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Are Spectral Estimators
Useful for Implementing

Long-Run Restrictions in SVARs?
Abstract

No, not really, since spectral estimators suffer from small sample and misspecification
biases just as VARs do. Spectral estimators are no panacea for implementing long-run restric-
tions.

In addition, when combining VAR coefficients with non-parametric estimates of the spec-
tral density, care needs to be taken to consistently account for information embedded in the
non-parametric estimates about serial correlation in VAR residuals. This paper uses a spectral
factorization to ensure a correct representation of the data’s variance. But this cannot over-
come the fundamental problems of estimating the long-run dynamics of macroeconomic data
in samples of typical length.

JEL Classification: C32, C51, E17, E32

Keywords: Structural VAR, Long-Run Identification, Non-parametric Estimation, Spectral Factorization

2



1 Introduction

VARs have been criticized for failures in estimating the responses to long-run shocks. A crucial

element for long run identification is the spectral density at zero-frequency, also known as “long-

run variance”. But OLS estimates of VAR coefficients are concerned with minimizing forecast

error variance, not estimating the long run variance. This has motivated Christiano, Eichenbaum,

and Vigfusson (2006a, 2006b), henceforth “CEV”, to propose a new way of estimating structural

VARs using a combination of OLS and a non-parametric estimator. They argue that their estimator

virtually eliminates the bias associated with the standard OLS estimator.

This paper shows that non-parametric estimates of the spectral density, henceforth called “spec-

tral estimators”, are no panacea for the implementation of long-run restrictions in finite sample.

Macroeconomic time series display a fair amount of persistence, posing two serious challenges for

long-run identification. First, an accurate representation of the true model typically requires a VAR

with a high lag order, much higher than what is affordable in a sample of typical length and result-

ing in a sizable truncation bias (Chari, Kehoe, and McGrattan 2008, henceforth “CKM”). Second,

there is the small sample bias in estimated coefficients known from Hurwicz (1950), which be-

comes ever more severe the smaller the sample, and the more persistent the data. As will be

shown, both issues affect not only VARs in the time domain, but also spectral estimators in the

frequency domain.

The conventional VAR technique as well as different combinations with spectral estimators are

evaluated in the context of a simple two-shock RBC model, which has also been used by CEV

and CKM. When using the various procedures to estimate the response of hours to technology,

or to decompose the variance of fluctuations in output or hours, none of the procedures clearly

dominates the others.

Furthermore, CEV do not consider some conceptual pitfalls in combining VAR coefficients

with spectral estimates. Non-parametric estimates of the spectral density allow for non-iid resid-

uals in the finite-order VAR, which is good since the underlying model is likely of infinite order.

In what may be called “mixing and matching”, the CEV approach plugs these estimates into the
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standard VAR formula alongside with coefficients from the finite-order VAR. This approach uses

the extra information about omitted lags in the VAR to compute the long-run responses of variables

to shocks—but not when mapping these back into impact responses. To retain a consistent repre-

sentation of the data, that would however be necessary. Otherwise, the total variance of the data is

misrepresented. In the simulations reported here, this misrepresentation is quantitatively relevant.

As a related issue, when the relationship between forecast errors and structural shocks is inverted

with the CEV coefficients, one obtains a time series which is identical to the shock estimates from

OLS up to a scale factor. All in all, this is of concern for any researcher wanting to adopt the CEV

strategy.

The CEV framework is amended here by recognizing that the non-parametric estimate con-

tains information about omitted lags in the VAR. This misspecification has been stressed by CKM,

Erceg, Guerrieri, and Gust (2005), Ravenna (2007) and Cooley and Dywer (1998). The adjusted

procedure retains the OLS estimates and fills up the omitted lags with a spectral factorization of

the spectral density’s non-parametric estimate. By construction, this adjusted SVAR—in fact an

SVARMA—matches the sample variance of the data just as OLS does. Overall, this corrected

procedure suffers from the same basic problems as the other long-run identification methods: trun-

cation and small sample bias.

The remainder of this paper is structured as follows: Section 2 describes the model economy

against which the various estimation routines will be evaluated. Section 3 describes the various

SVAR methods, including a new spectral factorization procedure. Section 4 presents the Monte

Carlo results and Section 5 concludes the paper.

2 A Model Economy

This section describes a simple model economy, which will be used to illustrate and quantify the

issues associated with various long-run identification schemes. None of the conceptual concerns

related to spectral estimates raised in Section 3 will be specific to this model. The model is identical
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to the two-shock economy used by CKM and CEV.

The model is a common one-sector RBC economy driven by two shocks: First, a unit root shock

to technology, zt. This is the permanent shock to be estimated by the VAR. Second, a transitory

non-technology shock, τlt, which drives a wedge between private household’s labor-consumption

decision.

The representative household maximizes his lifetime utility over (per-capita) consumption, ct,

and labor services, lt

E0

∞∑
t=0

(β(1 + γ))tu(ct, lt)

and faces the budget constraint ct + (1 + γ)kt+1− (1− δ)kt = (1− τlt)wtlt + rtkt +Tt where kt is

the per-capita stock of capital, wt the wage rate, rt the rental rate of capital, Tt are lump sum taxes,

γ is the growth rate of population, δ the depreciation rate of capital (γ > 0, 0 ≤ δ ≤ 1 and β < 1).

The non-technology shock τlt is an exogenous labor tax. As discussed by CKM, it need not

be literally interpreted as a tax levy, but stands in for the effects of a variety of non-technology

shocks introduced into second-generation RBC models. Mechanically, it distorts the first-order

condition for consumption and labor. It works similar to a stochastic preference shock to the Frisch

elasticity of labor supply. Chari, Kehoe, and McGrattan (2007) show how this labor “wedge” can

be understood more generally as the reduced form process for more elaborate distortions, such as

sticky wages.

The production function F (kt, Ztlt) is constant returns to scale, where Zt is labor-augmenting

technological progress. Firms are static and maximize profits F (kt, Ztlt) − wtlt − rtkt. Per-

capita output equals production, yt = F (kt, Ztlt), and the economy’s resource constraint is yt =

ct + (1 + γ)kt+1 − (1− δ)kt. The exogenous drivers follow linear stochastic processes:

logZt = µz + logZt−1 + σzε
Z
t

log τl,t+1 = (1− ρl)τ̄l + ρl log τl,t−1 + σlε
l
t

where εZ
t and εl

t are iid standard-normal random variables. They are the technology shock, respec-
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tively labor shock. ρl measures the persistence of the transitory labor tax. The scale factors σz and

σl determine their relative importance in the model. (µz is the drift in log-technology and τ̄t is the

average tax rate.)

The calibration is identical to the baseline model of CEV, which uses parameter values familiar

from the business cycle literature. Utility is specified as u(c, l) = log c + ψ log (1− l) (consistent

with balanced growth) and the production function is Cobb-Douglas F (k, l) = kθl1−θ with a

capital share of θ = 0.33. The labor preference parameter is set to ψ = 2.5. On an annualized

basis, the calibration sets the depreciation rate to 6%, the rate of time preferences to 2% and

population growth to 1%.1 Following CEV, the transitory shock is calibrated as an AR(1) with

persistence ρl = 0.986. This calibration is identical to the values used by CKM except for their

values of φ = 1.6 and ρl = 0.95.

