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Abstract 
Long-horizon predictive regressions in finance pose formidable 
econometric problems when estimated using the sample sizes that 
are typically available.  A remedy that has been proposed by 
Hodrick (1992) is to run a reverse regression in which short-horizon 
returns are projected onto a long-run mean of some predictor.  By 
covariance stationarity, the slope coefficient is zero in the reverse 
regression if and only if it is zero in the original regression, but 
testing the hypothesis in the reverse regression avoids small sample 
problems.  Unfortunately this only allows the null of no 
predictability to be tested.  In this paper, we show how to use the 
reverse regression to test other hypotheses about the slope 
coefficient in a long-horizon predictive regression, and hence to 
form confidence intervals for this coefficient.  We show that this 
approach to inference works well in small samples, even when the 
predictors are highly persistent 
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1.  Introduction 

Asset returns are widely thought to be somewhat forecastable, and perhaps more so at 

long than at short horizons.  But inference in long-horizon predictive regressions is well 

known to be complicated by severe econometric problems in empirically relevant sample 

sizes.  The problems arise because the predictors that are used are variables like the 

dividend yield or term spread that are highly persistent, while the regressor is an 

overlapping sum of short-term returns.  This creates something akin to a spurious 

regression.  This is compounded by the feedback effect, or absence of strict exogeneity—

a shock to returns will in turn affect future values of the predictors.  As a result, 

conventional t-statistics have rejection rates that are well above their nominal levels.  The 

vast literature on the problems with long-horizon predictive regressions includes work 

such as Goetzmann and Jorion (1993), Elliott and Stock (1994), Stambaugh (1999), 

Valkanov (2003) and Campbell and Yogo (2006). 

Hodrick (1992) proposed an approach to test the null hypothesis that a certain 

predictor does not help forecast long-horizon returns.  His idea was instead of regressing 

the cumulative h-period returns onto the predictor at the start of the holding period, to 

regress the one-period return onto the average of the predictors over the previous h 

periods.  Under stationarity, for the coefficient in the first projection to be equal to zero is 

necessary and sufficient for the coefficient in the second projection to be equal to zero.  

However, the second regression has a persistent right-hand-side variable, but not a 

persistent left-hand side variable.  Intuitively, this might mean that the size distortions of 

a test based on the second regression are much smaller.  Hodrick finds that this is indeed 

the case.  This approach to inference has become fairly widely used. 
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However, many researchers believe that there is some time series predictability in 

asset returns, even after controlling for econometric problems (see for example Campbell 

(2000)).  The contribution of this paper is to show that a methodology related to the 

reverse-regression can be used more widely, to test any hypothesis about the parameter 

vector in a long-horizon regression, not just that it is equal to zero.  A confidence set for 

the parameter vector can then be formed by inverting the acceptance region of the test.  

The proposed confidence set is asymptotically equivalent to the conventional estimation 

of the predictive regression.  However, we show that it has substantially better small-

sample properties. 

The approach to inference proposed here applies regardless of whether there is a 

single predictor or multiple predictors.  That is an advantage of this approach to inference 

relative to some others that have been proposed, such as the method of Campbell and 

Yogo (2006) that applies only for a scalar predictor. 

The plan for the remainder of the paper is as follows.  Section 2 describes long-

horizon regressions and the proposed approach to inference.  Section 3 assesses the small 

sample performance of the methodology in a Monte-Carlo simulation.  Section 4 contains 

an empirical application to forecasting excess stock and bond returns.  Section 5 

concludes.   

 

2. The Methodology 

Let 1tr +  denote the continuously compounded return from t  to 1t +  and let 

( )
1 2( ... ) /h

t h t t t hr r r r h+ + + += +  denote the h -period return.  Let tx  be some px1 vector of 

predictors.  Assume that ( , )t t ty r x′ ′=  is covariance-stationary and that ( ) t tA L y ε=  where 
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( )A L  is a lag polynomial with all roots outside the unit circle and tε  is a martingale 

difference sequence with 2 δ+  finite moments for some 0δ > .  Consider the long-

horizon predictive regression 

 ( )h
t h t t hr xα β ε+ +′= + +  (1) 

Researchers commonly estimate this regression, using either Newey-West or Hansen-

Hodrick standard errors (Newey and West (1987) and Hansen and Hodrick (1980)), to 

control for the serial correlation in the errors.  Alternative standard errors in equation (1) 

are given by Hodrick standard errors 1B (Hodrick (1992)).  This involves estimating the 

variance of ( , ') 'α β in the forward regression (equation (1))  as 1 1
1 1( ) ( )t t t t t tx x w w x x− −
+ +′ ′ ′Σ Σ Σ% % % %  

where 1
1 1 0( )( )h

t t i t iw r r x−
+ + = −= − Σ %  where (1, ) 't tx x′=%  and r  is the sample mean of returns.  

Hodrick standard errors 1B are valid only if 0β = , because it is in this case alone that 

the sample variance of 1tw +  is a consistent estimate of the zero-frequency spectral density 

of t t hx ε + .  

Consider also the reverse regression of the one-period return on the h -period 

average of the regressor: 

 ( )
1 1

h
t t tr x uμ γ+ +′= + +  (2) 

where ( )
1 1( ... ) /h

t t t t hx x x x h− − += + + .  The coefficients in the forward and reverse 

regressions are related as 

 1 1 1
1 1 1Cov( , ) ( , ) / ( , ) /h h h

xx t h t xx j t j t xx j t t jV r x V Cov r x h V Cov r x hβ − − −
+ = + = + −= = Σ = Σ  

 1 ( ) 1 1 ( ) 1
1 1( , ) ( ) ( ) ( , ) ( )h h

xx t t xx xx xx t t xx xxV Cov r x V V h V h Cov r x V V h γ− − − −
+ += = =  (3) 
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where xxV  and ( )xxV h  are the variance-covariance matrices of tx  and ( )h
tx , respectively, 

and the last equality on the first line uses the assumption of covariance-stationarity.  A 

consequence of this is that 0β =  if and only if 0γ = .  However, inference in the reverse 

regression is less prone to size distortions.  Consequently, Hodrick (1992) also proposed 

testing the hypothesis that 0β =  by testing the implication that 0γ =  in the reverse 

regression, equation (2).  Note that Hodrick proposed the reverse regression in addition to 

his standard errors 1B, where the latter are alternative standard errors for the forward 

regression.  Both can only be used to test the hypothesis of no predictability, i.e. that 

0β = .  However, the evidence for some predictability in asset returns at long horizons is 

quite strong, and we are instead perhaps more interested in testing other hypotheses about 

β , or forming a confidence set for it.   

This paper proposes methods for inference on β  beyond just testing that it is 

equal to zero.  The proposed approach is asymptotically equivalent to Wald 

tests/confidence sets for β  in equation (1), but turns out to have better small sample 

properties.  The idea is that from equation (3), under covariance-stationarity, 

1 ( )xx xxV V hβ γ−=  and so inference about γ  from the reverse regression can be used for 

inference on β , taking account of the distribution of the tx s.   Since 

1 ( )
1( ) ( , )h

xx t tV h Cov r xγ −
+= , we only need to adjust the numerator of the reverse regression, 

as  

 1 ( )
1( , )h

xx t tV Cov r xβ −
+=  (4).   

