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A Reliable and Computationally Efficient

Algorithm for Imposing the Saddle Point

Property in Dynamic Models

Gary S. Anderson

Abstract

This paper describes a set of algorithms for quickly and reliably solving linear
rational expectations models. The utility, reliability and speed of these algorithms
are a consequence of 1) the algorithm for computing the minimal dimension state
space transition matrix for models with arbitrary numbers of lags or leads, 2) the
availability of a simple modeling language for characterizing a linear model and 3)
the use of the QR Decomposition and Arnoldi type eigenspace calculations. The
paper also presents new formulae for computing and manipulating solutions for
arbitrary exogenous processes.

1 Introduction and Summary

Economists at the Board have an operational need for tools that are use-
ful for building, estimating and simulating moderate to large scale rational
expectations models. This context dictates a need for careful attention to
computational efficiency and numerical stability of the algorithms.

These algorithms have proved very durable and useful for staff at the central
bank. Many economists at the Federal Reserve Board have used the algorithms
in their daily work and their research. 2 With the exception of researchers at
other European central banks(Zagaglia, 2002), few economists outside the US

1 First, I would like to thank George Moore, my now deceased mentor, friend and
coauthor of(Anderson & Moore, 1985). I also wish to thank Brian Madigan, Robert
Tetlow, Andrew Levin, Jeff Fuhrer and Hoyt Bleakley for helpful comments. I am
responsible for any remaining errors. The views expressed herein are mine and do
not necessarily represent the views of the Board of Governors of the Federal Reserve
System.
2 See, for example,(Bomfim, 1996; Fuhrer & Moore, 1995a; Fuhrer & Moore, 1995b;
Fuhrer & Moore, 1995; Fuhrer & Madigan, 1997; Fuhrer, 1997b; Fuhrer, 1997a;
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central bank seem to know about the method. This paper attempts to make
the method and approach more widely available by describing the underlying
theory along with a number of improvements on the original algorithm. 3

The most distinctive features of this approach are:

• its algorithm for computing the minimal dimension state space transition
matrix

• its use of bi-orthogonality to characterize the asymptotic constraints that
guarantee stability (See Section 3.1.2).

• It’s reliance on QR Decomposition and the real Schur Decomposition for
speed and accuracy.

This unique combination of features makes the algorithm especially effective
for large models. See (Anderson, 2006) for a systematic comparison of this
algorithm with the alternatives procedures.

The remainder of the paper is organized as follows. Section 2 states the saddle
point problem. Section 3 describes the algorithms for solving the homoge-
neous and inhomogeneous versions of the problem and describes several im-
plementations. Section 4 shows how to compute matrices often found useful
for manipulating rational expectations model solutions: the observable struc-
ture(Section 4.1) and stochastic transition matrices(Section 4.2). The Appen-
dices contain proofs for the linear algebra underlying the algorithm and the
solution of a simple example model.

2 Saddle Point Problem Statement

Consider linear models of the form:

θ∑
i=−τ

Hixt+i = Ψzt, t = 0, . . . ,∞ (1)

Fuhrer, 1996; Fuhrer et al., 1995; Fuhrer & Hooker, 1993; Fuhrer, 1994; Fuhrer,
1997c; Orphanides et al., 1997; Levin et al., 1998; Orphanides, 1998; Orphanides &
Wieland, 1998; Edge et al., 2003; Orphanides & Williams, 2002).
3 At the Board, economists commonly refer to this family of algorithms as the AIM
algorithm. A metaphor relating our approach to the “shooting method” inspired the
name.
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with initial conditions, if any, given by constraints of the form

xi = xdata
i , i = −τ, . . . ,−1 (2)

where both τ and θ are non-negative, and xt is an L dimensional vector of
endogenous variables with

lim
t→∞

‖xt‖ < ∞ (3)

and zt is a k dimensional vector of exogenous variables.

Section 3 describes computationally efficient algorithms for determining the
existence and uniqueness of solutions to this problem.

3 The Algorithms

The uniqueness of solutions to system 1 requires that any transition matrix
characterizing the dynamics of the linear system have an appropriate number
of explosive and stable eigenvalues(Blanchard & Kahn, 1980), and that a cer-
tain set of asymptotic linear constraints are linearly independent of explicit
and certain other auxiliary initial conditions(Anderson & Moore, 1985).

The solution methodology entails

(1) Manipulating the left hand side of equation 1 to obtain a state space
transition matrix, A, along with a set of auxiliary initial conditions, Z
for the homogeneous solution.

Z


x−τ

...

xθ

 = 0 and


x−τ+1

...

xθ

 = A


x−τ

...

xθ−1

 (4)

See Section 3.1.1.
(2) Computing the eigenvalues and vectors spanning the left invariant space

associated with large eigenvalues. See Section 3.1.2.