The model economy is calibrated over different ratios in the variance of transitory to permanent

shocks, σ2
l /σ

2
z , which translate into different assumptions about the share of output fluctuations ex-

plained by technology shocks.2 As a benchmark, maximum-likelihood estimates of CEV obtained

from fitting the model to U.S. post-war data imply that around two-thirds of the bandpass-filtered

variance in output can be attributed to technology shocks.3 The bandpass filter employed through-

out this paper considers only fluctuations with durations between two-and-a-half and eight years,

which is consistent with the NBER definitions of Burns and Mitchell (1946).

Data is simulated for samples of length T = 180, corresponding to 45 years of quarterly data;

identical to the simulations of CKM and CEV. Following CEV and CKM, bivariate VARs are

estimated using simulated data of the (log) growth rate of labor productivity and hours worked;

Xt =

[
∆ log (yt/lt) log lt

]T

.4 For each simulated sample, the lag length of the VAR(p) is cho-

1The drift in technology is set to 0.4% and the average “labor tax” is set to 24.2% per quarter.
2CKM extensively document how different ratios in the variance of transitory to permanent shocks, σ2

l /σ
2
z , affect

the performance of standard VARs both in population and in small sample. McGrattan (2005) shows that in the limit,
σl/σz → 0, a finite order VAR (even a p = 1) in productivity growth and hours recovers the true responses—though
the true system does not have a finite-order VAR representation. In this special case the model reduces to a standard,
one-shock RBC model.

3To be precise, CEV estimate σl = 0.00562, σz = 0.00953 corresponding to a technology share of 67.5%.
4In addition to this “LSVAR” specification, CKM run also VARs with quasi-differenced hours. This replaces the

second VAR element lt with (1−αL) lt (α ∈ {0; 0.999}). Depending on α, this captures popular (but also contested)
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sen by minimizing the Schwartz Information Criterion (SIC), typically picking small values close

to one.5 When computing population moments, a VAR(1) is used. For each calibration, 1,000

samples are simulated.

When looking at data simulated from this model, two statistics are of particular interest for this

paper: How do hours worked respond to a technology shock? What is the share of fluctuations

due to technology shocks? These questions are typically asked by empirical researchers trying to

evaluate predictions from business cycle models with SVARs, such as Gali (1999) or Christiano,

Eichenbaum, and Vigfusson (2004).

3 Long-Run Identification in VARs

The linearized solution to the model described in the previous section is only one example from a

wider class of linear dynamic models to which the SVAR methods discussed here can be applied.

None of the issues discussed in this section will be specific to the model described above. An

economic model from this class is supposed to specify a VAR representation for a stationary vector

of observable variables6 Xt:

Xt = B(L)Xt−1 + et (1)

where B(L) is a polynomial in the lag-operator L,B(L) =
∑∞

k=1BkL
k−1 whose roots lie all

outside the unit circle and the innovations are iid, et ∼ iid(0,Ω).

In principle, the model prescribes an infinite order VAR. When Bk = 0 for k > p this nests the

case of a finite order VAR. But as noted by Cooley and Dywer (1998), many interesting models

specifications: On the one hand the “LSVAR” with hours in levels and α = 0 and on the other hand the “QDSVAR”
with α = 0.999, which approximates a VAR with differenced hours without introducing a unit MA root. The quasi-
differencing is discussed in more detail by CKM as well as Marcet (2005), Gali and Rabanal (2004) and Christiano,
Eichenbaum, and Vigfusson (2003).

5Results are insensitive to using other information criteria, such as the Akaike criterion (AIC). In general, AIC is
known for picking higher values of p compared to SIC. For this lab economy, AIC has been found to pick lag lengths
of up to p = 6 with an average of p = 2.

6For notational convenience, but without loss of generality, Xt represents the demeaned variables, which is equiv-
alent to including a constant in a VAR using the original data.
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have only infinite order VAR representations. In the remainder of this paper the true VAR repre-

sentation is always assumed to be of infinite order. The linearized solution to the model described

in Section 2 has such an infinite order VAR representation; details are shown in Appendix B.

For the identification of structural shocks, there has to be an invertible one-to-one mapping

from innovations et to the structural shocks εt driving the underlying model—such as technology,

monetary policy errors, exogenous government spending etc.:

et =A0 εt (2)

where A0 is square and |A0| 6= 0. Fernàndez-Villaverde et al. (2007) derive conditions when a lin-

ear dynamic model has an invertible VAR representation.7 (These are summarized in Appendix B.)

This paper considers only cases where these conditions are satisfied, though possibly only in an in-

finite order VAR representation. The same applies to the situations studied by CKM, CEV as well

as Erceg, Guerrieri, and Gust (2005). Excluding the complications arising from non-invertibilities

allows to focus on problems owing to small sample bias and the finite order approximations of the

VAR.8

It will be handy to introduce the notation

C(L) ≡ (I −B(L)L)−1 =
∞∑

k=0

CkL
k where C0 = I (3)

for the non-structural moving average (VMA) coefficients of Xt = C(L)et. The structural moving

average representation for Xt is then Xt = A(L)εt with A(L) = C(L)A0.

In the spirit of CEV and CKM, only one of the structural shocks will be identified. For con-

creteness, let it be the first one, denoted εz
t , and call it “technology shock”. Think of the first

element of Xt as being a growth rate (a difference in logs), like the change in labor-productivity

7Fernandez-Villaverde, Rubio-Ramirez, and Sargent (2005) give examples of interesting models where the con-
ditions are satisfied and where not. For all calibrations considered, the model of Section 2 satisfies the condition of
Fernàndez-Villaverde et al. (2007).

8See for example Giannone and Reichlin (2006) on the non-invertibility problem.
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(Gali 1999) or output growth (Blanchard and Quah 1989). The identifying assumption is then that

only the technology shock has a permanent effect on the level of the first element of Xt. This

restricts the matrix of long-run coefficients, A(1) =
∑∞

i=0Ai:

A(1) = C(1)A0 =



ā11 0 . . . 0

# # . . . #


 and ā11 > 0 (4)

This restriction holds exactly in the linearized solution to the model described in Section 2.

A key object for implementing this constraint is the spectral density of Xt. The spectral density

at frequency ω is defined as SX(ω) ≡ ∑∞
k=−∞E(XtX

T
t−k)e

−iωk = C(e−iω) ΩC(e−iω)T where i is

the imaginary unit.9 A(1) factors the spectral density of Xt at frequency zero:

A(1)A(1)T = C(1) ΩC(1)T = SX(0) (5)

One way to compute the first column ofA0 is by recoveringA(1) from the Cholesky decomposition

of SX(0). (This is the unique lower triangular factorization of a positive definite matrix.10):

A(1) = chol {SX(0)}

CEV show that the restriction in (4) uniquely pins down the first column of A0 and the Cholesky

factorization is one possible implementation.11

The long-run coefficients can then be mapped into the matrix of impact responses using the

9Throughout this paper, transposes are complex conjugate.
10The spectral density SX(0) = C(1)ΩC(1)T is strictly positive definite when the variance covariance matrix

of the forecast errors, Ω, is nonsingular. SX(0) inherits positive definiteness from Ω since C(1) is nonsingular.
I −B(1) = C(1)−1 exists because of the assumed stationarity of the VAR process.