We now describe concretely how to use (4) for inference on β .  First let 

( )
1 1Cov( , )h

t tr xθ +=  and 2 xxVθ = .  Also let 1 ( )
1 1 1
ˆ ( ) ( )( )T h

t h t tT h r r x xθ −
= + += − Σ − −  and 
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1
2 1

ˆ ( )( )T
t t tT x x x xθ −
= ′= Σ − −  be the sample counterparts where 1

1
T
t tr T r−
== Σ  and 

1
1

T
t tx T x−
== Σ .  We have 1

2 1β θ θ−=  and assume that 

 ˆ( ) (0, )dT N Vθ θ− →  (5) 

where 1 2( , ( ) )vechθ θ θ′ ′ ′= , 1 2
ˆ ˆ ˆ( , ( ) )vechθ θ θ′ ′ ′=  and V  is the spectral density at frequency 

zero of 
( )

1

( )

h
t t

t t

r x
vech x x

+⎛ ⎞
⎜ ⎟′⎝ ⎠

, which can be partitioned conformably as 11 12

21 22

V V
V V
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 Two approaches to inference on β  can be considered.  The first uses the delta 

method as β  is a nonlinear function of θ  that is itself root-T consistently estimable and 

asymptotically normal.  Define an estimator of β  as 

 1
2 1

ˆ ˆβ θ θ−=%  (6) 

The distribution of this estimator can be obtained from (5) via the delta method.  

Concretely, because the derivatives of β  with respect to 1θ  and 2( )vech θ are 1
2θ
−  and 

1 1
1 2 2( ' ) pDθ θ θ− −− ⊗ , respectively, where pD  denotes the duplication matrix, it follows 

that: 

( ) ( )1 1 1 1 1 1
2 1 2 2 2 1 2 2( ) (0,[ ( ' ) ] [ ( ' ) ]')d p pT N D V Dβ β θ θ θ θ θ θ θ θ− − − − − −− → − ⊗ − ⊗%  

This accordingly implies that: 

( ) ( )1 1 1 1 1 1 1
2 1 2 2 2 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ{ : ( ) [ [ ( ' ) ] [ ( ' ) ] '] ( ) ( )}p p pT D V D Fβ β β θ θ θ θ θ θ θ θ β β α− − − − − − −′ ′− − ⊗ − ⊗ − ≤% %  

is a 100 α−  percent confidence set for β , where ( )pF α  denotes the upper α  percentile 

of a 2 ( )pχ distribution and V̂  is a consistent estimator of V .  We call this the delta-

method variant of the proposed confidence interval. 
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However, the delta method can provide a poor approximation to the ratio of two 

random variables in small samples.  This observation led Fieller (1954) to propose an 

alternative approach to inference on the ratio of two random variables.  This method is 

based on inverting the acceptance region of a hypothesis test of a linear hypothesis that 

does not require any delta method approximation.  This approach can be adapted here 

noting that 

( ) ( )2 1
ˆ ˆ( ) (0, [ ( ' ) ] [ ( ' ) ] ')d p p p p p pT N I I D V I I Dθ β θ β β− → − ⊗ − ⊗  

( ) ( ) 1 2
2 1 2 1
ˆ ˆ ˆ ˆˆ( ) [ [ ( ' ) ] [ ( ' ) ] '] ( ) ( )p p p p p p dT I I D V I I D pθ β θ β β θ β θ χ−′∴ − − ⊗ − ⊗ − →  

This allows any hypothesis on β  to be tested and means that  

( ) ( ) 1
2 1 2 1
ˆ ˆ ˆ ˆˆ{ : ( ) [ [ ( ' ) ] [ ( ' ) ] '] ( ) ( )}p p p p p p pT I I D V I I D Fβ θ β θ β β θ β θ α−′− − ⊗ − ⊗ − ≤  

is a 100 α−  percent confidence set for β .  We call this proposed confidence interval, the 

Fieller variant of the proposed confidence set.   

In the case 1p = , the computation of this confidence interval does not require 

evaluating a test statistic at each point in a grid of values of β  because the confidence set 

for β  is 

( ) ( )
2

2 1
1

ˆ ˆ( ){ : ( )}ˆ[ 1 ] [ 1 ] '
T F

V
θ β θβ α
β β

−
≤

− −
 

which can be written as  

 
2

2

4
2 4
b b ac
a a

−
− ±  (7) 
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where 2 1
2 22 1

ˆ ˆ ( )a T V Fθ α−= − , 1
12 1 1 2

ˆ ˆˆ2 ( ) 2b T V F α θ θ−= −  and 2 1
1 11 1
ˆ ˆ ( )c T V Fθ α−= − , 

provided that 0a >  and 2 4b ac> , both of which occur with probability one 

asymptotically.1 

Theorem 1 shows that the two proposed confidence sets are asymptotically 

equivalent to each other (for any p ), which in turn means that they are both 

asymptotically equivalent to the conventional Wald confidence sets formed from 

estimating equation (1). 

 

Theorem 1: The two proposed test statistics are asymptotically equivalent. 

Proof. The delta-method tests the hypothesized value β  using the test statistic: 

( ) ( )1 1 1 1 1 1 1
2 1 2 2 2 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ( ) [ [ ( ' ) ] [ ( ' ) ] '] ( )p pT D V Dβ β θ θ θ θ θ θ θ θ β β− − − − − − −′ ′− − ⊗ − ⊗ −% %  

 

( ) ( ) 1
1 2 1 2
ˆ ˆ ˆ ˆˆ( ) [ [ ( ' ) ] [ ( ' ) ] '] ( )p p p p p pT I I D V I I Dθ θ β β β θ θ β−′= − − ⊗ − ⊗ −% %  

The Fieller method uses the test statistic 

( ) ( ) 1
2 1 2 1
ˆ ˆ ˆ ˆ( ) [ [ ( ' ) ] [ ( ' ) ] '] ( )p p p p p pT I I D V I I Dθ β θ β β θ β θ−′− − ⊗ − ⊗ −  

( ) ( ) 1
1 2 1 2
ˆ ˆ ˆ ˆˆ( ) [ [ ( ' ) ] [ ( ' ) ] '] ( )p p p p p pT I I D V I I Dθ θ β β β θ θ β−′= − − ⊗ − ⊗ −  

But since pβ β→% , the difference between these two test statistics is (1)po . 

 

 

                                                 
1 Pathological cases for this confidence set are possible in finite samples.  If 2 4b ac<  and 0a > , then the 
confidence set is empty.  If 2 4b ac<  and 0a < , then it is the whole real line.  If 2 4b ac>  and 0a < , then 
it is the complement of the interval defined by equation (7). 
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Implementation of the proposed confidence intervals requires choosing a specific 

estimator of V, the spectral density matrix of 
( )

1

( )

h
t t

t t

r x
vech x x

+⎛ ⎞
⎜ ⎟′⎝ ⎠

.  We use a Newey-West 

estimator with lag length equal to h .  

 We now turn to assessing how the proposed methods work in practice.  The 

methods are referred to as “reverse regression” estimates even though they do not require 

explicit estimation of equation (2) because they are both based on assessing the 

covariance between one-period returns and the h-period mean of the predictor.  

 

3. Monte-Carlo simulation. 

The proposed approaches to inference are both asymptotically equivalent to conventional 

Wald tests and confidence intervals.  The motivation for considering them is that they 

may work better in small samples.  Like the conventional methods, their justification is 

based on an assumption of stationarity, and methods that assume stationarity often fare 

poorly in the presence of a unit root, or a near unit root, at least in empirically relevant 

sample sizes.  But the proposed methods might in practice be quite robust to near non-

stationarity.  The intuition is that they back out the implied coefficient in the long-horizon 

regression from the correlation between one-period returns and a long-run average of the 

predictor.  How well the proposed methods actually work in finite samples with nearly 

non-stationary predictors is the key practical question that we answer in a Monte-Carlo 

experiment. 

