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Abstract

In this paper I analyze a broad class of continuous-time jump diffusion models of asset
returns. In the models, stochastic volatility can arise either from a diffusion part, or a jump
part, or both. The jump component includes either compound Poisson or Lévy a-stable
jumps. To be able to estimate the models with latent Lévy a—stable jumps, I construct a
new Markov chain Monte Carlo algorithm. I estimate all model specifications with S&P500
daily returns. I find that models with Lévy a-stable jumps perform well in capturing return
characteristics if diffusion is a source of stochastic volatility. Models with stochastic volatility
from jumps and models with Poisson jumps cannot represent excess kurtosis and tails of
return distribution. In density forecast and VaR analysis, the model with Lévy a-stable
jumps and joint stochastic volatility performs the best among all other specifications, since
both diffusion and infinite activity jump part provide information about latent volatility.

JEL classification: C1; C11; G1; G12

1 Introduction

In this paper I estimate a broad class of asset pricing models. I evaluate their performance
with respect to goodness of fit, density forecast and Value at Risk (VaR) analysis. This is not
trivial since there is a need for a balance between a level of model complexity - which always has a
positive effect on the goodness of fit, and a possible extent of model overfiting - which decreases the
forecasting power of the model. Specifically, I consider the family of continuous-time, time-changed
jump diffusion models developed in Carr and Wu (2004). Stochastic volatility, or time-change,
can arise either from a diffusion part, or a jump part, or both. The leverage effect is assumed to
arise from the diffusion part if diffusion is a source of stochastic volatility. The jump component
includes either finite activity compound Poisson or infinite activity Lévy a-stable jumps. I consider
an estimation under the statistical measure, since it allows to perform density forecast and VaR
analysis and use data on daily S&P 500 index returns. I choose this data for empirical study since
it is a broad indicator of the equity market and it has been used in other comparable studies in
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the literature. An important advantage of my empirical analysis is that I consider a large family
of models. Therefore I can study in depth the marginal effects of different jump structures and
source of stochastic volatility with respect to goodness of fit and density forecast performance.

My contribution to the literature is two-folded. First, I propose a Bayesian estimation method
to estimate the general continuous-time, time-changed jump diffusion models with compound Pois-
son or, most importantly, infinite activity Lévy a-stable jumps. Second, I analyze the marginal
contribution of jumps and volatility specifications in goodness of fit and density forecast. Intu-
itively, the more general jump structure with infinite activity should fit the data better than the
finite activity compound Poisson jumps as found in Li, Wells and Yu (2008). However, it has not
been studied in the literature, what the effect of infinite activity jumps is on the density forecast
and VaR analysis. Moreover, it is important to address the choice of the source of stochastic
volatility when we condition on the jump structure. How, if at all, the specification of stochastic
volatility contributes to goodness of fit and density forecast?

I estimate my models by MCMC Bayesian methods and directly address the problem of pa-
rameter estimation in the presence of both latent volatility and latent jump sizes. The recent
attempt to estimate models with latent Lévy a-stable jumps in returns by Li, Wells and Yu (2008)
constitutes the foundation to solve this problem but it also introduces separability on the Markov
chain state-space. I fill this gap in the literature by constructing an MCMC algorithm free of the
separability flaw. The proposed algorithm is applicable in any stochastic volatility specification
and is based on the Buckle’s (1995) Bayesian method.

In my empirical analysis of the S&P 500 returns, I find that the models with Lévy a-stable
jumps in returns are able to represent well excess kurtosis and skewness of return distribution, if
diffusion is included as a source of stochastic volatility. Lévy a-stable jumps dominate Poisson
jumps specifications with respect to goodness of fit analysis, since the latter are only suited to fit
big jumps. Most importantly, models with stochastic volatility coming only from pure jumps do
not fit the asset returns well. Nevertheless, based only on goodness of fit measure, one cannot
in a decisive way point out if there is a need for the jump component as the second source of
stochastic volatility. This conclusion holds for the models with all considered jump structures
including infinite activity Lévy a-stable jumps.

The density forecast and VaR analysis shed new light on the application of continuous-time
jump diffusion models of asset returns. I find that correct specification of the source of stochastic
volatility is of fundamental importance in the density forecast and VaR analysis. The performance
of the compound Poisson jump models do not significantly change with the addition of the jump
component to the diffusion as the source of stochastic volatility. On the contrary, models with
Lévy a-stable jumps improve in the density forecast and VaR performance with the inclusion of
both sources of stochastic volatility, thus dominating all other model specifications. The joint
stochastic volatility enables us to extract information about latent volatility from both diffusion
and jumps, where the jumps are more informative with its infinite activity property. However, one
cannot go further and exclude the diffusion from the source of stochastic volatility. This conclusion
does not depend on the jump structure and agrees with the goodness of fit analysis.

The most difficult problem that arises in the density forecast analysis involves approximation
of the filtering density. I follow the auxiliary particle filter approach, as developed in Pitt and
Shephard (1999), and modify it to allow for the new features of my model. Durham (2006) extends
the basic particle filter for models with leverage effect but does not include jumps in returns.
Moreover, he works with particle filter and does not apply auxiliary particle filter involving index



parameter draws. Johannes, Polson and Stroud (2008) offer further refinements to the auxiliary
particle filter algorithm for models with jumps and stochastic volatility. However, their algorithm
cannot be applied to specifications with Lévy a-stable jumps. I refine auxiliary particle filter to
study jump-diffusion models with leverage effect. Moreover, I allow for various sources of stochastic
volatility and most importantly for Lévy a-stable jumps in returns.

My model specifications are not new and are based on the continuous-time, time-changed jump
diffusion framework, which is the direct outcome of the evolution in the asset pricing literature
that started with Black and Scholes (1973). However, their model produces disappointing results
both in fitting time-series of returns and cross section of option prices, since it lacks the ability
to represent non-normality of asset returns. In recent asset pricing literature, stochastic volatility
and jumps are found to be important, allowing to represent skewness and excess kurtosis both in
unconditional and conditional return distribution. Merton (1976) was the first to consider jump-
diffusion models. Heston (1993) assumed volatility to be stochastic and followed the square-root
Cox, Ingersoll and Ross (1985) (CIR) specification, while Jacquier, Polson and Rossi (1994) (JPR)
assumed log-volatility specification. In this paper I follow JPR specification, since it does not
require additional constraints on the parameters, satisfies non-negativity after discretization and
allows for convenient interpretation of the parameters in the models with joint stochastic volatility.

Das and Sundaram (1999) found that jumps and stochastic volatility have different effects on
the conditional asset return distribution and hence they play complimentary role in the option
pricing literature. The generalized version of the model with both stochastic volatility and jumps
required different techniques of estimation under statistical measure, where estimation problems
arise from the unobservable stochastic volatility. This was partially resolved with development
of efficient method of moments (EMM) estimation of Gallant and Tauchen (1996) and Bayesian
Markov chain Monte Carlo (MCMC) methods. However, the class of models with Lévy a-stable
jumps in returns and the class of models with various sources of stochastic volatility lack a robust
estimation method under the statistical measure. I construct a new MCMC method to estimate
these models.

The next generalization allowed for instantaneous correlation between increments of returns
and volatility, the relation called leverage effect. Empirical results of Jacquier, Polson and Rossi
(2004), Jones (2003), Andersen, Benzoni and Lund (2002) among others found the respective
correlation to be significantly negative. The negative leverage effect has a deep intuitive expla-
nation, since periods of high volatility on the market coincides more often with market crashes.
The leverage effect helps in capturing the skewness of the stock returns and corrects estimates of
parameters governing volatility as stated in Jacquier, Polson and Rossi (2004). Moreover, Jones
(2003) included in one of his model specifications the leverage effect as a function of volatility. His
findings suggest, that as volatility increases, the leverage effect is higher in magnitude. Hence,
in periods of high volatility the probability of market crashes is higher than in periods with low
volatility. Andersen, Benzoni and Lund (2002) estimated stochastic volatility models with com-
pound Poisson jumps in returns and leverage effect under the statistical measure. They found that
jumps, stochastic volatility and leverage effect are all important features of asset return models
and generate skewness, excess kurtosis and conditional heteroscedasticity. Eraker, Johannes and
Polson (2003) further extended the jump-diffusion model with stochastic volatility and studied
jumps not only in returns but also in volatility. Although jumps in volatility are found to be an
important feature in fitting the data on the 1987 crash, the discrete jumps in returns cannot be
modeled successfully by jumps in volatility.



Since the arrival rate of Poisson jumps under the statistical measure was found to be small
(about few jumps per year), the more subtle jumps cannot be modeled by rare and big compound
Poisson jumps. This in turn is one of the main critiques of finite activity jumps in returns. The
solution to this problem lies in the introduction of infinite activity Lévy jumps, that is the process
with infinite number of "small" jumps in a finite time interval. The latest specifications include
infinite activity jumps as in the case of variance-gamma (VG) model of Madan, Carr and Chang
(1998) and CGMY class of models by Carr, Geman, Madan and Yor (2002). Li, Wells and Yu
(2008) estimate the jump-diffusion model with VG jumps in returns and stochastic volatility from
diffusion under the statistical measure and found its superior goodness of fit over the models
with finite activity compound Poisson jumps. Lévy a-stable jumps, which are also of infinite
activity, have already been studied in the literature under the risk-neutral measure in Huang and
Wu (2004) and Carr and Wu (2003) but there has been so far no successful application of this
jump structure under the statistical measure. A recent approach by Li, Wells and Yu (2008)
introduces separability on the Markov chain state-space in the MCMC algorithm. I construct a
robust MCMC algorithm to estimate models with Lévy a-stable jumps. In addition, I relax the
assumption required in the option pricing approach that imposes maximum negative skewness on
Lévy a-stable jumps, required to price options in a model with infinite second and higher moments.
This allows modelling of the degree of skewness and the algorithm by Buckle (1995) is a suitable
foundation to develop a method of estimation under the statistical measure. Finally, my analysis is
based both on goodness of fit and density forecast. The latter is missing in the literature under the
statistical measure for infinite activity jumps and hence I fill this gap in the literature. This lets
us find how the models with infinite activity jumps perform in risk management. Finally, I allow
for stochastic volatility to arise from diffusion, jumps or both and also look at its implications on
the density forecast.

Another important issue in the literature has been the type of data used in the estimation.
There are two general approaches to model asset returns. The first approach specifies models under
the statistical measure, which allows for direct analysis of the return series and therefore density
forecast and value at risk (VaR) analysis. The second approach uses options data and specifies
models under the risk-neutral measure. There is also a way to utilize information from both worlds
as in Chernov and Ghysels (2000) and Eraker (2004), however, it results in even further technical
difficulties. Moreover, estimation under both the statistical and the risk-neutral measures requires
definition of market risk premia, which can also be a potential source of misspecification as noted
by Andersen, Benzoni and Lund (2002). Therefore I estimate the models under statistical measure
which allows the study of density forecast and VaR analysis.

The rest of this paper is organized as follows, Section 2 introduces the concept of Lévy process
and describes estimated model specifications, Section 3 describes MCMC estimation algorithm and
the auxiliary particle filter, Section 4 gives a brief overview of the data used in the estimation and
presents the results of the estimation with goodness of fit, density forecast and VaR performance
analysis, and Section 5 concludes. The tables are presented at the end of the paper.



2 Model Specifications

2.1 Lévy Processes

In this section I closely follow Applebaum (2004) and Bertoin (1998). Let X = (Xt > 0)
be a scalar Lévy process defined on a probability space (2, F, P) with given filtration (F)»o-
From definition, a Lévy process X has independent and stationary increments, or more precisely,
X, — X; is independent of F; and has the same distribution as X, ; — Xp for all 0 < ¢t < s. It
is also stochastically continuous. I restrict my analysis to the modification of X which exhibits
cadldg paths and hence its sample paths are right-continuous with left limits. By the Lévy-Ito
decomposition every Lévy process can be decomposed as the sum of three independent processes:
a linear drift, Brownian motion and a pure jump part. Accordingly, the log-characteristic function
of a Lévy process is the sum of the log-characteristic functions of its Lévy components and is given
by the Lévy-Khintchine formula. The characteristic function of the Lévy process is given by

¢x,(u) = Elexp(iuXy)] = exp(ty,(u)) , t >0, (1)

where u € R and v, (u) is called Lévy or the characteristic exponent of a given Lévy process. The
Lévy-Khintchine formula determines the functional form of this exponent:

1
Y, (u) = ibu — =uo® + / lexp(iuz) — 1 — iuzl),ji]v(dz), (2)
2 R\{0}

where b € R controls the linear drift part, ¢ > 0 controls the Brownian part and v is a Lévy
measure that characterizes the pure jump part of the Lévy process. The triplet (b, 02, v) completely
characterizes the probabilistic behavior of the Lévy process. The Lévy measure v is a sigma-finite
measure on R\ {0}, not necessarily a finite measure, satisfying

/ min(1, 2?)v(dz) < oc. (3)
R\{0}

The above condition implies finite quadratic variation of any Lévy process. We can extend the
Lévy measure v to all R, without loss of generality, assuming v({0}) = 0. The Lévy measure has
the interpretation that for any subset £ C R, v(F) is the rate at which Lévy process takes jumps
of size x € F and measures the numbers of jumps of size x € E in the unit time interval. The
compound Poisson process is the only pure-jump (o = 0) Lévy process, which satisfies v(R) < oc.
For any other pure jump process v([—e,¢]) = oo for any € > 0 and hence in this case the Lévy
process exhibits infinite number of small jumps in a finite time interval. For any Lévy process,
however, the number of "large" jumps remains finite with v(E) < oo for any E C R, EN{0} = 0.
From now on we call Lévy process to have finite activity if and only if v(R) = A < co. The value
A is then called the Poisson intensity.

This class of processes is very general and contains Brownian motion and compound Poisson
process as two special cases. Brownian motion is the only Lévy process with continuous sample
paths and hence does not allow for discontinuous jumps. The compound Poisson jump process,
however, represents special jump characteristics with its finite activity property. The sum of the
Brownian part and the compound Poisson part, although a Lévy Process, does not allow for more



general jump structures and is one of the main critiques of asset returns models based on them. In
this work I allow for more general properties of the jump structure by redefining the jump part of
the underlying asset returns process and allowing for infinite activity. The pure jump Lévy process
with infinite activity, however, can also be classified into two general sub-classes with respect to
the total absolute variation of the process. The Lévy pure jump process is of finite total variation
if the following condition is satisfied by its Lévy measure:

/ min(1, |2 )o(dz) < oo, (4)
R\{0}

otherwise it is of infinite total variation.