11Under the restrictions stated in (4), A(1) can generally be described as

A(1) = chol {SX(0)}
[
1 0
0 W

]
for some W such that WWT = I

In the lab economy described later, the VAR will be bivariate and the forecast errors et are a linear combination of
only two shocks. Knowing the technology shock will then also identify the second shock up to its sign, |W | = 1.
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VAR dynamics encoded in the polynomial of lag coefficients B(L):

A0 = (I −B(1))A(1) (6)

3.1 OLS Implementation with Finite-Order VAR

Since the VAR innovations in (1) are assumed to be white noise, they satisfy the OLS normal

equations EXt−ke
T
t = 0 (∀ k). And in principle, the coefficients Bk could be estimated from least

squares projections of Xt on its infinite past. In practice, an empirical implementation can only

work with a finite lag length. Henceforth B(L)OLS denotes a lag polynomial of finite order p <∞:

B(L)OLS ≡
p∑

k=1

BOLS
k Lk−1

vOLS
t ≡ Xt −B(L)OLSXt−1 (7)

ΩOLS
v ≡ E [vOLS

t (vOLS
t )T ]

where the normal equations are imposed for all lags k ≤ p

EXt−k(v
OLS
t )T = 0 (8)

The associated VMA isC(L)OLS ≡ (I−B(L)OLSL)−1. Only stable VARs are considered, formally

this requires all roots of C(L)OLS to be outside the unit-circle.

The standard procedure is to assume uncorrelated residuals, vOLS
t . Following Blanchard and

Quah (1989), the long run restriction (4) is implemented based on an estimate of the spectral

density at frequency zero constructed from the OLS estimates. Impact coefficients are computed
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by plugging these estimates into (6):

SX(0)OLS = C(1)OLS ΩOLS
v

(
C(1)OLS)T

(9)

AOLS
0 =

(
I −B(1)OLS) chol

{
SX(0)OLS} (10)

Using a finite-order VAR when the data has been generated from an infinite order process

induces a truncation bias into the estimates. In this case, the OLS assumption of uncorrelated

forecast errors vOLS
t is violated, which is an example of what Cooley and Dywer criticized as

an “auxiliary” (but not innocuous) assumption. This truncation bias arises even when the true

population moments of the data generating process were known. Applied to data generated from

a business cycle model the truncation bias in SVARs can be substantial, as shown by Cooley and

Dywer (1998), Erceg, Guerrieri, and Gust (2005), Ravenna (2007) or CKM. The truncation bias is

also sizable for data from the model described Section 2 as will be seen in Figure 3 below.

3.2 CEV: Combining OLS with Spectral Estimate

CEV propose an alternative estimator for the matrix of impact coefficients. This new estimator

uses a mixture of the OLS estimates of B(1) and a non-parametric estimator for SX(0). The

procedure is motivated by observing that OLS projections construct B(L)OLS not necessarily with

regard to B(1) but in order to minimize the forecast error variance ΩOLS
v . Following Sims (1972),

the least-squares objective seeks OLS coefficients which minimize the average distance between

themselves and the true B(e−iω), weighted by the spectral density of Xt, which may or may not be

large at the zero frequency:12

min
BOLS

1 ,...,BOLS
p

ΩOLS
v = Ωv+

∫ π

−π

(
B(e−iω)−B(e−iω)OLS)SX(ω)

(
B(e−iω)−B(e−iω)OLS)T

dω (11)

12This can be derived by applying the definition of spectral density to vOLS
t = vt + [B(L) − B(L)OLS]Xt−1 and

computing the variance ΩOLS
v as the integral over the spectral density.
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Accordingly, OLS will try to set B(1)OLS close to B(1) only if the data’s spectrum is high at the

zero frequency and SX(0)OLS need not be the best possible estimate for the spectral density at

frequency zero.

Instead of using Sx(0)OLS, CEV employ a spectral estimator of SX(0) to construct A(1).

In Christiano, Eichenbaum, and Vigfusson (2006a), they consider two estimators, one based on

Newey and West (1987) and the other on Andrews and Monahan (1992). Both are based on trun-

cated sums of autocovariance matrices. To ensure positive definiteness, these are weighted by a

Bartlett kernel. Where Newey-West sums over the (sample) autocovariances of Xt,

SX(0)NW =
b∑

k=−b

(
1− |k|

b+ 1

)
E

[
XtX

T
t−k

]
(12)

Andrews-Monahan uses first the VAR to prewhiten the data and then sums over the residual auto-

covariances:

SX(0)AM = C(1)OLSSNW
v (0)

(
C(1)OLS)T

(13)

where Sv(0)NW =
b∑

k=−b

(
1− |k|

b+ 1

)
E

[
vOLS

t (vOLS
t−k )T

]
(14)

b is a truncation parameter, also known as “bandwidth”, which will be discussed in more detail

below.13 The Andrews-Monahan estimator nests the OLS case when b = 0.

The new CEV estimator computes the long-run coefficients from the non-parametric density

estimate. Combined with the OLS lag coefficients, CEV obtain their impact coefficients as

ACEV-AM
0 =

(
I −B(1)OLS)A(1)AM (15)

where A(1)AM = chol
{
SX(0)AM}

(16)

Impulse responses are A(L)CEV-AM = C(L)OLSACEV-AM
0 . Using the Newey-West estimator, impact

13As elsewhere in this section, estimators have been written in terms of population moments, E
[
vOLS

t (vOLS
t−k)T

]
. In

empirical applications, the population moments are replaced by sample moments. For some variable Zt, the sample
moment is ET Zt ≡ 1/T

∑T
t=1 Zt.
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coefficients are computed as ACEV-NW
0 =

(
I −B(1)OLS

)
chol

{
SX(0)NW

}
. For brevity, the remain-

der of this section will mostly refer to the Andrews-Monahan estimator, with similar arguments

holding for the Newey-West estimator. Section 4 presents simulations using both estimators.

The bandwidth choice b is critical in estimating spectra, akin to choosing the lag order of a

VAR. Bandwidth choice has been shown to be more important using other weighting schemes

than the Bartlett kernel (Newey and West 1994).14 For a consistent estimator, b can grow with the

sample size but at a smaller rate. CEV use a fixed and fairly large value of b = 150 in a sample of

180 observations.15

Theoretically, the prewhitening of Andrews-Monahan is appealing since it removes spikes from

the spectral density of Xt which make spectral estimation difficult (Priestley 1981, Chapter 7).

Andrews and Monahan (1992) and Newey and West (1994) find the prewhitening to fare better

in Monte Carlo studies than the original Newey-West estimator. Christiano, Eichenbaum, and

Vigfusson (2006a) find no clearly superior choice between the two and Christiano, Eichenbaum,

and Vigfusson (2006b) proceed to use only the Newey-West estimator.