In this experiment, returns and the predictor follow a VAR(1): 

 , 11

, 11

r tt t

x tt t

r r
x x

ε
μ

ε
++

++

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + Φ + ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (8) 
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where the errors are iid normal with mean zero and covariance matrix Σ .  Following 

Campbell (2001), set 
0
0

μ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 
0
0

α
φ

⎛ ⎞
Φ = ⎜ ⎟

⎝ ⎠
 and 

2

2
r r x

r x x

σ ρσ σ
ρσ σ σ

⎛ ⎞
Σ = ⎜ ⎟

⎝ ⎠
.  As the units of 

measurement for returns and the predictors are arbitrary, we can normalize 1r xσ σ= =  

without loss of generality, leaving three free parameters: α , φ  and ρ . 

 After some algebra, the slope coefficient in the long-horizon regression is 

21
1 1 1 2 1 1

22

{ } /h i h i
i ie e e e h

ω
β

ω = =′ ′= Σ Φ + Σ Φ    

where 1 (1,0)e ′= , 2 (0,1)e ′=  and 11 12

21 22

ω ω
ω ω
⎛ ⎞

Ω = ⎜ ⎟
⎝ ⎠

 is the unconditional variance of t

t

r
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

so that 1
4( ) ( ) ( )vec I vec−Ω = −Φ⊗Φ Σ .  The population R-squared in this regression is 

 
2

22
2 1 1

22 1 1 1 1 1( ) ( ) 'h i j i j
i j je e

β ω
β ω − −

= = =′+ Σ Σ Φ Σ Σ Φ
 

Table 1 shows the effective coverage of different confidence intervals for 

alternative horizons ( h ) and different combinations of α , φ  and ρ .    The coverage 

rates of the confidence sets are of course 1 minus the sizes of the test that β  is equal to 

its true value.  The sample size is T=500, which corresponds to about 40 years of 

monthly data and the nominal coverage is 95 percent. The confidence intervals 

considered are the ordinary confidence intervals based on estimating equation (1), using 

Newey-West standard errors with a lag truncation parameter of h , the confidence 

interval based on estimating this equation using standard errors 1B of Hodrick (1992)—

that are valid only under the null of no predictability—and the proposed confidence 

intervals based on either the delta or Fieller methods in the reverse regression.  
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Confidence intervals based on Hansen-Hodrick standard errors were also constructed, but 

these have performance that is consistently very similar to those based on Newey-West 

standard errors, and so are not shown.  In each case, the population R-squared is reported 

as an easily interpretable metric for the degree of predictability.   At the horizon h=48, 

this ranges from 0 to 87 percent, indicating a wide variation in the degree of 

predictability. 

 The proposed confidence intervals are based on an assumption of stationarity, 

while the matrix Φ  has roots very close to unity.  Nonetheless, while the Fieller 

confidence interval can have coverage that is somewhat below the nominal level, in no 

case is it less than 86 percent, and in most cases it is above 90 percent.  The delta method 

consistently has modestly lower effective coverage, but it still always has effective 

coverage of at least 80 percent, and usually a good bit more.  The comparison of the 

coverage rates leads us to prefer the Fieller interval, even though it is a little more 

complicated to compute and the improvement is small. 

For the Newey-West confidence intervals, the effective coverage is much lower.  

It is generally around 80-85 percent at a horizon 12h = , and falls as the horizon 

increases, and is around 70 percent at a horizon of 48 months.  Using Hodrick standard 

errors 1B gives good coverage if β  is small, but can work very poorly if β  is large.  

This is not surprising given that these standard errors are only justified under the null of 

no predictability.  

 Table 2 repeats this exercise, with a sample size of T=1,000.  All of the 

confidence intervals have coverage that is closer to the nominal level than in the smaller 

sample size; the relative coverage of the different methods is about the same.  In this 
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larger sample size, the proposed Fieller confidence intervals always have coverage over 

90 percent, while the coverage rates of the delta method confidence intervals are just 

slightly lower.  Meanwhile, confidence intervals based on estimating equation (1) with 

Newey-West standard errors or Hodrick standard errors 1B can have coverage rates 

below 80 and 60 percent, respectively. 

 Although in this Monte-Carlo simulation, we know the true value of β , in 

practice, of course, the researcher does not know the true value of this parameter and so it 

is important that the coverage of a confidence interval be as close as possible to the 

nominal level uniformly in β .  In this regard, Tables 1 and 2 show that the proposed 

confidence intervals are more reliable than using either Newey-West standard errors or 

Hodrick standard errors 1B, because the coverage rates of intervals based on 

conventional standard errors are close to the nominal value only for some parts of the 

parameter space. 

Coverage is of course not the only criterion for a confidence interval; precision 

matters too.  The median width of the alternative confidence intervals is shown in Tables 

3 and 4, for sample sizes of T=500 and T=1,000 respectively.  The proposed confidence 

sets from the reverse regression are wider than those based on estimating equation (1) 

with Newey-West standard errors or Hodrick standard errors 1B.  The Fieller confidence 

intervals are typically nearly twice as wide as those based on Newey-West standard 

errors and range from having the same width as Hodrick standard errors 1B to being 

more than twice as wide.  The cases in which the proposed confidence intervals are 

particularly wide are, not surprisingly, also the cases in which the conventional 

confidence intervals have poor coverage.  This is what one would expect, given that these 
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are symmetric one-dimensional confidence intervals constructed around the parameter 

estimates.  

 

4. Empirical Results. 

We now apply this proposed methodology to two standard predictive regressions in 

finance; the prediction of excess stock returns using the dividend-yield and short-term 

interest rates and the prediction of excess bond returns using the term structure of interest 

rates. 

 

4.1 Forecasting Excess Stock Returns 

We first consider the regression of h-month cumulative excess returns for the value-

weighted dividend-inclusive CRSP index on the log dividend yield at the start of the 

holding period.  The sample period is December 1952-December 2007.  The horizons are 

12, 24, and 36 months.   

Coefficient estimates are shown in Table 5, along with Newey-West standard 

errors and Hodrick standard errors 1B.  Judging from the Newey-West standard errors, 

the estimates of β  are significantly positive at all horizons, at least at the 10 percent 

level.  Using the Hodrick standard errors, the estimate of β  is significant only at the 10 

percent level and only at the horizon of 12 months.  

There is thus marginal evidence of predictability in returns, and of course even 

where we cannot reject the hypothesis that 0β = , this does not rule out the possibility of 

some predictability of returns.  This motivates testing a range of hypotheses, or 

equivalently forming a confidence interval for β  that should have coverage close to the 
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nominal level uniformly in the parameter space.  Our simulation results earlier indicate 

that the confidence intervals proposed in this paper come close to doing this, while the 

use of existing standard errors (Newey-West or Hodrick standard errors 1B) does not.  

Accordingly, Table 5 also shows the 95 percent confidence intervals for β  using both the 

delta method and Fieller variants of the proposed methodology.  These are wider than one 

would get from conventional standard errors and also tend to be asymmetric around the 

OLS estimate of β .  For example, at the three-year horizon, the OLS estimate of β  is 

0.55, the 95 percent confidence interval using Hodrick standard errors 1B would span 

from -0.37 to 1.47, but the Fieller confidence interval is from -0.95 to 1.39. 

Following Ang and Bekaert (2007), we also considered the regression of h-month 

cumulative excess stock returns on both the log dividend yield and the one-month interest 

rate (using the Fama-Bliss riskfree rate) as they and other authors find that predictability 

is substantially greater in this bivariate regression.  A useful property of the proposed 

approach to inference is that it can accommodate multiple predictors.   Table 6 reports the 

coefficient estimates from estimating equation (1) with both Newey-West standard errors 

and Hodrick standard errors 1B.  The coefficients on the dividend yield and short-term 

interest rate are significantly positive and negative, respectively, at the horizon of one 

year.  The significance goes down at longer horizons, especially when using Hodrick 

standard errors 1B.  All of this is consistent with Ang and Bekaert (2007). 