V A = MV (5)

with the eigenvalues of M all greater than one in absolute value.
(3) Assembling asymptotic constraints, Q, (See Section 3.1.2.) by combining

the:
(a) auxiliary initial conditions identified in the computation of the tran-

sition matrix and
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(b) the invariant space vectors

Q =

Z

V

 (6)

(4) Investigating the rank of the linear space spanned by these asymptotic
constraints and, when a unique solution exists,
(a) Computing the auto-regressive representation, B. See Section 3.1.3.
(b) Computing matrices, φ, F, ϑ for characterizing the impact of the in-

homogeneous right hand side term. See Section 3.2.1.

Figure 1 presents a flowchart of the algorithm.

3.1 Homogeneous Solution

Suppose, for now, that Ψ = 0: 4

θ∑
i=−τ

Hixt+i = 0, t ≥ 0 (8)

lim
t→∞

‖xt‖ < ∞ (9)

The homogeneous specification 8 is not restrictive. Since the procedure can
handle inhomogeneous versions of equation 1 by recasting the problem in terms
of deviations from a steady state value. However, the next section provides a
more intuitive, flexible and computationally efficient alternative for computing
inhomogeneous solutions. 5

4 Note that there is no unique steady state requirement. Steady state solutions, x∗

satisfying

θ∑
i=−τ

(Hi)x∗ = 0 (7)

lie in a linear subspace of RL. We will develop conditions that guarantee solutions
that evolve from a given set of initial conditions to a single point in this subspace.
As a result, one can apply these routines to models with unit roots, seasonal factors,
cointegrating vectors and error correction terms.
5 The original algorithmic description and software implementation of these algo-
rithms developed homogeneous solutions. Researchers obtained solutions for models
with inhomogeneous systems by adding an equation of the form it = it−1 with initial
condition it−1 = 1 to the system.
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Compute Unconstrained Autoregressive

Representation(H],∗) and Auxiliary

Initial Conditions(Z],∗),
(See Section 3.1.1)

H −−−→ {H],∗, Z],∗}

?

Compute Convergence Constraint(V )
(See Section 3.1.2)

{H],∗, Z],∗} −−−→ V

?

Compute Asymptotic Constraints (Q),
(See Section 3.1.2)

{Z],∗, V } −−−→ Q

?

Investigate Rank of QR

(See Section A.3)
{Q} −−−→ {B, φ, F, ϑ}

?'
&

$
%End

Fig. 1. Algorithm Components

3.1.1 State Space Transition Matrix and Auxiliary Initial Conditions: A, Z

This section describes how to determine a first-order state space representation
of the equation system 8. The method is an extension of the shuffling algorithm
developed in(Luenberger, 1978; Luenberger, 1977). If Hθ is non-singular, we
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can immediately obtain xt+θ in terms of xt−τ . . . xt+θ−1

−H−1
θ

[
H−τ . . . Hθ−1

]
(10)

However, the natural specification of many economic models has singular Hθ.

This, first, algorithm applies full rank linear transformations to equations from
the original linear system in order to express xt+θ in terms of xt−τ . . . xt+θ−1. It
produces an unconstrained, typically explosive, autoregressive representation
for the evolution of the components of the state space vectors and a set of
vectors that provide important auxiliary initial conditions.

Fig. 2. Initial Tableau

τ + θ H
♯,0

Fig. 3. Forward Row Annihilation

H
♯,1

Z
♯,1

= F
♯,1

Fig. 4. Full Rank Leading Block

H
♯,k

with H
♯,k
θ non-singular

Z
♯,k

F
♯,k

Section A.1 presents a proof that
repeating this process of annihi-
lating and regrouping rows ulti-
mately produces an H],k = H],∗

with H],∗
θ non-singular. The proof

identifies a benign rank condi-
tion that guarantees that the al-
gorithm will successfully compute
the unconstrained autoregression
and the auxiliary initial condi-
tions.

Figures 2-4 provide a graphical
characterization of the linear al-
gebraic transformations charac-
terizing the algorithm. Figure 2
presents a graphical characteriza-
tion of the relevant set of linear
constraints for t = 0 . . . (τ + θ).
The figure represents the regions
where the coefficients are poten-
tially non-zero as shaded gray. If
H],0

θ is singular, one can find a lin-
ear combination of its rows which
preserves the rank of H],0

θ but
which annihilates one or more of
its rows.

Consequently, one can pre-multiply
the matrices presented in Figure 2
by a unitary matrix to get the dis-
tribution of zeros displayed in Figure 3. Since the matrices repeat over time,
one need only investigate the rank of the square matrix H],0

θ . U1H
],0 =
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[
F ],1U1H

],0
θ

]
. With some of the rows of U1H

],0
θ all zeros. One can regroup

the rows in the new tableau to get H],1. By construction, the rank of H],1
θ can

be no less than the rank of H],0
θ .