To minimize the mean-squared error (MSE) of spectral estimates, the bandwidth selection

schemes of Andrews (1991) and Newey and West (1994) can be used. However, constructing

an MSE optimal estimator of the spectrum does not necessarily translate into an MSE optimal

estimate of coefficients like ACEV-AM
0 or ACEV-NW

0 . Their MSE depends not solely on the MSE of

SX(0)AM but—amongst others—on bias and standard error of the spectrum in ways which are spe-

cific to the data generating process.16 Hence, the bandwidth selection scheme of Newey and West

(1994) may serve as a useful starting point for bandwidth choice, but it is not necessarily optimal

for the purpose of estimating impulse response or variance shares.

14Alternative weighting schemes are for example discussed by Priestley (1981) and Phillips, Sun, and Jin (2006).
15The discussion of CEV suggests that this choice is supposed to be compatible with consistency—essentially

promising that this bandwidth choice would barely grow as longer data samples become available. Watson (2006)
regards it as a practically untruncated and inconsistent estimator.

16To be specific, ACEV-AM
0 and ACEV-NW

0 are functions of a spectral estimate and OLS estimates of the VAR. Anal-
ogously to arguments employed by Sun, Phillips, and Jin (2008) in the context of constructing confidence intervals,
the MSEs of ACEV-AM

0 and ACEV-NW
0 could be approximated to a second order—holding the OLS estimates fixed—by a

linear combination of bias and variance of the spectral estimate whose weights depend on the true values of the VAR.
Furthermore, the MSEs of ACEV-AM

0 and ACEV-NW
0 will also depend on the covariance between SX(0)AM, respectively

SX(0)NW, and the OLS estimates.
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The simulations reported below use both the optimal bandwidth selection scheme of Newey and

West (1994) and the large bandwidth choice of CEV. The former tend to pick fairly small band-

widths. For the various calibrations of the model economy considered here, the optimal bandwidth

of the Newey-West estimator is typically close to ten, and the average for the Andrews-Monahan

estimator is about four. In simulations not reported here, spectral estimates with intermediate

bandwidth choices displayed performance characteristics which were intermediate between what

is shown here for these two choices here.

3.3 Conceptual Problems with the CEV Procedure

The CEV procedure is motivated by dissatisfaction with B(1)OLS. In conventional SVAR imple-

mentations, this estimate is needed for two purposes: First, to construct the long run responses

A(1) as in (9), and second in order to map A(1) back into impact responses A0 as in (10). CEV

replace B(1)OLS with a spectral estimate in the first step, but not in the second. This creates a

non-negligible inconsistency in representing the overall dynamics of the VAR.

By plugging a spectral estimate into their SVAR computations, CEV have weakened the OLS

assumption of uncorrelated residuals without fully accounting for its consequences. As a result,

the impact coefficients of CEV will in general not reproduce the forecast error variance of the

VAR, which is at the heart of variance computations. These and other consequences are illustrated

here. The next sub-section shows how a spectral factorization could be used to incorporate spectral

estimates into a VAR model while retaining an internally consistent model of the data.

The spectral estimates embody information about correlation in the VAR residuals vOLS
t . As

can be seen from (14), the Andrews-Monahan estimator is constructed from autocovariances of

the VAR residuals vOLS
t . Obviously, b > 0 expresses a concern about serially correlated residu-

als. The Newey-West estimator SNW
X (ω) also embodies concerns about serially correlated VAR

residuals since it implies a spectrum for the VAR residuals, which is generally not constant across
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frequencies.17

Under the premise that the true model has only an infinite-order representation, it is indeed

very plausible that the residuals from a VAR(p) will be correlated. In the spirit of Andrews and

Monahan (1992), the VAR could then be viewed as having merely prewhitened the data. But

typically, researchers fit the lag length of their VARs until the point where estimated residuals do

not display any significant correlation. Employing a spectral estimate like (14) beyond this point

implies a belief that there is still useful information to be gleaned from the estimated residuals—or

in other words, it implies a distrust against the lag-selection criteria being chosen for the VAR.

By allowing for residual dynamics poses, a researcher risks of overfitting the data, which may

still reduce bias in the estimated spectra, but at the expense of a higher standard error.18 Against

this backdrop, the assertion of Christiano, Eichenbaum, and Vigfusson (2006a) that the impulse

responses computed from their procedure have “smaller bias, smaller means square error” appear

even more striking—and as will be seen, these properties do neither extend to the wider set of

calibrations studied below nor to other SVAR statistics like variance decompositions.

A researcher adopting the CEV strategy wants SX(0)AM 6= SX(0)OLS and thus Sv(0)NW 6=
ΩOLS

v .19 As a direct implication, the impact coefficients of CEV do not reproduce the forecast error

variance of the VAR, ACEV-AM
0 (ACEV-AM

0 )T 6= ΩOLS
v . When computing the total variance of the data

by summing over the conditional variations implied by the SVAR, the CEV procedure would not

match the unconditional variance of the data either.20 This mismatch in the unconditional variances
17SX(ω)NW generalizes (12) to the case of non-zero frequencies with Γk ≡ E

[
XtX

T
t−k

]
:

SX(ω)NW = Γ0 +
b∑

k=1

(
1− |k|

b+ 1

) (
Γke

−iωk + (Γk)T eiωk
)

and the implied spectrum of VAR residuals is (I −B(e−iω)OLSe−iω))SX(ω)NW(I −B(e−iω)OLSe−iω))T

18In the simulations reported below, lag length is chosen separately for each sample based on the generally conser-
vative Schwartz Information Criterion, typically choosing a lag length of one in the application presented here.

19This follows from comparing (15) and (16) with (9) and (10).
20The impulse-responses A(L)CEV-AM = C(L)OLSACEV-AM

0 imply the following variance measure

VarXt
CEV-AM =

∞∑

k=0

COLS
k ACEV-AM

0 (ACEV-AM
0 )T (COLS

k )T 6=
∞∑

k=0

COLS
k ΩOLS

v (COLS
k )T = VarXt

The last step holds because of the normal equations (8) regardless of whether vOLS
t is iid or not.

15



of VAR what is implied by the impulse responses of CEV occurs both in population as well as in

small sample. A similar argument applies to the Newey-West variant of the CEV procedure, where

a researcher seeks SX(0)NW 6= SX(0)OLS and thus (I−B(1)OLS)SX(0)NW(I−B(1)OLS)T 6= ΩOLS
v .

[Figure 1 about here.]

For the model economy described in Section 2, Figure 1 illustrates the mismatch in the variance

of output growth. In small sample, the variances implied by the CEV procedure are only about half

as big as the OLS sample moments. As can be seen in the right panel of Figure 1, this occurs both

when using the Newey-West or the Andrews-Monahan variant of the procedure and regardless

of the share of fluctuations explained by technology shocks. As depicted in the left panel of the

figure, the mismatch is qualitatively different, but also sizable when applying the procedure to the

population moments of the model while using a lag length of p = 1 and spectral bandwidth of

b = 150.