Figure 1 shows the confidence sets for β  formed by the methods proposed in this 

paper.  The confidence sets are quite large and include values of both elements of β  that 

are far from zero.  At the twelve-month horizon, the delta and Fieller variants of the 

proposed methods deliver very similar confidence sets.  At longer horizons, they are 
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notably different and the Fieller confidence set—that consistently gives the best coverage 

rates in the Monte-Carlo simulation—looks quite non-elliptical meaning that it cannot be 

close to any confidence set that is formed from a normal approximation to the distribution 

of any point estimate of β .  

 

 4.2 Forecasting Excess Bond Returns with the Slope of the Yield Curve     

Let ,n tP  be the price of an n −month zero-coupon bond in month t; the per annum 

continuously compounded yield on this bond is , ,
12 log( )n t n tz P
n

= − .  The excess return 

from buying this bond in month t and selling it in month t+1 is, over the one-month risk-

free rate is 

 , 1 1, 1 , 1,log( ) log( )n t n t n t tr P P z+ − += − −  

where 1,tz  is the one-month yield.  We can then construct the h-period excess return 

( )
, 1 ,
h h

n t h j n t jr r+ = += Σ .  This is very close to—though not exactly the same as—the excess 

return on holding an n-month zero-coupon bond for h months over the return on holding 

the h-month bond for that same holding period, considered by Cochrane and Piazzesi 

(2005) and many others.   

A basic premise of term structure analysis is that today’s yield curve can be used 

to forecast future yield curves and the excess returns on long bonds.  For example, when 

the yield curve is steep, long-term bonds have high expected returns (Fama and Bliss 

(1987)).  Accordingly, researchers project excess returns onto the term structure of 

interest rates at the start of the holding period, running regressions of the form 

 ( )
,
h

n t h t t hr xα β ε+ +′= + +  (9) 
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where tx  is some vector of yields or spreads at time t . 

We considered estimates of β  formed from estimating equation (9) with the long-

term bond maturity, n, ranging from 5 to 10 years and the holding period, h, being 1, 2 or 

3 years.  End-of-month data on zero-coupon yields from the dataset of Gürkaynak, Sack 

and Wright (2007) were used, except that for the one-month yield, the Fama-Bliss risk-

free rate from CRSP was used instead.   

We first used the spread between the ten-year and one-month yield as the sole 

predictor, tx .  Results are shown in Table 7, along with Newey-West standard errors and 

Hodrick standard errors 1B.  Judging from these conventional standard errors, at the 12-

month horizon, the estimates of β  are all significantly positive, at least at the 5 percent 

level.  At longer horizons, the estimate of β  is not significant at the 5 percent level in the 

direct estimation of equation (9). 

Table 7 also shows the proposed confidence intervals for β ; both the delta 

method and Fieller variants.  At the 12-month horizon, these are a bit wider than would 

be obtained from Newey-West standard errors or Hodrick standard errors 1B.  In the case 

60n = , the conventional confidence intervals do not span zero, while the proposed ones 

do.  Judging from these results, there is virtually no evidence against the hypothesis that 

0β =  at longer horizons.  However, there is no evidence against the hypothesis that β  

takes on many nonzero values either, as the proposed confidence intervals are very wide.  

The proposed confidence intervals are much wider than those based on either Newey-

West standard errors or Hodrick standard errors 1B, but neither of these comes close to 

controlling coverage uniformly in β . 
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4.3 Forecasting Excess Bond Returns with the Term Structure of Forward Rates  

In an influential paper, Cochrane and Piazzesi (2005) argued that while the slope of the 

yield curve has some predictive power for bond returns, using a combination of forward 

rates gives better forecasting performance, and that a “tent-shaped” function of forward 

rates has remarkable predictive ability for excess bond returns with R-squared values up 

to 44 percent. 

 Motivated by this finding, we estimated equation (9), using as the predictors the 

one-year yield, and the one-year forward rates ending in three and five years.2  Table 8 

shows p-values from the conventional Wald test of the hypothesis that 0β =  and using 

both the delta method and Fieller variants on the proposed approach to inference.   

 The Newey-West p-values indicate overwhelming significance at the shortest 

horizon of 12 months, and are also highly significant at the 24-month horizon.  In 

contrast, Hodrick standard errors 1B and the proposed tests give p-values that are 

between 3 and 13 percent at the twelve-month horizon and are not significant at all at 

longer horizons.  Thus, evidence for predictability of excess bond returns using forward 

rates is fairly marginal at the twelve month horizon and is nonexistent at longer horizons.  

This is based on just testing the hypothesis of no predictability and so does not require the 

use of the methods proposed in this paper, but it nonetheless is a finding of some interest, 

suggesting that the evidence that the tent-shaped factor helps forecast returns may not be 

                                                 
2 Here we are using three forward rates, not five as in Cochrane and Piazzesi (2005).  The reason is that the 
Svensson yield curve used by Gürkaynak, Sack and Swanson (2007) is a function of only 6 parameters and 
the five forward rates will necessarily be extremely multicollinear.  Cochrane and Piazzesi (2008) likewise 
use only three forward rates when forecasting excess bond returns using yields from this dataset. 
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nearly as strong as had been thought.3  What does require the methods proposed in this 

paper is testing other hypotheses about β  or forming confidence sets. 

 Confidence sets for β  when this vector contains more than two elements are hard 

to represent graphically.  But for the delta method, the proposed point estimates for 

individual coefficients, given in equation (6), can be computed along with the associated 

delta-method standard errors.  These are shown in Table 9 for 120n = .  The point 

estimates do indeed show the “tent-shaped” pattern, with a high coefficient on the one-

year forward rate ending three years hence and lower coefficients on the other two 

forward rates.  The proposed point estimates are almost identical to the conventional OLS 

point estimates, but the proposed standard errors are much larger than their conventional 

counterparts.  Overall, the exercise indicates that the coefficients in the regression 

considered by Cochrane and Piazzesi (2005) are far less precisely estimated than one 

might suppose from conventional inference approaches and indeed even their 

significance is in doubt. 

 

5. Conclusion 

We have proposed two related methods for inference in a long-horizon predictive 

regression in this paper. Both methods are based on assessing the covariance between 

one-period returns and a long-term average of the predictor, and so have a motivation that 

is similar to the reverse regression of Hodrick (1992).  However, our proposal for 

inference allows us to test any hypothesis on the slope coefficient in the long-horizon 

                                                 
3 Bekaert, Hodrick and Marshall (2001) is a paper that casts doubt on the predictability of excess bond 
returns using the term structure, though it does not use the forward rates of Cochrane and Piazzesi (2005). 
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predictive regression; not just to test that it is zero, as in Hodrick’s paper.  The acceptance 

region of this test can be represented as a confidence set for this slope coefficient. 

In Monte-Carlo simulations we have demonstrated that the proposed methods 

control the effective coverage of confidence intervals (equivalently control the size of 

tests) fairly well, uniformly in the parameter space.  In empirical applications, we find 

that any evidence for predictability of excess stock and bond returns is marginal.  