Note that changing the order of the equations in H],0
θ will not affect the rank

of H],0
θ or the space spanned by the nonzero rows that will enter H],1

θ . Since
H],0

θ is not full rank, a subset of the rows of H],1
θ will span the same space as

H],0
θ . The other rows in H],1

θ will come from linear combinations of the original
system of equations in effect “shifted forward” in time.

One can think of the “Full Rank Leading Block” matrix as the result of pre-
multiplications of the “Initial Tableau” by a sequence of unitary matrices. Im-
plementations of the algorithm can take advantage of the fact that the rows
of the matrices repeat. The regrouping can be done by “shifting equations
forward” in time in an L× L(τ + 1 + θ) version of the tableau.

Section A.1 presents a proof that repeating this process of annihilating and
regrouping rows ultimately produces an H],k = H],∗ with H],∗

θ non-singular.
Algorithm 1 presents pseudo code for an algorithm for computing the compo-
nents of the state space transition matrix and the auxiliary initial conditions.

Algorithm 1
1 Given H,
2 compute the unconstrained autoregression.
3 funct F1(H) ≡
4 k := 0
5 Z0 := ∅
6 H0 := H
7 Γ = ∅
8 while Hk

θ is singular ∩ rows(Zk) < L(τ + θ)
9 do

10 Determine a Non-singular matrix that annihilates L− r(Hk
θ) Rows of Hk

θ

11 Uk =

Uk
Z

Uk
N

 := rowAnnihilator(Hk
θ)

12 Hk+1 :=

 0 Uk
ZHk

τ . . . Uk
ZHk

θ−1

Uk
NHk

τ . . . Uk
NHk

θ


13 Zk+1 :=

 Zk

Uk
ZHk

τ . . . Uk
ZHk

θ−1


14 k := k + 1
15 od
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16 Γ = −H−1
θ

[
H−τ . . . Hθ−1

]

17 A =

0 I

Γ


18 return{

[
Hk
−τ . . . Hk

θ

]
, A,Zk}

19 .

The algorithm terminates with:

[
H]∗
−τ . . . H]∗

θ

]

x−τ

...

xθ

 = 0 (11)

with H]∗
θ non singular. Let

Γ] = −(H]∗
θ )−1

[
H]∗
−τ . . . H]∗

θ−1

]
(12)

Then

xθ = Γ]


x−τ

...

xθ−1

 (13)

This unconstrained auto-regression in xt provides exactly what one needs to
construct the state space transition matrix.

A] =

0 I

Γ]

 (14)

so that 
x−τ+1

...

xθ

 = A


x−τ

...

xθ−1

 (15)
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3.1.2 Asymptotic Linear Constraint Matrix: Q

In order to compute solutions to equation 8 that converge, one must rule out
explosive trajectories. Blanchard and Kahn(Blanchard & Kahn, 1980) used
eigenvalue and eigenvector calculations to characterize the space in which the
solutions must lie. In contrast, our approach uses an orthogonality constraint
to characterize regions which the solutions must avoid.

Each left eigenvector associated with a given eigenvalue is orthogonal to each
right eigenvector associated with roots associated with different eigenvalues.
Since vectors in the left invariant space associated with roots outside the unit
circle are orthogonal to right eigenvectors associated with roots inside the
unit circle, a given state vector that is part of a convergent trajectory must be
orthogonal to each of these left invariant space vectors. See theorem 4 on page
20. Thus, the algorithm can exploit bi-orthogonality and a less burdensome
computation of vectors spanning the left invariant space in order to rule out
explosive trajectories.

If the vectors in V span the invariant space associated with explosive roots,
trajectories satisfying equation 8 are non-explosive if and only if

V A = MV (16)

with the eigenvalues of M similar to the Jordan blocks of A associated with
all eigenvalues greater than one in absolute value.

V


xt−τ

...

xt+θ−1

 = 0 (17)

for some t. 6

Combining V and Z] completely characterizes the space of stable solutions
satisfying the linear system 8.

Q =

Z]

V

 (18)

6 If A has roots with magnitude 1 then trajectories can converge to either a limit
cycle or a non-zero fixed point. Otherwise, non-explosive trajectories will converge
to the origin.
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The first set of equations come from the equations in equation system 8 which
do not appear in the transformed system of Equation 11 but must nevertheless
be satisfied. The second set of equations come from the constraint that the
solutions are non-explosive. Algorithm 2 provides pseudo code for computing
Q.

Algorithm 2
1 Given A, Z],∗,
2 funct F2(A, Z],∗)
3 Compute V , the vectors spanning the left
4 invariant space of A associated with eigenvalues
5 greater than one in magnitude

6 Q :=

Z],∗

V


7 return Q
8 .