The CEV procedure is motivated by concerns about the ability of OLS estimate to correctly

capture the low-frequency dynamics of the data. But implicitly, differences between spectra es-

timated from OLS and the non-parametric methods are not attributed to misspecified dynamics,

but rather to the VAR’s forecast error variance. However, the accuracy of estimating ΩOLS
v has so

far not been doubted. In fact, getting a good estimate for forecast error variance is precisely the

objective of OLS projections—see (11) above. Still, the CEV procedure deviates from previous

contributions to the SVAR literature where identification is defined as a search over the space of

matrices Â0 satisfying Â0Â
T
0 = ΩOLS

v .21

Finally, a researcher might want to re-construct structural shocks based on (2) as εCEV-AM
t =

(
ACEV-AM

0

)−1
vOLS

t and compare them against εOLS
t =

(
AOLS

0

)−1
vOLS

t . She will be troubled noticing

that the estimated technology shocks are perfectly correlated:22

(εz
t )

CEV-AM =
āOLS

11

āAM
11

· (εz
t )

OLS and (εz
t )

CEV-NW =
āOLS

11

āNW
11

· (εz
t )

OLS

21See for example Faust (1998), Canova and de Nicolo (2003) or Uhlig (2005).
22Recall from (4) that ā11 is the top element of A(1).
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This holds for any pair of matrices A1
0 and A2

0 constructed from (4) and (6) using B(1)OLS and

a A(1) satisfying the zero restrictions (4). Under those conditions the top rows of
(
A(1)OLS

)−1,
(
A(1)AM

)−1 and
(
A(1)NW

)−1 are identical up to a scaling.23

Since CEV were only concerned with impulses-responses and A0, the problem does not show

up in their analysis. The construction of estimated shocks is however often used by researchers,

for instance in order to plot historical decompositions or when identifying several shocks (see for

example Altig et al. (2004)).

3.4 Correct Identification with Spectral Factorization

To overcome the problems with the CEV procedure discussed above, it is necessary to parse out

dynamics of vOLS
t implied by the spectral estimates. Also when the true model has an infinite order

VAR representation, OLS projections of Xt on a finite number of lags are well defined in the sense

of satisfying the projection equations (8) for k ≤ p, but the residuals vOLS
t are not iid. In general,

the residuals follow a moving average representation:

vOLS
t = et +D1et−1 +D2et−2 +D3et−3 + . . . = D(L)et

with spectral density Sv(ω) = D(e−ω)ΩD(e−ω)T (17)

where D(L) = (I −B(L)OLSL)C(L) (18)

[Figure 2 about here.]

CKM and CEV discuss a truncation bias which is hard to detect based on VAR lag-length

selection procedures. In terms of the moving average D(L), their results can be read as finding

Di ≈ 0 but D(1) 6= I . This can also be illustrated in the model economy described in Section 2.

Figure 2 plots the population values of the cumulated sums
∑K

k=0Dk when p = 1 for different

23Both CEV and OLS use B(1)OLS in computing A−1
0 = A(1)−1 (I −B(1))−1 and except for the top left element,

the first row of A(1)−1 is full of zeros. Applying a standard result for inverting partitioned matrices (Magnus and
Neudecker 1988, p. 11), the long run restriction (4) places the same zero restrictions on A(1)−1 as it does on A(1).
This applies equally to A(1)CEV-AM, A(1)CEV-NW and A(1)OLS. Finally, the top left element of A(1)−1 equals 1/ā11.
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calibrations of the share of fluctuations in output explained by technology shocks. (Results are

similar for other values of p.) At each lag, the increments are small and close to zero, but summing

over many lags leads to D(1) 6= I .

Many moving average representations can be consistent with a given spectrum. But only one

of them is invertible. As will be shown next, D(L) is invertible and can be uniquely identified with

a spectral factorization of Sv(ω).

Proposition 1 (Invertibility of D(L)). When the underlying model has a fundamental VAR repre-

sentation as in (1), and the OLS-VAR is stable, the moving average polynomial D(L) defined in

(18) has all its roots outside the unit-circle.

Proof. The proof is straightforward since (I − B(L))−1 = C(L) = (I − B(L)OLS)−1D(L) has

all roots outside the unit circle and the same has been assumed for the VMA of the VAR(p),

C(L)OLS = (I −B(L)OLSL)−1.

It is straightforward to recover D(L) from Sv(ω) with a spectral factorization. The “canoni-

cal spectral factorization” is a classic theorem in linear quadratic control, assuring existence and

uniqueness of an invertible D(L) and a positive definite Ω consistent with (17).

Theorem 1 (Spectral Factorization, (Hannan 1970)). Suppose a variable vt has autocovariances

Γk ≡ E
[
vt v

T
t−k

]
= (Γ−k)

T and a spectral density

Sv(ω) ≡
q∑

k=−q

Γke
−ikω ∀ ω ∈ [−π, π]

which is non-singular at each frequency (|Sv(ω)| 6= 0 ∀ω), as well as being non-zero at the zero

frequency, Sv(0) 6= 0. There is a unique factorization of Sv(ω) into

Sv(ω) = D(e−ikω) ΩD(e−ikω)T

where Ω is positive definite and D(z) is a q’th order polynomial D(z) = I +
∑q

k=1Dkz
k which

has all its roots outside the unit circle.
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The theorem factors a spectrum constructed from a finite number of autocovariances into a

finite-order MA. For an empirical application, a finite q has of course to be chosen. But when

applying the spectral factorization to the population objects of the true model (1), it remains to

consider that D(L) is in general an MA(∞). However, since the processes for Xt and vOLS
t are sta-

tionary, their autocovariances and MA-coefficients vanish for large lags (Hamilton 1994, Chapter

3.A). Analogous to Sims (1972), a spectral factorization with an arbitrarily large but finite q can

arbitrarily well approximate the true spectrum and true D(L). Alternatively the true D(L) can be

thought of as being the limit of applying Theorem 1 to an ever increasing sequence of q’s.

For a correct identification of the structural shocks, the true impact coefficients (6) can be

written in terms B(L)OLS and D(L) as

A(1) = chol {(I −B(1)OLS)−1Sv(0)(I −B(1)OLS)−T} (19)

A0 = D(1)−1(I −B(1)OLS)A(1) (20)

CEV construct A(1)AM according to (19) while using the spectral estimate Sv(0)NW. But they

ignore the residual dynamics captured byD(1) in (20) when mappingA(1)AM back into the impact

coefficients. As illustrated in Figure 2, D(1) is typically not a diagonal matrix in the model econ-

omy, far from equal to the identity matrix. Ignoring the residual captured by D(L) is the source of

the variance misrepresentation discussed in the previous subsection.

To combine VAR coefficients and spectral estimates in an internally consistent fashion, a spec-

tral factorization must be used. The spectral factorization of Sv(ω)NW yields a unique and invertible

MA(b), denoted D(L)SF-AM, and an innovations variance matrix ΩSF-AM. The superscript “SF-AM”

indicates that these are calculated from the residual spectrum employed by the Andrews-Monahan

estimator SX(ω)AM. Impact coefficients are then

ASF-AM
0 =

(
D(1)SF-AM)−1

(I −B(1)OLS)A(1)AM

=
(
D(1)SF-AM)−1

ACEV-AM
0
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Sayed and Kailath (2001) survey a number of different algorithms for performing spectral fac-

torizations. The computations reported here use a reliable and efficient algorithm from Li (2005),

based on a state space representation of the moving average process of vOLS
t . (Details are given in

Appendix A.)