However, using our methodology we are also unable to reject the hypothesis that the 

coefficient in the predictive regression takes on specific nonzero values.   We are left 

with confidence sets for the coefficients in canonical predictive regressions in finance 

that include zero in some, but not all cases, and that are quite different from the 

conventional confidence sets as they are wider and sometimes asymmetric around the 

OLS point estimate of the predictive regression. 
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Table 1: Coverage of Alternative Confidence Intervals: Sample Size: 500 
Panel A: 0.98φ =  

 0.5ρ = −  0ρ =  0.5ρ =

 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 
h=12             
Proposed: Fieller  0.93 0.94 0.97 0.99 0.95 0.95 0.96 0.98 0.93 0.93 0.94 0.96 
Proposed: Delta 0.92 0.93 0.96 0.99 0.93 0.94 0.95 0.97 0.92 0.91 0.92 0.94 
Newey-West 0.84 0.85 0.86 0.87 0.86 0.86 0.86 0.86 0.84 0.84 0.83 0.82 
Hodrick 0.95 0.96 0.98 0.99 0.95 0.95 0.95 0.94 0.94 0.92 0.89 0.85 

2R  0.00 0.10 0.42 0.74 0.00 0.09 0.36 0.64 0.00 0.08 0.31 0.56 
             
h=24             
Proposed: Fieller  0.92 0.95 0.99 0.99 0.94 0.95 0.96 0.97 0.92 0.92 0.93 0.95 
Proposed: Delta 0.90 0.94 0.98 0.98 0.92 0.93 0.94 0.95 0.90 0.88 0.89 0.91 
Newey-West 0.80 0.82 0.84 0.83 0.82 0.83 0.81 0.80 0.81 0.79 0.78 0.77 
Hodrick 0.94 0.97 0.98 0.95 0.95 0.95 0.92 0.83 0.94 0.91 0.83 0.72 

2R  0.00 0.15 0.54 0.75 0.00 0.13 0.42 0.63 0.00 0.11 0.35 0.54 
             
             
h=36             
Proposed: Fieller  0.91 0.96 0.98 0.98 0.93 0.93 0.95 0.95 0.91 0.89 0.90 0.92 
Proposed: Delta 0.89 0.95 0.96 0.95 0.92 0.91 0.91 0.91 0.89 0.85 0.85 0.86 
Newey-West 0.77 0.79 0.80 0.77 0.79 0.79 0.77 0.74 0.77 0.75 0.73 0.71 
Hodrick 0.95 0.98 0.97 0.87 0.95 0.94 0.88 0.72 0.95 0.89 0.77 0.61 

2R  0.00 0.19 0.56 0.69 0.00 0.15 0.42 0.57 0.00 0.12 0.33 0.49 
             
h=48             
Proposed: Fieller  0.90 0.96 0.97 0.95 0.92 0.92 0.92 0.92 0.90 0.86 0.87 0.88 
Proposed: Delta 0.88 0.95 0.94 0.91 0.91 0.89 0.87 0.86 0.88 0.82 0.80 0.81 
Newey-West 0.73 0.77 0.75 0.71 0.77 0.75 0.72 0.68 0.73 0.71 0.68 0.67 
Hodrick 0.95 0.98 0.95 0.76 0.96 0.93 0.83 0.62 0.94 0.87 0.71 0.53 

2R  0.00 0.20 0.54 0.62 0.00 0.15 0.39 0.51 0.00 0.12 0.31 0.43 
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Panel B: 0.99φ =  

 0.5ρ = −  0ρ =  0.5ρ =

 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 
h=12             
Proposed: Fieller  0.92 0.94 0.97 0.99 0.95 0.95 0.96 0.98 0.93 0.92 0.93 0.96 
Proposed: Delta 0.90 0.92 0.96 0.99 0.93 0.94 0.95 0.97 0.90 0.90 0.91 0.93 
Newey-West 0.83 0.84 0.85 0.87 0.86 0.86 0.86 0.84 0.83 0.82 0.81 0.79 
Hodrick 0.93 0.96 0.98 0.99 0.95 0.95 0.95 0.93 0.94 0.91 0.88 0.83 

2R  0.00 0.19 0.62 0.86 0.00 0.18 0.55 0.80 0.00 0.16 0.50 0.74 
             
h=24             
Proposed: Fieller  0.91 0.96 0.99 0.99 0.94 0.95 0.96 0.98 0.92 0.91 0.92 0.95 
Proposed: Delta 0.89 0.94 0.98 0.98 0.92 0.93 0.94 0.95 0.89 0.87 0.88 0.91 
Newey-West 0.78 0.81 0.83 0.81 0.82 0.82 0.79 0.76 0.75 0.79 0.79 0.72 
Hodrick 0.94 0.97 0.98 0.94 0.95 0.95 0.90 0.80 0.94 0.98 0.96 0.81 

2R  0.00 0.31 0.74 0.87 0.00 0.27 0.63 0.79 0.00 0.39 0.76 0.83 
             
h=36             
Proposed: Fieller  0.91 0.97 0.98 0.98 0.93 0.94 0.95 0.96 0.91 0.89 0.90 0.92 
Proposed: Delta 0.87 0.96 0.97 0.95 0.91 0.91 0.91 0.91 0.87 0.83 0.83 0.86 
Newey-West 0.75 0.79 0.79 0.72 0.79 0.78 0.73 0.69 0.75 0.71 0.68 0.65 
Hodrick 0.94 0.98 0.96 0.81 0.95 0.94 0.84 0.64 0.94 0.86 0.70 0.53 

2R  0.00 0.39 0.76 0.83 0.00 0.31 0.64 0.75 0.00 0.26 0.55 0.69 
             
h=48             
Proposed: Fieller  0.90 0.97 0.97 0.96 0.92 0.92 0.93 0.93 0.89 0.86 0.87 0.89 
Proposed: Delta 0.87 0.95 0.94 0.91 0.91 0.88 0.86 0.86 0.87 0.79 0.79 0.82 
Newey-West 0.71 0.76 0.73 0.65 0.75 0.73 0.67 0.62 0.71 0.66 0.62 0.60 
Hodrick 0.94 0.98 0.92 0.65 0.95 0.92 0.77 0.53 0.94 0.83 0.62 0.44 

2R  0.00 0.43 0.74 0.78 0.00 0.34 0.62 0.71 0.00 0.27 0.53 0.65 

Notes: This Table shows the simulated coverage of alternative confidence intervals for the coefficient β  in equation (1).  The methods considered 
include confidence intervals from the reverse regression proposed in this paper.  The delta-method and Fieller variants are labeled Proposed: Delta 
and Proposed: Fieller, respectively.  Wald confidence intervals using the OLS estimates of equation (1) using Newey-West standard errors with a 
lag-truncation parameter of h  and using Hodrick standard errors 1B (only valid if 0β = ) are also considered.  These are Newey-West and 
Hodrick.  The simulation design is described in section 3.  The row labeled R2 gives the population R-squared in the regression.  All confidence 
intervals have a 95 percent nominal coverage rate. 
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Table 2: Coverage of Alternative Confidence Intervals: Sample Size: 1000 
Panel A: 0.98φ =  

 0.5ρ = −  0ρ =  0.5ρ =

 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 
h=12             
Proposed: Fieller  0.94 0.95 0.97 1.00 0.95 0.95 0.97 0.99 0.94 0.94 0.96 0.98 
Proposed: Delta 0.93 0.94 0.97 0.99 0.94 0.94 0.96 0.98 0.93 0.93 0.95 0.97 
Newey-West 0.87 0.87 0.88 0.89 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.86 
Hodrick 0.95 0.96 0.98 0.99 0.95 0.95 0.95 0.95 0.94 0.93 0.91 0.88 

2R  0.00 0.10 0.42 0.74 0.00 0.09 0.36 0.64 0.00 0.08 0.31 0.56 
             
h=24             
Proposed: Fieller  0.94 0.96 0.99 1.00 0.94 0.95 0.97 0.99 0.93 0.94 0.95 0.97 
Proposed: Delta 0.92 0.95 0.99 1.00 0.93 0.94 0.96 0.98 0.92 0.92 0.94 0.96 
Newey-West 0.85 0.86 0.87 0.87 0.86 0.86 0.85 0.84 0.85 0.84 0.84 0.83 
Hodrick 0.95 0.97 0.98 0.96 0.95 0.94 0.92 0.86 0.94 0.91 0.85 0.76 