3.1.3 Convergent Autoregressive Representation: B

The first two algorithms together produce a matrix Q characterizing con-
straints guaranteeing that trajectories are not explosive. See theorem 5 and
corollary 2 for a proof. (Hallet & McAdam, 1999) describes how to use the
matrix Q from Section 3.1.2 to impose saddle point stability in non linear
perfect foresight models. However, for linear models with unique saddle point
solutions it is often useful to employ an autoregressive representation of the
solution. Theorem 6 in Section A.3 provides a fully general characterization
of the existence and uniqueness of a saddle point solution.

A summary for typical applications of the algorithm follows. Partition Q =[
QL QR

]
where QL has Lτ columns. When η = Lθ, QR is square. If QR is

10



non-singular, the system has a unique solution 7



B

B
2
...

B
θ


= Q−1

R QL and solutions are of the form xt = B


xt−τ

...

xt−1

 , xt+k = B
k


xt−τ

...

xt−1


(19)

Algorithm 3 provides pseudo code for computing B.

Algorithm 3
1 Given Q,
2 funct F3(Q)
3 cnt = noRows(Q)

4 return



{Q,∞} cnt < Lθ

{Q, 0} cnt > Lθ

{Q,∞} (QRsingular)

{B = −Q−1
R QL, 1} otherwise

5 .

3.2 Inhomogeneous Solution

Now, suppose

θ∑
i=−τ

Hixt+i = Ψzt, t ≥ 0 (20)

lim
t→∞

‖xt‖ < ∞ (21)

3.2.1 Inhomogeneous Factor Matrices: φ, F

Theorem 1 Given structural model matrices, Hi, i = −τ, . . . , θ and
Ψ, convergent autoregression matrix B there exist inhomogeneous

7 If QR is singular, the system has an infinity of solutions. When η < Lθ, The
system has an infinity of solutions.
When Q has more than Lθ rows, The system has a unique nontrivial solution only
for specific values of xdata.
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factor matrices, φ and F such that with

[
B−τ . . . B−1

]
= B (22)

φ =

H0 +
[
H1 . . . Hθ

]


B
...

Bθ




−1

(23)

xt =
−1∑

i=−τ

Bixt+i +
[
0 . . . 0 I

] ∞∑
s=0

(F s

 0

φΨzt+s

) (24)

will satisfy the linear inhomogeneous system equation 20.

See Section A.4 for derivations and formulae. Algorithm 4 provides pseudo
code for computing φ and F .

Algorithm 4
1 Given H, Q
2 funct F4(H, Q)
3 Where

4 B =


BL BR

...
...

Bθ
L Bθ

R

 = Q−1
R QL

6 φ = (H0 + H+


BR

...

BRθ

)−1

7 F =



0 I
...

. . .

0 I

−φH+



0
...

0

I


−φH+



0
...

I

BR


. . . −φH+



I

BR

...

Bθ−1




8 return(φ, F )
9 .

12



3.2.2 Exogenous VAR Impact Matrix, ϑ

Modelers can augment the homogeneous linear perfect foresight solutions with
particular solutions characterizing the impact of exogenous vector autoregres-
sive variables.

Theorem 2 When

zt+1 = Υzt (25)

one can show that

xt =
[
BL BR

]

xt−τ

...

xt−1

 + ϑzt (26)

where

vec(ϑ) =
[
0 . . . 0 I

]
(I −ΥT ⊗ F )−1vec



0
...

0

φΨ


(27)

See Section A.5 for derivations and formulae.

3.3 Implementations

This set of algorithms has been implemented in a wide variety of languages.
Three implementations, a Matlab, a “C”, and a Mathematica implementa-
tion, are available from the author.Each implementation avoids using the large
tableau of Figure 2. They each shift elements in the rows of a single copy of the
matrix H. Each implementation eliminates inessential lags from the autore-
gressive representation before constructing the state space transition matrix
for invariant space calculations.

The most widely used version is written in MATLAB. The MATLAB ver-
sion has a convenient modeling language front end for specifying the model
equations and generating the Hi matrices.

The “C” version, designed especially for solving large scale models is by far
the fastest implementation and most frugal with memory. It uses sparse lin-

13



ear algebra routines from SPARSKIT(Saad, 1994) and HARWELL(Numerical
Analysis Group, 1995) to economize on memory. It avoids costly eigenvec-
tor calculations by computing vectors spanning the left invariant space using
ARPACK(Lehoucq et al., 1996).

For small models, one can employ a symbolic algebra version of the algorithms
written in Mathematica. On present day computers this, code can easily con-
struct symbolic state space transition matrices and compute symbolic expres-
sions for eigenvalues for models with 5 to 10 equations. The code can often
obtain symbolic expressions for the invariant space vectors when the transition
matrix is of dimension 10 or less.

