting, a simple example of a trend estimator is

the double exponential weighting pattern ψ(x) = 1
2
e−|x|, x ∈ R. In this case, one can

show using integral calculus that Ψ(L) = 1/(1 − (logL)2), as a formal expression.
The Fourier transform has the same form as a Cauchy probability density function,

namely F [ψ](λ) = 1/(1 + λ2). This means that the gain of the low-pass filter Ψ(L)

decays slowly as λ −→∞.
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2.2 The Derivative Filter and Nonstationary Processes

In (3), the extension of the lag operator L to the continuous-time framework is

made explicit. In building models, we can treat L as an algebraic quantity as in the

discrete-time framework. The extension of the differencing operator, ∆ = 1 − L,

used to define nonstationary models, is discussed in Hannan (1970, p. 55) and

Koopmans (1974).

To define the mean-square differentiation operator D, consider the limit of mea-

suring the displacement of a continuous-time process, per unit of time, over an

arbitrarily small interval δ:

d

dt
y(t) = lim

δ→0
y(t)− y(t− δ)

δ
= lim

δ→0
1− Lδ

δ
y(t) = (− logL)y(t).

The limits are interpreted to converge in mean square. Thus, we see that taking

the derivative d/dt has the same effect as applying the continuous lag filter − logL.
This holds for all mean-sqaure differentiable processes y(t), implying D = − logL;
note that Priestley (1981) derives the equivalent L = exp{−D} via Taylor series
arguments. This operator D will be our main building block for nonstationary

continuous-time processes. It will also be useful in thinking about rates of growth

and rates of rates of growth — the velocity and acceleration of a process, respec-

tively. We refer to − logL as the derivative filter; taking powers yields higher order
derivative filters. For instance, (logL)2 gives a measure of acceleration with respect

to time. We note that the frequency response of Dd is (−iλ)d.
Standard discrete-time ARIMA processes are written as difference equations,

built on white noise disturbances. In analogy, continuous time processes can be

written as differential equations, built on an extension of white noise to continuous-

time. Thus a natural class of models is the Integrated Filtered Noise processes,

which are given by

Ddy(t) = Ψ(L)�(t) (10)

for some integrable ψ, and order of differential d ≥ 0. This class will be denoted
y(t) ∼ IFN(d); it encompasses a wide variety of linear continuous-time models. As

an example, Brockwell and Marquardt (2005) define the class of Continuous-time
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Autoregressive Integrated Moving Average (CARIMA) models as the solution to

a(D)Ddy(t) = b(D)�(t). (11)

Thus, applying the derivative filter d times transforms y(t) into a stationaryCARMA(p, q)

process. The autoregressive order p is the degree of the polynomial a(D), and the

moving average order q is the degree of the polynomial b(z). The constraint q < p is

necessary to ensure the process is well-defined; this ensures that the spectral density

of Ddy(t) is an integrable function. This gives the CARIMA(p, d, q) process. The

original process y(t) is nonstationary and is said to be integrated of order d in the

continuous-time sense. Now this can be put into an IFN(d) form: starting from

(11), we can write (formally)

Ddy(t) = [b(D)/a(D)] �(t) (12)

Using the definition ofD, it follows that y(t) ∼ IFN(d) withΨ(L) = b(− logL)/a(− logL).
Deriving the kernel ψ(x) requires an expression for the rational function in terms of

an integral over powers of L, namely b(− logL)/a(− logL) = R∞−∞ ψ(x)Lx dx. Using

the formulation of Priestley (1981), we see that CARIMA models can be equiva-

lently expressed as IFN models where the kernel ψ’s Laplace transform is a rational

function.

Example 3: Higher order stochastic cycles We consider a general class of

continuous-time stochastic cycles. These are indexed by a positive integer n that

denotes the order of the model.

Denote the cyclical process by ψn(t), and let ψ∗n(t) represent an auxiliary process

used in the construction of the model. Define ψn(t) = (ψn(t) ψ
∗
n(t))

0. An n−th
order stochastic cycle in continuous-time is given by

dψi(t)dt = Aψi(t)dt+

"
ψi−1(t)

0

#
dt, i = 2, ..., n (13)

dψ1(t)dt = Aψ1(t)dt+

"
κ(t)

0

#
dt, κ(t) ∼WN

¡
0,σ2κ

¢
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where ψi(t) = (ψi(t) ψ
∗
i (t))

0, i = 1, ..., n−1 represent additional auxiliary processes.
The coefficient matrix in (13) is

A =

"
log ρ λc

−λc log ρ

#

The parameter ρ is called the damping factor; it satisfies 0 < ρ ≤ 1. The stochastic
variation in the cycle per unit time depends on the continuous-time variance para-

meter σ2κ. The parameter ρ controls the persistence of cyclical fluctuations, and

its specific role depends on n. Generally, for higher orders, the model generates

smoother dynamics for the cycle.

Since the parameter λc corresponds roughly to a peak in the spectrum, it indi-

cates a central frequency of the cycle, and 2π/λc is an average period of oscillation.