2R  0.00 0.15 0.54 0.75 0.00 0.13 0.42 0.63 0.00 0.11 0.35 0.54 
             
             
h=36             
Proposed: Fieller  0.93 0.97 0.99 0.99 0.94 0.95 0.97 0.98 0.93 0.93 0.94 0.96 
Proposed: Delta 0.92 0.96 0.98 0.99 0.93 0.94 0.95 0.97 0.92 0.91 0.92 0.94 
Newey-West 0.83 0.84 0.86 0.84 0.84 0.84 0.83 0.82 0.83 0.82 0.81 0.81 
Hodrick 0.95 0.97 0.97 0.89 0.95 0.94 0.89 0.76 0.95 0.89 0.80 0.66 

2R  0.00 0.19 0.56 0.69 0.00 0.15 0.42 0.57 0.00 0.12 0.33 0.49 
             
h=48             
Proposed: Fieller  0.93 0.97 0.99 0.98 0.94 0.95 0.96 0.97 0.93 0.92 0.93 0.95 
Proposed: Delta 0.91 0.96 0.97 0.97 0.92 0.93 0.94 0.94 0.91 0.89 0.90 0.92 
Newey-West 0.82 0.83 0.83 0.81 0.83 0.82 0.81 0.80 0.82 0.80 0.79 0.79 
Hodrick 0.95 0.98 0.96 0.80 0.95 0.93 0.85 0.67 0.95 0.88 0.75 0.58 

2R  0.00 0.20 0.54 0.62 0.00 0.15 0.39 0.51 0.00 0.12 0.31 0.43 
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Panel B: 0.99φ =  

 0.5ρ = −  0ρ =  0.5ρ =

 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 
h=12             
Proposed: Fieller  0.94 0.94 0.97 1.00 0.95 0.95 0.97 0.99 0.94 0.94 0.95 0.97 
Proposed: Delta 0.93 0.94 0.97 1.00 0.94 0.94 0.96 0.98 0.93 0.93 0.94 0.97 
Newey-West 0.86 0.87 0.88 0.89 0.88 0.88 0.87 0.87 0.86 0.85 0.85 0.84 
Hodrick 0.95 0.96 0.98 0.99 0.95 0.95 0.95 0.96 0.94 0.92 0.90 0.88 

2R  0.00 0.19 0.62 0.86 0.00 0.18 0.55 0.80 0.00 0.16 0.50 0.74 
             
h=24             
Proposed: Fieller  0.93 0.96 0.99 1.00 0.94 0.95 0.98 0.99 0.93 0.94 0.96 0.98 
Proposed: Delta 0.92 0.95 0.99 1.00 0.93 0.94 0.97 0.98 0.91 0.91 0.94 0.96 
Newey-West 0.84 0.85 0.87 0.86 0.85 0.85 0.85 0.83 0.84 0.82 0.81 0.81 
Hodrick 0.94 0.97 0.98 0.96 0.95 0.95 0.92 0.85 0.94 0.90 0.83 0.75 

2R  0.00 0.31 0.74 0.87 0.00 0.27 0.63 0.79 0.00 0.39 0.76 0.83 
             
h=36             
Proposed: Fieller  0.93 0.97 0.99 1.00 0.94 0.96 0.98 0.99 0.92 0.93 0.95 0.97 
Proposed: Delta 0.91 0.96 0.99 0.99 0.92 0.94 0.96 0.97 0.90 0.90 0.93 0.95 
Newey-West 0.82 0.84 0.85 0.82 0.84 0.84 0.82 0.80 0.82 0.80 0.79 0.78 
Hodrick 0.95 0.98 0.97 0.86 0.95 0.94 0.87 0.73 0.94 0.88 0.76 0.63 

2R  0.00 0.39 0.76 0.83 0.00 0.31 0.64 0.75 0.00 0.26 0.55 0.69 
             
h=48             
Proposed: Fieller  0.92 0.98 0.99 0.99 0.94 0.95 0.97 0.97 0.92 0.92 0.94 0.96 
Proposed: Delta 0.90 0.97 0.98 0.97 0.92 0.93 0.95 0.95 0.90 0.88 0.91 0.93 
Newey-West 0.80 0.83 0.82 0.78 0.82 0.81 0.79 0.77 0.80 0.78 0.76 0.76 
Hodrick 0.94 0.98 0.94 0.74 0.95 0.93 0.81 0.62 0.94 0.85 0.70 0.54 

2R  0.00 0.43 0.74 0.78 0.00 0.34 0.62 0.71 0.00 0.27 0.53 0.65 

Notes: As for Table 1, except that the sample size is 1,000. 
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Table 3: Median Width of Alternative Confidence Intervals: Sample Size: 500 

Panel A: 0.98φ =  

 0.5ρ = −  0ρ =  0.5ρ =  
 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 
h=12             
Proposed: Fieller  0.040 0.038 0.041 0.053 0.040 0.041 0.046 0.061 0.040 0.043 0.051 0.068 
Proposed: Delta 0.037 0.036 0.038 0.049 0.037 0.038 0.043 0.057 0.037 0.040 0.047 0.063 
Newey-West 0.030 0.029 0.027 0.027 0.030 0.030 0.031 0.034 0.030 0.032 0.035 0.041 
Hodrick 0.040 0.040 0.041 0.045 0.040 0.040 0.041 0.045 0.040 0.040 0.041 0.044 
             
h=24             
Proposed: Fieller  0.038 0.038 0.047 0.075 0.038 0.041 0.053 0.082 0.038 0.043 0.058 0.089 
Proposed: Delta 0.034 0.034 0.042 0.067 0.034 0.037 0.047 0.074 0.034 0.039 0.052 0.079 
Newey-West 0.026 0.024 0.024 0.029 0.027 0.027 0.030 0.039 0.026 0.029 0.035 0.047 
Hodrick 0.038 0.039 0.040 0.043 0.038 0.038 0.039 0.042 0.038 0.038 0.039 0.042 
             
h=36             
Proposed: Fieller  0.036 0.037 0.051 0.087 0.036 0.040 0.056 0.094 0.036 0.043 0.061 0.099 
Proposed: Delta 0.031 0.032 0.044 0.076 0.032 0.035 0.049 0.081 0.031 0.037 0.053 0.086 
Newey-West 0.024 0.021 0.022 0.033 0.024 0.025 0.030 0.043 0.024 0.027 0.035 0.050 
Hodrick 0.037 0.037 0.038 0.041 0.037 0.037 0.038 0.040 0.037 0.037 0.037 0.040 
             
h=48             
Proposed: Fieller  0.034 0.035 0.052 0.091 0.034 0.039 0.057 0.097 0.034 0.041 0.061 0.102 
Proposed: Delta 0.029 0.030 0.044 0.078 0.029 0.033 0.049 0.083 0.029 0.035 0.052 0.087 
Newey-West 0.021 0.019 0.022 0.035 0.021 0.023 0.029 0.045 0.021 0.025 0.034 0.052 
Hodrick 0.035 0.035 0.036 0.039 0.035 0.035 0.036 0.038 0.035 0.035 0.036 0.038 
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Panel B: 0.99φ =  