4 Other Useful Rational Expectations Solution Calculations

Economists use linear rational expectations models in a wide array of applica-
tion. The following sections describe calculations which are useful for optimal
policy design, model simulation and estimation exercises.

4.1 Observable Structure: S

To compute the error term for estimation of the coefficients of these models,
one must commit to a particular information set. Two typical choices are t
and t-1 period expectations.

Given structural model matrices, Hi, i = −τ, . . . , θ and convergent autore-
gression matrices Bi, i = −τ,−1 there exists an observable structure matrix,
S

εt = S


xt−τ

...

xt

 (28)

See Section A.6 for a derivation and formula for S. Algorithm 5 provides
pseudo code for computing S for a given lag, k∗ in the availability of informa-
tion.

Algorithm 5

14



1 Given B, k∗

2 funct F5(B, k∗)

3 B̃ =


0 I

B


4 S =

[
0L×L max(0,k∗−1) H−τ . . . H0

]
+

5


[
H1 . . . Hθ

]


B
...

Bθ

 B̃k∗ 0L×L max(0,k∗−1)


6 return(S)
7 .

4.2 Stochastic Transition Matrices: A,B

To compute covariances, practitioners will find it useful to construct the
stochastic transition matrices A and B.

Given structural model matrices, Hi, i = −τ, . . . , θ and convergent autoregres-
sion matrices Bi, i = −τ,−1 there exist stochastic transition matrices B, A
such that


xt−τ+1

...

xt

 = A


xt−τ

...

xt−1

 + B
[
εt + Ψ(E[zt|It]− E[zt|It−1])

]
(29)

See Section A.7 for derivations and formulae forA and B. Algorithm 6 provides
pseudo code for computing A and B

Algorithm 6
1 Given H, Ψ, S
2 funct F6(H, S)

15



3 A =



0 I
...

. . .

0 I

S−1
0 St−τ−max(k∗−1,0)+1 . . . . . . S−1

0 S−1



4 B =



0
...

0

S−1
0


5 return(A,B)
6 .

5 Conclusions

This paper describes a set of algorithms that have proved very durable and
useful for staff at the central bank. The most distinctive features of this ap-
proach are:

• its algorithm for computing the minimal dimension state space transition
matrix

• its use of bi-orthogonality to characterize the asymptotic constraints that
guarantee stability.

• It’s reliance on QR Decomposition and the real Schur Decomposition for
speed and accuracy.

The unique combination of features makes the algorithm more efficient than
all the alternatives—especially for large models. Staff at the Federal Reserves
have developed a large scale linear rational expectations model consisting of
421 equations with one lead and one lag. This model provides an extreme
example of the speed advantage of the Anderson-Moore Algorithm(AMA).
On an Intel(R) Xeon 2.80GHz CPU running Linux the MATLAB version of
AMA computes the rational expectations solution in 21 seconds while the the
MATLAB version of gensys, a popular alternative procedure, requires 16,953
seconds. See (Anderson, 2006) for a systematic comparison of this algorithm
with the alternative procedures. The code is available for download at

http://www.federalreserve.gov/Pubs/oss/oss4/aimindex.html
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A Proofs

A.1 Unconstrained Autoregression

Theorem 3 Let

H =


H−τ . . . Hθ

H−τ . . . Hθ

. . .

H−τ . . . Hθ




τ+θ+1 (A.1)

There are two cases:

• When H is full rank the algorithm terminates with Z]∗ (Z[∗) and
non-singular H]∗

θ (H[∗
τ )

• When H is not full rank the algorithm terminates when some row

of
[
Hk
−τ . . .Hk

θ

]
is zero.

Proof Consider the case when H is full rank. Each step of the algorithm
applies a rank preserving pre-multiplication by a non singular matrix. Each
step of the algorithm where H],k

θ is singular, increases the row rank of Z],k

by at least one. At each step Z],k are full rank. The rank of Z],k cannot
exceed L(τ + θ). �

The following corollary indicates that models with unique steady-states always
terminate with non singular H],∗

θ .

Corollary 1 If (
∑θ

i=−τ Hi) is non singular then

(1) H is full rank.
(2) The origin is the unique steady state of equation 1.
(3) there exists a sequence of elementary row operations that trans-

forms H into H∗

Proof Suppose H is not full rank. Then there is a non zero vector
V such that VH = 0. Consequently,

[
V−τ . . . Vθ

]
H


I . . . I
... . . .

...

I . . . I

 = 0 (A.2)
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and

Vi(
θ∑

j=−τ

Hj) = 0∀i (A.3)

So that (
∑θ

i=−τ Hi) must be singular. �

A.2 Asymptotic Constraints

Theorem 4 Consider a left invariant space and a right invariant
space with no eigenvalues in common. Suppose V1 spans the left
invariant space and W2 spans the right invariant space.