As λc is a frequency in continuous-time, it can be any positive real number, though

for macroeconomic data, business cycle theory will usually suggest a value in some

intermediate range.

To construct a Gaussian cyclical process, the increment κ(t) can be derived from

Brownian motion Wκ(t), that is, κ(t) ∼ DWκ(t).

In analyzing cyclical behavior, it is natural to consider the frequency domain

properties. To derive the spectra for various n, start by rewriting (13) as a recursive

formula: "
D − log ρ −λc
λc D − log ρ

#"
ψi(t)

ψ∗i (t)

#
=

"
ψi−1(t)

0

#
, i = 1, ..., n

with the initialization ψ0(t) = κ(t). The solution is

((D − log ρ)2 + λ2c)
nψn(t) = (D − log ρ)nκ(t)

so that the nth order cycle has a CARMA(2n, n) form. The power spectrum is

γψn(λ) = σ2κ

"
λ2 + log2 ρ¡

log2 ρ+ (λ− λc)
2¢ ¡log2 ρ+ (λ+ λc)

2¢
#n

(14)

One advantage of working with the cycle in continuous-time is the possibility of

analyzing turning points instantaneously. The expected incremental change in the
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cycle for n ≥ 2 is

dψn(t) = (log ρ)ψn(t)dt+ λcψ
∗
n(t)dt+ ψn−1(t)dt (15)

For n = 1, this reduces to

dψ1(t) = (log ρ)ψ1(t)dt+ λcψ
∗
1(t)dt (16)

Based on the smoothness of estimated cycles, the higher order models are likely to

give more reliable indication of turning points.

Expression (16) is similar to the one in Harvey (1989, p. 487). There is, however,

a slight difference because the form in (13) is analogous to the ‘Butterworth form’

used in Harvey and Trimbur (2003). The alternative form in Harvey (1989) and

in Harvey and Stock (1985) is analogous to the ‘balanced form’ also considered in

Harvey and Trimbur (2003). The key advantage of the Butterworth form, as used

here, is its convenience for the analysis of spectra and gain functions.

We have shown that the class of models in (13) are equivalent to CARMA

processes whose parameters satisfy the conditions needed for periodic behavior.

As an alternative, an openly specified model can be used to describe a general

pattern of serial correlation; thus, a CAR(1) could be used to capture first-order

autocorrelation in the noise component, for instance, due to temporary effects of

weather. When there is clear indication of cyclical dynamics, however, the models

in (13) give a more direct analysis that is easier to interpret.

The properties of a class of stochastic cycles1 are set out in Trimbur (2006) for

the discrete-time case. The properties of the continuous-time models give a similar

flexibility in describing periodic behavior.

Figure 1 shows the spectrum for parameter values λc = π/4. In particular, the

function (2πσ2ψ)
−1γψn(λ;ρ, λc, n) is plotted, where the normalizing constant includes

the unconditional variance σ2ψ of the cycle; this is computed in Mathematica by

numerical integration of the power spectrum for given values of ρ and n. For

1Note that these models have a different form from the models that would result from the exact

discretization of (13). In general, starting with a continuous-time model with uncorrelated compo-

nents leads to a discretized model that has either correlated components or MA disturbances; one

expects, however, that the basic structure of the discrete-time models should remain unchanged.
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Figure 1: Spectral density of continuous-time cyclical process for n = 1 and 2 with

ρ = 0.7 and λc = π/4.

n = 1, the damping factor is set to ρ = 0.9, and for n = 2, it is set to ρ = 0.75.

Lower values of ρ are appropriate for the higher order models because of their

resonance property. Thus, the cyclical shocks reinforce the periodicity in ψn(t),

making the oscillations more persistent for given ρ. The difference in spectra in

figure 1 indicates that the periodicity is more clearly defined for the second order

cycle.

The spectrum peaks at a period around 2π/λc for moderate values of λc, say

π/5 < λc < π, which is the standard business cycle range. The maximum does

not occur exactly at λ = λc, however, except as ρ tends to unity. The case ρ = 1

gives a nonstationary cycle, where one could, in theory, forecast out to unlimited

horizons. Thus, in economic modeling, attention is usually restricted to stationary

models where ρ < 1.
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3 Signal Extraction in Continuous Time

This section develops the signal extraction problem in continuous time. A new

result with proof is given for estimating a nonstationary signal from stationary

noise. Whittle (1983) shows a similar result for nonstationary processes, but omits

the proof and in particular, fails to recognize the importance of initial conditions.

Kailath, Sayed, and Hassibi (2000, p. 221 — 227) prove the formula for the special

case of a stationary signal. We extend the treatment of Whittle (1983) by providing

proofs, at the same time illustrating the importance of initial value assumptions to

the result. Further, the cases where the differentiated signal or noise process or both

are WN are treated rigorously.

3.1 Nonstationary signal and initial conditions

Consider the following model for a continuous time process y(t):

y(t) = s(t) + n(t), t ∈ R (17)

where n(t) is stationary. The aim is to estimate the underlying signal s(t) in the

presence of the noise, and it will be assumed that s(t) ∼ I(d), or integrated of order

d.