In contrast to the CEV procedure, the spectral factorization is consistent with the variance of

the data, in sample as well as in population.

Proposition 2. By construction, estimates of ASF-AM
0 and D(L)SF-AM factor the spectral density

Sv(ω)NW and thus reproduce the variance of the VAR residuals ΩOLS
v =

∫ π

−π
Sv(ω)NWdω. As a

corollary, this preserves also the unconditional variance of Xt.

Proof. The spectral estimate is

Sv(ω)NW = Γ0 +
b∑

k=1

(
1− |k|

b+ 1

) (
Γke

−iωk + (Γk)
T eiωk

)

and the result follows from
∫ π

−π
e−iωkdω = 0, regardless of whether population moments Γk =

EvOLS
t (vOLS

t−k )T or sample moments Γ̂k = 1
T

∑T
t=k v

OLS
t (vOLS

t−k )T are used. The corollary follows

from the normal equations of the VAR, which enforce VarXt =
∑∞

k=0C
OLS
k ΩOLS

v (COLS
l )T .

A spectral factorization can also be applied directly to the Newey-West estimate of the data’s

spectrum, SXω
NW, yielding coefficients for the VMA of Xt, C(L)SF-NW and innovation variance

ΩSF-NW. Following (6), impact coefficients and impulse responses can then be computed as

ASF-NW
0 =

(
C(1)SF-NW)−1

A(1)NW

A(L)SF-NW = C(L)SF-NWASF-NW
0

These impulse responses do not involve any VAR coefficients. Analogously to Proposition 2, their

construction preserves the variance of the data.
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4 SVARs applied to Data from Lab Economy

The previous section described several schemes for imposing the long-run restriction (4) on the

data. The conventional method, going back to Blanchard and Quah (1989), uses OLS estimates

of a VAR. The recently proposed procedure of CEV combines this with a non-parametric estimate

of the spectral density at frequency zero. This procedure has been criticized above for its lack of

internal consistency. Finally, this paper proposed a new method, combining OLS estimates and

spectral estimators in an internally consistent way. This method relies on a spectral factorization

(“SF”) to uncover the dynamics implied by the non-parametric spectral estimators.

These procedures are applied here to data simulated from the model economy described in

Section 2. The same data generating process has also been used by CEV and CKM.24 For the CEV

and SF methods, there are two variants depending on whether the spectral estimators of Newey

and West (1987) or Andrews and Monahan (1992) are used. This section reports results for both.

Mimicking conditions faced by empirical researchers, “small” samples with 180 observations

are simulated. In small sample, two distinct issues arise. First, there is truncation bias in VARs

and spectral estimators arising from the need to specify a finite lag length p, respectively a finite

bandwidth b. As discussed in Section 2, lag length is determined individually for each draw with

an information criterion and spectral bandwidth is fixed at 150. In addition, alternative results

are reported using the bandwidth selection procedure of Newey and West (1994) for Newey-West

spectra. (See Section 3.2 for further discussion of bandwidth selection.)

Second, there is the small sample bias in estimated parameters known from Hurwicz (1950).25

To isolate the pure truncation effects from the Hurwicz bias, the identification procedures are

not only applied to simulated data, but also to VARs and spectral estimates constructed from the

model’s true population moments.26

24As discussed in Section 2, the calibrations employed here are identical to the setting of CEV—except for consid-
ering a wider range of the technology share in output fluctuations. As discussed above as well, the CKM experiments
differ slightly in their choice of ψ and ρl.

25This bias is particularly acute the smaller the sample and the higher the persistence of the data. It is pertinent in
this example, since calibrating the model to match salient features of U.S. data requires a high degree of persistence in
the non-technology shock, ρl.

26In the case of the spectral estimators, this means evaluating (12) and (13) at true population moments, instead of
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The procedures are evaluated in terms of of their capability to uncover two statistics typically

of interest to applied researchers. Following CKM and CEV, estimates of the response of hours to

a technology shock are computed. For brevity, the discussion is limited on impact coefficients A0,

since all methods compute impulse responses fromC(L)OLS and their estimates ofA0 (except when

factorizing SX(ω)NW). In addition, the share of fluctuations in output and hours due to technology

shocks is estimated. As it is typical in the business cycle literature, these shares are computed after

filtering out any fluctuations which do not correspond to cycles with a duration between two-and-

a-half and eight years.27 Two criteria are reported to assess the goodness of estimates: Bias and

Root Mean Square Error (RMSE), both expressed as percentages relative to the true value known

from the model.28

The results show that all procedures are subject to substantial truncation and small biases and

none works like a panacea. Different methods display different strengths and weaknesses. The

claims by Christiano, Eichenbaum, and Vigfusson (2006a) of “smaller bias, smaller means square

error” associated with their procedure do neither generalize to a wider range of model calibrations

nor do they extend from the estimation of impact responses to variance shares.

[Figure 3 about here.]

Effects from the truncation and the small sample bias can offset each other. This is the case

when estimating the impact of technology on hours. The left column in Figure 3 shows how impact

responses are overestimated in population whereas the simulated bias shown in the middle column

of the figure is lower (more negative). This simulated bias displays the total effect from truncation

and Hurwicz bias. The OLS method has the largest population bias and it is only partially offset

by the Hurwicz bias. The two spectral methods suffer from substantially smaller truncation bias,

sample autocovariances, while keeping the Bartlett weights and the truncation at the chosen bandwidth (here: b = 150,
respectively b = 15 when comparing against simulations using the bandwidth selection procedure of Newey and West
(1994)). The computation of VARs from population moments is equally straightforward, and details are described in
Appendix B.

27The variance computations are explained in Appendix C.
28Denoting the estimated parameter as θ and its estimate as θ̂, relative bias is computed as E(θ̂− θ)/θ · 100%. The

RMSE is defined as RMSE =
√
E(θ̂ − θ)2 =

√
(Eθ̂ − θ)2 + Var θ̂ and it is converted into a percentage error using

RMSE/θ · 100%. In both cases, expectations are computed from the arithmetic average over 1,000 simulations.
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and depending on the simulated importance of technology shocks, the total bias can be either

negative or positive. Coincidentally, the upwards bias in SF-AM and SF-NW is exactly offset

around technology shares of about two thirds, corresponding to the range of MLE estimates of CEV

and CKM for U.S. data. (Similarly for CEV-AM, but not CEV-NW.) However, results are different

for other calibrations of the technology share, which cautions strongly against extrapolating from

a particular result to different data sets and different applications.

Unless the true share of technology shocks is very large, the RMSE of estimated impact coeffi-

cients are very large, often surpassing more than 100% of the true value. Interestingly, the RMSE

do not differ much across the different methods, as can be seen in the right-most column of Fig-

ure 3. If anything, SF-NW is outperforming CEV-NW on bias, at the expense of a worse RMSE.

This is likely due to an overfitting of the residual dynamics by SF-NW.