V1A = T1V1 (A.4)

AW2 = W2T2 (A.5)

With eigenvalues of T1 6= T2. Then V1W2 = 0

Proof A right eigenvector xi and a left-eigenvector yj corresponding to dis-
tinct eigenvalues λi and λj are orthogonal.(Noble, 1969) Finite dimensional
matrices have finite dimensional Jordan blocks. Raising a given matrix to
a power produces a matrix with smaller Jordan blocks. Raising the matrix
to a high enough power ultimately eliminates all nontrivial Jordan Blocks.
Consequently, the left invariant space vectors are linear combination of the
left eigenvectors and the right invariant space vectors are a linear combina-
tion of the right eigenvectors of the transition matrix raised to some finite
power.

V1 = β1


y1

...

yJ

 (A.6)

W2 =
[
x1 . . . xK

]
α2 (A.7)

V1W2 = β1


y1

...

yJ


[
x1 . . . xK

]
α2 = 0 (A.8)

�

Theorem 5 Let {xconv
t }, t = −τ, . . . ,∞ be a non explosive solution

satisfying equation 1. Let A be the state space transition matrix for
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equation 1 and V be a set of invariant space vectors spanning the
invariant space associated with roots of A of magnitude bigger than
1. Then for t = 0, . . . ,∞

V


xconv

t−τ

...

xconv
t+θ−1

 = 0 (A.9)

Proof Using W , the left generalized eigenvectors of A, one can employ
the Jordan Canonical Form of A to write

WHA = JWH (A.10)

so that

At = (WH)−1J tWH (A.11)

yt = Aty0 (A.12)

WHyt = J tWHy0 (A.13)

lim
t→∞

yt = 0 ⇒ lim
t→∞

WHyt = 0 (A.14)

Consequently,

WH
i y0 = 0∀i such that |Jii| > 1. (A.15)

so that

V y0 = αWHy0 = 0 (A.16)

�

Corollary 2 Let {xt}, t = −τ, . . . ,∞ be a solution satisfying equa-
tion 8. If A has no roots with magnitude 1 then the path converges
to the origin if and only if

V


xt−τ

...

xt+θ−1

 = 0 (A.17)

for some t.

Proof

WH
i y0 = 0∀i such that |Jii| > 1. (A.18)
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means yt

Jii 6= 1. (A.19)

yt = Aty0 (A.20)

�

A.3 Existence and Uniqueness

Theorem 6 Identify QL, QR from

Q =

Z]

V

 =
[
QL QR

]
(A.21)

with QR an (η×Lθ) matrix, QL an (η×Lτ) matrix, where η represent
the number of rows in the matrix Q.

The existence of convergent solutions depends on the magnitudes
of the ranks of the augmented matrix

r1 = rank
([

QR −QLxdata

])
(A.22)

and

r2 = rank(QR). (A.23)

By construction, r1 ≥ r2 and r2 ≤ Lθ. There are three cases.

(1) If r1 > r2 there is no nontrivial convergent solution
(2) If r1 = r2 = Lθ there is a unique convergent solution
(3) If r1 = r2 < Lθ the system has an infinity of convergent solutions

Corollary 3 When η = Lθ, QR is square. If QR is non-singular, the
system has a unique solution

B

B
2
...

B
θ


= Q−1

R QL (A.24)
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and solutions are of the form

xt = B


xt−τ

...

xt−1

 , xt+1 = B
2


xt−τ

...

xt−1

 , . . . xt+θ = B
θ


xt−τ

...

xt−1

 (A.25)

If QR is singular, the system has an infinity of solutions.

When η < Lθ, The system has an infinity of solutions.

When Q has more than Lθ rows, The system has a unique nontrivial
solution only for specific values of xdata

Proof of rank of Q

Proof The theorem applies well known results on existence and uniqueness

of solutions to linear equation systems(Noble, 1969). If M2 =

xdata

0

 does

not lie in the column space of M1 =

 I 0

QL QR

, then there is no solution. If

M2 lies in the column space of M1 and the latter matrix is full rank, then
there is a unique solution. If M2 lies in the column space of M1 and the
latter matrix is not full rank, then there are multiple solutions. �

A.4 Proof of Theorem 1

Proof Construct the Lτ × Lτ matrix:

B̃ =

0 I

B

 (A.26)

Define

Bk+1 = BkB̃ (A.27)
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Applying equation 8 to the unique convergent solution, it follows that

[
H− H0 H+

]


I

B
...

Bθ+1


= 0 (A.28)

where

H− =
[
H−τ . . . H−1

]
H+ =

[
H1 . . . Hθ

]
(A.29)

Which can also be written as:

[
H− H0 H+

]


I

0 I

B
...

Bθ


B̃


= 0 (A.30)

So that:

H− + (
[
0 H0

]
+ H+


B
...

Bθ

)B̃ = 0 (A.31)

H− + (
[
0 H0

]
+ H+


BL BR

...
...