In general, d is any non-negative integer; the special case d = 0 reduces to

stationary s(t). In many applications of interest, we have d > 0, so that the dth

derivative of s(t), denoted by u(t), is stationary. It is assumed that u(t) and n(t)

are mean zero and uncorrelated with one another. In the standard case, both

autocovariance functions, Ru and Rn, are integrable. An extension could also

be considered where Ru or Rn or both are represented by a multiple of the Dirac

delta function, which gives rise to tempered distributions (see Folland, 1995); the

associated spectral densities are flat, indicating a corresponding WN process.

The process y(t) satisfies the stochastic differential equation

w(t) = Ddy(t) = u(t) +Ddn(t). (18)

From Section 2.2, the spectral density of w(t) is

fw(λ) = fu(λ) + λ2dfn(λ). (19)
13



From Hannan (1970, p. 81), the nonstationary process y(t) can be written in

terms of some initial values plus a d-fold integral of the stationary w(t). For example,

when d = 1,

y(t) = y(0) +

Z t

0

w(z) dz

for some initial value random variable y(0). Note that this remains valid both for

t > 0 and for t < 0. When d = 2,

y(t) = y(0) + tẏ(0) +

Z t

0

Z z

0

w(x) dx dz

for initial position y(0) and velocity ẏ(0) = [dy/dt](0). In general, we can write

y(t) =
d−1X
j=0

tj

j!
y(j)(0) + [Idw](t) (20)

with the I operator defined by [Idw](t) =
R t
0
w(z)(t− z)d−1 dz/(d − 1)!. Note that

(20) holds for the signal s(t) as well.

For an I(d) process, let y∗(0) = {y(0), ẏ(0), · · · , y(d−1)(0)} denote the collection
of d values and higher order derivatives at time t = 0. It is assumed that y∗(0)

is uncorrelated with both u(t) and n(t) for all t. This assumption is analogous to

Assumption A in Bell (1984), except that now higher order derivatives are involved.

3.2 Formula for the optimal filter

Consider the theoretical signal extraction problem for a bi-infinite series y(t) that

follows (17). The optimal linear estimator of the signal s(t) gives the minimum

mean square error. Thus, the goal is to minimize E[(ŝ(t)− s(t))2] such that

ŝ(t) = Ψ(L)y(t) = (ψ ∗ y)(t) for some weighting kernel ψ. The notation Ψ(L)

for a continuous-lag filter was introduced earlier. The problem is to determine the

optimal choice of Ψ(L) for general nonstationary models of the form (17). The

following theorem shows the main result.

Theorem 1 For the process in (17), suppose that y∗(0) is uncorrelated with both

u(t) and n(t) for all t. Also, assume that u(t) and n(t) are mean zero weakly

stationary processes that are uncorrelated with one another, with autocovariance
14



functions that are either integrable or given by constant multiples of the Dirac delta

function, interpreted as a tempered distribution. Let

g(λ) =
fu(λ)

fw(λ)
.

If g is integrable with d− 1 continuous derivatives (if d = 0, we only require that g
be continuous), then the linear minimum mean square error estimate of s(t) is given

by

ŝ(t) = Ψ(L)y(t) (21)

Ψ(L) =

Z ∞

−∞
ψ(x)Lx dx

ψ(x) = F−1[g](x).

The function ψ(x) is the continuous weighting kernel of the optimal filter. The

spectral density of the error process e(t) = ŝ(t)− s(t) is

fe(λ) =
fu(λ)fn(λ)

fw(λ)
;

hence the MSE is 1
2π

R∞
−∞ fe(λ)dλ.

If y(t) is Gaussian, then ŝ(t) is optimal among all estimators. The filter Ψ(L)

will be referred to as a continuous-lag Wiener-Kolmogorov (WK) filter. This dis-

tinguishes Ψ(L) from discrete-time model-based filters, which are only defined over

a discrete set of lags. In contrast, here we focus on the model-based filters derived

in continuous-time.

One of the important properties of the WK filters is that they pass, or preserve,

polynomials, in analogy to discrete-lag filters constructed to have this property in

discrete-time. In particular,

Ψ(L)p(t) = p(t)

for a polynomial p(t) of sufficiently low degree. To make this explicit, the filter

passes p(t) when Z ∞

−∞
xjψ(x) dx = δj,0,
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for any j up to the degree of p, with δ denoting the Kronecker delta. It is shown

in the proof of Theorem 1 that, provided that the associated moments exist, a WK

filter passes polynomials of degree up to 2d− 1.
Note that the noise and differentiated signal can be either WN or can have inte-

grable autocovariance functions. The signal extraction problem for different cases

determines different classes of weighting kernels. We can now define continuous-lag

filters that reflect the nonstationary component of a time series.

In particular, the nonstationarity means that the signal includes a stochastic

trend and so is represented by an integrated process. First, we show a simple

example of the case d = 0; this reduces to stationarity, so the only requirement on

g is continuity.