Since infinite variation jumps resemble Brownian motion much closer than other types of jumps,
I restrict my analysis to the Lévy a—stable pure jump process with index of stability a € (1,2),
the Lévy process with infinite total variation'. I also investigate another extreme case with finite
activity Poisson type jumps, since its simplicity decreases an extent of possible overfitting problems.

2.2 Lévy a—stable Process

The building block of a—stable process is a stable distribution. Let S(«, 3, 4,7) denote a stable
distributed random variable with index of stability o € (1,2), skewness € [—1, 1], scale parameter

~v > 0, and location parameter § € R. In this paper I use the characteristic function specification
as in Buckle (1995):

on | exp{idu — y*|u|® exp[—iZ sgn(u) min(o, 2 — a)]} for a # 1
Elexp(uis) = { exp{idu — y|u|[1 + zg’%sgn(u) log(y|u|)]} for a =1, (5)

In this parametrization, parameter [ controls the extent of skewness in the distribution with
maximum positive skewness given by 5 = —1 and maximum negative skewness given by § = 1.
The extent of skewness disappears as a " 2, where the parameter o controls the fatness of tails,
where at the limit & = 2 we have the normal distribution. In general case, for o € (1,2), there is
no closed form density function available. For a discussion of the parametrizations and properties
of the stable distribution please refer to Nolan (2005). An efficient method to simulate stable
random variables is presented by Chambers, Mallows and Stuck (1976). The parametrization (5),
used in Buckle (1995), is applied in this paper unless otherwise stated.

The most widely used parametrization is given by Samorodnitsky and Taqqu (1994) and
Zolotarev (1986) and denoted by S(«, 3,4, 7), where:

B = cot(W—QQ) tan(? min(a, 2 — a)) (6)

3 = feos(Z min(a, 2 o)/

and 0 and a remain unchanged. It can be shown, that S(a, B,6,%) LS (o, 3,0,7). The skewness
parameter ( has a different interpretation, where 5 > 0 denotes positive skewness and § < 0

'Refer to Samorodnitsky and Taqqu (1994) and Janicki and Weron (1994) for the properties of stable random
processes.



negative skewness. Note, that parameters 4 and + are proportional.
Since the stable distribution is infinitely divisible there exists a Lévy process {J;7} with stable
distributed increments - the Lévy a—stable process?:

Jo — J5d L S(a, B,0,0(t — s)/*) for 0 < s < t.

I assume that there is no deterministic drift in this pure jump process with the restriction of 9 = 0.
I will extensively apply the following scaling property of the stable distribution:

oS(a, 8,8,7) £ S(a, B.8,07) for & > 0. (7)

Since ¥-scale parameter given by the translation formula (6) is proportional to «, the scaling
property holds for both parametrizations. Hence, without loss of generality, we can use both
parametrizations to characterize the increments of Lévy a—stable process. Moreover, it can be
shown, that Lévy a—stable process {.J°7} defined above is a pure jump Lévy process with infinite
activity and infinite variation. For a more detailed exposition please refer to Samorodnitsky and
Taqqu (1994) and Janicki and Weron (1994).

2.3 Dynamics of the Asset Returns Process

Let Y; denote the logarithm of asset price or logarithm of the index level at time ¢ and Y;,; —Y; be
the corresponding log-return. I consider several specifications that differ in the source of stochastic
volatility in the returns process and the type of jump component in returns. In the following,
(Bt(l), Bt(2)) defines a two-dimensional standard Brownian motion on (2, f, P) probability space
defined above. Carr and Wu (2004) noted that stochastic volatility can be alternatively interpreted
as the stochastic time change of the underlying processes. I define the following time-changed
process {Y;}, being a semimartingale:

dY; = pdt+dBy) +dJg”, (8)
dhy = kp(0n — he)dt + o(pd B + /1= pdBP),

t t
17 = [ Mbds, 77 = [ ehds, 2 € (PaSI),

0 0

where ;1 € R defines the drift part of the return process, x;, € R defines the speed of the mean
reversion of the log-volatility h; process towards its mean 6, € R, o0, > 0 defines volatility of
the volatility parameter. There are two types of jumps considered, where M denotes a model
specification with values PJ and SJ respectively for Poisson and Lévy a-stable jumps. The
stochastic volatility from diffusion is governed by the process {(hs) > 0 and stochastic volatility
from jumps by the process A(hs) > 0, both taking only positive values. I assume, that the functions
A:R— R* and £ : R — R* are continuous. The parameter p € (—1,1) controls the leverage

effect. This can be seen by defining the process Bt(?’):

dB® = pdBY + /1= p2dB®. (9)

2For proof and further details please see Applebaum (2004).




It can be shown, that Bt(?’) is a Brownian motion and Et(dBt(l)dBt(?’)) = pdt and hence the para-
meter p can be interpreted as the instantaneous correlation between volatility and returns - the
leverage effect. Since any pure jump component Jt(M) is independent from the continuous sam-
ple path Ornstein-Uhlenbeck (OU) process governing volatility, we cannot model leverage effect
from jumps and I impose restriction p = 0 in specifications with stochastic volatility only from
jumps. The log-volatility specification is borrowed from Jacquier, Polson and Rossi (1994) and
leverage effect specification from Jacquier, Polson and Rossi (2004). The leverage effect has been
extensively studied in recent research and was found to be an important characteristic of the asset
return models both under statistical measure in Jacquier, Polson and Rossi (2004) and risk-neutral
measure in Huang and Wu (2004).

e Models with Poisson jumps.

My model specifications with Poisson jumps draw from the work of Andersen, Benzoni and
Lund (2002) and Eraker, Johannes and Polson (2003) among others. The compound Poisson jump
process Jt(PJ) is characterized by its normally distributed jumps with mean p; € R, variance a?
and unit jump intensity. The time changed process Jgj‘]) has an instantaneous Poisson arrival
intensity A(hs) > 0 and the jump compensator A(h;)o(x; 5, a?)dxdt, where ¢(; u;, O'J2-) is a pdf of
normal distribution with mean p; and variance o5 and hence vFD(dx) = p(a; 1y, 03)dz is a Lévy

measure of jumps of the compound Poisson process Jt(P‘]).
e Models with Lévy a-stable jumps.

The idea of modelling asset returns with Lévy a-stable jumps is not new to the asset pricing
literature. Carr and Wu (2003) and Huang and Wu (2004) applied models with both the diffusion
and Lévy a-stable jumps to model asset returns under risk-neutral measure. 1 pursue similar
specification with its application under statistical measure and I loosen up their assumption of
maximum negative skewness. In the model above Jt(SJ) is a Lévy a-stable process with stable
distributed increments:

JED 6D L 5, 8,0, (t — s)V/*), for 0< s < t,

with index of stability a € (1,2) and skewness parameter S € [—1,1]. The time-changed process
T
£(hy)vSY) (dz)dt, where v*7)(dx) denotes the Lévy measure of jumps of Lévy a-stable process
J(SJ)'

t

has a jump compensator proportional to stochastic volatility from jumps and given by

e Restrictions defining all model specifications.

The restrictions on the parameter p and the predictable functions A(+), £(-) completely char-
acterize all model specifications and are provided in Table I. T specify six model specifications,
where the models (1), (2) and (3) have a Poisson jump component, and the models (4), (5) and
(6) have a Lévy a-stable jump component. For each jump type I distinguish three sources of
stochastic volatility: from diffusion, jumps and jointly: from the diffusion and jumps. For models
with stochastic volatility only from the jump component, I consider specification without leverage
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effect and I impose the restriction p = 0. In the other specifications I model the leverage effect
and estimate p € (—1,1). In order to model the source of stochastic volatility T have to define the
functions A(hs) and &(hs) governing the instantaneous "speed", or the time rate, of the business
time respectively T}/ and T®. The affix P.J denotes Poisson type jumps and SJ denotes Lévy
a-stable jumps.

In models with stochastic volatility only from diffusion (PJ, SJ), I specify A(-) to be a positive
constant, given by A/ (h,) = \; > 0 for the model with Poisson jumps (PJ) and A%/ (h,) = (55,)"
for the model with Lévy a-stable jumps (SJ) with og; > 0. I define the constant volatility
from Lévy a-stable jumps to be a function of «, since the model simplifies significantly after
discretization presented in Section 3.1. In order to specify stochastic volatility from diffusion in
models PJ and SJ, I assume the log-volatility specification with &(h,) = exp(hs).?

In models with stochastic volatility from jumps (PJSV, SJSV), I specify A(hs) = exp(hs) and
£(-) = 0% > 0 as a constant volatility from diffusion. In these models p = 0, since the pure
jump part is independent from OU process governing the stochastic volatility and I do not model
the leverage effect. Finally, in the class of models with joint stochastic volatility from both the
diffusion and jumps (DiffPJSV, DiffSISV), T specify A7/ (h,) = exp(hs), &7/ (hs) = 02 - exp(hs),
N7 (hy) = (057)* - exp(hs), €7 (hs) = exp(h,) and o, 0g; > 0. In these models the parameters
o >0 and og; > 0 are identified, since stochastic volatility process {h;} drives both the diffusion
and jumps, and hence drives the wedge between levels of log-volatilities for the diffusion and jump
components. Without loss of generality I assume that o drives this wedge via shift in the stochastic
volatility from diffusion £77(-) in the model with Poisson jumps and og; drives this wedge via
stochastic volatility from jumps \° J() in the model with Lévy a-stable jumps. This overcomes
several estimation issues in models DiffPJSV and DiffSJSV .4

Summing up, I define three model specifications with Poisson jumps: model (1) PJ, model (2)
PJSV and model (3) DiffPJSV. Accordingly, I have other three specifications with Lévy a-stable
jumps: model (4) SJ, model (5) SJSV and model (6) DiffSJSV. The summary of all restrictions,
defining each specification, is presented in Table I.

3 Estimation Method

3.1 Discretization scheme

In order to estimate the parameters of the continuous-time specifications I need to discreticize the
models. In the following I use first order Euler scheme®. 5,§1), 5,@, 5,@ are independent iid N (0, 1)
distributed and all other random variables are also independent:

3For sake of notational simplicity I omit the supersrcipts P.J and SJ whenever specifications of volatility process
is the same for both jump specifications.

4Note that both ways of introducing the joint stochastic volatilities are equivalent. This can be seen by repara-
metrization in the discretized versions of the models in Section 3.1.

Refer to Kloeden and Platen (1992) for the details on the higher order approximation techniques. Jacod and
Protter (1998) analyze the Euler scheme for SDEs with Lévy jumps.



e Models (1) - (3) with Poisson jumps:

Yips =Y+ po + (&5)0'55525 + Qi45+45, (10)

hivs = he + K5, (0n — hy)d + ah\/g(peﬁi)g +v1- PQ&HE?L)&),
s ~ did N(py, 03)7
Qrirs/{} ~ independent Bernoulli (6);).

e Models (4) - (6) with Lévy a-stable jumps:

Yies = Yi+pd+ (€t5)°'5€§1+)5 + Siys(a, 38,0, ()\t(s)%)? (11)
hirs = Ty + 6p(0n — he)d + Uh\/g(Pfga +vI- P%ga)-

In the above t = 1,2...,T, and Si(a, 8,0,v,_1), given «, 5,{v,}, is centered stable distributed
with index of stability o € (1,2), skewness coefficient 5 € [—1,1] and with respective scale
parameters 7, ; > 0 in the parametrization given by the characteristic function in (5). For
notational simplicity I define \; = A(h;) and &, = £(h;). All other variables and parameters are
defined in Section 2.3 with the respective constraints on the parameter p and the functions \; and
¢, defining all model specifications.

The problem I face concerns a choice of § > 0 parameter, which governs the extent of the
discretization bias. In this paper I fix § = 1 and use the data at daily frequency. As noted by
Eraker, Johannes and Polson (2003) the discretization bias of daily data is not significant®.

Since my models are estimated at the daily frequency, in models (2) and (3) with Poisson
jumps and stochastic volatility component from jumps, the volatility levels A\; = exp(h;) are close
to zero. Hence, following Johannes and Polson (2003), I allow for maximum one jump per day. I
consider the following approximation of the function governing stochastic volatility from Poisson
jumps:

Mt = exp(hy) ~ (1 +exp(—hy))t, by < 0. (12)

The relative error of this approximation is given by (1 + exp(—h;))~! and is of negligible order at
the daily frequency. Hence, )\; takes a logistic form and is bounded from above by one. Since I
allow for maximum one jump per unit of time, )\; is an instantaneous probability of jump in a given
time interval. This solves the problem of truncation of {h;} at zero to impose unit upper bound
on the activity levels and guarantees continuity, which solves estimation problems for models with
Poisson jumps. Similarily, in model (1) with Poisson jumps and constant volatility from jumps \;,
I restrict the constant jump intensity A; € [0,1] and allow for maximum one jump per day.

Since models with infinite activity jumps in returns have an infinite number of small jumps
in a finite time, an identification problem arises if we are able to disentangle them from the
continuous-path Brownian part. The recent work by Ait-Sahalia (2003) provides the positive
theoretical answer for the simple model of asset returns with Cauchy jumps (stable jumps with

6Jones (1998) and Jones (2003) allow for an estimation with § < 1, where the data points at not observed
frequencies are treated as latent variables. This approach is not feasible in the models with Lévy a-stable jumps
due to the computational limitations.
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a =1 and § = 0) and with constant volatility from diffusion. Finally, in Ait-Sahalia and Jacod
(2008) a test is constructed to verify existence of jumps in the discretely observed continuous-time
process. Since discretely sampled data allows to disentangle infinite activity jumps from diffusion,
the test provides positive identification answer for models with infinite activity jumps and the
diffusion.

3.2 Markov chain Monte Carlo methods

In this section I briefly describe Markov chain Monte Carlo (MCMC) methods, with more detailed
exposition in Chib and Greenberg (1996), Johannes and Polson (2003) and Jones (1998).