 0.5ρ = −  0ρ =  0.5ρ =  
 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 
h=12             
Proposed: Fieller  0.033 0.032 0.035 0.046 0.033 0.034 0.039 0.053 0.033 0.036 0.043 0.059 
Proposed: Delta 0.031 0.030 0.032 0.043 0.031 0.032 0.037 0.050 0.031 0.034 0.040 0.055 
Newey-West 0.025 0.024 0.023 0.022 0.025 0.025 0.026 0.029 0.025 0.026 0.029 0.034 
Hodrick 0.033 0.034 0.035 0.040 0.033 0.033 0.035 0.039 0.033 0.033 0.034 0.038 
             
h=24             
Proposed: Fieller  0.032 0.033 0.044 0.073 0.033 0.036 0.049 0.079 0.032 0.038 0.052 0.083 
Proposed: Delta 0.029 0.029 0.039 0.065 0.029 0.032 0.043 0.070 0.029 0.033 0.046 0.074 
Newey-West 0.022 0.020 0.020 0.025 0.022 0.023 0.026 0.034 0.022 0.025 0.030 0.041 
Hodrick 0.033 0.033 0.034 0.038 0.033 0.033 0.034 0.038 0.033 0.033 0.034 0.037 
             
h=36             
Proposed: Fieller  0.031 0.034 0.051 0.092 0.032 0.037 0.056 0.097 0.031 0.038 0.059 0.100 
Proposed: Delta 0.027 0.029 0.044 0.079 0.027 0.031 0.048 0.083 0.027 0.033 0.050 0.086 
Newey-West 0.020 0.018 0.020 0.031 0.020 0.021 0.026 0.039 0.020 0.024 0.031 0.046 
Hodrick 0.032 0.032 0.034 0.037 0.032 0.032 0.033 0.036 0.032 0.032 0.033 0.036 
             
h=48             
Proposed: Fieller  0.030 0.034 0.056 0.104 0.031 0.037 0.060 0.107 0.030 0.038 0.063 0.111 
Proposed: Delta 0.025 0.029 0.047 0.087 0.026 0.031 0.050 0.090 0.025 0.032 0.053 0.093 
Newey-West 0.018 0.016 0.020 0.035 0.018 0.020 0.027 0.043 0.018 0.022 0.032 0.050 
Hodrick 0.031 0.032 0.033 0.036 0.031 0.031 0.032 0.035 0.031 0.031 0.032 0.034 

Notes: As for Table 1, except that here the median width of the confidence intervals is reported instead. 
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Table 4: Median Width of Alternative Confidence Intervals: Sample Size: 1000 
Panel A: 0.98φ =  

 0.5ρ = −  0ρ =  0.5ρ =  
 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 
h=12             
Proposed: Fieller  0.026 0.025 0.026 0.034 0.026 0.027 0.030 0.040 0.026 0.028 0.034 0.045 
Proposed: Delta 0.025 0.024 0.025 0.033 0.025 0.026 0.029 0.039 0.025 0.027 0.032 0.044 
Newey-West 0.021 0.020 0.019 0.018 0.021 0.021 0.021 0.024 0.021 0.022 0.024 0.028 
Hodrick 0.026 0.026 0.027 0.030 0.026 0.026 0.027 0.030 0.026 0.026 0.027 0.030 
             
h=24             
Proposed: Fieller  0.025 0.024 0.030 0.050 0.025 0.027 0.035 0.056 0.025 0.029 0.039 0.061 
Proposed: Delta 0.023 0.023 0.029 0.047 0.023 0.025 0.033 0.053 0.023 0.027 0.037 0.058 
Newey-West 0.019 0.017 0.017 0.020 0.019 0.019 0.021 0.028 0.019 0.021 0.025 0.033 
Hodrick 0.025 0.025 0.026 0.029 0.025 0.025 0.026 0.029 0.025 0.025 0.026 0.028 
             
h=36             
Proposed: Fieller  0.024 0.024 0.034 0.060 0.024 0.027 0.039 0.066 0.024 0.029 0.043 0.071 
Proposed: Delta 0.022 0.022 0.031 0.055 0.022 0.025 0.036 0.061 0.022 0.027 0.040 0.065 
Newey-West 0.018 0.016 0.016 0.024 0.018 0.018 0.022 0.032 0.017 0.020 0.026 0.038 
Hodrick 0.024 0.024 0.025 0.027 0.024 0.024 0.025 0.027 0.024 0.024 0.025 0.027 
             
h=48             
Proposed: Fieller  0.023 0.023 0.036 0.065 0.023 0.027 0.041 0.071 0.023 0.029 0.045 0.076 
Proposed: Delta 0.021 0.021 0.032 0.060 0.021 0.024 0.037 0.065 0.021 0.026 0.041 0.069 
Newey-West 0.016 0.015 0.017 0.027 0.016 0.018 0.023 0.035 0.016 0.020 0.027 0.041 
Hodrick 0.023 0.023 0.024 0.026 0.023 0.023 0.024 0.026 0.023 0.023 0.024 0.026 
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Panel B: 0.99φ =  

 0.5ρ = −  0ρ =  0.5ρ =  
 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 β=0 β=0.02 β=0.05 β=0.1 
h=12             
Proposed: Fieller  0.020 0.020 0.021 0.028 0.021 0.021 0.024 0.033 0.020 0.022 0.027 0.037 
Proposed: Delta 0.020 0.019 0.020 0.027 0.020 0.020 0.023 0.032 0.020 0.022 0.026 0.036 
Newey-West 0.016 0.015 0.015 0.014 0.016 0.016 0.017 0.019 0.016 0.017 0.019 0.022 
Hodrick 0.020 0.021 0.022 0.026 0.020 0.021 0.022 0.025 0.020 0.020 0.022 0.025 
             
h=24             
Proposed: Fieller  0.020 0.020 0.027 0.046 0.020 0.022 0.031 0.051 0.020 0.024 0.034 0.055 
Proposed: Delta 0.019 0.019 0.025 0.043 0.019 0.021 0.029 0.048 0.019 0.022 0.032 0.051 
Newey-West 0.015 0.014 0.013 0.017 0.015 0.015 0.017 0.023 0.015 0.017 0.020 0.028 
Hodrick 0.020 0.020 0.021 0.025 0.020 0.020 0.021 0.025 0.020 0.020 0.021 0.024 
             
h=36             
Proposed: Fieller  0.020 0.021 0.033 0.061 0.020 0.023 0.037 0.065 0.019 0.025 0.040 0.069 
Proposed: Delta 0.018 0.019 0.030 0.056 0.018 0.021 0.034 0.060 0.018 0.023 0.037 0.063 
Newey-West 0.014 0.013 0.014 0.021 0.014 0.015 0.018 0.028 0.014 0.017 0.022 0.033 
Hodrick 0.020 0.020 0.021 0.024 0.020 0.020 0.021 0.024 0.020 0.020 0.021 0.024 
             
h=48             
Proposed: Fieller  0.019 0.022 0.038 0.072 0.019 0.024 0.041 0.076 0.019 0.026 0.045 0.079 
Proposed: Delta 0.017 0.019 0.034 0.064 0.017 0.022 0.037 0.068 0.017 0.023 0.040 0.071 
Newey-West 0.013 0.012 0.014 0.026 0.013 0.015 0.020 0.032 0.013 0.017 0.023 0.037 
Hodrick 0.019 0.019 0.020 0.023 0.019 0.019 0.020 0.023 0.019 0.019 0.020 0.023 

Notes: As for Table 3, except that the sample size is 1,000. 
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Table 5: Regression of h-month Excess Stock Returns on log Dividend yield 

 h=12 h=24 h=36 
Coefficient (SE) 0.826 0.683 0.548 
 (0.403)  (0.401) (0.323) 
 [0.475] [0.470] [0.468] 
Proposed CI:    
    Fieller (-0.232,1.763) (-0.700,1.456) (-0.945,1.391) 
    Delta (-0.083,1.775) (-0.392,1.464) (-0.566,1.303) 