Example 4 For d = 0, let s(t) have autocovariance function Rs(h) denoted by

φ(h) = 1√
2π
e−

h2

2 . Suppose further that n(t) has autocovariance function Rn(h) =

(1− h2)φ(h). Then y is characterized by Ry(h) = (2− h2)φ(h), and the associated

spectral densities are

fs(λ) = e−λ
2/2, fn(λ) = λ2e−λ

2/2, fy(λ) = (1 + λ2)e−λ
2/2

The signal resembles a damped trend, whereas n(t) is a pink noise process that incor-

porates pseudo-cyclical and irregular fluctuations. The ratio of spectra fs(λ)/fy(λ) =
1

1+λ2
is integrable and continuous, and from Example 2 the inverse Fourier Transform

gives a simple filter with kernel ψ(x) = 1
2
e−|x|.

Example 5 Consider now the case d = 1, and suppose that the spectral density

of the differentiated signal is fu(λ) = qφ(λ), where φ has the form of the standard

normal density function, and that fu(λ)/fn(λ) = q for some constant q. The signal

extraction filter has a continuous-time frequency response given by

g(λ) =
qφ(λ)

qφ(λ) + λ2φ(λ)
=

1

1 + λ2/q
,

which yields a double-exponential weighting kernel
√
q exp{−√q|x|}/2. This kernel

passes lines and constants and could be used as a simple device for trend smoothing.
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4 Illustrations of Continuous-Lag Filtering

In this section, examples of continuous-lag WK filters are given for economic time

series. The filters are based on the class of CARIMA models; this class is partic-

ularly convenient for computing WK weighting kernels and offers flexibility for a

range of applications. The spectral densities fu and fw that enter the formula for

the gain are both rational functions in λ2. Taking their ratio yields another rational

function in λ2 for g(λ). As these analytical expressions summarize the comprehen-

sive effects of the filter, they can be studied and used in filter design in different

contexts.

We focus on examples where CARIMA models are set up within different signal

extraction problems. The specifications are guided by applications of interest in

economics; their solutions rely on the theorem given in the last Section for handling

nonstationary series. In the first example, we start with the simplest case, the local

level model. The second example considers an extension of the well-known HP

filter, which has been widely used in macroeconomics as a detrending method. We

show that the expression for the continuous-lag HP filter is relatively simple, and

this gives a basis for detrending data with different sampling conditions.

The third example extends the treatment with a derivation of continuous-lag low-

pass and band-pass Butterworth filters. This class of filters represents the analogue

of the discrete-time filters introduced in Harvey and Trimbur (2003). The band-

pass filters arise naturally as cycle estimators in a well-defined model that jointly

describes trend, cyclical, and noisy movements. The general cyclical processes in

continuous-time are defined in an analogous way to the discrete-time models studied

in Trimbur (2006). Note that the cyclical components are equivalent to certain

CARMA models. In the analysis of periodic behavior, it is more direct to work

with the structural form; the frequency parameter, for instance, reflects the average,

or central, periodicity.

The low-pass and band-pass filters we present have the property of mutual con-

sistency. That is, they may be applied simultaneously. Other procedures, in

contrast, do not preserve this property when the two filters are designed separately,

or when they are based on different source models.
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It is generally straightforward to investigate the weighting kernels of the WK

filters. This involves calculating the residues of rational functions, a standard

problem for which well-known procedures are available. Still, the computations can

become burdensome in particular cases, so in presenting illustrations, we restrict

attention to some standard filters. In these cases, the derivation of analytical results

is feasible, with the expressions simple enough to provide a clear interpretation.

In the framework of WK filters, source models can be formulated to adapt to

different situations. For instance, some series of Industrial Output are subject to

weather effects that induce short-lived serial correlation. In estimating the trend,

the base model can be set up with a low-order CAR or CARMA component.

The approach to filter design can also be adapted to focus on certain properties

of the signal, such as rate of change. Thus, in a more general framework, our target

of estimation becomes a functional of the signal. This opens the door to a number

of potential applications, such as turning point analysis, where the interest centers

on some aspect of the signal’s evolution over an interval. After describing the basic

principle, in a fourth example, we examine an application to measuring velocity and

acceleration of signal.

Illustration 1: Local Level Model The trend plus noise model is written as

y(t) = μ(t)+�(t) where μ(t) denotes the stochastic level, and �(t) is continuous-time

white noise with variance parameter σ2� , denoted by �(t) ∼WN(0, σ2� ). See Harvey

(1989) for discussion. An interpretation of the variance σ2� is that Θ(L)�(t) has

autocovariance function (θ ∗θ−)(h)σ2� for any (integrable) auxiliary weighting kernel
θ.

The local level model assumes Dμ(t) = η(t), where η(t) ∼ WN(0, σ2η). The

signal-noise ratio in the continuous-time framework is defined as q = σ2η/σ
2
� . So the

observed process y(t) requires one derivative for stationarity, and we write w(t) =

Dy(t). The spectral densities of the differentiated trend and observed process are

fη(λ) = qσ2� fw(λ) = fη(λ) + λ2σ2� = (q + λ2)σ2� .