[Figure 4 about here.]

Turning to the estimated variance shares of output and hours shown in Figure 4, the relative per-

formance of the various methods looks quite different. The panels in the top row of the figure show

bias and RMSE for variance decompositions of output, the bottom row for variance decomposi-

tions of hours. For this figure, spectral densities have been estimated with the Andrews-Monahan

estimator. Results are broadly similar when using the Newey-West estimator (see Figure A.1 in

the separate appendix with additional results.)

Strikingly, for technology shares in output, bias and RMSE are very similar when using either

OLS or CEV. The mismatch in total variance discussed in Section 3.3, does not seem to distort

the computations of relative variance measures in this case. But, the two methods differ when

decomposing the variance of hours. Bias and RMSE in the variance decomposition of hours are an

order of magnitude larger than for output, cautioning very strongly against neglecting small sam-

ple issues when comparing SVAR estimates against model predictions. Moreover, the variance

decompositions of hours provide a useful counterexample against disregarding OLS methods alto-

gether, since OLS dominates the spectral methods both in terms of simulated bias and RMSE for

all calibrations considered here. All in all, these results underline how truncation and Hurwicz bias
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interact with the different methods in ways which are hard to anticipate for an empirical researcher

who does not know the true dynamics of the data.

The results presented in Figures 3 and 4 are based on a large and fixed spectral bandwidth

of b = 150. A separate appendix with additional results shows that the results are similar for

Newey-West spectra when their bandwidth has been chosen by the automatic bandwidth selection

procedure of Newey and West (1994). Compared to the case of a large and fixed bandwidth, only

two differences stand out. Estimating technology shares from a direct factorization of the Newey

West spectrum perform worse compared to the large bandwidth case, both in terms of bias and

RMSE, unless technology accounts for less than two thirds of business cycle fluctuations in output

(see Figure A.1 in the appendix). Furthermore, the RMSE of impact coefficients estimated with

CEV-NW is almost flat at around two thirds of the true value, independently of the true technology

share (Figure A.2). Applying the automatic bandwidth selection for the residual spectra of the

Andrews-Monahan estimator yields bandwidths close to zero, such that the results are mostly

indistinguishable from the OLS estimates (Figure A.3).

5 Conclusions

In finite sample, truncation bias and Hurwicz bias pose fundamental problems when identifying

structural shocks from restrictions on the long-run behavior of the data. These issues are present in

the time domain when working with a VAR, as well as in the frequency domain when working with

spectral estimators. Basically, the same estimates of the data’s autocovariances are employed for

constructing non-parametric estimates of the spectrum as well as for computing OLS coefficients.

In both cases, truncation bias arises since there are only as many sample autocovariances as there

are data points. And due to the Hurwicz bias, variance estimates tend to be biased downwards the

smaller the sample and the larger the persistence of the data—again affecting both OLS estimates

of VAR coefficients as well as non-parametric estimates of the spectral density.

Thus, spectral estimates offer no panacea against the truncation and small sample problems
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known from OLS. At best, by allowing for additional dynamics, they might improve upon OLS in

terms of bias, but by overfitting the data, this comes at the expense of increasing RMSE.

The performance of different estimators appears to be very specific to the underlying model

and its calibration, making it hard to predict, which procedure would do well in future applications

using new data. Even for a given calibration, when a method performs better in terms of one

model statistic, say impact coefficients, this does not necessarily translate into better performance

for another statistic, like a variance share. Going forward, it would be more suitable to compare

SVAR estimates (from any procedure), against the small sample predictions, not the true moments,

of a specific model as in Cogley and Nason (1995), Kehoe (2006), Dupaigne, Feve, and Matheron

(2007) and Dupaigne and Feve (2009).
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Appendix

A Spectral Factorization Method

Spectral factorization has a long tradition in the fields of linear quadratic control, robust estimation

and control as surveyed for example by Whittle (1996).29 Theorem 1 has been adapted from

Hannan (1970, p. 66). The original theorem allows for unit roots in D(L). The version stated

above has been slightly strengthened by excluding the case of zero power in the spectral density at

zero-frequency, to ensure the invertibility of the MA(b).30

In the context of this paper, Sv(ω) will be the spectral density of vOLS
t = D(L)et where

Eete
T
t = Ω = A0A

T
0 . We will be using non-parametric estimates of Sv(ω) based on weighted

sums of the sample autocovariance function as described in Section 3.2.31

Theorem 1 requires Sv(ω) to be non-singular. This can be understood as requiring that the

autocovariances need to decay sufficiently fast in relation to the number of MA lags. For example,

in the scalar case and with q = 1, the first-order autocorrelation to be matched with a MA(1) cannot

be larger than 0.5 in absolute value.32

Algorithms for implementing the factorization go back to Whittle (1963) and have recently

been surveyed by Sayed and Kailath (2001). The simulations reported here use the algorithm of

Li (2005), which is based on a state space representation of vt and performed very reliably.33 The

remainder of this appendix describes the algorithm in more detail.

Suppose vt follows an MA(q) as above. To represent it in a state space system, define the state

29For a reference in the context of economics see Hansen and Sargent (2007, 2005).
30Suppose that S(0) 6= 0. Since Ω is positive definite, it follows that D(1) 6= 0. All roots of D(z) are thus outside

the unit circle and D(L) is an invertible MA(b).
31The Γk from Theorem 1 are a smoothed version of the sample autocovariance since they are the coefficients of an

inverse Fourier transform of the Newey-West estimate of the spectral density.
32Given a covariance γ0 and first-order autocovariance γ1, the spectrum equals s(ω) = γ0 · (1 + 2γ1 cos (ω)). And

|s(ω)| 6= 0 requires |γ1/γ0| < 0.5.
33The paper of Li also shows how to reduce the number of iterations by stacking the MA(q) into first order form,

however this comes at the cost of inverting larger matrices in the Riccati iterations which proved to be numerically
less stable in the simulations computed for this paper.

26



vector st = E

{[
vt vt+1 . . . vt+q−1

]T ∣∣∣∣vt−1

}
where vt−1 is the entire history of realizations

of vt up to time t− 1. Li then constructs the following state space system

st+1 = Ast +Det

vt = Cst + et

A =




0m Im 0m . . . 0m

0m 0m Im 0m . . . 0m

... . . . ...

0m . . . 0m Im

0m . . . 0m 0m




D =




D1

D2

...

Dq




C =

[
Im 0m . . . 0m

]

where Im and 0m are the m×m identity matrix, respectively the n× n zero matrix.

What is needed is a mapping from the autocovariances of vt, Γk, to the state space objects.