Let Y = {Y;}L, denote the observations, X are the unobserved (latent) state variables and 6
are the parameters of the model. In the Bayesian inference we utilize the prior information on the
parameters to derive the joint posterior distribution for both parameters and state variables. By
the Bayes rule, we have:

p(0, X[Y) < p(Y]X, 0) p(X|[0) p(0), (13)

where p(Y|X, 0) is the likelihood function of the model, p(X|#) is the probability distribution of
state variables conditional on the parameters and p(f) is the prior probability distribution on the
parameters of the model. Ideally we would like to know the analytical properties of the joint
posterior distribution of X and 6, however, this is hardly feasible. The highly multidimensional
joint posterior distribution is very often too complicated to work with and analytically intractable
and hence even direct simulation from the joint posterior distribution is hard to perform. The
remedy to this problem is to break the multidimensional distribution p(6, X|Y’) into its complete
conditional distributions proposed by Clifford and Hammersley. They proved that the set of com-
plete conditional distributions completely characterizes the joint distribution. In other words,
knowledge of conditional distributions p(0|X,Y") and p(X10,Y) determines the joint posterior
distribution p(#, X|Y'). We can continue in this manner and characterize the joint posterior dis-
tribution p(0, X|Y') by the set of complete one-dimensional conditional distributions, or group the
variables in several blocks if we have knowledge on the respective higher dimensional conditional
distributions. The MCMC algorithm can be defined as the way to construct a Markov chain,
with invariant distribution as the desired target distribution, by consecutively drawing from the
conditional posterior distributions. The simplest MCMC algorithm is a Gibbs sampler developed
in Geman and Geman (1984). The proof of the Gibbs sampler, sufficient conditions and some
applications can be found in Chib and Greenberg (1996).

The Gibbs sampler provides useful methods to draw samples from complicated and non-
standard distributions. However, it assumes that we can sample directly from the set of all
complete conditional distributions. If we face a problem of sampling from intractable distribu-
tion, we can replace the particular Gibbs sampler step by the Metropolis-Hastings (MH) step in
Metropolis, Rosenbluth and Rosenbluth (1953). Further details about the MH algorithm can be
found in Chib and Greenberg (1996).

In my work I am interested in obtaining random samples from the posterior distribution
p(0, X|Y'). This allows for computation of several statistics including the sample means and higher
moments from the desired marginal posterior distributions. The sample mean from the posterior
distribution of the parameters is taken to be the population parameter estimate. Moreover, the
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ergodic averaging theorem guarantees almost sure convergence to the true population moments

(Johannes and Polson (2003)).

3.3 Bayesian Inference for Stable Distributions

In my application with latent Lévy a-stable jumps one of the sufficient conditions for the Gibbs
sampler to converge needs to be carefully addressed. The constructed Markov chain should be
constructed in a way, that guarantees strictly positive probability of visiting any subspace of
the support of the target density. If Markov chain does not satisfy this condition, I call it a
separability problem. Li, Wells and Yu (2008) do not correct for the separability problem in their
MCMC algorithm derived for the latent stable jumps. This leaves their results questionable and
demands alternative approach to the estimation of the latent stable distributed jumps.

The main problem in the application of the Bayesian MCMC methods for stable distributions
is the nonexistence of its density function for index of stability a € (1,2). Buckle (1995) found
a solution to this problem by introducing auxiliary variable, such that the joint density of the
auxiliary variable and the stable distributed random variable exists. Let S and Y be the random
variables with their joint density f, conditional on «, § ,6 and ~: given by:

[ (00.0) X (=5 la) U (0,50) X () — (0,0)

a/(a—1) a/(a—1)

« z z 1

f(39) = ————expq—|—= = —, (14)

Ve =1 ta,s(7) ta,s(Y) E
where
5—90
L_G-d)
f)/
B sin[rag + 1, 5] COS 77 (a=1)/a

tas(y) = - ~ , (15)

cos Y cos[m(a — 1)§ + 1, 4]

and a € (1,2), § € [-1,1], § € (—00,+0), ¥ > 0, § € (=00, +0), § € (—3,3), with 1, 5 =
B(2 — a)r/2 and lo 3 = —1n, 5/ma. According to theorem 1. in Buckle (1995), f is a proper joint
density of (S,Y) and the marginal distribution of S is S(«,3,0,7). It is important to note that
the domain of the density function is (5, §) € (—00,0) X (—3,la,3) U(0,00) X (la,3). Hence we have

the following dependence between S and Y random variables:

~ ~ 1

S>0 <Y € (lg, 5) (16)
and

- - 1

S<0 «<=Ye (—§,la,5). (17)

In my application I have to draw S; for all ¢ conditional on all other state variables and
parameters as in the Gibbs sampler. Since one of the conditioning state variables is the auxiliary
variable Y}, it uniquely determines the sign of the draw St(z) at the i —th step of the Gibbs sampler.

12



This violates one of the main assumptions of the MCMC method since the state space cannot be
separated into two subspaces according to the sign of the starting value of S - the sign that it
would never leave To illustrate the problem, let the starting values in the Gibbs sampler specify
S(l) > 0, Y e (I B 2) for some ¢, and all other parameters, including o) , W (5(1) )

(consistent with chosen values St and Y;( ), in the support of the joint distribution and Wlth other
state variables). Suppose, without loss of generality, that we have to first update the jump size S;
in the algorithm. Since ?;(1) € (lyw g0, 3) we have to draw S® > 0. In the next step the draw

of all other jump specific parameters a®, 3@, §@ ~® have to be consistent with St@) > 0 and

f/t(l) € (I e 5 ) At the end we have to update the auxiliary variable Y @ in support of the

joint distrlbutlon, hence Y;( ) € (ly@ @), 1). Continuing in this manner we construct an MCMC

chain that never visits negative values of jump sizes at time ¢. The algorithm has to draw St(i) for
all iterations ¢ with the same sign as the starting value St(l). However, if we do not treat the jump
variables as latent and we observe the jump sizes S; for all ¢ as in the Buckle (1995), there is no
update step of the jump sizes and there are no MCMC separability issues.

In this paper I offer a solution to this problem by construction of the mixture distribution of
two, truncated at zero, stable distributions. Lets define the following probability:

_ 3 1 3
Pa,ps = P(S > an € (loz,ﬁa 5)) = P<S > 0)7 (18)

which for = 0 can be found analytically to be:

arctan|f3 tan(mar/2)]

8 = Dosiso = 0.5 , 19
Pa,p = Pa,f,6=0 + — (19)

where 3 is given by the translation of parameters formula in eq. (6) 3 = cot(Z2) tan(Z min(a, 2 —

«)) to the Buckle (1995) characteristic function specification. This formula is based on the value
of the stable distribution function at zero in Nolan (2005). In the next step I have to define the
distribution of truncated stable variables S*, S~ and their respective auxiliary variables Y, Y.
Let (S*,Y*) and (S—,Y ™) have joint distributions defined respectively by the following den51ty
functions:

1 flat = e~ N 1
L ——f(5T,y%0=0)if 57 >0and g+ € (log, 3)
(5t gt) = Pa.s I w2 20
fr(5T.g7) { 0 otherwise ’ (20
1 —~ o~ e o~

o ——f(57,57;0=0)if5 <0and §~ € (—3,lap)

= 1 pa,ﬁ ’ 21
f(5797) { 0 otherwise ’ 21

where the density f is defined in eq. (14). Moreover, let U be a Bernoulli distributed (gondjtional
on « and /) random variable with probability of success p, 5. Let U, (ST, Y1), (S7,Y ") be
independent, then it is straightforward to show, that:

SLT.-St+(1-0U)-5 ~S(a,B,6=0,7). (22)

This specification complicates the MCMC algorithm by introducing mixing variable IZ and aux-
iliary variables Y* and Y~ for respectively positive jumps S* and negative jumps S~. All of
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them are updated in the MCMC algorithm. However, the above specification solves the problem
of separability of the resulting Markov chain state-space in the models with latent stable jumps.

3.4 Estimation Algorithm

In this section I briefly describe the set of complete conditional distributions to be used in the
MCMC algorithm. My algorithm allows for the most general stochastic volatility specifications,
both from the diffusion and infinite activity jumps, the new feature in the asset pricing literature
under statistical measure. Since models with Poisson jumps in returns have already been studied
in the literature, I postpone their model specific derivations to the appendix.

In the following I concentrate attention on the jump specific parameters and state variables
in the model with Lévy a—stable jumps, joint stochastic volatility and leverage effect - DiffSJISV
specification. Other model specifications can be approached in a similar way with specific con-
straints on the parameters p and the functions governing stochastic volatility &, and ); described
in Section 2.3 and Table L.

In the sequel I assume the number of daily observations 7" and discretization parameter 6 = 1. 1
present the detailed discussion of updating pure jump sizes {S;"}7,, {S; }7_,, their respective aux-
iliary variables {Y;*}Z,, {Y;"}7,, the mixing variables {U;}~, and the jump specific parameters
a, [.

Let 2-F = Z\{T} for sets Z and T, S, = U,S;" + (1 — };)S;” with truncation at zero defined
above for S; with Lévy a-stable distribution, and &}E = pggl) +4/1— p2€§2).

Note that in model DiffSJSV, given v, 3, 05, {h:} we have S; ~ independent S(«, 3,0, ()\t,lé)i).
Hence, S;” and S; are, given «, 3, 04y, {ht}, the respective jointly independent, truncated (at
zero) parts of S;. Moreover, the realization of {h;}, having its impact only on the scale parameter,
does not affect the distribution governing the mixing variables U, which are still Bernoulli with
parameter p, s in eq. (19).

Let 0 = (1,057, kny On, 0,0, B,p), Y = (Y1, Ys, ..., Yr) = {V;}L | and

= ({hehor AU {8 o {50 Fe, (Vi M AV 1) (23)

be respectively the vector of parameters, the observed log-asset prices and the vector of state
variables.

3.4.1 Updating auxiliary variables Y;*, Y,~

Define the following change of variables v = t,3(Y;"). As proved in Buckle (1995), function

tas : (—3,3) — R in eq. (15) is increasing for given parameters o € (1,2) and § € [—1,1].

Moreover, for € (—1,1), to3 / 00 as Y+ /1 and ta,g \, —00 as Y N —

2
From (14) the conditional posterior for Y;*, t = 2,.... T, is given by:

1
3

SE
(Aem18)# ta,5 (V)

p(YiE]0, X0, Y) ocexp { — (24)

(At-18)ta,5(Y)

"Note that the model with joint stochastic volatility cannot be treated as simple generalization of specifications
with stochastic volatility only from jumps or diffusion.
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The support of the above distribution is given by S;” > 0,Y;" € (lo5,%) for the positive part

and S; < 0,Y, € (- 2,la,3) for the negative part. Following Buckle (1995), for o € (1,2) and
B € (—1,1) we have

1
tas(x=) = too and t,5(l,3) =0 25
’B 2 ’B 7/8
and hence
Ly =) ()
p(:|:§|9,X t 1Y) =pllapld, X VYY) =0. (26)

Moreover, since t,5(-) is monotonic, it does not contribute to the maximum of (24), so den-

ot
sity in eq. (24) is unimodal with its mode at Y;*¥ = ;15 ((A S’f(s) — ) and value at maximum
t—10) &

ot
p(t_1 <(/\ 515 10, X~ () ,Y) = 1. This makes the rejection sampling algorithm a suitable

method to draw from the distribution in (24). For details on the rejection sampling please see De-
vroye (1986). In this paper, however, I use adaptive rejection sampling algorithm (ARS) of Gilks
and Wild (1992), which utilizes rejected draws®. This makes the sampling much more efficient es-
pecially in the case where the distribution is highly spiked around the mode. Since v = t, 4 (f/ti)
is a bijection, we obtain the draws on v;" and v; . In the derivation of other conditional distri-
butions, we condition on {v;"}{_, and {v; }{_,, which solves several multimodality problems as
described below?. In the following I redefine the vector of state variables by replacing Y;* by v;f
and 37; by v, forallt =2, ...,T"

({ht}t 1’{Ut}t 2>{S+}t 2>{S }t 20 {0 }t 2 {vr }t 2)- (27)

Note that in the above 8 € (—1,1) and some of the properties in eq. (25) do not hold for
[ = £1. Since we are interested in the negative skewness, we have the following proposition for
the maximum negative skewness § = 1:

Proposition 1 For a € (1,2) and 8 = 1, we have to5(Y;") / o (X 1)(a71)/a <ooas Y /1L

Proof. Apply L’Hospital’s rule for cos[w(ofisf)rg ] for = 1. Then substitute the limit to the

formula for ¢, g in eq. (15). The result follows immediately. m

This result shows, that the update procedure described above cannot be directly applied for
B = 1. Since Li, Wells and Yu (2008) applied a similar update procedure for the model with
stochastic volatility from diffusion and the maximum negative skewness 5 = 1, this leaves their
update method incorrect.’’ The first source of their misspecification is the separability problem of
the MCMC and the second is their application of the Buckle (1995) updating method for 5 = 1.
My algorithm corrects for both of these problems in the models with Lévy a-stable jumps by
construction of the MCMC free of the separability issue and by estimation of § € (—1,1).

81 do not construct the envelope function as in Gilks in Wild (1992) but follow closely Buckle (1995).

9The draw of v;” and v, contains information on the conditioning o and B parameters and hence it changes the
property of updating procedure of parameter o and 3 if we condition on v;" and v; and not on Y and Y

10Li, Wells and Yu (2008) do not estimate the parameter 3 and fix it at 4 = 1 maximum negative skewness
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3.4.2 Updating jump size variables S;L , S't_

By application of the Bayes rule the conditional posterior distribution for S;“ and gt_ is given by:

~ ot ~
p(SE0, X~ Y) o p(Yi|Vi1,0, X, YO0 p(SE 0t o, B, 057, hy1) (28)
1(Yi = Yoo — 16 — (€,_18)3pel® — 5,2 S5 [T faues
X exXp ) =) "eXpy T |1 1 ti
€10 (At—16)=v;

By definition S; = UtS S (1— Ut)S{ , 80 in the above density function the first exponential part is

a function of S;" or S;” only if U; = 1 or respectively U, = 0. This property is intuitive, since there

is no information contained in the sample about positive (negative) jump if there is a negative

(positive) jump in the returns at time ¢. The support of the density is S;” > 0 and S < 0
respectively. Lets define the following bijection:

Gt
x = S—tl (29)
[CDL

Using the change of variable formula, the density of z;7 and z; is unimodal and log-concave.
Moreover, this property is not affected if the sample contains information about the jump or
not. Hence, I apply ARS algorithm by Gilks and Wild (1992). I significantly improve the ARS
algorithm by supplying the unique maximum of the density for z;” and ;. When the data contains
no information about jump, it can be computed analytically by a simple differentiation. In the
other case I found the Newton’s method to be efficient in computation. After the draw of 7 we
obtain the draw of S by inverting the function in eq. (29).