Though the constant function fη(λ) is nonintegrable over the real line, the frequency

response of the signal extraction filter is given by the ratio (1 + λ2/q)
−1
, which

18



is integrable. As in the previous example, the weighting kernel has the double

exponential shape:

ψ(x) =

√
q

2
exp{−√q|x|}

The rate of decay in the tails now depends on the signal-noise ratio of the underlying

continuous-time model.

Illustration 2: Smooth Trend Model The local linear trend model (Harvey

1989, p. 485) has the following specification:

Dμ(t) = β(t) + η(t), η(t) ∼WN(0, σ2η)

Dβ(t) = ζ(t), ζ(t) ∼WN(0, σ2ζ )

where η(t) and ζ(t) are uncorrelated. Setting σ2η = 0 gives the smooth trend model

for which noisy fluctuations in the level are minimized and the movements occur

due to changes in slope. The data generating process is y(t) = μ(t)+ �(t) where �(t)

is white noise uncorrelated with ζ(t). Now the signal-noise ratio is q = σ2ζ/σ
2
� .

�2�4�6�8�10 2 4 6 8 10
x

0.1

0.2

w�x�

Continuous Time HP Filter

Weighting kernels

q � 1�10

q � 1�40

q � 1�200

Figure 2: Weighting kernel for continuous-lag HP filter for q = 1/10, 1/40, and

1/200.
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Recall that the discrete-time smooth trend model underpins the well-known HP

filter for estimating trends in discrete time series; see Hodrick and Prescott (1997),

as well as Harvey and Trimbur (2003). Here we develop an analogous HP filter for

the continuous-time smooth trend model. We may write the model as

u(t) = D2μ(t) = ζ(t)

w(t) = D2y(t) = ζ(t) +D2�(t).

The spectral densities of the appropriately differentiated trend and series are

fu(λ) = qσ2� fw(λ) = fu(λ) + λ4fσ2� = (q + λ4)σ2� .

Hence the ratio (1 + λ4/q)
−1 gives the frequency response function of the filter;

the error spectrum is σ2� (1 + λ4/q)
−1. Taking the inverse Fourier transform of this

function (see the appendix for details of the derivation) yields the weighting kernel

ψ(x) =
q1/4 exp{−|x|q1/4/√2}

2
√
2

³
cos(|x|q1/4/

√
2) + sin(|x|q1/4/

√
2)
´

(22)

This gives the continuous-time extension of the HP filter. From the discussion

following Theorem 1, the kernel in (22) passes cubics.

Figure 2 shows the weighting function for three different values of q. As the

signal-noise ratio increases, the trend becomes more variable relative to noise, so

the resulting kernel places more emphasis on nearby observations. Similarly, as q

decreases, the filter adapts by smoothing over a wider range. The negative side-

lobes, apparent in the figure for q = 1/10, enable the filter to pass quadratics.

Illustration 3: Continuous-Lag Band-Pass Consider again the class of sto-

chastic cycles in Example 3. A simple (nonseasonal) model for a continuous-time

process in macroeconomics is given by

y(t) = μm(t) + ψn(t) + ε(t)

where μm(t) is a trend component that accounts for long-term movements and the

cyclical component ψn(t) follows (13) for index n. The irregular ε(t) is meant to
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absorb any random, or nonsystematic variation, and in direct analogy with discrete-

time, it is assumed that in continuous-time, ε(t) ∼ WN(0, σ2ε). The definition of

the m−th order trend is

Dmμm(t) = ζ(t), ζ(t) ∼WN(0, σ2ζ )

for integer m > 0. For m = 1, this gives standard Brownian motion. For m = 2,

μm(t) is integrated Brownian motion, the continuous-time analogue of the smooth

trend, as in the previous illustration.

In formulating the estimation of ψn(t) as a signal extraction problem, we set the

nonstationary signal to μm(t) + ε(t) and the ‘noise’ to ψn(t). This is done just to

map the estimation problem to the framework developed in the last Section; it is

not intended to suggest any special importance of ‘signal’ as a target of extraction.

Actually in this case, the ‘noise’ part will usually be of greatest interest in a business

cycle analysis. Thus, the optimal filter F (L) is constructed for μm(t)+ε(t), and the

complement of this filter, (1− F (L)), yields the band-pass. Similarly, to formulate

the estimation of μm(t), take s(t) = μm(t) and n(t) = ψn(t) + ε(t).