Notes: This table shows the estimated coefficients in regressions of excess h-month 
cumulative CRSP value-weighted stock returns (relative to the one month rate) on the log 
dividend yield (divided by 100).  Newey-West standard errors with truncation parameter 
h are reported in round brackets and Hodrick standard errors 1B are given in square 
brackets. Both variants of the confidence intervals proposed in this paper (95 percent 
nominal coverage rate) are shown as well.  The sample period is 1952:12-2007:12. 
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Table 6: Regression of Excess Stock Returns on Log Dividend Yield and One-Month 
Interest Rates 

 Twelve-month horizon (h=12) 
Dividend-Yield 1.14 
 (0.40) 
 [0.49] 
Interest rate -0.14 
 (0.05) 
 [0.06] 
Joint p-value: Newey-West 0.003 
                       Hodrick 0.019 

 Two-year horizon (h=24) 
Dividend-Yield 0.88 
 (0.40) 
 [0.49] 
Interest rate -0.08 
 (0.03) 
 [0.06] 
Joint p-value: Newey-West 0.037 
                       Hodrick 0.126 

 Three-year horizon (h=36) 
Dividend-Yield 0.70 
 (0.29) 
 [0.48] 
Interest rate -0.07 
 (0.02) 
 [0.05] 
Joint p-value: Newey-West 0.0009 
                       Hodrick 0.232 

Notes: As for Table 5, except that the predictive regressions are on both the log dividend 
yield and one-month interest rates.  Point estimates for the long-horizon regression are 
shown, along with both Newey-West standard errors and Hodrick standard errors 1B, in 
round and square brackets respectively.  The p-values testing the hypothesis that the 
coefficients on both predictors are jointly equal to zero are shown.  The proposed 
confidence sets are shown graphically in Figure 1. 
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Table 7: Regression of Excess Bond Returns on the Yield Curve Slope: 
Bond maturity of n months and holding period of h months 

 n=60 n=72 n=84 n=96 n=108 n=120 
 Twelve-month holding period (h=12) 
β̂  (SE) 0.126 0.155 0.183 0.212 0.240 0.268 

(0.045) (0.051) (0.058) (0.064) (0.070) (0.076) 
 [0.073] [0.083] [0.093] [0.103] [0.112] [0.122] 
Proposed CI:       
    Fieller (-0.007,0.254) (0.004,0.303) (0.015,0.351) (0.026,0.399) (0.037,0.448) (0.047,0.496) 
    Delta (-0.008,0.241) (0.002,0.287) (0.013,0.334) (0.023,0.380) (0.034,0.426) (0.044,0.472) 
       
 Two-year holding period (h=24) 
β̂  (SE) 0.052 0.071 0.090 0.109 0.127 0.145 

(0.052) (0.059) (0.066) (0.073) (0.079) (0.086) 
 [0.063] [0.072] [0.081] [0.090] [0.098] [0.107] 
Proposed CI:       
    Fieller (-0.080,0.196) (-0.079,0.240) (-0.077,0.284) (-0.075,0.329) (-0.072,0.373) (-0.070,0.418) 
    Delta (-0.085,0.171) (-0.087,0.209) (-0.087,0.248) (-0.087,0.287) (-0.088,0.325) (-0.088,0.364) 
  
 Three-year holding period (h=36) 
β̂  (SE) 0.017 0.030 0.043 0.056 0.069 0.081 

(0.033) (0.036) (0.039) (0.042) (0.045) (0.048) 
 [0.055] [0.063] [0.071] [0.080] [0.087] [0.095] 
Proposed CI:       
    Fieller (-0.086,0.112) (-0.086,0.141) (-0.084,0.170) (-0.082,0.199) (-0.079,0.228) (-0.077,0.258) 
    Delta (-0.084,0.100) (-0.085,0.125) (-0.084,0.151) (-0.084,0.176) (-0.083,0.202) (-0.082,0.227) 

Notes: This table shows the estimated coefficients in regressions of excess h-month cumulative n-year 
bond returns (relative to the one month rate) on the 10-year less 1-month slope of the term structure.  
Newey-West standard errors with truncation parameter h are reported in round brackets and Hodrick 
standard errors 1B are given in square brackets.  Both variants of the confidence intervals proposed in 
this paper (95 percent nominal coverage) are shown as well. 
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Table 8:  Regression of Excess Bond Returns on Forward Rates: 
Bond maturity of n months and holding period of h months 

(p-values testing the hypothesis that the slope coefficients are jointly zero) 
 n=60 n=72 n=84 n=96 n=108 n=120 
 Twelve-month holding period (h=12) 
Newey-West 0.001 0.001 0.001 0.001 0.001 0.001 
Hodrick 0.031 0.031 0.032 0.033 0.035 0.037 
Proposed: Fieller 0.127 0.120 0.114 0.108 0.103 0.099 
                 Delta 0.047 0.042 0.038 0.035 0.032 0.030 
       
 Two-year holding period (h=24) 
Newey-West 0.016 0.020 0.021 0.019 0.016 0.014 
Hodrick 0.177 0.198 0.210 0.216 0.218 0.217 
Proposed: Fieller 0.512 0.539 0.533 0.504 0.464 0.423 
                 Delta 0.320 0.360 0.375 0.373 0.361 0.344 
       
 Three-year holding period (h=36) 
Newey-West 0.046 0.073 0.091 0.097 0.093 0.084 
Hodrick 0.466 0.508 0.522 0.517 0.500 0.478 
Proposed: Fieller 0.702 0.763 0.786 0.767 0.714 0.638 
                 Delta 0.446 0.570 0.650 0.678 0.665 0.628 

Notes: This table shows p-values from alternative tests of the hypothesis that the slope 
coefficients are jointly equal to zero in the estimation of the long-horizon regression 
(equation (9)) when the predictors are the one-year forward rates ending one, three and 
five years hence.  
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Table 9:  Regression of Excess Bond Returns on Forward Rates: 
Bond maturity of 120 months and holding period of h months 
Conventional and Proposed Estimates and Standard Errors 

 Long-Horizon Regression Proposed 
 Twelve-month holding period (h=12) 

1̂β  (SE) -0.504 -0.488 
(0.133) (0.210) 
[0.248]  

2β̂  (SE) 0.868 0.844 
(0.344) (0.574) 
[0.657]  

3β̂  (SE) -0.273 -0.273 
(0.270) (0.460) 
[0.574]  

 Two-year holding period (h=24) 
1̂β  (SE)  -0.264 

(0.150) (0.229) 
[0.217]  

2β̂  (SE) 0.289 0.344 
(0.360) (0.568) 
[0.533]  

3β̂  (SE) 0.072 0.005 
(0.254) (0.434) 
[0.404]  

 Three-year holding period (h=36) 

1̂β  (SE) -0.104 -0.116 
(0.090) (0.165) 
[0.191]  

2β̂  (SE) -0.026 0.076 
(0.251) (0.367) 
[0.465]  

3β̂  (SE) 0.229 0.119 
(0.219) (0.271) 
[0.361]  

Notes: This table gives the OLS estimate of equation (9) when the excess return is the 
return on holding a ten-year bond and the predictors are the one-year forward rates 
ending one, three and five years hence.  Newey-West and Hodrick standard errors 1B are 
shown in round and square brackets, respectively.  The table also shows the point 
estimates and standard errors associated with the delta-method variant of the approach to 
inference proposed in this paper.  
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Figure 1: Proposed  Confidence Sets for the Coefficients in a Regression of Excess 
Stock Returns on Log Dividend Yield and One-Month Interest Rates at h month horizon 

Notes: This shows the proposed confidence sets for the coefficients in regressions of 
excess h-month cumulative CRSP value-weighted stock returns (relative to the one 
month rate) on the log dividend yield (divided by 100) and the short-term interest rate.  
The sample period is 1952:12-2007:12.  The shaded region gives the Fieller variant of the 
proposed method; the black ellipses represent the delta method confidence sets. 
 