3.4.3 Updating index of stability parameter «

The next problem is the choice of bounds for the parameter o € (1,2). This is a delicate matter
since as a \, 1 the power coefficient —%= in eq. (14) approaches infinity. Moreover, as o /" 2 we
approach normal distribution and lose identification. Taking the above into account, I assume the
uniform prior distribution on « € [1.05,1.99] to avoid overflow computation problems. This not a
restrictive assumption, since bounds are barely (or not at all) hit by the sampler.

As noted by Buckle (1995) updating the index of stability « is the most difficult part in the
Bayesian inference of stable jumps. I modify his approach to accommodate for the mixture of
truncated stable distributions. He solved the problem of multimodality of complete conditional
distribution by the above described change of variables from the auxiliary variables Y/;/i to v using

- - N\T - N\T
the transformation v;" = t, 5(Y;*). If we condition not on {Y;’} and {Yt_} but instead on

{'ut+ }th2 and {'u{ }th2, the complete conditional distribution of « is given by:

(a0~ X,Y) oc p({U,}] =l B)p (Oél{gf,v?}f:m{55705}32275,0%{%})O<
p({Ut}t:2|a76)p({ t U }tT:2|>O‘7B’O_SJ’{ht})p({5;7vg}$:2|vavﬁ’OSJ?{ht}>p(a)>

where p(«) is the prior distribution on «, p(a) ~ U(1.05,1.99), independent of other parameters’
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priors, and:

~ T 77 T 7T
PUU} alat, B) = (Pa,s) =27 (1 = pa,g) =27,

P((5F o Yol 0, B, 757, {I}) ox (i) (. >

DB a—1
T
I1

o
a—1
t=2

T

exp Z

=2

a—1

Oas(Y)|
oY+

)\t 1(5 )\t 15)04]75

ta,ﬂ(%+):v:>

p({ég,v;}f_ﬂ,a,a,m{ht}>o<( ! )( a )

1 —pags a—1

o
a—1 T

[I

t=2

T

exp Z

=2

S,_
)\t 16 a'Ut

Sy
(A—10) 70y

T otap (V)|
Y,

ta,ﬁ (Yt_ ):Ut_

Note that the state vector X is already redefined in eq. (27) and contains information on {vt } to

and {vt } o U 3
inverse the function ¢, s for given v;” and v; and find the respective values of ;" and Y;”. This

can be done efficiently using Newton’s method as suggested in Buckle (1995). Since the complete
conditional distribution of « is of unknown form, I rely on the MH step to sample from this
distribution. The random walk MH step with normal proposal distribution has been found to be
efficient.

In order to compute the value of the above conditional distribution we need to

3.4.4 Updating skewness parameter [

Since I want to model the negative skewness of asset returns, I consider the restriction g > 0.
In order to control the degree of skewness, I relax the maximum negative skewness (8 = 1)
assumption of Carr and Wu (2003). Their assumption is needed to price derivative securities but
is not required under statistical measure.

In my setting I have to restrict 3 # 1, since according to proposition (1), one cannot guarantee
unimodality of the distribution in eq. (24) for Y;*. The choice of the uniform, independent prior
distribution p(5) ~ U(0.01;0.99) addresses these issues and avoids overflow computation problems.

Updating skewness parameter [ is similar to updating «:

p(ﬁwi(ﬁ)v*xv Y) Ocp({Ut}$:2|a=6)p(5|{gjvvt+}3;27 {S;,U;}? 2) &, 08y, {ht}) X
POl Bp({S v Yials i, By s, (e DPULST 07 Yoals @, By 050, {he})p(B),

where all components are derived in the updating procedure for a but should be treated as the

functions of 8. By conditioning on {vt } .o and {vt } ._, 1 achieve unimodality of complete con-
ditional posterior of 5 as in Buckle (1995) The random walk MH step with normal proposal
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distribution is found to be efficient in this case.

3.4.5 Updating mixing variables U,

Since p(f]t]a, ) is a Bernoulli distribution with probability of success p, g, the complete conditional
posterior is also Bernoulli and is given by:

p(0, = 110, X Y) o p(Yy]0, X 0,0, = 1,Y,_1)p(U;, = (30)
exp {__(Yt — Y,y — b — S — (&,_,0)2pelV)? } -
2 0§,1(1 = p?) >
and:
p(0; = 00, X @ Y) p(YtWaX_(Ut) U, =0, Yt Dp(U; = 0]0) o (31)
Y, =Yg — b — 8 2 pel®)2

We can directly calculate the above probabilities and normalize their sum to unity. The draw from
this distribution is then straightforward.

3.5 Auxiliary Particle Filter

In order to perform density forecast analysis, I fix vector of parameters 6 for each model at the
respective posterior mean and calculate the following probabilities:

Pr(Rt+L < THLW, Rt,m), (32)
L = 1,teNy, R ={R}e1.

where 6 denotes parameter vector for model m specification, m € {1,...,10}, Ryyp = Yo —Yiir 1
is a daily log-return on the asset at time ¢ + L with its law determined by the model specification
and 7., is observed value of this log-return at time ¢t + L. In the above N denotes the subset of
natural numbers less than 7" — L and divisible by L. This guarantees that I analyze only "non-
overlapping" periods and can be further extended for other forecasting horizons. In my paper I
focus attention on the one-day horizon forecasts (L = 1).

Note that I condition on the estimate of parameter value # and do not integrate it out. Hence,
I do not take into account the parameter estimation uncertainty. Since I have a relatively long
sample size, the parameters are estimated with high precision!!. The effect of parameter estimation
uncertainty is beyond the scope of this paper. In the notation below, I omit the explicit dependence
on the model m specification, since it suffices to induce it from 6 vector of parameter estimates.

In this work I consider one-day ahead (L = 1) time horizon for density forecast analysis, which
makes it possible to assess a model ability to forecast one-day ahead daily log-return distribution.
Note that (32) can be calculated not only for the in-sample period but also for the out-of sample
period, whenever we have data available. We can study quantile forecast (VaR) performance of

1The only parameters that are not estimated with high precision are those governing skewness of returns p; and
B respectively in Poisson and Lévy a-stable jumps.

18



the model by comparison of given significance levels and unconditional covering frequencies of each
model implied by the probabilities in (32). Moreover, if the model is correctly specified, binary
variables indicating if the data points are contained in the VaR interval, should be independently
distributed. Hence, there should be no "clustering" in time of their respective realizations.

We can estimate values in eq. (32) by:

ZgL) = ls;(Rt+L < Tt+L|07 Rt) = (33)

K

1 k) (k) o (k

? E Pr(Rt-‘rL < Tt+L|67 Rta ‘]t(—I—)La hg—f—)La h§+)L—1)7
k=1

where (Jt(—]&c—)ln hgi)La hiﬁ—)L—l) ~ itd p<Jt+La ht-f—L? ht-!-L—l |07 Rt)
The draws from this distribution can be performed by utilizing the following condition:

p(Jt+L, ht+L7 ht+L—1> e ht|97 Rt) = p(Jt+L|ht+L—1, 9) 'p(ht+L|ht+L—17 coe P, 9) 'p(ht|07 Rt) (34)

By discarding draws for variables that do not directly enter in equation (33), we have draws from
the desired p(Jiip, hiyr, hirr—1]0, R') distribution. It is important to note that the above holds
for all models with stochastic volatility from diffusion, jumps (or both) with jump sizes:

Ji(m) = { q:¢  models with Poisson jumps (35)
Si(a, 3,0, (\—10)Y?) : models with Lévy a-stable jumps

The work of Christoffersen (1998) on the evaluation of the interval forecasts and its further
extension by Diebold, Gunther and Tay (1998) to the context of the density forecast allow us to
draw conclusions based on the following criterion. A given model is correctly specified if z,fL) (for
t € Np) is éid U(0, 1) distributed. By transformation using the inverse cdf of the standard normal
distribution, I define:

2 = o1z, (36)

The distribution of z{*) implies, that transformed variables Z* should be iid N (0,1) distributed.
This fact is later used for model evaluation in view of the density forecast and quantile forecast
(VaR) performance.

In order to sample from distributions in eq. (34) we have to sample from filtering density
p(h¢|0, R") and then, conditional on this draw, sample from all predicting densities p(h;1|hesi1,6)
and p(Jiyp|hirr—1,0). Sampling from these densities is rather straightforward. The most difficult
problem involves approximation of the filtering density p(h;|f, R") by the auxiliary particle filter, as
developed in Pitt and Shephard (1999). Chib, Nardari and Shephard (2002) extend basic auxiliary
particle filter of Pitt and Shephard (1999) for Poisson type jumps in returns but do not include
leverage effect. Johannes, Polson and Stroud (2008) offer further refinements to the auxiliary
particle filter algorithm for models with jumps and stochastic volatility. However, their algorithm
cannot be applied to the specifications with Lévy a-stable jumps.!? Durham (2006) extends the

12The sampling step in their algorithm requires the closed form of stable density, which is unavailable. Moreover,
the draw should be performed from the density obtained as a multiplication of the normal and stable kernels so
it is not standard. All of the above renders the Johannes, Polson and Stroud (2008) method inapplicable in our
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basic particle filter for models with leverage effect but does not include jumps in returns, moreover,
he works with particle filter and does not apply auxiliary particle filter involving index parameters
draws'?. In this paper I present auxiliary particle filter for jump-diffusion models with the leverage
effect. Moreover, I allow for different sources of stochastic volatility and most importantly for Lévy
a-stable jumps in returns.

Lets first notice, that:

(hus1, by Jega | RETL,0)

t+1y _ | P t

p(ht+17 Jt+1(m)|7 97 R ) - / p(htl@, Rt) dp<ht|97 R ) (37>

and
h he, Jioq1, R |Rt 0)
h h t+1 g :p( t+1s s Jerdy L [, 0)
p(his1, bey Jepa [R5, 0) (R | R (38)
P(Rt+1|ht+1; hey Jisa, Rtv 9)p<ht+1 |ht, 9)p<Jt+1 |ht, 9)p(ht|9, Rt)
p<Rt+1‘Rt) .

Substituting (38) into (37) we have:

P, Jea]6, R o (39)

/P(Rt+1|ht+1; hey Jia, Rtv Q)P(ht+1|ht, H)P(Jt+1|ht, e)dp(htwa Rt)

Auxiliary particle filter is a recursive algorithm to approximate filtering densities p(h:|0, R")
for t = 0,...,T by a finite number K of "particles" for each ¢. These particles define discrete
probability distribution filter p(h|6, R'). 1 denote particles for filter at time ¢ as ng), where
kE=1,2,.. K. Given K particles defining discrete probability distribution filter at time ¢, we
obtain approximation p(hs 1|0, R™™!) for t + 1 defined by its respective K particles using relation
in (39):

1. draw N > K indexes ky, ks, ..., ky from the discrete probability distribution g(k|R'™) with
support of k = 1,2, ..., K. The choice of g(k|R") should reflect an information content of
the future return R;,; on the choice of index mixture k& and hence the particle Eﬁk). Note
that k represents an index on mixture in (39) as in Pitt and Shephard (1999). I specify the
weights to be proportional to:

g(k|Rt+1) o G(Ryy1; H(m)s O-%m)) (40)

where ¢ denotes normal pdf calculated at Ryy1 = ryy1 with mean p,,) and variance a%m)

given by:

) w+Np;  for models with Poisson jumps
Him) = p  for models with Lévy a-stable jumps

setting.
BFor discussion on improvements of auxiliary particle filter over particle filter please refer to Pitt and Shephard
(1999).
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O_(m =

) (1= p»& 4 Me(0F + 15) — (Aps;)? for models with Poisson jumps
) (1 — p?)E&, + A7 for models with Lévy a-stable jumps

and where we substitute all constraints as in Table I. My choice of p,,, and a?m) for models
with Poisson jumps coincides respectively with E;(R:1]0, 5&)1 = 0) and vary(R:110, &:E’gl =
0). In case of models with Lévy a-stable jumps I pursue the same strategy as for Poisson
models, but in the first step I approximate the distribution S;;:(a, 3,0, ()\t)l) given Ay,
by N(0, (\)= ; ). Hence, T simply replace a-stable distribution by normal distribution with
the same scale parameter. Finally, I denote the index draws as /{;1, /{;2, . kN and record the
respective values of hék ) for j = 1,..., N, where hik i) = hg ). Note that the above specification

of g(k| Rt™) allows to draw the indexes k on particles h{") and this draw is consistent with the
scale and mean implied by the next-period return R;,;. This makes my algorithm efficient
and easy to implement for all considered models.

. Draw proposal particles hgi)l, n = 1,2,..., N, given mixture index and particle from the
preceding filter using the respective prediction density:

W)~ p(hy | B 6)

. Draw jump increments Jt(_t)l, n=12 .. N, from p(Jt+1|h§k”), 0).

. Reweight the draws (hﬁ)l, Jt(_t)l), n=1,2,..., N, by drawing K times (with replacement) from
the discrete probability distribution with weights proportional to:
n En n
p('rt-‘rl |h1§+)17 hwg )7 ‘]t(—|—1a Rt7 0)
O(Ri41 Ly Tlrmy)

forn=1,2,..., N. We finally get K draws defining discrete filter distribution p(h;, 1|0, R**1)
by discarding draws on J;;;. Denote the new particles as Bﬂﬁl, where k =1,2, ..., K.

(41)

Wp —

5. Go to point 1. and increment t.

By comparing weights in (41) to the first integrand component in (39), the validity of the

whole algorithm is based on the importance sampling principle. In my applications I take N =
10,000,000 and K = 1,000,000. I do not draw from the discrete auxiliary particle filter distrib-
ution p(h:|0, R') but directly utilize all derived particles from the filter. The above choice of N
and K is sufficient to induce a low variability of statistics calculated using derived particles among
different starting seeds of random number generator.

4 Empirical Application

4.1 The Data

In this paper the data on the S&P 500 index extends from 01,/02/1981 to 12/31/2007 and comprises
of 6813 daily observations available from CRSP database. The S&P 500 index levels are reported
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at the closing times in each business day. All six model specifications are estimated using this
data set. It allows for modelling the market crash of 1987 and the "dot.com" corrections from
1999-2001.