Thus, the class of continuous-lag Butterworth filters are given by

LPm,n(λ) =
σ2ζ/λ

2m

σ2ζ
λ2m

+ σ2κ

∙
λ2+log2 ρ

(log2 ρ+(λ−λc)2)(log2 ρ+(λ+λc)2)

¸n
+ σ2ε

,

BPm,n(λ) =

σ2κ

∙
λ2+log2 ρ

(log2 ρ+(λ−λc)2)(log2 ρ+(λ+λc)2)

¸n
σ2ζ
λ2m

+ σ2κ

∙
λ2+log2 ρ

(log2 ρ+(λ−λc)2)(log2 ρ+(λ+λc)2)

¸n
+ σ2ε

,

where LPm,n(λ) stands for low-pass filter and BPm,n(λ) stands for band-pass filter,

both of order pair (m,n). These expressions follow from combining the power spec-

trum of the cycle with the pseudo-spectrum of μ(t). Defining qζ = σ2ζ/σ
2
ε as the

signal-noise ratio for the trend and qκ = σ2κ/σ
2
ε as the signal-noise ratio for the cycle,

it follows that
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LPm,n(λ; qζ, qκ) =
qζ

qζ + qκλ2m
∙

λ2+log2 ρ

(log2 ρ+(λ−λc)2)(log2 ρ+(λ+λc)2)

¸n
+ λ2m

, (23)

BPm,n(λ; qζ , qκ) =

qκλ
2m

∙
λ2+log2 ρ

(log2 ρ+(λ−λc)2)(log2 ρ+(λ+λc)2)

¸n
qζ + σ2κ

∙
λ2+log2 ρ

(log2 ρ+(λ−λc)2)(log2 ρ+(λ+λc)2)

¸n
+ λ2m

, (24)

Here the order m = d denotes the order of integration as determined by the stochas-

tic trend model. The definitions in (23) and (24) parallel the development of Harvey

and Trimbur (2003) for the discrete-time case. Note that in the continuous-time

case, we must have integrability of the frequency response function over the entire

real line rather than over a restricted interval.
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Figure 3: Gain functions of a pair of consistent low-pass and band-pass filters. The

underlying model has m = 2, n = 2, with cyclical parameters ρ = 0.9, λc = π/4 and

signal-noise ratios qζ = 0.1, qκ = 1.

Figure 3 illustrates the low-pass and band-pass gain functions for trend order

m = 2 and cycle orders n = 2. The low-pass dips at intermediate frequencies to
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accommodate the presence of the cycle in the model. Figure 4 shows a comparison

of the band-pass filter for n = 2 and 4. The other parameters are the same as in

the previous figure. Note the increased sharpness produced by the higher order

model.
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Figure 4: Gain function of band-pass filters for n = 2 and 4. The other parameters

are the same as in the previous figure.

Illustration 4: Smooth Trend Velocity and Acceleration In some applica-

tions, interest centers on some property of the signal, such as its growth rate, rather

than on the value of the signal itself. In particular, consider the linear operator

H = Dm. The conditional expectation of Hs(t) is equal to H applied to the con-

ditional expectation of s(t), since H is linear. So for Gaussian processes, assuming

that λmg(λ) is integrable — where g is the frequency response of the original WK

filter — the weighting kernel for estimating Dms(t) is given by the mth derivative of

ψ, that is, ψ(m)(x). The first derivative of the signal indicates a velocity, or growth

rate. The second derivative indicates acceleration, or variation in growth rate.

More generally, we can consider signals Hs(t) with H a linear operator. To

compute the mean squared error of (HΨ(L))y(t) as an estimate of the target Hs(t),
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multiply the error spectrum from Theorem 1 by the squared magnitude of F [H](λ).
This results in the spectrum of the new error, whose integral equals the mean squared

error. If, for example, H = D then the error spectrum is multiplied by by λ2, and

the result is then integrated over (−∞,∞).
Velocity and acceleration estimates can be computed for the HP filtered signal.

The filters are constructed directly from the Smooth Trend model. In Newtonian

mechanics, a local maximum in a particle’s trajectory is indicated by zero velocity

together with a negative acceleration; similarly, velocity and acceleration indicators

may be used to discern a downturn or recession in a macroeconomic series.
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x

w�x�
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q � 1�10
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q � 1�2000.02
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Figure 5: Weighting Kernels for Velocity WK filter based on Smooth Trend model

for q = 1/10, 1/40, and 1/200.

Since λ2(1 + λ4/q)
−1 is integrable, both derivatives of ψ are well-defined. Direct

calculation yields

ψ̇(x) = −q
1/2

2
e−q

1/4|x|/√2 sin(q1/4x/
√
2)

ψ̈(x) = − q3/4

2
√
2
e−q

1/4|x|/√2
³
cos(q1/4|x|/

√
2)− sin(q1/4|x|/

√
2)
´
.
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Figure 6: Weighting Kernels for Acceleration WK filter based on Smooth Trend

model for q = 1/10, 1/40, and 1/200.

The velocity filter, or first derivative with respect to time, has the interpretation

of a growth rate for the trend. The weighting kernel in Figure 5 shows how the

growth in the signal is assessed by comparing forward-looking displacements with

recent displacements. Likewise, the acceleration indicates the second derivative,

or curvature. The weighting kernel in Figure 6 has a characteristic sharp decline

around the origin, so that contemporaneous and nearby values are subtracted in

estimating changes in growth.

5 Application: unequally sampled data

In this Section, we outline a procedure for the practical application of the method.

The discussion of discretization is kept concise, as this material is set out in detail

in McElroy and Trimbur (2007).