BLθ BRθ

)B̃ = 0 (A.32)

where the Bk
R matrices are L× L.

Note that 
BL BR

...
...

BLθ BRθ

 B̃ =


0 BL

...
...

0 BLθ

 +


BR

...

BRθ

 B (A.33)
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Now

H− + H+


0 BL

...
...

0 BLθ

 + (H0 + H+


BR

...

BRθ

)B = 0 (A.34)

Define

φ = (H0 + H+


BR

...

BRθ

)−1 (A.35)

So that

φH− + φH+


0 BL

...
...

0 BLθ

 + B = 0 (A.36)

Consider the impact that the time t + s value zt+s has on the value of
xt+s We can write

[
H− H0 H+

]



I 0
. . .

...

I 0

0 . . . 0 I

0

BL

...

Bθ
L

BR

...

Bθ
R




xt+s−τ

...

xt+s

 = Ψzt+s (A.37)

or equivalently,

φΨzt+s =

φ(
[
H− 0

]
+

[
0 H0

]
+H+


0 BL

...
...

0 BLθ

 H+


BR

...

BRθ



)


xt+s−τ

...

xt+s


(A.38)
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or

φΨzt+s =

φ(
[
H− 0

]
+H+


0 BL

...
...

0 BLθ

 0

)


xt+s−τ

...

xt+s

 +

φ(
[
0 H0

]
+0 H+


BR

...

BRθ



)


xt+s−τ

...

xt+s



(A.39)

Which by equations A.35 and A.36 can be written

φΨzt+s =

[
−B 0

]

xt+s−τ

...

xt+s

 +

[
0 I

]

xt+s−τ

...

xt+s



(A.40)

So we have

[
−B I

]

xt+s−τ

...

xt+s

 = φΨzt+s (A.41)

xt+s = B


xt+s−τ

...

xt+s−1

 + φΨzt+s (A.42)
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Now consider the impact of zt+s on xt+s−1. We can write

φ(
[
H− 0

]
+

[
0 H0

]
+H+


0 BL

...
...

0 BLθ

 H+


BR

...

Bθ



)


xt+s−τ−1

...

xt+s−1

 +

φH+



I

BR

...

Bθ−1


φΨzt+s = 0

where the last term captures the impact zt+s has on values of x t + s and
later. Using equations A.35 and A.36 we can write

[
−B I

]

xt+s−τ−1

...

xt+s−1

 + φH+



I

BR

...

Bθ−1


φΨzt+s = 0 (A.43)

xt+s−1 = B


xt+s−τ−1

...

xt+s−2

− φH+



I

BR

...

Bθ−1


φΨzt+s (A.44)

and more generally

xt+s−i = B


xt+s−τ−1

...

xt+s−2

 + (−φH+



I

BR

...

BRθ−1


)iφΨzt+s (A.45)

To accommodate lagged expectations, suppose that information on all
the endogenous variables becomes available with the same lag (D∗) in time:
∃K∗ such that xt−k ∈ It,∀K ≥ K∗
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then set,


E[xt+1|It]

...

E[xt+θ|It]

 =


B
...

Bθ

 B̃k∗


xdata

t−τ+1−k∗

...

xdata
t−k∗

 + (A.46)



∑∞
s=0((−φH+



I

BR

...

BRθ−1


)sφΨzt+s+1)

...

∑∞
s=0((−φH+



I

BR

...

BRθ−1


)sφΨzt+s+θ)



(A.47)

So that

xt =

[
BL BR

]

xt−τ

...

xt−1

 +

[
0 . . . 0 I

] ∞∑
s=0

(F s

 0

φΨzt+s

)

Where

B =


BL BR

...
...

Bθ
L Bθ

R

 = Q−1
R QL (A.48)
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φ = (H0 + H+


BR

...

BRθ

)−1 (A.49)

F =



0 I
...

. . .

0 I

−φH+



0
...

0

I


−φH+



0
...

I

BR


. . . −φH+



I

BR

...

BRθ−1





(A.50)

xt = B


xt−τ

...

xt−1

 +
∞∑

s=0

((−φH+



I

BR

...

BRθ−1


)sφΨzt+s) (A.51)

�
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A.5 Proof of Theorem 2

Proof

∞∑
s=0

(F s

 0

φΨzt+s

) =
∞∑

s=0

(F s

 0

φΨ

 Υs)zt = ϑzt (A.52)

where

vec(ϑ) =
[
0 . . . 0 I

]
(I −ΥT ⊗ F )−1vec



0
...

0

φΨ


(A.53)

�

A.6 Observable Structure

Since one can write

εt =
[
H−τ . . . H0

]

xdata

t−τ

...

xdata
t

 +
[
H1 . . . Hθ

]

E[xt+1|It]

...