In Table II and Figure 1, I present respectively the descriptive statistics of daily log-returns on
the S&P 500 index and graphs of S&P 500 index log-level and S&P 500 index log-returns. The
data on the S&P log-returns indicate that there exists significant negative skewness of —1.7465
and kurtosis of 42.79. In Figure 1, I also report the skewness and kurtosis as a term structure
of S&P 500 returns. The term structure of skewness and kurtosis determine volatility smiles
for options across all maturities.!* Carr and Wu (2003) find that the volatility smiles do not
flatten completely as maturity increases and propose the log-stable model of asset returns, where
asset returns have infinite variance and higher moments, and the CLT does not work. This also
motivates my specification with Lévy a-stable jumps'®.

4.2 Estimation Procedure

Since MCMC algorithms require a choice of starting values for all parameters and latent variables,
I first list them for all estimated models. The parameter estimates were found not to be affected
by different choice of starting values for the MCMC algorithms. I take the posterior mean for
each model to be an estimate of the respective parameters and reported in Table III for all model
specifications. In Figures 2 and 3, I present respectively the smoothed estimates of jump sizes in
eq. (35) and stochastic volatility {h;}.

For models with Lévy a-stable jumps in returns, the starting values for mean/drift parameters
1, 05, are zero, for the scale parameters oy, og;, o are one, for the correlation parameter p is
zero, for ky, is one. For jump specific parameters I specify oV = 1.5 and %Y = 0.5. The choice
of starting values for the latent variables involves the choice of Ut(l) = 1 (only positive jumps),
hgl) = 0, and finally 5”:(1) = 0.01 and gf(l) = —0.01 for all ¢. Since I update stable jumps aux-
iliary variables Y;* and Y, at the beginning of the MCMC algorithm, I do not need to specify
their starting values. In all models the choice of starting values for the MCMC does not affect
the estimation results. In models SJ and SJSV with stochastic volatility from either diffusion or
jumps but not both, I draw 400, 000 realizations from the MCMC chains, where the first 200, 000
draws are treated as the burn-in period and the last 200, 000 as draws from the stationary distrib-
ution. In the model with joint stochastic volatility DiffSJSV, I choose the same starting values but
draw 700, 000 realizations and I double the size of the burn-in period to the first 400,000 draws
compared to other models with Lévy a-stable jumps. I run simulation in model PJ for 500, 000
draws, in model PJSV for 1,000,000 draws and in model DiffPJSV for 1,500,000 draws where I
treat the first 300,000, 800,000 and 1,000,000 draws as the burn-in period, respectively.'® For
models with Poisson jumps the drift and log-volatility related parameters and latent variables are
given the same starting values as for models with infinite activity jumps.

4The volatility smiles depend on both the distribution of asset returns under the statistical measure and the
risk premia.

15With an exception of maximum negative skewness (3 = 1), models with Lévy a-stable jumps require further
refinements in order to be applied in the option pricing, e.g. tempering of Lévy measure.

6MCMC converges in smaller number of realizations for models with Poisson jumps. Since the draws for these
models are not computationally demanding, we decide to run longer draws.
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Figure 1a: 5&P500 daily log-level
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Figure 1b: S&P500 daily log-returns
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Figure 1c: 5&P500 returns skewness term structure
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Figure 1d: 5&P500 returns kurtosis term structure
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Figure 1. (a) S&P 500 index daily log-levels, 01/02/1981-12/31/2007; (b) S&P 500 index daily log-returns,
01/02/1981-12/31/2007; (c) Skewness term structure of S&P 500 daily log-returns, 01/02/1981-12/31,/2007; (d)
Kurtosis term structure of S&P 500 daily log-returns, 01/02,/1981-12/31/2007

Poisson jump specific parameters are given starting values ,ugl) =0, 05-1) =1 and )\El) = 0.5 and
for latent variables I assume no jumps qlfl) = %gl) = 0 for all . Moreover, in the model with joint
stochastic volatility I choose oM = 1.

In the following I implement the model selection criteria developed in Jones (2003). Recall
that in all model specifications sgl) and 6%2) are assumed to be jointly independent and iid N(0,1).

In the following lets call 5%1) the residuals from returns equation and 6%3) = psﬁl) ++/1 - p25§2) the
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residuals from the log-volatility equation. We may view those residuals as latent variables. Hence,
we can construct posterior distributions for functions of these latent variables by evaluating these
functions at each step of the MCMC algorithm. Since model residuals are iid N(0,1) I calculate
mean, standard deviation, skewness, kurtosis and first-order autocorrelation. Then I calculate the
median and 95% confidence intervals for those statistics reported in Table IV. A correct model
specification implies that mean is zero, standard deviation one, skewness zero, kurtosis three and
autocorrelation zero.

4.3 Estimation Results for S&P 500 Data

Since I have the same log-volatility specification as in Jacquier, Polson and Rossi (2004), their
results shed light on the importance of the leverage effect. In their work, the leverage effect is found
to correct for a possible misspecification resulting in the biased estimates of the volatility states
and the parameters of the log-volatility process. Hence, in my work I consider specifications with
leverage effect and focus attention on the source of stochastic volatility and the jump structure.
In models with either joint stochastic volatility or stochastic volatility from diffusion I find the
leverage effect to be statistically significant with the estimates of —0.5891, —0.5880, —0.7496,
—0.6428 respectively for models PJ, DiffPJSV, SJ and DiffSJSV. Since the only models that do
not allow for the leverage effect are the models with stochastic volatility from jumps, I restrict
p = 0 for these specifications.!” In my analysis the estimation of all six model specifications allows
us to draw conclusions about the marginal importance of the different jump structures and the
source of stochastic volatility.

In all models the parameters are precisely estimated with an exception of the parameters gov-
erning skewness of returns p; and (3, for models with Poisson and Lévy a-stable jumps respectively.
In model PJ the parameter \; is estimated at the level 0.0022, which gives approximately one jump
per two calendar years. Similarily, in models PJSV and DiffPJSV the activity rate of the Poisson
jumps, governed by A, = exp(h;) process, also indicates a similar average jump intensity. The
small number of realized Poisson jumps limits the ability to precisely estimate the mean of the
jump sizes ji; and results in the relative estimation errors of 65.1%, 86.4%, 63.9% for models PJ,
PJSV and DiftPJSV, respectively. In models with Lévy a-stable jumps, the lack of precision in
the estimation of § is also a consequence of limited information in the sample about the tails of
the returns distribution and implies that the relative estimation errors for parameter 5 are 42%,
65.7% and 16.7% for specifications SJ, SISV and DiffSJSV, respectively. In model DiffSJISV the
parameter og; controls for the relative importance of diffusion and Lévy a-stable jumps to the
total volatility of returns. The relative error of estimation of 20% suggests that there is enough
information in the sample to disentangle diffusion from infinite activity Lévy a-stable jumps. In
Figures 2 and 3, I present smoothed jump sizes and log-volatility estimates respectively, where the
former are defined in (35). The models with stochastic volatility arising only from diffusion violate
1id property of jumps, since in models PJ and SJ I visually find an evidence of jump clustering. In
specifications with joint stochastic volatility DiffPJSV (DiffSJSV) a jump clustering is a built-in
characteristic of the model but clustering is allowed to arise only from the stochastic volatility.

I test for independence of the jump increments by using the standard Ljung-Box test.'8

1"Refer to section 2.3 for further details on the models with stochastic volatility from jumps.
18Note that stable increments do not have finite second moments, however, the sample autocorrelations can be
always computed. More formally, the Ljung-Box test can be performed by truncating the increments at some given
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Figure 2a: P} model jump sizes Figure 2d: 5) model jump sizes
0.10 - 0.10 -
0.05 4 0.05 4
0.00 .,| ‘ | T — 0.00 4 Malaiat | e o .;‘W»
-0.05 4 -0.05
-0.10 4 -0.10
-0.15 4 -0.15
-0.20 4 -0.20
-0.25 T T T t -0.25 T T T T
X ® 8 = 8 ¥ & & &5 & 2 & 8 B X ® 8 = & § § & 5 @& 2 & 8 35
. 3 a a 3 a3 g 3 ada a4 R K B R 2 3 a4 a3 a 3 g 3 a a4 g K R R
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Figure 2. (a, b, ¢) smoothed jump size estimates for models with Poisson jumps, respectively PJ, PJSV,
DiffPJSV; (d, e, f) smoothed jump size estimates for models with Lévy a-stable jumps, respectively SJ, SISV,
DiffSISV. The jump sizes are defined for all models in eq. (35).

Since Poisson jumps are rare events I concentrate attention only on the Lévy a-stable jumps
specifications SJ and DiffSJSV. In Figure 4, I illustrate smoothed jump increments for models
SJ and DiftSJSV, where the latter are corrected for the varying intensity, or in other words, are
scaled by the stochastic volatility. I present smoothed estimates of S; 5(c, 3,0,05; -9 é) for model
DiffSJSV and call it in the sequel as descaled jump increments. The descaled jump increments are
12d by construction. By using the scalability property for stable distribution and applying it

treshold. I assume that the treshold has never been met in the sample.
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Figure 3a: P) model log-volatility Figure 3d: 5) model log-volatility
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Figure 3c: DiffPJSV model log-volatility Figure 3f: Diff5J5V model log-volatility
3 1 6 -
74
-4
£ 4
5 -5 4
=l -10
.11 4
iy
.12 4
-8 T T T -13 T T T T
%= & 8 % 8 T o &% & & 2 £ B8 8 5 B 8 % 8 3 & 4 5 & 8 & 5 5
a I g 3 a3 3 3 3 a3 3 KRR R " R a2 49 9 3 3 3 3 a3 3 3 R R "R H

Figure 3. (a, b, ¢) smoothed log-volatility estimates {ht} for models with Poisson jumps, respectively PJ,
PJSV, DiffPJSV; (d, e, f) smoothed log-volatility estimates {ht} for models with Lévy a-stable jumps,
respectively SJ, SISV, Diff SISV

to the discretized version of the model in eq. (11) we have

St+5(()é, 67 07 gsyJ - 5é) i St+5(a’ 6’ O, ()\t(S)E) ~ tid S(Oé, 57 07 0sJ 5%) (42)

exp(he/a)

where the descaled jumps are the jump sizes divided by the instantaneous volatility. In model SJ
I do not have to follow this procedure, since )\; is constant and hence for this model I present the
jump size estimates as in Figure 2 and eq. (35). I find that model DiffSJSV produces in general
higher p-values at lags 1-500 than model SJ.' Hence, there is less degree of dependence between

198ince I use Ljung-Box test, each time I include all lags up to, and including, the specified level. Under the null
hypothesis the sample is random and under the alternative there is dependence.
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Figure 4. (a, ¢) smoothed jump increments for model SJ and descaled jump increments for model DiffSISV
(scaled back by realizations of stochastic volatility defined in eq. (42)); (b, d) Ljung-Box test p-values of
smoothed jump increments and descaled jump increments are calculated for different maximum number of lags
(1-3000) for models SJ and DiffSJSV respectively. The values at lags (1-3000) at the level 0.1 correspond to
p-values at, or exceeding 0.1. The higher maximum lags (3001-6811) are omitted, since they are found to have
p-values higher than 0.1

the neighboring jumps with distance of up to 2 years in model DiffSJSV. At horizons ranging from
500-2500 both models perform poorly, although model SJ performs somewhat better. However,
none of these models reach the p-value of 0.05 at lags 500-2000. Since in the following sections I
am mostly interested in the short-horizon density forecasts, model DiffSJSV having superior fit at
shorter lags is better suited for this task.

4.3.1 The Source of Stochastic Volatility

Focusing attention on models with stochastic volatility from jumps PJSV and SJSV, we can
evidently eliminate them as they are outperformed by other models with the same jump structure.
In both models the parameters governing skewness of returns j; and 3 are estimated with the
lowest precision among all specifications. Moreover, the speed of mean reversion parameters ry,
are much closer to the non-stationarity level and have the highest relative estimation errors among
all stochastic volatility specifications of 60% and 55.5% for models PJSV and SJSV, respectively.
There are also significantly higher relative errors of estimation of parameters 6, of respectively
38.3% and 32.7%.

In terms of goodness of fit analysis presented in Table IV, models PJSV and SJSV perform
much worse than their counterparts with the same jump specification. Although they perform
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relatively well with respect to the skewness of returns, they cannot represent leptokurtic property
of returns. This is documented by too small standard deviation of residuals of 0.9084 for model
PJSV and 0.8965 for models SJSV, as well as by too high kurtosis of residuals, respectively 3.7349
and 3.7059. Note that even much richer specification of infinite activity Lévy a-stable jumps do
not alleviate these problems since model SJSV do not fit the data better than the simple Poisson
jump model PJSV.

I find almost perfect fit with respect to the log-volatility equation for all model specifications
irrespective of the source of stochastic volatility and jump structure.

In models with stochastic volatility from diffusion (PJ) and joint stochastic volatility (Diff-
PJSV) with Poisson jumps I do not find significant differences with respect to the precision of
parameter estimates and goodness of fit, that can in a decisive way point out the best stochastic
volatility specification. However, in models SJ and DiffSJSV with Lévy a-stable jumps the dif-
ferences in goodness of fit can be found in the degree of kurtosis 3.059 and 3.1397, respectively,
in Table IV. However, the latter still dominates all other models including all specifications with
Poisson jumps. On the other hand, I find in the previous section that model SJ is dominated by
model DiffSJSV with joint stochastic volatility when satisfying the independence assumption of
descaled jump increments at shorter autocorrelation horizons of up to 2 years.

Summing up, I reject models with stochastic volatility from jumps and find that diffusion is an
important feature, since it has to be a source of stochastic volatility. I postpone the final choice
between models with stochastic volatility from diffusion and joint stochastic volatility to density
forecast and VaR analysis in Section 4.4.

4.3.2 Modelling Jumps in Returns

In this section I provide an evidence in favor of models with infinite activity Lévy a-stable jumps.
I restrict my analysis to models with either joint stochastic volatility or stochastic volatility from
diffusion, since they dominate the models with stochastic volatility from jumps with respect to
the estimation precision and goodness of fit. Since all considered models are estimated with high
degree of precision with the exception of parameters governing skewness of returns, I concentrate
attention on the goodness of fit analysis presented in Table IV.