Starting with a base model incontinuous-time, the classification into stock and
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flow is reflected in the measurement of observations. Denote the underlying process

by y(t). Given the sampling interval δ > 0, a stock observation at the τth time

point is defined as

yτ = y(δτ). (25)

The times of observations correspond to tτ = δτ for integer τ . The discrete

stock time series is then the sequence of values {yτ}∞τ=−∞.
A series of flow observations has the form

yτ =

Z δτ

δ(τ−1)
y(v) dv. (26)

where δ is both the interval of cumulation and the interval separating successive

observation points. Note that, more generally, the times ...,t1, t2, · · · , tτ ,... need
not be equally spaced, but for now we assume for simplicity that the spacing is

constant at tτ − tτ−1 = δ.

For a finite sample, let y = (y1, y2, · · · , yT )0 be the column vector of observations.
Then for a Gaussian process y(t), the law of iterated conditional expectations yields

E[s(t)|y] = E [(ψ ∗ y)(t)|y] =
Z

ψ(t− z)E[y(z)|y] dz. (27)

That is, our best estimate of the signal at any time t, given the observations y,

is a convolution of the weighting kernel ψ with an interpolated and extrapolated

estimates E[y(z)|y]. Thus the estimate of the signal is computed as follows:

1. Determine ψ from a fitted continuous-time model.

2. Compute E[y(z)|y] for a set of z values on a fine mesh.

3. Compute a numerical approximation to the integral in (27) and in this way

approximate the signal estimate.

Explicit worked examples are beyond the scope of this paper, but the above

suggests how the continuous-lag filter could be directly applied for a general prob-

lem. Another approach, which we prefer, is to first discretize ψ and then apply the

appropriate discrete filter to the observed data y, and this approach is set out in

detail in McElroy and Trimbur (2007). For now, it should be emphasized that our
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approach, based on a continuous-lag kernel, can handle signal estimation in a rather

general context, that is, with an unequally spaced series of stock or flow data, and

a with a signal time point lying in between observation times. This generality of

the signal extraction problem cannot be achieved in a purely discrete-time setting

and could only possibly be achieved, with great difficulty, in an approach requiring

full model discretization.

6 Conclusion

This paper has solved the problem of establishing a theoretical foundation for

continuous-time signal extraction with nonstationary models. Economic series com-

monly show some kind of stochastic trend. The rigorous treatment of nonstation-

arity given in this paper thus paves the way for the design of filters appropriate in

economics. As examples we have presented a new class of low-pass and band-pass

filters for time series.

In further work (see McElroy and Trimbur, 2007), we show how such continuous-

lag filters may be discretized for application to real data. One special case of interest

is how to adapt the HP filter to changing observation interval and to different modes

of measurement, such as stock and flow sampling. More generally, a broad range of

filters may be used as the basis for analysis. In addition to model flexibility, there

is also flexibility how the WK filters may be adapted to the target of estimation.

This has been illustrated with velocity and acceleration filters that could be used in

applications where turning point indicators are of interest.

A key aspect of our approach is the rigor and generality of the treatment. A

continuous-lag filter gives the basis for estimating a flexible target signal when the

sample has various properties, such as unequal spacing, stock or flow sampling,

missing data, and mixed frequency data.

Acknowledgements. The authors thank David Findley for helpful comments and

discussion.
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Appendix: Proofs

Proof of Theorem 1. Throughout, we shall assume that d > 0, since the d = 0

case is essentially handled in Kailath et al. (2000). In order to prove the theorem,

it suffices to show that the error process e(t) = ŝ(t) − s(t) is orthogonal to the

underlying process y(h). By (20), it suffices to show that e(t) is orthogonal to w(t)

and the initial values y∗. So we begin by analyzing the error process produced by

the proposed weighting kernel ψ = F−1[g]. We first note the following interesting
property of ψ. The moments of ψZ

zkψ(z) dz = ik
dk

dλk
fu(λ)

fw(λ)
|λ=0

for k < d exist by the smoothness assumptions on g, and are easily shown to

equal zero if 0 < k < 2d (i.e., for d ≤ k < 2d, the moments are zero so long as

they exist — their existence is not guaranteed by the assumptions of the theorem).

Moreover, the integral of ψ is equal to 1 if d > 0. These properties ensure (when

d > 0) that the filter Ψ(L) passes polynomials of degree less than d. This is because

Ψ(L)tj = tj for j < d. We first note that representation (20) also extends to the

signal: s(t) =
Pd−1

j=0
tj

j!
s(j)(0) + [Idu](t). Then the error process is

e(t) = (ψ ∗ y)(t)− s(t) = (ψ ∗ s)(t)− s(t) + (ψ ∗ n)(t).
Since Ψ(L) passes polynomials, (ψ ∗ s)(t)− s(t) =