E[xt+θ|It]

−Ψzt (A.54)

We find that

εt = S


xdata

t−τ+1−max(1,k∗)

...

xdata
t

−Ψzt (A.55)
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where

S =
[
0L×L max(0,k∗−1) H−τ . . . H0

]
+ (A.56)

[
H1 . . . Hθ

]


B
...

Bθ

 B̃k∗ 0L×L max(0,k∗−1)

 (A.57)

Note that for k∗ ≥ 1

∂εt

∂xdata
t

= H0 (A.58)

and for k∗ = 0

∂εt

∂xdata
t

= H0 +
[
H1 . . . Hθ

]


B
...

Bθ

 = φ−1 (A.59)

A.7 Stochastic Transition Matrices

One can write
xt−τ−max(k∗−1,0)+1

...

xt

 = A


xt−τ−max(k∗−1,0)

...

xt−1

 + Bεt (A.60)

where

A =



0 I
...

. . .

0 I

S−1
0 St−τ−max(k∗−1,0)+1 . . . . . . S−1

0 S−1


(A.61)

B =



0
...

0

S−1
0


(A.62)
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B An Example

This section applies algorithms 1-3 to the following model with N=2.(Taylor,
1979)

wt =
1

N
Et[

N−1∑
i=0

Wt+i]− α(ut − un) + νt (B.1)

Wt =
1

N

N−1∑
i=0

wt−i (B.2)

ut = ϑut−1 + γWt + µ + εt (B.3)

Et[νt+i] = Et[εt+i] = 0∀i ≥ 0 (B.4)

The initial matrixH],0, for the example model with variable order {ε, ν, u, w, W}
is

H],0 =



0 0 0 0 0 0 −1 α 1 −1
2

0 0 0 0 −1
2

0 0 0 −1
2

0 0 0 0 −1
2

1 0 0 0 0 0

0 0 −ϑ 0 0 −1 0 1 0 −γ 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0



We would like to express the time t + 1 variables in terms of the time t and
t−1 variables. If the sub-matrix corresponding to the t+1 variables were non
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singular we could immediately write:



εt+1

νt+1

ut+1

wt+1

Wt+1


= (H],0

θ )−1
[
H],0
−1 H],0

0

]



εt−1

νt−1

ut−1

wt−1

Wt−1

εt

νt

ut

wt

Wt



Since (H],0
θ ) is singular, we use equations dated subsequent to the present time

period to construct a set of linear constraints where the leading block is non
singular.

H],? =



0 0 0 0 0 0 0 0 −1
2

0 0 0 0 −1
2

1

0 0 0 0 0 0 0 −ϑ 0 0 −1 0 1 0 −γ

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 −1 α 1 −1
2

0 0 0 0 −1
2



So that
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A =



0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −2γ ρ 2γ −γ

0 0 0 0 0 0 −4 4α 3 −2

0 0 0 0 0 0 −2 2α 2 −1



(B.5)

where

ρ = θ + 2γα (B.6)

For the example model

Z] =



0 0 0 −1
2

0 0 0 0 −1
2

1

0 0 −ϑ 0 0 −1 0 1 0 −γ

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0



Q =



0 0 0 −1
2

0 0 0 0 −1
2

1

0 0 −ϑ 0 0 −1 0 1 0 −γ

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 φ4 0 0 0 2 φ5 φ6 1


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where the φ’s are

φ7 = 1 + γ φ5 + 2 φ6

φ6 =
−2

(
18 α γ + (−1 + ρ)2 + (2 + ρ) φ2

1
3 + φ2

2
3

)
φ3

φ5=−
−1−3 α γ+3 ρ+21 α γ ρ−3 ρ2+ρ3+φ1+

108 α2 γ2+(−1+ρ)4+6 α γ (−1+ρ) (1+5 ρ)+2 (−1+ρ) φ1

φ2

1
3

+(12 α γ+(−1+ρ)2)φ2

1
3

γ φ3

φ4 = −
3 α γ

(
216 α2 γ2 − 4 (−1 + ρ)3 + 9 α γ (1 + (−14 + ρ) ρ)

)
+ φ1

2

γ φ2

2
3 φ3

φ3 = 18 α γ + (−1 + ρ)2 + (5 + ρ) φ2

1
3 + φ2

2
3

φ2 = (−1 + ρ)3 + 27 α γ (1 + ρ) + 3 φ1

φ1 =

√
−

(
α γ

(
216 α2 γ2 − 4 (−1 + ρ)3 + 9 α γ (1− 14 ρ + ρ2)

))

B =
1

φ7



0 0 0 0 0

0 0 0 0 0

0 0 ϑ− γφ4 + 2ϑφ6 γφ6 0

0 0 −2 (φ4 + ϑφ5) −1− γφ5 0

0 0 −φ4 − ϑφ5 φ6 0


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