The objects of interest are the matrix D containing the stacked MA coefficients Di as well as the

variance Ω = Eete
T
t of the innovations process. To obtain this mapping, it is useful to stack the

autocovariances into a matrix M =

[
ΓT

1 ΓT
2

... Γt
q

]T

Li (2005, Theorem 2) shows that the variance-covariance matrix of the states Ψ ≡ Ests
T
t solves

the Riccati equation Ψ = AΨAT +(M−AΨCT )(Γ0−CΨCT )−1(M−AΨCT )T and that the MA(q)

coefficients can be recovered as D = (M − AΨCT )(Γ0 − CΨCT )−1 and Ω = Γ0 − CΨCT . As

shown by Li (2005), the above Riccati equation can be solved recursively, starting from Ψ(0) = 0

and iterating over Ψ(n+1) = AΨ(n)AT + (M − AΨ(n)CT )(Γ0 − CΨ(n)CT )−1(M − AΨ(n)CT )T

since Ψ = limn→∞ Ψ(n) and Ψ(n+1) ≥ Ψ(n).

At the end of each factorization computed for this paper, it has been verified that the factoriza-

tion produces an invertible MA(q) polynomial, which matches the original spectral density. In all

simulations, this held up to machine accuracy.
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B VARs Implied by Lab Economy

This section outlines how to derive the following: First, values from the lab economy for true VAR

objects like A0, A(1), B(1), and the autocovariances of Xt. Second, population coefficients of

finite-order VARs implied by the lab economy.34

The linearized solution to the lab economy described in Section 2 yields a state space model

for labor productivity growth and hours

Xt =




∆ log (yt/lt)

log lt


 = CZt with Zt = AZt−1 + Bεt (21)

State vector and shock vector are:

Zt =

[
k̂t εz

t τ z
l,t k̂t−1 εz

t−1 τ z
l,t−1

]T

εt =

[
εz

t εl
t

]T

(22)

where k̂t is the log-deviation of detrended capital from its steady state, τl,t and εz
t are the labor

wedge and the growth rate in technology. (Zt includes also lagged variables due to the presence of

labor productivity growth in Xt.)

The computation of the matrices A, B and C is straightforward, please see CKM for a detailed

presentation.

True VAR objects

The decomposition in section 4 uses the following objects of the true process: A0, A(1), B(1)

as well as the autocovariances of Xt. Their computation from the state space is straightforward

since true impulse responses and spectrum are given by A(L) = C (I −AL)−1 B and SX(ω) =

A(e−iω)A(e−iω)T . The impact coefficients A0 = CB are apparent from (21). Recalling equation

34For this specific two-shock economy, details can also be found in McGrattan (2005). For general state space
models details can be found in Fernandez-Villaverde, Rubio-Ramirez, and Sargent (2005). To simplify the VAR
notation, Xt has been demeaned prior to the analysis.
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(2), this also pins down the covariance matrix of the forecast errors Ω = CBBCT .

In order to map forecast errors into structural shocks, A0 must obviously be square and invert-

ible. Furthermore, Fernandez-Villaverde, Rubio-Ramirez, and Sargent (2005) show that invertibil-

ity requires the eigenvalues of A− B(CB)−1CA to be strictly less than one in modulus, which is

satisfied for all calibrations considered here.

The non-structural moving average representation of Xt is Xt = A(L)A−1
0 et = C(L)et.

From (3), the coefficients of the non-structural VAR(∞) representation of the model can be ob-

tained by inverting this moving average, yielding B(L)L = I − C(L)−1.

The autocovariances EXtX
T
t−k can be directly computed from the state space model. The

covariance matrix of the states EZtZ
T
t ≡ Ω is obtained as the solution to a discrete Lyapunov

equation: Ω = AΩ AT + BBT and the autocovariances of Xt are EXtX
T
t−k = CAkΩ CT .

VAR(p) coefficients in population

Finite-order VAR(p) can be computed as projections of Xt on a finite number of its past values,

Xt−1 . . . Xt−p. In line with the notation of the main text, population coefficients of a VAR(p) are

denoted with a superscript “OLS”.

Xt = B(L)OLSXt−1 + vOLS
t

The coefficients of the lag polynomial B(L)OLS =
∑p−1

i=0 B
OLS
i Li solve the OLS normal equations

E

(
Xt −

p−1∑
i=0

BOLS
i Xt−1−i

)
XT

t−j = 0 ∀ j = 1 . . . p

which are evaluated using the autocovariance matrices of Xt whose computations are described

in the preceding paragraph. For instance if p = 1, BOLS
1 =

(
EXtX

T
t−1

) (
EXtX

T
t

)−1. Detailed

formulas for higher VARs can be found in Fernandez-Villaverde, Rubio-Ramirez, and Sargent

(2005).
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Chari, Kehoe, and McGrattan (2005, Proposition 1) show that the VAR representation of Xt in

the model is of infinite order and residuals from a VAR(p) will not be martingales. By construction,

the projection residuals vOLS
t are orthogonal to Xt−1, . . . , Xt−p, but they are not orthogonal to the

complete history of Xt. The moving average representation of the forecast errors vOLS
t = D(L)et

is easily constructed from D(L) =
(
I −B(L)OLSL

)
(I −B(L)L)−1.

Variance equation

Even though the VAR(p) residuals vOLS
t are not iid, the usual variance equation is still applicable.

For notational convenience, take the case of a VAR(1), Xt = BOLS
1 Xt−1 + vOLS

t . The normal

equations imply

VarXt = BOLS
1 (VarXt) (BOLS

1 )T + ΩOLS
v (23)

=
∞∑

k=0

(BOLS
1 )k ΩOLS

v ((BOLS
1 )k)T

=
∞∑

k=0

COLS
k ΩOLS

v (COLS
k )T

The second line is obtained by recursive substitution of VarXt and the third line follows from the

construction of moving-average coefficients of a VAR(1), COLS
k = (BOLS

1 )k. The argument is easily

extended to VARs with higher lag orders by using their companion form.

C Bandpass-Filtered Variance Share from SVARs

This appendix describes how to compute the share of bandpass-filtered fluctuations attributed to

technology shocks from a set of SVAR parameters, B̂(L) and Â0. The bandpass filter employed

here considers only cycles with a duration between two-and-a-half and eight years. Denoting the

bandpass-filtered level of (log) output ỹt, its variance can be easily computed from the transfer

function

Ty(ω) =

[
(1− e−iω)−1 1

] (
I − B̂(e−iω)e−iω

)−1

Â0
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Depending on the identification scheme, Â0 corresponds to A0 (true value) or AOLS
0 , ACEV-AM

0 ,

ACEV-NW
0 , ASF-AM

0 or ASF-NW
0 and B̂(L) corresponds to the true (infinite order) polynomial B(L)

or its finite-order counterpart B(L)OLS. When using the spectral factorization of SX(ω)NW, the

inverse of I − B̂(e−iω)e−iω is replaced by CSF-NW(e−iω).

Using ω = 2π
8·12

and ω = 2π
2.5·12

the bandpass-filtered variance is

Var ỹt =

∫ ω

ω

Ty(ω)Ty(ω)Tdω

and the share of fluctuations attributed to technology shocks is the ratio (Var ỹt|εz
t )/(Var ỹt), where

Var ỹt|εz
t conditions only on fluctuations attributed to technology shocks.

Var ỹt|εz
t =

∫ ω

ω

Ty(ω)




1 0

0 0


Ty(ω)Tdω

Similar computations yield the variance shares for hours, when using the transfer function

Tl(ω) =

[
0 1

] (
I − B̂(e−iω)e−iω

)−1

Â0.
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