R
(ψ(x)−∆0(x))[I

du](t− x) dx,

where ∆0 is the Dirac delta function. Note that any filter that does not pass polyno-

mials cannot be MSE optimal, since the error process will grow unboundedly with

time. So we have

�(t) =

Z
(ψ(x)−∆0(x))[I

du](t− x) dx+

Z
ψ(x)n(t− x) dx,

which is orthogonal to y∗ by Assumption A. Due to the representation (20), it is

sufficient to show that the error process is uncorrelated with [Idw](t). For any real

h

E[�(t)w(t+ h)] =

Z
(ψ(x)−∆0(x))E

¡
[Idu](t− x)[Idu](t+ h)

¢
dx (A.1)

+

Z
ψ(x)E

"
n(t− x)

Ã
n(t− h)−

d−1X
j=0

(t+ h)j

j!
n(j)(0)

!#
dx,
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which uses the fact that [Idw](t) = [Idu](t) + n(t)−Pd−1
j=0

tj

j!
n(j)(0). Now we have

E
£
[Idu](t− x)[Idu](t+ h)

¤
=

Z t−x

0

Z t+h

0

(t− x− r)d−1(t+ h− z)d−1

(d− 1)!2 Ru(r−z) dz dr.
(A.2)

If fu is integrable, we can write Ru(h) =
1
2π

R
fu(λ)e

iλh dλ. If Ru ∝ ∆0 instead, then

fu ∝ 1; we can still use the above Fourier representation of Ru in (A.2), because the

various integrals will take care of the non-integrability of fu automatically. SinceR x
0
eiλydy = (1− eiλx)/(iλ), we obtain that (A.2) is equal to

1

2π

Z
fu(λ)λ

−2d
Ã
e−iλ(t−h) −

d−1X
j=0

(−iλ)j
j!

(t− h)j
!Ã

eiλ(t−x) −
d−1X
j=0

(iλ)j

j!
(t− x)j

!
dλ.

When integrated against ψ(x)−∆0(x), we use the moments property of ψ to obtain

1

2π

Z
fu(λ)λ

−2d
Ã
e−iλ(t−h) −

d−1X
j=0

(−iλ)j
j!

(t− h)j
!¡

eiλtΨ(e−iλ)− eiλt
¢
dλ

=
1

2π

Z
fu(λ)

−fn(λ)
fw(λ)

Ã
eiλh −

d−1X
j=0

(−iλ)j
j!

(t− h)jeiλt

!
dλ.

This uses Ψ(e−iλ) − 1 = −λ2dfn(λ)/fw(λ), which is not integrable if fn ∝ 1; yet
fufn/fw will be integrable under the conditions of the theorem. As for the noise

term in (A.1), we first note that n(j)(t) exists for each j < d since w(t) exists

by assumption; this existence is interpreted in the sense of Generalized Random

Processes (Hannan, 1970). In particularZ
ψ(x)E[n(t− x)n(t− h)] dx =

Z
ψ(x)Rn(x− h) dx =

1

2π

Z
fn(λ)e

iλhΨ(e−iλ) dλ.

This Fourier representation is valid even when fn ∝ 1, since Ψ(e−iλ) is integrable
by assumption. Similarly,

E[n(t− x)n(j)(0)] =
∂j

∂zj
E[n(t− x)n(z)]|z=0 = ∂j

∂zj
Rn(t− x− z)|z=0 = ∂j

∂xj
Rn(t− x)

where the derivatives are interpreted in the sense of distributions — i.e., when this

quantity is integrated against a suitably smooth test function, the derivatives are

passed over via integration by parts:Z
ψ(x)E[n(t− x)n(j)(0)] dx = (−1)j

Z
ψ(j)(x)Rn(t− x) dx.
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Since λjΨ(e−iλ) for j < d is integrable by assumption, we have ψ(j)(x) = 1
2π

R
(iλ)jΨ(e−iλ)eiλx dλ,

and the second term in (A.1) becomes

1

2π
fn(λ)Ψ(e

−iλ)

Ã
eiλh −

d−1X
j=0

(−iλ)j(t− h)j

j!
eiλt

!
dλ.

This cancels with the first term of (A.1), which shows that Ψ(L) is MSE optimal.

Using similar techniques, the error spectral density is obtained as well. ¤

Derivation of the Weighting Kernel in Illustration 2. We compute the

Fourier Transform via the Cauchy Integral Formula (Ahlfors, 1979), letting q = 1

for simplicity:
1

2π

Z ∞

−∞

1

1 + λ4
e−iλxdλ

We can replace x by |x| because the integrand is even. The standard approach is to
compute the integral of the complex function

f(z) =
eiz|x|

1 + z4

along the real axis by computing the sum of the residues in the upper half plane,

and multiplying by 2πi (since f is bounded and integrable in the upper half plane).

It has two simple poles there: eiπ/4 and ei3π/4. The residues work out to be

(z − eiπ/4)f(z)|eiπ/4 =
e−|x|(1−i)/

√
2

4i(1 + i)/
√
2

(z − ei3π/4)f(z)|ei3π/4 =
e−|x|(1+i)/

√
2

4i(1− i)/
√
2

respectively. Summing these and multiplying by i gives the desired result, after

some simplification. To extend beyond the q = 1 case, simply let x 7→ q1/4x and

multiply by q1/4 by change of variable. ¤
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