I find that Poisson jumps are suited to fit only big jumps, which agrees with findings in Li,
Wells and Yu (2008). My estimates of jump intensity A; for models with stochastic volatility
from diffusion and exp(éh) for joint stochastic volatility imply only about one jump per two years.
Hence "small", frequent, and more subtle jumps are simply not represented by the models with
Poisson jumps in returns, even if we include joint stochastic volatility. The above can be seen by a
comparison of smoothed jump size estimates for Poisson models with the respective estimates for
Lévy a-stable models in Figure 2. As expected the skewness, affected by large jumps in the very
left tail of the return distribution, is much better represented than kurtosis of returns in models
with Poisson jumps. This is documented by the skewness of residuals of —0.0484 and —0.0470,
and kurtosis of residuals of 3.2578 and 3.2481 respectively for models PJ and DiffPJSV. Models
SJ and DiffSJSV, with Lévy a-stable jumps in returns and infinite number of "small" jumps in
the finite time interval, have a very good fit both with respect to skewness and kurtosis of returns
and dominate other model specifications.
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4.4 Density Forecast and VaR analysis

In this section I apply auxiliary particle filter described in Section 3.5 to evaluate one-day horizon
forecast and quantile forecast (VaR) performance of all models. In Table V, I present descrip-
tive statistics of {Et(L)} distribution (L = 1), with 2" defined in eq. (36) calculated for different
model specifications with their respective parameters fixed at the MCMC estimates as in Table III
for S&P500 data on the period 01/02/1981-12/31/2007. S&P500 daily log-returns, used for Z\"
calculation, are derived from S&P500 index level for all available observations. A correct speci-
fication implies that {Et(L)} is iid N(0,1) distributed, hence the mean is zero, standard deviation
one, skewness zero, kurtosis three. Note that excess kurtosis and negative skewness of general-
ized residuals ’z\fl) implies respectively too small kurtosis and not enough negative skewness in the
model implied forecasting distribution only if the scale of the generalized residuals is correctly
represented and close to one.?’ Moreover, there should be no autocorrelation in the levels and the
squares of generalized residuals.

In Figure 5, I present quantile-quantile plots (qg-plots) of generalized residuals, that show all
deviations from assumption of normality. In Table V, I present the calculated statistics (and the
p-values) of Jarque-Bera test for normality. In Figures 6 and 7, I include autocorrelation functions
for levels and squares of generalized residuals respectively. This allows us to draw conclusions on
whether the independence assumption is satisfied. Serial correlation in the squares of generalized
residuals is an indication of the lack of ability of the model to represent the volatility of returns.
In Figures 8 and 9, I present p-values of the Ljung-Box test for dependence calculated at different
maximum number of lags in the autocorrelation expansion for levels and squares of generalized
residuals. In Table VI, T also present one-day horizon VaR performance. I calculate values of
{zt(L)} defined in equation (33), given estimated model parameters, and then compute empirical
coverage frequencies for significance levels of 1%, 5% and 10%. Note that the density forecast
analysis deals with the whole shape of the predictive density, while VaR analysis refers only to its
very left tail.

The density forecast analysis in general, and VaR analysis in specific, stress the importance
of correct specification of stochastic volatility. If model misspecifies stochastic volatility, it also
performs poorly in density forecast and VaR analysis. To illustrate this, note that for goodness
of fit analysis we utilize all available information in the sample, conditioning on all observed asset
returns, while in the forecast and VaR analysis we only condition on the filtered volatility states
and have available only current and past values of returns determining latent volatility. Hence,
the behavior of stochastic volatility, as a state variable, and an ability to filter its values, is of
fundamental importance in the density forecast. In this light a correct specification of the source
of stochastic volatility determines a forecasting ability of the model.

4.4.1 Models with Poisson Jumps

I reject model PJSV with stochastic volatility from jumps, since it is outperformed by other
specifications and has poor performance with respect to both skewness —0.2335 and kurtosis
4.9226 in the density forecast analysis in Table V. Most importantly, the scale of the forecast is
incorrect at 0.8834. The above results in the rejection of normality by the Jarque-Bera test. The

20Tn the sequel I use Durham (2006) interpretation of {ZSL)} realizations as "generalized residuals".
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Figure 5a: QQ plot PI model Figure 5d: QQ plot SJ model
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Figure 5¢: QQ plot DiffPJSV model Figure 5f: QQ plot DiffSJSV model
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igure 5. (a, b, ¢) quantile-quantile plots of the generalized residuals 2, ’ for models with Poisson jumps,

respectively PJ, PJSV, DiffPJSV; (d, e, f) quantile-quantile plots of the generalized residuals 2151) for models with

Lévy a-stable jumps, respectively SJ, SISV, DiffSJSV

qg-plot in Figure 5b illustrates the problem in the tails of the forecasting distribution?!. Ljung-Box
test statistics for the levels of {éfl)} in Figure 8b do not differ from the other model specifications
and accept independence in the levels at 1% significance level if we include small number of lags
in the test of up to 2 years apart. However, in the test for squared residuals the model completely
falls behind other specifications with the p-values of the Ljung-Box test close to 0 in Figure 9b.
This is an evidence of model PJSV’s inability to represent not only the distribution of one-day
ahead forecasted returns but also the dynamics of volatility. In Figures 6b and 7b an inspection
of autocorrelation functions of levels and squares of generalized residuals visualizes the problem.

2I'We cannot simply conclude that the model imposes to little skewness and kurtosis, since the scale of the
generalized residuals is also incorrect and less than 1. VaR analysis confirms this finding.
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Figure 6a: model PJ autocorrelation - residuals Figure 6d: model 5) autocorrelation - residuals
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Figure 6b: model PISV autocorrelation - residuals Figure 6e: model SISV autocorrelation -residuals
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Figure 6¢c: model DiffPISV autocorrelation - residuals Figure 6f: model DiffSISV autocorrelation - residuals
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Figure 6. (a, b, ¢) autocorrelation function of the generalized residuals 2, ’ for models with Poisson jumps,
(1)

respectively PJ, PJSV, DiffPJSV; (d, e, f) autocorrelation function of the generalized residuals 2; * for models
with Lévy a-stable jumps, respectively SJ, SISV, DiffSJSV. 95% confidence intervals depicted as horizontal lines.

One of the possible explanations is an incorrect source of stochastic volatility.

Models PJ and DiffPJSV with diffusion included as a source of stochastic volatility dominate
model PJSV. An inspection of the qg-plots in Figure 5 and descriptive statistics of generalized
residuals in Table V reveal the clear advantage of models PJ and DiffPJSV over model PJSV in
representing forecasting distribution. However, there is no significant difference in performance
between models PJ and DiffPJSV. In the density forecast analysis presented in Table V both
models perform on par and dominate model PJSV. Although they represent better forecasting
distribution compared to model PJSV, they still fall short in this respect with Jarque-Bera p-values
of 0.0061 and 0.0027 respectively. Hence, it still does not suffice to accept the null hypothesis of
normally distributed generalized residuals even at the 1% level. In order to identify a source of
the problem I inspect descriptive statistics of generalized residuals and find that both models
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Figure 7a: model P) autocorrelation - squared residuals Figure 7d: model SJ autocorrelation - squared residuals
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Figure 7b: model PJSV autocorrelation - squared residuals Figure 7e: model 515V autocorrelation - squared residuals
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Figure 7c: model DiffPJ5V autocorrelation - squared residuals Figure 7f: model DiffSJSV autocorrelation - squared residuals
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2
for models with

(1)

Figure 7. (a, b, ¢) autocorrelation function of the squared generalized residuals ( 2,

Poisson jumps, respectively PJ, PJSV, DiffPJSV; (d, e, f) autocorrelation function of the squared generalized
2
residuals (2,51)) for models with Lévy -stable jumps, respectively SJ, SISV, DiffSISV. 95% confidence

intervals depicted as horizontal lines.

fail with respect to kurtosis of the forecasting distribution but represent skewness slighlty better.
The high kurtosis values of 3.1517 and 3.1642, for models PJ and DiffPJSV respectively, are the
main driving factor of high Jarque-Bera test statistics found in both models. This result stays in
line with my previous findings from goodness of fit analysis in Section 4.3.2, where the models with
Poisson jumps PJ and DiffPJSV represent skewness better than kurtosis of returns. Since the scale
of the forecasting distribution is well represented we can draw conclusion that there is too small
kurtosis in the PJ and DiffPJSV model implied forecasting distribution which is later verified in
the VaR analysis. In the Ljung-Box test for dependence in the squares of generalized residuals
presented in Figure 9 the test p-values are higher than 1% with an exception for the maximum lags
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of approximately 25 —400 and 1200 — 1800 business days. This constitutes a colossal improvement
compared to model PJSV in representing the dynamics of volatility. The same conclusions can be
drawn from an inspection of autocorrelation functions for the squares of generalized residuals in
Figure 7. Most importantly, I do not find significant differences between models PJ and DiffPJSV.

Finally, model PJSV is outperformed by models PJ and DiffPJSV in the VaR analysis pre-
sented in Table VI. Model PJSV overestimates VaR values in the estimation sample and therefore
underestimates the empirical coverage frequencies by inducing too high skewness and kurtosis in
the forecasting distribution. Both models PJ and DiffPJSV perform on par in the VaR analysis
underestimating VaR values at 1% with coverage frequencies of approximately 1.2%. Both models
produce very good results at the 5% and 10% levels with a general tendency to perform better at
higher significance levels.

Since models PJ and DiffPJSV include diffusion component as a source of stochastic volatility,
it is the diffusion that contains the most information about latent stochastic volatility. I conclude
that diffusion is the primary source of stochastic volatility in models with Poisson jumps which
is intuitive, since Poisson jumps are rare. As discussed in the previous section, the correct speci-
fication of stochastic volatility is of major importance. It affects how the model performs in the
density forecast and VaR analysis.

Summing up, model PJSV with stochastic volatility only from jumps is rejected not only with
respect to the goodness of fit but also with respect to the density forecast and VaR performance,
since it is outperformed by other specifications with Poisson jumps. Models PJ and DiffPJSV
both perform on par and hence the benefits of additional source of stochastic volatility from the
Poisson jumps in model DiffPJSV are rather minor, if any. The diffusion component serves as the
primary source of stochastic volatility in the models with Poisson jumps.

4.4.2 Models with Lévy a-stable Jumps

In forecast analysis the main objective is to correctly represent the forecasting distribution, where
filtered latent volatility states play the first role. Since Lévy a-stable jumps have infinite activity
property, they are able to represent not only big and rare Poisson type jumps, but also more
frequent and subtle jumps. Hence, when the Lévy a-stable jumps component is included as a
source of stochastic volatility, it should provide additional information about latent stochastic
volatility and therefore improve the density forecast performance. I also analyze an extreme case
where stochastic volatility arises only from the pure jump Lévy a-stable process. It allows to verify
if diffusion still plays the fundamental role as a source of stochastic volatility in the models with
infinite activity, infinite variation jumps.

I find that we cannot simply exclude the diffusion as a component driving stochastic volatility
even with Lévy a-stable jumps in returns. This is illustrated by the poor performance of model
SJSV with respect to the density forecast and VaR analysis presented in Tables V and VI re-
spectively. In the density forecast model SJSV shares similarities with model PJSV. It fails to
represent scale, skewness and kurtosis of the forecasting distribution with the respective statistics
of 0.891, —0.1221 and 3.7942 calculated for generalized residuals. This implies the high value of
Jarque-Bera test statistic of 195.96 and rejection of normality, although this statistic is significantly
improved compared to model PJSV. In Figure 5e, I present qqg-plot that visualizes the failure of
the SJSV specification to represent the forecasting distribution. Since the scale of the forecasting
distribution is misspecified as in model PJSV, I have to postpone a conclusion about skewness
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Figure 8a: model PJ - Ljung-Box P-values - residuals Figure 8d: model SJ - Ljung-Box P-values - residuals
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Figure 8b: model PJSV - Ljung-Box P-values - residuals Figure 8e: model 5J5V - Ljung-Box P-values - residuals
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Figure 8c: model DiffPISV - Ljung-Box P-values - residuals Figure 8f: model DiffSISV - Ljung-Box P-values - residuals
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Figure 8. (a, b, ¢) Ljung-Box test p-values of the generalized residuals étl for models with Poisson jumps,
respectively PJ, PJSV, DiffPJSV, calculated as a function of different maximum number of lags; (d, e, f)
Ljung-Box test p-values of the generalized residuals 7:‘151) for models with Lévy -stable jumps, respectively SJ,
SJSV, DiffSJSV, calculated as a function of different maximum number of lags. The values at the level 0.1

correspond to p-values at, or exceeding 0.1.

and kurtosis of the implied forecasting distribution to the VaR analysis. In the test for dependence
in the squared generalized residuals in Figure (9) model SISV completely falls behind other spec-
ifications with its Ljung-Box test p-values close to zero at all maximum lags considered (2 — 6811)
with an exception of only one lag (1), where it equals 0.15. Hence, model SJSV can neither repre-
sent the distribution of one-day ahead forecasted returns nor the dynamics of volatility. However,
both models PJSV and SJSV produce similar results to other specifications in the Ljung-Box test
for dependence in levels of the generalized residuals in Figure (8). In Figures 6 and 7 an inspection
of autocorrelation functions of levels and squares of generalized residuals visualize these findings.
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Figure 9a: model PJ - Ljung-Box P-values - squared residuals Figure 9d: model 8J - Ljung-Box P-values - squared residuals
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Figure 9b: model PJSV - Ljung-Box P-values - squared residuals Figure 9e: model SISV - Ljung-Box P-values - squared residuals
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Figure Sc: model DiffPISV - Ljung-Box P-values - squared residuals Figure 9f: model DiffSISV - Ljung-Box P-values - squared residuals
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Figure 9. (a, b, ¢) Ljung-Box test p-values of the squared generalized residuals <2A:t(1)> for models with

Poisson jumps, respectively PJ, PJSV, DiffPJSV, calculated as a function of different maximum number of lags;

2
(d, e, f) Ljung-Box test p-values of the squared generalized residuals (275(1)) for models with Lévy a-stable

jumps, respectively SJ, SISV, DiffSJSV, calculated at different maximum number of lags. The values at the level

0.1 correspond to p-values at, or exceeding 0.1.

Finally, I concentrate on models with diffusion as a source of stochastic volatility. In model
DiffSJSV the joint stochastic volatility enables us to extract information about latent volatility
from both diffusion and infinite activity jumps. The above produces the best performance in the
density forecast analysis across all model specifications. This model performs the best in terms of
representing skewness and kurtosis of predictive distribution with skewness of —0.0014 and kurtosis
of 3.0981 compared to —0.0266 and 3.1042 respectively for model SJ. The Jarque-Bera p-value of
0.255 confirms superiority of model DiffSJSV in representing the forecasting distribution, although
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model SJ with the p-value of 0.1432 also performs well. Both mean and standard deviation of
generalized residuals are close to the theoretical values in models SJ and DiffSJSV. An inspection
of qg-plot in Figure 5 verifies normality assumption of generalized residuals for both considered
models. Model DiffSJSV’s advantage over other models, including the SJ specification, shows up
in the very left tail of the generalized residuals. As I find above, the autocorrelation functions in
Figure 6 for levels of generalized residuals are not significantly affected by the model specification
and all models perform similarily in the Ljung-Box test for levels of generalized residuals in Figure
8. On the other hand, I find significant differences between models SJ and DiffSJSV in the analysis
of the squared generalized residuals and hence the model implied dynamics of volatility. Even tough
the autocorrelation functions in Figure 7 do not provide any significant proof of this, in Figure 9
I find that model DiffSJSV performs superior to any other model and has the highest Ljung-Box
test p-values. Most importantly, comparing directly models SJ and DiffSJSV in Figures 9d.f I find
that model Diff SISV outperforms model SJ especially at maximum lags in the Ljung-Box test of
up to about 5 years. This implies that model DiffSJSV is superior in representing the dynamics
of volatility, which shows up in its density forecast performance.

In the VaR analysis in Table VI models SJ and DiffSJSV produce very good results among all
specifications. Model DiffSJSV dominates all other specifications in the VaR analysis in the very
left tail at 1% and 5% levels with empirical coverage frequencies of 0.98% and 5.06%. At 10% level
it produces second best result with the coverage frequency of 9.97% comparing to 10% in model
PJ. T also find that model SJ performs very well in the VaR analysis but is dominated by model
DiffSJSV with a joint stochastic volatility specification.

The biggest problem in the VaR analysis arises in model SJSV at the 5% and 10% levels and
this result is similar to model PJSV. The model improves at the 1% level. Model SISV, although
dominated in the VaR analysis by other models with Lévy a-stable jumps, performs better than
model PJSV.

Summing up, the jump component cannot serve as the only source of stochastic volatility
even in the models with Lévy a-stable jumps. In case of models SJ and DiffSJSV with diffusion
as a source of stochastic volatility, I find evidence in favor of model DiffSJSV with stochastic
volatility arising from both diffusion and jump components. This stays in contrast to the results
for the Poisson jumps, where the marginal importance of the stochastic volatility from the jump
component does not have a first order importance in the density forecast analysis.

4.4.3 Poisson or Lévy a-stable Jumps?

I focus attention on the choice of the jumps specification: compound Poisson or Lévy a-stable
jumps. The model with Lévy a-stable jumps and joint stochastic volatility DiffSJSV outperforms
all other models with respect to the density forecast and VaR analysis, which stems from the fact
that it offers one important advantage in the modelling of asset returns. Since joint stochastic
volatility makes possible to extract information about latent volatility from both diffusion and
jumps and since jumps have infinite activity, they are more informative about the latent volatility.
The infinite activity guarantees that it can represent small and frequent jumps as oppose to the
Poisson jumps model, which is found to fit only big and rare jumps in returns. Since Poisson jumps
occur very rarely, they have only limited information about latent stochastic volatility and even
if this information is extracted in the form of stochastic volatility arising from both the diffusion
and the jumps in model DiffPJSV, its forecasting performance is dominated by model DiffSJSV.
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5 Conclusions

In this paper I address the choice of jump structure and source of stochastic volatility in the
continuous-time jump diffusion models of asset returns. I consider two types of jump structures
- compound Poisson and infinite activity Lévy a-stable jumps. The source of stochastic volatility
comes from the diffusion component, the pure jump component or both. I use data on daily
S&P500 index returns since it is a broad indicator of the equity markets. I perform estimation
under statistical measure - this allows us to not only answer how the models fit the data but also
how they perform in the density forecast and VaR analysis. The large family of models considered
lets us marginalize the effects of different jump structures and source of stochastic volatility with
respect to goodness of fit and density forecast performance.

I face the problem of parameters estimation in the presence of latent stochastic volatility and
latent jump sizes. I perform estimation using Bayesian methods and propose a new algorithm
for models with Lévy a-stable jumps. My method solves the problem of MCMC state-space
separability and thus allows for the estimation of a broad class of contiuous-time jump diffusion
models with Lévy a-stable jumps and various sources of stochastic volatility.

Lévy a-stable jumps dominate compound Poisson jumps specifications with respect to goodness
of fit analysis, since the latter are only suited to fit big and rare jumps. Moreover, models with
Lévy a-stable jumps can adequately represent kurtosis of the underlying data and skewness of
the returns distribution but only if diffusion is included as a source of stochastic volatility. It is
important to note that models with stochastic volatility arising only from the pure jump component
fail to fit the returns and this feature is irrespective of the jump structure specification. On the
other hand, one cannot in a decisive way point out if there is a need for jump component as the
second source of stochastic volatility by restricting analysis only to goodness of fit. This conclusion
holds for the models with all considered jump structures including infinite activity Lévy a-stable
jumps.

The density forecast and VaR analysis shed new light on the application of continuous-time
jump diffusion models of asset returns. I find that correct specification of the source of stochastic
volatility is of fundamental importance in the density forecast and VaR analysis. The performance
of the compound Poisson jump models do not significantly change with the addition of the jump
component to the diffusion as the source of stochastic volatility. On the contrary, the models with
Lévy a-stable jumps improve in the density forecast and VaR performance with the inclusion of
both sources of stochastic volatility, thus dominating all other model specifications. The joint
stochastic volatility enables us to extract information about latent volatility from both diffusion
and jumps, where the jumps are more informative with their infinite activity property. However,
we cannot go further and exclude the diffusion from the source of stochastic volatility. This
conclusion does not depend on the jump structure and agrees with the goodness of fit analysis.

A line for future research is to study the density forecast and VaR performance using data from
the underlying and option prices. Since option prices contain information about latent volatility,
it is important to investigate their potential explanatory power. Moreover, in this paper I analyze
diffusion as the only source of leverage effect and further research could involve removing this
restriction. This can help to answer a question of whether diffusion is still an important feature
of the model when jump component is a source of leverage effect.
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6 Appendix: Complete Conditional Posteriors

Since models DiffPJSV and DiffSJSV contain both: stochastic volatility from diffusion and jumps,
we can derive complete conditional distributions for them and then apply the constraints in order
to employ the derived distributions for other model specifications. However, note that they are
not simple generalizations of the other specifications.

6.1 Models DiffPJSV and DiffSJSV - complete conditional posteriors
for non-jump specific parameters and latent variables

Let use the notation from Sections 3.1 and 3.4. Let denote the jump specific parameters and latent
variables depending on the model specification with Poisson or Lévy a-stable jumps by the index
m € {PJ,SJ}. In the following 07 (P.J) = (1, kn, O, 0n, p, ), V7 (ST) = (, 51, 0n, o,y p,057)
are the vectors of non-jump specific parameters, X7/ = ({h;}L_,) latent log-volatility states and
J = (Ja, ..., Jp) = {J;}_, the jump sizes defined in (35). Moreover, let define the jump specific
parameters and latent variables:

HJ(PJ) = (Pmaj)

0(ST) = (o, 5),

X'(P]) = (@i {sa}ia),

X7(8T) = ({U e {SHH {57 Yo {0 Ve {0 }a),

and define X = XY/ U X7 and 0 = 0/ U6’ for vector of latent variables and vector of parameters
respectively.

1. updating u

I choose the following prior distribution on p : p ~ N(a, A). I set a = 0 and A = 10, which
is a relatively flat prior for the mean of asset returns. The conditional posterior distribution is
conjugate to prior and given by:

p(/”L|O-y7 ’KL’“thahapa XNJ:K J) ~ N(CL*,A*),

_ T—-1 _ T—1 Yii1—Yi—J,
WhereA*Z(A 1+(1%5p2‘)2t:1 é) 1anda*=A*-(A a—|-1 2 Dt (Yiy1 5 t4+1) _Pétgglﬁ

2. updating kp

The prior on &y, is Ky, ~ truncated N (b, B) with the support s, € (0,2) and b = §, B = %,
which is also a relatively flat prior that imposes stationarity on the log-volatility process h;. Hence,
the conditional posterior is also truncated and conjugate to prior:

p(’ih“’% 0y70h70hap7 XNJ:K J) ~ N(b*7B*)7

where 1), € (0,2), B* = (B~ + 2 pz tTll %) and

b =B (B s T [(m+1 — he) (0 — hy) — pond®et, (0, — hy)|.
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3. updating 6y,

The prior on 0}, is 0, ~ N(c,C'), with ¢ = 0 and C' = 10. The conditional posterior is conjugate
to prior:

p(0h|ﬂ> Khy Oh, P, XNJa Ya ‘]) ~ N(C*> C*)>

—1)Kp0\ * * — K -
where C* = (C~ 1+ f}%(llzp’gf) Ler=0C*-(C 1C+Ui(171f’2) ;1 hiv1 — he + kphed — 0h61/2p5£1+)1 )

4. updating o, and p
I update o, and p as a block following Jacquier, Polson and Rossi (2004) (JPR). Let define
the following bijective correspondence:

¢y, = opp and wy, = o7 (1 — p?). (43)

I choose the joint prior distribution on the transformed parameters ¢, and wj; specified by wy, ~
IG(d,D) and ¢, |ws ~ N(0,3wy) as in JPR. In my application I choose d = 3 and D = 5 for an
uninformative prior. The conditional posterior of wy, is conjugate to prior?? and given by:

p(wnlp, kn, O, XN Y, J) ~ IG(d*, D*),

where d* = d + T51, D* = D+ L(err' x err) + b, - (0 (6)? +2)71 - (21 (E)?) - bpar
and err is the vector of regression residuals and b,,, is the OLS estimator of ¢, in the following
regression model for t =1,2,....T — 1:

hisr — he
Vo

The conditional posterior of ¢, is also conjugate to prior distribution and is given by:

- /fh(eh - ht)\/g = ¢h6§1+)1 + VW11, M1 o N(Oa 1)

p(¢h’wh7ﬂv K‘haehaXNJayvy J) ~ N(m*, M*),

where M* = wy, - (24 Y05 (€))2) L mr = M- S0 (A [P — k(0 — ha)V/3)). After the

draw of (¢, wy,) we find (o4, p) by an inverse of the correspondence in (43) given by o7 = wy, + ¢7,

— Zh
p=r.

5. updating volatility states h; for 1 <t < T

By application of the Bayes rule, we have:
p(ht‘ea X_(ht)v Y) (08 p(Y;f+1 ’97 XNJ> Y;‘J ‘])p(}/;’97 XNJ> Y;ffb J)p(ht+1 |ht7 e)p(ht’htflv e)ﬁt(m)a

where

1
p(Y:rJrl‘eNja XNJ) Y:ra J) 8 @ exXp

T

1 [V = ¥y — i = Jrn — (£,0)3pe)
{‘ 2 o(1 = g, B

22Note, that we do not condition on ¢,.
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1-— lih(S)(ht_;,_l + ht—l) + l€}21(52¢9h 0%5 )
(1 —rkpd)2+1 (1= Rp)24+17

p(ht+1|ht, HNJ)p(ht|ht71; HNJ) ~ N((

where 7 =t — 1,¢ and the last term p;(m) depends on the model specification:

ﬁt(PJ) :p(qt+1|ht) and ﬁt(SJ) :p((gg:—lavis—l)’aaﬁaht>O-SJ)p((‘§’t_+17Ut_-s—l)’&?ﬁaht?a&])- (45)

I apply MH algorithm, with a proposal density given by p(hys1|he, 0N )p(he|he—1,077). T found it
to be very efficient with high acceptance rates for most data sets.

6. updating volatility state h; for t =1
By application of the Bayes rule, we have:
p(hal6™7,67, X7, XN Yy o p(va|0™, XN YOV T)p(halha, 07 )pa (),

where the first component is given in (44) with 7 = 1, the second component is given by the
symmetry formula for autoregressive models (AR):

p(hi)hg, ON7) ~ N(0nknd 4 (1 — K,6)ha, 026),

and the last component p; is given in (45). I use the MH step to sample from this distribution
with proposal density given by p(hy|hs, 8V7).

7. updating volatility state h; for t =T
By application of the Bayes rule, we have:
p(he|0N7, XNT=01) Y, 7Y oc p(Yr 08, XN YO0 I p(heplho_y, 0N7),
and after simplifying:

_ g
p(hp|6™7, XNT=00) gy~ N(¢ = BIT0 52601 — p?)),

t—1

where § = hp_1 + kp(0h — hr-1)0, v = =Y + Y1 + pd + Jr.
8. updating parameter o (models PJSV, SJSV and DiffPJSV only)

Lets define the function g™ (h;) = 1 for models m € {PJSV, SJSV} and g™ (h;) = exp(h;)
for model m = Dif fPJSV. Update of parameter ¢ > 0 is equivalent to update in the following
regression model:

Yior =Y, — 6 — J, e®
t+1 t — M Hl:a-( PELL1 TR

(0™ (he))*54/1 = p? V1= p?

©)
~ .. _ th_,.l—n—/,b(s—t]t.i,_l p€t+1
where 1, ~ iid N(0,1). Lets define ®, IR and ¥, = s We have the following
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complete conditional posterior for o2:
p(a?|0N =@ XN V) o p({R MOV, XN T 0)p(c?),
where R; =Y, — Y;_1. The first component above is given by:

! (PP E L (B

T—1 eXp(— 252 e

p({R OV, XN J, o) ).

I assume p(0?) ~ IG(e, E) prior, with e = 3, E = 55. In models PJSV and SJSV we have p = 0

and hence this posterior is conjugate to prior and given by IG(e*, E*), where ¢* = e + % and

E*=E+05% ' (®) In the model DiffPJSV I use the normal random walk MH algorithm to
draw from this conditional posterior.

9. updating og; (models SJ and DiffSJSV)

In the model SJ let assume an inverse gamma prior on og, p(oss) ~ IG(dd, DD), where dd = 3
and DD = 5. In the model DiffSJSV T assume completely flat prior p(css) ~ U(0,10). Let define
the function g™ (h;) = 1 for model m = S.J and g™ (h;) = exp(h;) for model m = Dif fSJSV.
We have the following complete conditional posterior for og;:

p(USJW*(US”'),)Q Y) OCp({gjavj}?:Zyaaa6>USJ>{ht})p({g;7U;}?:2’7a>6aUSJa {ht})p(USJ) X
S; St

1 %1 . % 1 2(T-1)
AP (—) T _ + i 25 P(051).
2\ [t | o mEe <Us)

0sJ —
Let define the following proposal density in the MH step for updating og:
o ) 2(T-1)
55’

a7
1 a—1
q(osy) xexps — | —
(05, ()12
We can directly draw from this distribution by the change of variable. Let 6¢; = 05, then by
the change of variable formula:

o
a—1

=
a—1

Sy
(9™ (hy—1)8) = vy

S
(9™ (he1)8)= v

+

e, e
O+ a—1
S

S'f a—1
(90 (hi—1)8) 7 vf

m) (hy_1)8)av;

T
Gy~ IG((2(T — 1) +——1,Z +
t=2

After drawing from this distribution, we have to solve for og; = O'S % . In the model SJ I use MH
algorithm with the above choice of proposal density, which is very efﬁment with acceptance rate of
above 98%. This also reflects that my prior in the model SJ is uninformative, since for completely
flat prior on og; the acceptance rate should be 100%. In the model DiffSJSV I directly draw
from the conditional posterior, since I impose the uniform prior U(0, 10) and there is no need to
reweight the draws.
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6.2 Models with Poisson Jumps: complete conditional posteriors for
jump specific parameters and latent variables

1. updating latent jump times {q;}7_,

Since p(gi1|A(he)) is Bernoulli(dA;), the conditional posterior is also Bernoulli:

p(q1 = 710, X (aen), Y) o< p(Yia|Ys, X)) 9 gy = IP(Qe1 = JIAe)

where 7 = 0,1 and the sum of probabilities across j is normalized to one. In the above the first
component is given by:
1Yiri =Y — 46 — _ L (312
p(Yiia|Vi, 0, X) ocexp(—i[ t+1 t— M <Qt+1%t>+§1 (£:0)7 pey’y] ).
t

2. updating latent jump sizes {4 }L,

By application of the Bayes rule, we have:
p(as1]0, X0 YY) o p(Vipa |V, X 00) 0, si11) (s, 05)

If g;+1 takes the value 0, then the first component is not a function of s, and we are left with
the prior distribution p(s¢41|p;, 05) ~ N(uj,073). If g1 takes the value 1, then both components
are the function of 55, and we have:

_y 1B (1 - %07
P, X0, N@z»ft”)’

where A = U + (1= p?)0&;, and B = —207 7 (Y — — (&0 )% 5t+1) 2p1;(1 — p*)0&,.
3. updating mean jump size parameter p;

I take the prior p(u;) ~ N(a, A) with a = 0, A = 10. By application of the Bayes rule, we
have:

(|0, X, Y) o p({saaa iy, 03)p(p;) ~ N(a®, A7),
T
where A* = (A~ + (T — 1)0;2)*1 and a* = A*(A la + 0;2 > ).
=2

4. updating variance jump size parameter a?

I take the inverse gamma prior p(o?) ~ IG(b, B) with b = 3 and B = s=. By application of
the Bayes rule, we have:

p(03107 D XY) o p({s641} 1, 05)p(03) ~ IG(b*, BY),
T
and the posterior is conjugate with b* = (T'—1)/2+ b and B* = B+ 0.5 (36 — j1;)*.
=2
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5. updating constant jump intensity A; in model PJ

I specify the beta prior distribution on A; ~ Beta(0.5,0.5). Then the conditional posterior is
conjugate to prior:

P10~ X, Y) o p({aidi—alA)p(Ny) ~ Beta(d a; +0.5,) (1 — a;) +0.5).

t=2 t=2

6.3 Models with Lévy a-stable Jumps: complete conditional posteri-
ors for jump specific parameters and latent variables

1. updating volatility states {2} in model SISV

Since in this model { A} process drives only jumps, I redefine SJSV model to simplify its update
procedure by using a change of variable hy = hy /a and then directly update {ht} I also redefine
the set XNV to replace {h;} by {h;}.2* The OU process {h;} is given by:

iLt+5 = iLt + lzéh<éh — fzt)é + 5’h\/g€g_)5,
where the parameters satisfy k, = ky, Qh = @ ,Op = "h and replace respectively k;, 0, and oj, in
the vector V7. T later derive the estimates for Kn, On and o, by calculating their respective values
at the end of each MCMC step. By ergodic theorem, their average converges to the posterior
mean.
The complete conditional posterior for {ﬁt}, 1 <t<T,is given by:

p(]tlt|07 X_(ht)7 Y) X p(}/lf+1’Y_(}/t+l)a ‘97 X)p(ﬁt|il't+1> Bt—b éh) '%ha 5-h>7

where

(1 — &n0) (hess + hi1) + (Fn0)20, 526 )
(1—&p0)2+1 "(1—FRpo)2+ 17

p(ilt|f~lt+1, ;Lt—b éh, Khs 5h) ~ N(

and

v | (Ve = Yy — b = exp(hr) (2255 ) 2
(Y |V 0, X) x exp(—§ %5 )

(46)

for 7 = t. Note, that the conditional distribution of S”hl has a constant scale which does not

depend on h,. Hence, I also directly update positive and negative parts for S, = %

replace the respective positive and negative parts of S,,; in the set X/. Moreover, for t = 1 we
have:

and

p(il1|97 Xﬁ(ﬁl)v Y) X p(}/2|Y7(Y2)7 97 X)p(illﬁlﬂu éh? ’%ha &h)v

23 This simplifies the update of o presented in Section 3.4.3, where we condition on {h;} and not on {h;}.
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where the second component is given by the symmetry formula for autoregressive models (AR):
p(halha, On, R, &1) ~ N(BnFnd + (1 — knd)hs, 679),

and the first by (46) calculated at 7 = 1. After a careful study of the conditional posterior for hy for
t=1,2,...,(T—1),1find that it is either bimodal or unimodal and in general in the unimodal case it
is not log-concave. However, I can numerically compute all local maxima using Newton’s method
without much computational burden and then apply rejection algorithm utilizing the rejected
points. Finally, the complete conditional posterior for hT is N (/ih(59h +(1- Iih(S)hT 1, 0%5)
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Table 1

The List of Restrictions Defining All Model Specifications
The table reports the list of restrictions for models presented in SDE (8).

p §(x) A(x)

Stoch. Volatility from Diffusion
model (1) PJ -1<p<1 exp(x) Aj
model (4) SJ -1<p<1 exp(x) (0ss)°
Stoch. Volatility from Jumps
model (2) PISV 0?>0 exp(x)
model (5) SISV g?>0 exp(x)
Joint Stochastic Volatility
model (3) DiffPISV -1<p<1 a?exp(x) exp(x)
model (6) DiffSISV -1<p<1 exp(x) (0sy) exp(x)

Table II

Descriptive statistics of S&P500 daily log-returns
The table reports the mean, standard deviation, skewness and kurtosis of S&P500 daily log-returns (x100).

S&P 500 daily log-returns (x100)

Date Mean

St. Deviation Skewness

Kurtosis

estimation sample T=6812

01/02/1981 - 12/31/2007  3.49%

1.03

-1.7465

42.79
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Table III
Parameter Estimates from S&P500 Returns Data
The table reports the descriptive statistics of posterior distributions for S&P500 return models with
S&P500 index data on 1" = 6813 observations, 01/02/1981-12/31/2007. Parameter estimates and stan-
dard errors (in parentheses) are the mean and standard deviation of the respective posterior distributions.

Poisson Jumps, Stochastic Volatility from Diffusion

M Kp Oh Op Aj H;j g; ]
PJ 3.678E-04  0.0143 -9.5555 0.133 0.0022 -0.0436 0.0886 -0.5891
(9.32E-05)  (0.0027)  (0.1158)  (0.0102) (8.16E-04) (0.0284) (0.0181)  (0.0411)

Poisson Jumps, Stochastic Volatility from Jumps

M Kp 9,, Op o Hj g; -
PJISV 4.630E-04  0.0045 -5.9237 0.4827 0.0091 -0.0022 0.0321 -
(1.18E-04) (0.0027) (2.2717) (0.0995) (1.05E.04) (0.0019) (0.0019) -

Poisson Jumps, Joint Stochastic Volatility

M Kp 9,, Op g IJJ O'j P
DiffPISV 3.696E-04 0.0141 -6.1545 0.1309 0.1849 -0.0382 0.0845 -0.588
(9.32E-05)  (0.0028)  (0.3666)  (0.0109)  (0.0313)  (0.0244) (0.0154)  (0.0411)

Stable Jumps, Stochastic Volatility from Diffusion

u Kp 6, Op Osy a B Jo)
SJ 2.824E-04 0.0107 -10.0638 0.179 0.003 1.8528 0.4869 -0.7496
(1.01E-04)  (0.0022)  (0.2144) (0.0133) (1.68E-04) (0.0319)  (0.2045)  (0.0466)

Stable Jumps, Stochastic Volatility from Jumps

Y Kn 0 Oh o a B -
SJSV 4.606E-04  0.0027 -11.7911 0.2874 0.0086 1.8974 0.3882 -
(1.15E-04)  (0.0015)  (3.8597) (0.0328)  (9.57E-05)  (0.0394)  (0.2549) -

Stable Jumps, Joint Stochastic Volatility

M Kp Qh Oy O sy a B P
DiffSJISV 2.547E-04 0.0145 -9.6756 0.1307 0.5463 1.6212 0.8256 -0.6428
(9.823E-05)  (0.0027)  (0.1179) (0.0101)  (0.1094)  (0.0815) (0.1379)  (0.0443)
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Table IV
In-Sample Fit of Returns and Volatility
The table reports posterior medians and 95% confidence intervals (in parentheses) of mean, std. devia-
tion, skewness, kurtosis and daily autocorrelation of model residuals calculated at each step of MCMC
algorithms for different model specifications. A correct specification implies, that mean is zero, standard

deviation one, skewness zero, kurtosis three and daily autocorrelation zero.

Mean Std. Deviation Skewness Kurtosis Daily autocorr
Return Equation

PJ 0.0035 1.0002 -0.0484 3.2578 0.0226
(-0.0190;0.0260) (0.9826:1.0164) (-0.0869;-0.0081)  (3.1666;3.3654) (0.0166;0.0284)

PJSV 3.97E-05 0.9084 -0.0382 3.7349 0.0166
(-0.0237;0.0237) (0.8929;0.9241) (-0.0831;0.0076) (3.6179;3.8528) (0.0046;0.0286)

DiffPISV 0.0035 1.0002 -0.047 3.2481 0.0232
(-0.0191;0.0261) (0.9834;1.0169) (-0.0860;-0.0082)  (3.1528;3.3590) (0.0175;0.0291)

SJ 0.005 0.9995 -0.0074 3.059 0.0101
(-0.0172;0.0271) (0.9829;1.0168) (-0.0630;0.0482) (2.9532;3.1779)  (-0.0080;0.0279)

SISV 0.0001 0.8965 -0.0301 3.7059 0.0209
(-0.0236;0.0238) (0.8812;0.9119) (-0.0825;0.0227) (3.5671;3.8480) (0.0061;0.0356)

DiffSISV 0.0024 0.9999 0.0076 3.1397 0.0198
(-0.0203;0.0251) (0.9835;1.0165) (-0.0416;0.0561) (3.0444;3.2429) (0.0078;0.0307)

Log-Volatility Equation

PJ -0.003 0.9998 0.0064 3.0302 0.0077
(-0.0263;0.0203) (0.9832;1.0166) (-0.0521;0.0651) (2.9168;3.1570)  (-0.0145;0.0295)

PJISV -1.07E-02 1.0003 0.0003 2.9974 0.0005
(-0.0319;0.0116) (0.9835;1.0171) (-0.0578;0.0585) (2.8878;3.1202)  (-0.0233;0.0242)

DiffPISV -0.0027 0.9999 0.0057 3.0284 0.0078
(-0.0260;0.0207) (0.9832;1.0167) (-0.0525;0.0642) (2.9148;3.1566)  (-0.0144;0.0298)

SJ -0.0049 0.9998 0.001 3.0186 0.0052
(-0.0277;0.0180) (0.9830;1.0168) (-0.0568;0.0592) (2.9072;3.1428)  (-0.0168;0.0271)

SISV -0.0063 1 0.0011 2.998 0.0001
(-0.0289;0.0173) (0.9833;1.0169) (-0.0571;0.0592) (2.8886;3.1213)  (-0.0237;0.0239)

DiffSISV -0.0023 0.9998 -0.0045 3.0269 0.0067

(-0.0257;0.0210)

(0.9831:1.0166)

(-0.0624;0.0539)

(2.9150;3.1522)

(-0.0151;0.0285)
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Table V

Density Forecast Analysis

Descriptive statistics of {2,5(1)} distribution with ét(l) defined in eq. (36) and calculated for different model
specifications with their parameters fixed at the MCMC estimates for S&P500 data from 01/02/1981 to
12/31/2007. Data on S&P500 daily returns, used for 2151) calculation, are derived from S&P500 index
levels for the full available sample from 01/02/1981 to 12/31/2007. A correct specification implies that
mean is zero, standard deviation one, skewness zero and kurtosis three. Jarque-Bera test statistics for
normality are presented for the 251) levels with the respective p - values (in parantheses).

Mean Std. Deviation Skewness Kurtosis Jarque-
Bera
One-Day Ahead Forecast, L=1
PJ 0.0022 0.9937 -0.0569 3.1517 10.2113
(0.0061)
PJSV -0.0054 0.8834 -0.2335 4.9226 1.11E+03
©)
DiffPISV 0.0022 0.9922 -0.0608 3.1642 11.8461
(0.0027)
SJ 0.0033 0.9829 -0.0266 3.1042 3.8866
(0.1432)
SJSsV -0.0133 0.8910 -0.1221 3.7942 195.9642
(9)
DiffSISV 0.0024 0.9931 -0.0014 3.0981 2.7327
(0.2550)

Table VI
Value-at-Risk Analysis
One-day horizon VaR performance is presented for all model specifications. For each model the parameters
are fixed at the MCMC estimates for S&P500 data from 01/02/1981 to 12/31/2007. I report (left sided)
significance levels of 1%, 5% and 10% and then compute empirical coverage frequencies. I derive empirical
coverage frequencies using Zt(l) values defined in eq. (33).

One-Day Ahead VaR Analysis, L =1
01/02/1981-12/31/2007 T=6812

1% 5% 10%
PJ 0.0120 0.0511 0.1000
PJSV 0.0081 0.0367 0.0730
DiffPISV 0.0125 0.0509 0.0997
SJ 0.0103 0.0484 0.0979
SISV 0.0094 0.0388 0.0768
DiffSISV 0.0098 0.0506 0.0997
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